[PATCH] sched: make idlest_group/cpu cpus_allowed-aware
[linux-2.6.22.y-op.git] / kernel / sched.c
blobbac23fb418f6051226070f5dfb4b5f73b48d1068
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t *p)
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t;
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
200 struct runqueue {
201 spinlock_t lock;
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long cpu_load[3];
210 #endif
211 unsigned long long nr_switches;
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
219 unsigned long nr_uninterruptible;
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
229 #ifdef CONFIG_SMP
230 struct sched_domain *sd;
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
236 task_t *migration_thread;
237 struct list_head migration_queue;
238 #endif
240 #ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258 #endif
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
283 #endif
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
288 return rq->curr == p;
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 spin_unlock_irq(&rq->lock);
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
303 #ifdef CONFIG_SMP
304 return p->oncpu;
305 #else
306 return rq->curr == p;
307 #endif
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
312 #ifdef CONFIG_SMP
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
318 next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322 #else
323 spin_unlock(&rq->lock);
324 #endif
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
329 #ifdef CONFIG_SMP
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
335 smp_wmb();
336 prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
340 #endif
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
352 struct runqueue *rq;
354 repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
362 return rq;
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
368 spin_unlock_irqrestore(&rq->lock, *flags);
371 #ifdef CONFIG_SCHEDSTATS
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
376 #define SCHEDSTAT_VERSION 12
378 static int show_schedstat(struct seq_file *seq, void *v)
380 int cpu;
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389 #endif
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
401 seq_printf(seq, "\n");
403 #ifdef CONFIG_SMP
404 /* domain-specific stats */
405 preempt_disable();
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
430 preempt_enable();
431 #endif
433 return 0;
436 static int schedstat_open(struct inode *inode, struct file *file)
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
467 #endif
470 * rq_lock - lock a given runqueue and disable interrupts.
472 static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
475 runqueue_t *rq;
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
481 return rq;
484 #ifdef CONFIG_SCHEDSTATS
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
500 static inline void sched_info_dequeued(task_t *t)
502 t->sched_info.last_queued = 0;
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
510 static inline void sched_info_arrive(task_t *t)
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
522 if (!rq)
523 return;
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
544 static inline void sched_info_queued(task_t *t)
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
554 static inline void sched_info_depart(task_t *t)
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
559 t->sched_info.cpu_time += diff;
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
570 static inline void sched_info_switch(task_t *prev, task_t *next)
572 struct runqueue *rq = task_rq(prev);
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
579 if (prev != rq->idle)
580 sched_info_depart(prev);
582 if (next != rq->idle)
583 sched_info_arrive(next);
585 #else
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
591 * Adding/removing a task to/from a priority array:
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
616 list_move_tail(&p->run_list, array->queue + p->prio);
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
634 * We use 25% of the full 0...39 priority range so that:
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
639 * Both properties are important to certain workloads.
641 static int effective_prio(task_t *p)
643 int bonus, prio;
645 if (rt_task(p))
646 return p->prio;
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
659 * __activate_task - move a task to the runqueue.
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
676 static int recalc_task_prio(task_t *p, unsigned long long now)
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
687 if (likely(sleep_time > 0)) {
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
721 * This code gives a bonus to interactive tasks.
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
728 p->sleep_avg += sleep_time;
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
735 return effective_prio(p);
739 * activate_task - move a task to the runqueue and do priority recalculation
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
746 unsigned long long now;
748 now = sched_clock();
749 #ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
756 #endif
758 p->prio = recalc_task_prio(p, now);
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
764 if (!p->activated) {
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
772 if (in_interrupt())
773 p->activated = 2;
774 else {
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
779 p->activated = 1;
782 p->timestamp = now;
784 __activate_task(p, rq);
788 * deactivate_task - remove a task from the runqueue.
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
798 * resched_task - mark a task 'to be rescheduled now'.
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
807 int need_resched, nrpolling;
809 assert_spin_locked(&task_rq(p)->lock);
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
819 #else
820 static inline void resched_task(task_t *p)
822 set_tsk_need_resched(p);
824 #endif
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
830 inline int task_curr(const task_t *p)
832 return cpu_curr(task_cpu(p)) == p;
835 #ifdef CONFIG_SMP
836 typedef struct {
837 struct list_head list;
839 task_t *task;
840 int dest_cpu;
842 struct completion done;
843 } migration_req_t;
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
851 runqueue_t *rq = task_rq(p);
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
862 init_completion(&req->done);
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
870 * wait_task_inactive - wait for a thread to unschedule.
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
878 void wait_task_inactive(task_t * p)
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
884 repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
896 task_rq_unlock(rq, &flags);
899 /***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
912 void kick_process(task_t *p)
914 int cpu;
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
924 * Return a low guess at the load of a migration-source cpu.
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
929 static inline unsigned long source_load(int cpu, int type)
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933 if (type == 0)
934 return load_now;
936 return min(rq->cpu_load[type-1], load_now);
940 * Return a high guess at the load of a migration-target cpu
942 static inline unsigned long target_load(int cpu, int type)
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946 if (type == 0)
947 return load_now;
949 return max(rq->cpu_load[type-1], load_now);
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
969 /* Skip over this group if it has no CPUs allowed */
970 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
971 goto nextgroup;
973 local_group = cpu_isset(this_cpu, group->cpumask);
975 /* Tally up the load of all CPUs in the group */
976 avg_load = 0;
978 for_each_cpu_mask(i, group->cpumask) {
979 /* Bias balancing toward cpus of our domain */
980 if (local_group)
981 load = source_load(i, load_idx);
982 else
983 load = target_load(i, load_idx);
985 avg_load += load;
988 /* Adjust by relative CPU power of the group */
989 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
991 if (local_group) {
992 this_load = avg_load;
993 this = group;
994 } else if (avg_load < min_load) {
995 min_load = avg_load;
996 idlest = group;
998 nextgroup:
999 group = group->next;
1000 } while (group != sd->groups);
1002 if (!idlest || 100*this_load < imbalance*min_load)
1003 return NULL;
1004 return idlest;
1008 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1010 static int find_idlest_cpu(struct sched_group *group,
1011 struct task_struct *p, int this_cpu)
1013 cpumask_t tmp;
1014 unsigned long load, min_load = ULONG_MAX;
1015 int idlest = -1;
1016 int i;
1018 /* Traverse only the allowed CPUs */
1019 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1021 for_each_cpu_mask(i, tmp) {
1022 load = source_load(i, 0);
1024 if (load < min_load || (load == min_load && i == this_cpu)) {
1025 min_load = load;
1026 idlest = i;
1030 return idlest;
1034 * sched_balance_self: balance the current task (running on cpu) in domains
1035 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1036 * SD_BALANCE_EXEC.
1038 * Balance, ie. select the least loaded group.
1040 * Returns the target CPU number, or the same CPU if no balancing is needed.
1042 * preempt must be disabled.
1044 static int sched_balance_self(int cpu, int flag)
1046 struct task_struct *t = current;
1047 struct sched_domain *tmp, *sd = NULL;
1049 for_each_domain(cpu, tmp)
1050 if (tmp->flags & flag)
1051 sd = tmp;
1053 while (sd) {
1054 cpumask_t span;
1055 struct sched_group *group;
1056 int new_cpu;
1057 int weight;
1059 span = sd->span;
1060 group = find_idlest_group(sd, t, cpu);
1061 if (!group)
1062 goto nextlevel;
1064 new_cpu = find_idlest_cpu(group, t, cpu);
1065 if (new_cpu == -1 || new_cpu == cpu)
1066 goto nextlevel;
1068 /* Now try balancing at a lower domain level */
1069 cpu = new_cpu;
1070 nextlevel:
1071 sd = NULL;
1072 weight = cpus_weight(span);
1073 for_each_domain(cpu, tmp) {
1074 if (weight <= cpus_weight(tmp->span))
1075 break;
1076 if (tmp->flags & flag)
1077 sd = tmp;
1079 /* while loop will break here if sd == NULL */
1082 return cpu;
1085 #endif /* CONFIG_SMP */
1088 * wake_idle() will wake a task on an idle cpu if task->cpu is
1089 * not idle and an idle cpu is available. The span of cpus to
1090 * search starts with cpus closest then further out as needed,
1091 * so we always favor a closer, idle cpu.
1093 * Returns the CPU we should wake onto.
1095 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1096 static int wake_idle(int cpu, task_t *p)
1098 cpumask_t tmp;
1099 struct sched_domain *sd;
1100 int i;
1102 if (idle_cpu(cpu))
1103 return cpu;
1105 for_each_domain(cpu, sd) {
1106 if (sd->flags & SD_WAKE_IDLE) {
1107 cpus_and(tmp, sd->span, p->cpus_allowed);
1108 for_each_cpu_mask(i, tmp) {
1109 if (idle_cpu(i))
1110 return i;
1113 else
1114 break;
1116 return cpu;
1118 #else
1119 static inline int wake_idle(int cpu, task_t *p)
1121 return cpu;
1123 #endif
1125 /***
1126 * try_to_wake_up - wake up a thread
1127 * @p: the to-be-woken-up thread
1128 * @state: the mask of task states that can be woken
1129 * @sync: do a synchronous wakeup?
1131 * Put it on the run-queue if it's not already there. The "current"
1132 * thread is always on the run-queue (except when the actual
1133 * re-schedule is in progress), and as such you're allowed to do
1134 * the simpler "current->state = TASK_RUNNING" to mark yourself
1135 * runnable without the overhead of this.
1137 * returns failure only if the task is already active.
1139 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1141 int cpu, this_cpu, success = 0;
1142 unsigned long flags;
1143 long old_state;
1144 runqueue_t *rq;
1145 #ifdef CONFIG_SMP
1146 unsigned long load, this_load;
1147 struct sched_domain *sd, *this_sd = NULL;
1148 int new_cpu;
1149 #endif
1151 rq = task_rq_lock(p, &flags);
1152 old_state = p->state;
1153 if (!(old_state & state))
1154 goto out;
1156 if (p->array)
1157 goto out_running;
1159 cpu = task_cpu(p);
1160 this_cpu = smp_processor_id();
1162 #ifdef CONFIG_SMP
1163 if (unlikely(task_running(rq, p)))
1164 goto out_activate;
1166 new_cpu = cpu;
1168 schedstat_inc(rq, ttwu_cnt);
1169 if (cpu == this_cpu) {
1170 schedstat_inc(rq, ttwu_local);
1171 goto out_set_cpu;
1174 for_each_domain(this_cpu, sd) {
1175 if (cpu_isset(cpu, sd->span)) {
1176 schedstat_inc(sd, ttwu_wake_remote);
1177 this_sd = sd;
1178 break;
1182 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1183 goto out_set_cpu;
1186 * Check for affine wakeup and passive balancing possibilities.
1188 if (this_sd) {
1189 int idx = this_sd->wake_idx;
1190 unsigned int imbalance;
1192 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1194 load = source_load(cpu, idx);
1195 this_load = target_load(this_cpu, idx);
1197 new_cpu = this_cpu; /* Wake to this CPU if we can */
1199 if (this_sd->flags & SD_WAKE_AFFINE) {
1200 unsigned long tl = this_load;
1202 * If sync wakeup then subtract the (maximum possible)
1203 * effect of the currently running task from the load
1204 * of the current CPU:
1206 if (sync)
1207 tl -= SCHED_LOAD_SCALE;
1209 if ((tl <= load &&
1210 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1211 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1213 * This domain has SD_WAKE_AFFINE and
1214 * p is cache cold in this domain, and
1215 * there is no bad imbalance.
1217 schedstat_inc(this_sd, ttwu_move_affine);
1218 goto out_set_cpu;
1223 * Start passive balancing when half the imbalance_pct
1224 * limit is reached.
1226 if (this_sd->flags & SD_WAKE_BALANCE) {
1227 if (imbalance*this_load <= 100*load) {
1228 schedstat_inc(this_sd, ttwu_move_balance);
1229 goto out_set_cpu;
1234 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1235 out_set_cpu:
1236 new_cpu = wake_idle(new_cpu, p);
1237 if (new_cpu != cpu) {
1238 set_task_cpu(p, new_cpu);
1239 task_rq_unlock(rq, &flags);
1240 /* might preempt at this point */
1241 rq = task_rq_lock(p, &flags);
1242 old_state = p->state;
1243 if (!(old_state & state))
1244 goto out;
1245 if (p->array)
1246 goto out_running;
1248 this_cpu = smp_processor_id();
1249 cpu = task_cpu(p);
1252 out_activate:
1253 #endif /* CONFIG_SMP */
1254 if (old_state == TASK_UNINTERRUPTIBLE) {
1255 rq->nr_uninterruptible--;
1257 * Tasks on involuntary sleep don't earn
1258 * sleep_avg beyond just interactive state.
1260 p->activated = -1;
1264 * Sync wakeups (i.e. those types of wakeups where the waker
1265 * has indicated that it will leave the CPU in short order)
1266 * don't trigger a preemption, if the woken up task will run on
1267 * this cpu. (in this case the 'I will reschedule' promise of
1268 * the waker guarantees that the freshly woken up task is going
1269 * to be considered on this CPU.)
1271 activate_task(p, rq, cpu == this_cpu);
1272 if (!sync || cpu != this_cpu) {
1273 if (TASK_PREEMPTS_CURR(p, rq))
1274 resched_task(rq->curr);
1276 success = 1;
1278 out_running:
1279 p->state = TASK_RUNNING;
1280 out:
1281 task_rq_unlock(rq, &flags);
1283 return success;
1286 int fastcall wake_up_process(task_t * p)
1288 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1289 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1292 EXPORT_SYMBOL(wake_up_process);
1294 int fastcall wake_up_state(task_t *p, unsigned int state)
1296 return try_to_wake_up(p, state, 0);
1300 * Perform scheduler related setup for a newly forked process p.
1301 * p is forked by current.
1303 void fastcall sched_fork(task_t *p, int clone_flags)
1305 int cpu = get_cpu();
1307 #ifdef CONFIG_SMP
1308 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1309 #endif
1310 set_task_cpu(p, cpu);
1313 * We mark the process as running here, but have not actually
1314 * inserted it onto the runqueue yet. This guarantees that
1315 * nobody will actually run it, and a signal or other external
1316 * event cannot wake it up and insert it on the runqueue either.
1318 p->state = TASK_RUNNING;
1319 INIT_LIST_HEAD(&p->run_list);
1320 p->array = NULL;
1321 #ifdef CONFIG_SCHEDSTATS
1322 memset(&p->sched_info, 0, sizeof(p->sched_info));
1323 #endif
1324 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1325 p->oncpu = 0;
1326 #endif
1327 #ifdef CONFIG_PREEMPT
1328 /* Want to start with kernel preemption disabled. */
1329 p->thread_info->preempt_count = 1;
1330 #endif
1332 * Share the timeslice between parent and child, thus the
1333 * total amount of pending timeslices in the system doesn't change,
1334 * resulting in more scheduling fairness.
1336 local_irq_disable();
1337 p->time_slice = (current->time_slice + 1) >> 1;
1339 * The remainder of the first timeslice might be recovered by
1340 * the parent if the child exits early enough.
1342 p->first_time_slice = 1;
1343 current->time_slice >>= 1;
1344 p->timestamp = sched_clock();
1345 if (unlikely(!current->time_slice)) {
1347 * This case is rare, it happens when the parent has only
1348 * a single jiffy left from its timeslice. Taking the
1349 * runqueue lock is not a problem.
1351 current->time_slice = 1;
1352 scheduler_tick();
1354 local_irq_enable();
1355 put_cpu();
1359 * wake_up_new_task - wake up a newly created task for the first time.
1361 * This function will do some initial scheduler statistics housekeeping
1362 * that must be done for every newly created context, then puts the task
1363 * on the runqueue and wakes it.
1365 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1367 unsigned long flags;
1368 int this_cpu, cpu;
1369 runqueue_t *rq, *this_rq;
1371 rq = task_rq_lock(p, &flags);
1372 BUG_ON(p->state != TASK_RUNNING);
1373 this_cpu = smp_processor_id();
1374 cpu = task_cpu(p);
1377 * We decrease the sleep average of forking parents
1378 * and children as well, to keep max-interactive tasks
1379 * from forking tasks that are max-interactive. The parent
1380 * (current) is done further down, under its lock.
1382 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1383 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1385 p->prio = effective_prio(p);
1387 if (likely(cpu == this_cpu)) {
1388 if (!(clone_flags & CLONE_VM)) {
1390 * The VM isn't cloned, so we're in a good position to
1391 * do child-runs-first in anticipation of an exec. This
1392 * usually avoids a lot of COW overhead.
1394 if (unlikely(!current->array))
1395 __activate_task(p, rq);
1396 else {
1397 p->prio = current->prio;
1398 list_add_tail(&p->run_list, &current->run_list);
1399 p->array = current->array;
1400 p->array->nr_active++;
1401 rq->nr_running++;
1403 set_need_resched();
1404 } else
1405 /* Run child last */
1406 __activate_task(p, rq);
1408 * We skip the following code due to cpu == this_cpu
1410 * task_rq_unlock(rq, &flags);
1411 * this_rq = task_rq_lock(current, &flags);
1413 this_rq = rq;
1414 } else {
1415 this_rq = cpu_rq(this_cpu);
1418 * Not the local CPU - must adjust timestamp. This should
1419 * get optimised away in the !CONFIG_SMP case.
1421 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1422 + rq->timestamp_last_tick;
1423 __activate_task(p, rq);
1424 if (TASK_PREEMPTS_CURR(p, rq))
1425 resched_task(rq->curr);
1428 * Parent and child are on different CPUs, now get the
1429 * parent runqueue to update the parent's ->sleep_avg:
1431 task_rq_unlock(rq, &flags);
1432 this_rq = task_rq_lock(current, &flags);
1434 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1435 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1436 task_rq_unlock(this_rq, &flags);
1440 * Potentially available exiting-child timeslices are
1441 * retrieved here - this way the parent does not get
1442 * penalized for creating too many threads.
1444 * (this cannot be used to 'generate' timeslices
1445 * artificially, because any timeslice recovered here
1446 * was given away by the parent in the first place.)
1448 void fastcall sched_exit(task_t * p)
1450 unsigned long flags;
1451 runqueue_t *rq;
1454 * If the child was a (relative-) CPU hog then decrease
1455 * the sleep_avg of the parent as well.
1457 rq = task_rq_lock(p->parent, &flags);
1458 if (p->first_time_slice) {
1459 p->parent->time_slice += p->time_slice;
1460 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1461 p->parent->time_slice = task_timeslice(p);
1463 if (p->sleep_avg < p->parent->sleep_avg)
1464 p->parent->sleep_avg = p->parent->sleep_avg /
1465 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1466 (EXIT_WEIGHT + 1);
1467 task_rq_unlock(rq, &flags);
1471 * prepare_task_switch - prepare to switch tasks
1472 * @rq: the runqueue preparing to switch
1473 * @next: the task we are going to switch to.
1475 * This is called with the rq lock held and interrupts off. It must
1476 * be paired with a subsequent finish_task_switch after the context
1477 * switch.
1479 * prepare_task_switch sets up locking and calls architecture specific
1480 * hooks.
1482 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1484 prepare_lock_switch(rq, next);
1485 prepare_arch_switch(next);
1489 * finish_task_switch - clean up after a task-switch
1490 * @rq: runqueue associated with task-switch
1491 * @prev: the thread we just switched away from.
1493 * finish_task_switch must be called after the context switch, paired
1494 * with a prepare_task_switch call before the context switch.
1495 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1496 * and do any other architecture-specific cleanup actions.
1498 * Note that we may have delayed dropping an mm in context_switch(). If
1499 * so, we finish that here outside of the runqueue lock. (Doing it
1500 * with the lock held can cause deadlocks; see schedule() for
1501 * details.)
1503 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1504 __releases(rq->lock)
1506 struct mm_struct *mm = rq->prev_mm;
1507 unsigned long prev_task_flags;
1509 rq->prev_mm = NULL;
1512 * A task struct has one reference for the use as "current".
1513 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1514 * calls schedule one last time. The schedule call will never return,
1515 * and the scheduled task must drop that reference.
1516 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1517 * still held, otherwise prev could be scheduled on another cpu, die
1518 * there before we look at prev->state, and then the reference would
1519 * be dropped twice.
1520 * Manfred Spraul <manfred@colorfullife.com>
1522 prev_task_flags = prev->flags;
1523 #ifdef CONFIG_DEBUG_SPINLOCK
1524 /* this is a valid case when another task releases the spinlock */
1525 rq->lock.owner = current;
1526 #endif
1527 finish_arch_switch(prev);
1528 finish_lock_switch(rq, prev);
1529 if (mm)
1530 mmdrop(mm);
1531 if (unlikely(prev_task_flags & PF_DEAD))
1532 put_task_struct(prev);
1536 * schedule_tail - first thing a freshly forked thread must call.
1537 * @prev: the thread we just switched away from.
1539 asmlinkage void schedule_tail(task_t *prev)
1540 __releases(rq->lock)
1542 runqueue_t *rq = this_rq();
1543 finish_task_switch(rq, prev);
1544 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1545 /* In this case, finish_task_switch does not reenable preemption */
1546 preempt_enable();
1547 #endif
1548 if (current->set_child_tid)
1549 put_user(current->pid, current->set_child_tid);
1553 * context_switch - switch to the new MM and the new
1554 * thread's register state.
1556 static inline
1557 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1559 struct mm_struct *mm = next->mm;
1560 struct mm_struct *oldmm = prev->active_mm;
1562 if (unlikely(!mm)) {
1563 next->active_mm = oldmm;
1564 atomic_inc(&oldmm->mm_count);
1565 enter_lazy_tlb(oldmm, next);
1566 } else
1567 switch_mm(oldmm, mm, next);
1569 if (unlikely(!prev->mm)) {
1570 prev->active_mm = NULL;
1571 WARN_ON(rq->prev_mm);
1572 rq->prev_mm = oldmm;
1575 /* Here we just switch the register state and the stack. */
1576 switch_to(prev, next, prev);
1578 return prev;
1582 * nr_running, nr_uninterruptible and nr_context_switches:
1584 * externally visible scheduler statistics: current number of runnable
1585 * threads, current number of uninterruptible-sleeping threads, total
1586 * number of context switches performed since bootup.
1588 unsigned long nr_running(void)
1590 unsigned long i, sum = 0;
1592 for_each_online_cpu(i)
1593 sum += cpu_rq(i)->nr_running;
1595 return sum;
1598 unsigned long nr_uninterruptible(void)
1600 unsigned long i, sum = 0;
1602 for_each_cpu(i)
1603 sum += cpu_rq(i)->nr_uninterruptible;
1606 * Since we read the counters lockless, it might be slightly
1607 * inaccurate. Do not allow it to go below zero though:
1609 if (unlikely((long)sum < 0))
1610 sum = 0;
1612 return sum;
1615 unsigned long long nr_context_switches(void)
1617 unsigned long long i, sum = 0;
1619 for_each_cpu(i)
1620 sum += cpu_rq(i)->nr_switches;
1622 return sum;
1625 unsigned long nr_iowait(void)
1627 unsigned long i, sum = 0;
1629 for_each_cpu(i)
1630 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1632 return sum;
1635 #ifdef CONFIG_SMP
1638 * double_rq_lock - safely lock two runqueues
1640 * Note this does not disable interrupts like task_rq_lock,
1641 * you need to do so manually before calling.
1643 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1644 __acquires(rq1->lock)
1645 __acquires(rq2->lock)
1647 if (rq1 == rq2) {
1648 spin_lock(&rq1->lock);
1649 __acquire(rq2->lock); /* Fake it out ;) */
1650 } else {
1651 if (rq1 < rq2) {
1652 spin_lock(&rq1->lock);
1653 spin_lock(&rq2->lock);
1654 } else {
1655 spin_lock(&rq2->lock);
1656 spin_lock(&rq1->lock);
1662 * double_rq_unlock - safely unlock two runqueues
1664 * Note this does not restore interrupts like task_rq_unlock,
1665 * you need to do so manually after calling.
1667 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1668 __releases(rq1->lock)
1669 __releases(rq2->lock)
1671 spin_unlock(&rq1->lock);
1672 if (rq1 != rq2)
1673 spin_unlock(&rq2->lock);
1674 else
1675 __release(rq2->lock);
1679 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1681 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1682 __releases(this_rq->lock)
1683 __acquires(busiest->lock)
1684 __acquires(this_rq->lock)
1686 if (unlikely(!spin_trylock(&busiest->lock))) {
1687 if (busiest < this_rq) {
1688 spin_unlock(&this_rq->lock);
1689 spin_lock(&busiest->lock);
1690 spin_lock(&this_rq->lock);
1691 } else
1692 spin_lock(&busiest->lock);
1697 * If dest_cpu is allowed for this process, migrate the task to it.
1698 * This is accomplished by forcing the cpu_allowed mask to only
1699 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1700 * the cpu_allowed mask is restored.
1702 static void sched_migrate_task(task_t *p, int dest_cpu)
1704 migration_req_t req;
1705 runqueue_t *rq;
1706 unsigned long flags;
1708 rq = task_rq_lock(p, &flags);
1709 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1710 || unlikely(cpu_is_offline(dest_cpu)))
1711 goto out;
1713 /* force the process onto the specified CPU */
1714 if (migrate_task(p, dest_cpu, &req)) {
1715 /* Need to wait for migration thread (might exit: take ref). */
1716 struct task_struct *mt = rq->migration_thread;
1717 get_task_struct(mt);
1718 task_rq_unlock(rq, &flags);
1719 wake_up_process(mt);
1720 put_task_struct(mt);
1721 wait_for_completion(&req.done);
1722 return;
1724 out:
1725 task_rq_unlock(rq, &flags);
1729 * sched_exec - execve() is a valuable balancing opportunity, because at
1730 * this point the task has the smallest effective memory and cache footprint.
1732 void sched_exec(void)
1734 int new_cpu, this_cpu = get_cpu();
1735 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1736 put_cpu();
1737 if (new_cpu != this_cpu)
1738 sched_migrate_task(current, new_cpu);
1742 * pull_task - move a task from a remote runqueue to the local runqueue.
1743 * Both runqueues must be locked.
1745 static inline
1746 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1747 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1749 dequeue_task(p, src_array);
1750 src_rq->nr_running--;
1751 set_task_cpu(p, this_cpu);
1752 this_rq->nr_running++;
1753 enqueue_task(p, this_array);
1754 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1755 + this_rq->timestamp_last_tick;
1757 * Note that idle threads have a prio of MAX_PRIO, for this test
1758 * to be always true for them.
1760 if (TASK_PREEMPTS_CURR(p, this_rq))
1761 resched_task(this_rq->curr);
1765 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1767 static inline
1768 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1769 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1772 * We do not migrate tasks that are:
1773 * 1) running (obviously), or
1774 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1775 * 3) are cache-hot on their current CPU.
1777 if (!cpu_isset(this_cpu, p->cpus_allowed))
1778 return 0;
1779 *all_pinned = 0;
1781 if (task_running(rq, p))
1782 return 0;
1785 * Aggressive migration if:
1786 * 1) task is cache cold, or
1787 * 2) too many balance attempts have failed.
1790 if (sd->nr_balance_failed > sd->cache_nice_tries)
1791 return 1;
1793 if (task_hot(p, rq->timestamp_last_tick, sd))
1794 return 0;
1795 return 1;
1799 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1800 * as part of a balancing operation within "domain". Returns the number of
1801 * tasks moved.
1803 * Called with both runqueues locked.
1805 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1806 unsigned long max_nr_move, struct sched_domain *sd,
1807 enum idle_type idle, int *all_pinned)
1809 prio_array_t *array, *dst_array;
1810 struct list_head *head, *curr;
1811 int idx, pulled = 0, pinned = 0;
1812 task_t *tmp;
1814 if (max_nr_move == 0)
1815 goto out;
1817 pinned = 1;
1820 * We first consider expired tasks. Those will likely not be
1821 * executed in the near future, and they are most likely to
1822 * be cache-cold, thus switching CPUs has the least effect
1823 * on them.
1825 if (busiest->expired->nr_active) {
1826 array = busiest->expired;
1827 dst_array = this_rq->expired;
1828 } else {
1829 array = busiest->active;
1830 dst_array = this_rq->active;
1833 new_array:
1834 /* Start searching at priority 0: */
1835 idx = 0;
1836 skip_bitmap:
1837 if (!idx)
1838 idx = sched_find_first_bit(array->bitmap);
1839 else
1840 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1841 if (idx >= MAX_PRIO) {
1842 if (array == busiest->expired && busiest->active->nr_active) {
1843 array = busiest->active;
1844 dst_array = this_rq->active;
1845 goto new_array;
1847 goto out;
1850 head = array->queue + idx;
1851 curr = head->prev;
1852 skip_queue:
1853 tmp = list_entry(curr, task_t, run_list);
1855 curr = curr->prev;
1857 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1858 if (curr != head)
1859 goto skip_queue;
1860 idx++;
1861 goto skip_bitmap;
1864 #ifdef CONFIG_SCHEDSTATS
1865 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1866 schedstat_inc(sd, lb_hot_gained[idle]);
1867 #endif
1869 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1870 pulled++;
1872 /* We only want to steal up to the prescribed number of tasks. */
1873 if (pulled < max_nr_move) {
1874 if (curr != head)
1875 goto skip_queue;
1876 idx++;
1877 goto skip_bitmap;
1879 out:
1881 * Right now, this is the only place pull_task() is called,
1882 * so we can safely collect pull_task() stats here rather than
1883 * inside pull_task().
1885 schedstat_add(sd, lb_gained[idle], pulled);
1887 if (all_pinned)
1888 *all_pinned = pinned;
1889 return pulled;
1893 * find_busiest_group finds and returns the busiest CPU group within the
1894 * domain. It calculates and returns the number of tasks which should be
1895 * moved to restore balance via the imbalance parameter.
1897 static struct sched_group *
1898 find_busiest_group(struct sched_domain *sd, int this_cpu,
1899 unsigned long *imbalance, enum idle_type idle)
1901 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1902 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1903 int load_idx;
1905 max_load = this_load = total_load = total_pwr = 0;
1906 if (idle == NOT_IDLE)
1907 load_idx = sd->busy_idx;
1908 else if (idle == NEWLY_IDLE)
1909 load_idx = sd->newidle_idx;
1910 else
1911 load_idx = sd->idle_idx;
1913 do {
1914 unsigned long load;
1915 int local_group;
1916 int i;
1918 local_group = cpu_isset(this_cpu, group->cpumask);
1920 /* Tally up the load of all CPUs in the group */
1921 avg_load = 0;
1923 for_each_cpu_mask(i, group->cpumask) {
1924 /* Bias balancing toward cpus of our domain */
1925 if (local_group)
1926 load = target_load(i, load_idx);
1927 else
1928 load = source_load(i, load_idx);
1930 avg_load += load;
1933 total_load += avg_load;
1934 total_pwr += group->cpu_power;
1936 /* Adjust by relative CPU power of the group */
1937 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1939 if (local_group) {
1940 this_load = avg_load;
1941 this = group;
1942 } else if (avg_load > max_load) {
1943 max_load = avg_load;
1944 busiest = group;
1946 group = group->next;
1947 } while (group != sd->groups);
1949 if (!busiest || this_load >= max_load)
1950 goto out_balanced;
1952 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1954 if (this_load >= avg_load ||
1955 100*max_load <= sd->imbalance_pct*this_load)
1956 goto out_balanced;
1959 * We're trying to get all the cpus to the average_load, so we don't
1960 * want to push ourselves above the average load, nor do we wish to
1961 * reduce the max loaded cpu below the average load, as either of these
1962 * actions would just result in more rebalancing later, and ping-pong
1963 * tasks around. Thus we look for the minimum possible imbalance.
1964 * Negative imbalances (*we* are more loaded than anyone else) will
1965 * be counted as no imbalance for these purposes -- we can't fix that
1966 * by pulling tasks to us. Be careful of negative numbers as they'll
1967 * appear as very large values with unsigned longs.
1969 /* How much load to actually move to equalise the imbalance */
1970 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1971 (avg_load - this_load) * this->cpu_power)
1972 / SCHED_LOAD_SCALE;
1974 if (*imbalance < SCHED_LOAD_SCALE) {
1975 unsigned long pwr_now = 0, pwr_move = 0;
1976 unsigned long tmp;
1978 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1979 *imbalance = 1;
1980 return busiest;
1984 * OK, we don't have enough imbalance to justify moving tasks,
1985 * however we may be able to increase total CPU power used by
1986 * moving them.
1989 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1990 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1991 pwr_now /= SCHED_LOAD_SCALE;
1993 /* Amount of load we'd subtract */
1994 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1995 if (max_load > tmp)
1996 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1997 max_load - tmp);
1999 /* Amount of load we'd add */
2000 if (max_load*busiest->cpu_power <
2001 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2002 tmp = max_load*busiest->cpu_power/this->cpu_power;
2003 else
2004 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2005 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2006 pwr_move /= SCHED_LOAD_SCALE;
2008 /* Move if we gain throughput */
2009 if (pwr_move <= pwr_now)
2010 goto out_balanced;
2012 *imbalance = 1;
2013 return busiest;
2016 /* Get rid of the scaling factor, rounding down as we divide */
2017 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2018 return busiest;
2020 out_balanced:
2022 *imbalance = 0;
2023 return NULL;
2027 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2029 static runqueue_t *find_busiest_queue(struct sched_group *group)
2031 unsigned long load, max_load = 0;
2032 runqueue_t *busiest = NULL;
2033 int i;
2035 for_each_cpu_mask(i, group->cpumask) {
2036 load = source_load(i, 0);
2038 if (load > max_load) {
2039 max_load = load;
2040 busiest = cpu_rq(i);
2044 return busiest;
2048 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2049 * so long as it is large enough.
2051 #define MAX_PINNED_INTERVAL 512
2054 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2055 * tasks if there is an imbalance.
2057 * Called with this_rq unlocked.
2059 static int load_balance(int this_cpu, runqueue_t *this_rq,
2060 struct sched_domain *sd, enum idle_type idle)
2062 struct sched_group *group;
2063 runqueue_t *busiest;
2064 unsigned long imbalance;
2065 int nr_moved, all_pinned = 0;
2066 int active_balance = 0;
2068 spin_lock(&this_rq->lock);
2069 schedstat_inc(sd, lb_cnt[idle]);
2071 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2072 if (!group) {
2073 schedstat_inc(sd, lb_nobusyg[idle]);
2074 goto out_balanced;
2077 busiest = find_busiest_queue(group);
2078 if (!busiest) {
2079 schedstat_inc(sd, lb_nobusyq[idle]);
2080 goto out_balanced;
2083 BUG_ON(busiest == this_rq);
2085 schedstat_add(sd, lb_imbalance[idle], imbalance);
2087 nr_moved = 0;
2088 if (busiest->nr_running > 1) {
2090 * Attempt to move tasks. If find_busiest_group has found
2091 * an imbalance but busiest->nr_running <= 1, the group is
2092 * still unbalanced. nr_moved simply stays zero, so it is
2093 * correctly treated as an imbalance.
2095 double_lock_balance(this_rq, busiest);
2096 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2097 imbalance, sd, idle,
2098 &all_pinned);
2099 spin_unlock(&busiest->lock);
2101 /* All tasks on this runqueue were pinned by CPU affinity */
2102 if (unlikely(all_pinned))
2103 goto out_balanced;
2106 spin_unlock(&this_rq->lock);
2108 if (!nr_moved) {
2109 schedstat_inc(sd, lb_failed[idle]);
2110 sd->nr_balance_failed++;
2112 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2114 spin_lock(&busiest->lock);
2115 if (!busiest->active_balance) {
2116 busiest->active_balance = 1;
2117 busiest->push_cpu = this_cpu;
2118 active_balance = 1;
2120 spin_unlock(&busiest->lock);
2121 if (active_balance)
2122 wake_up_process(busiest->migration_thread);
2125 * We've kicked active balancing, reset the failure
2126 * counter.
2128 sd->nr_balance_failed = sd->cache_nice_tries+1;
2130 } else
2131 sd->nr_balance_failed = 0;
2133 if (likely(!active_balance)) {
2134 /* We were unbalanced, so reset the balancing interval */
2135 sd->balance_interval = sd->min_interval;
2136 } else {
2138 * If we've begun active balancing, start to back off. This
2139 * case may not be covered by the all_pinned logic if there
2140 * is only 1 task on the busy runqueue (because we don't call
2141 * move_tasks).
2143 if (sd->balance_interval < sd->max_interval)
2144 sd->balance_interval *= 2;
2147 return nr_moved;
2149 out_balanced:
2150 spin_unlock(&this_rq->lock);
2152 schedstat_inc(sd, lb_balanced[idle]);
2154 sd->nr_balance_failed = 0;
2155 /* tune up the balancing interval */
2156 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2157 (sd->balance_interval < sd->max_interval))
2158 sd->balance_interval *= 2;
2160 return 0;
2164 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2165 * tasks if there is an imbalance.
2167 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2168 * this_rq is locked.
2170 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2171 struct sched_domain *sd)
2173 struct sched_group *group;
2174 runqueue_t *busiest = NULL;
2175 unsigned long imbalance;
2176 int nr_moved = 0;
2178 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2179 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2180 if (!group) {
2181 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2182 goto out_balanced;
2185 busiest = find_busiest_queue(group);
2186 if (!busiest) {
2187 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2188 goto out_balanced;
2191 BUG_ON(busiest == this_rq);
2193 /* Attempt to move tasks */
2194 double_lock_balance(this_rq, busiest);
2196 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2197 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2198 imbalance, sd, NEWLY_IDLE, NULL);
2199 if (!nr_moved)
2200 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2201 else
2202 sd->nr_balance_failed = 0;
2204 spin_unlock(&busiest->lock);
2205 return nr_moved;
2207 out_balanced:
2208 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2209 sd->nr_balance_failed = 0;
2210 return 0;
2214 * idle_balance is called by schedule() if this_cpu is about to become
2215 * idle. Attempts to pull tasks from other CPUs.
2217 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2219 struct sched_domain *sd;
2221 for_each_domain(this_cpu, sd) {
2222 if (sd->flags & SD_BALANCE_NEWIDLE) {
2223 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2224 /* We've pulled tasks over so stop searching */
2225 break;
2232 * active_load_balance is run by migration threads. It pushes running tasks
2233 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2234 * running on each physical CPU where possible, and avoids physical /
2235 * logical imbalances.
2237 * Called with busiest_rq locked.
2239 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2241 struct sched_domain *sd;
2242 runqueue_t *target_rq;
2243 int target_cpu = busiest_rq->push_cpu;
2245 if (busiest_rq->nr_running <= 1)
2246 /* no task to move */
2247 return;
2249 target_rq = cpu_rq(target_cpu);
2252 * This condition is "impossible", if it occurs
2253 * we need to fix it. Originally reported by
2254 * Bjorn Helgaas on a 128-cpu setup.
2256 BUG_ON(busiest_rq == target_rq);
2258 /* move a task from busiest_rq to target_rq */
2259 double_lock_balance(busiest_rq, target_rq);
2261 /* Search for an sd spanning us and the target CPU. */
2262 for_each_domain(target_cpu, sd)
2263 if ((sd->flags & SD_LOAD_BALANCE) &&
2264 cpu_isset(busiest_cpu, sd->span))
2265 break;
2267 if (unlikely(sd == NULL))
2268 goto out;
2270 schedstat_inc(sd, alb_cnt);
2272 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2273 schedstat_inc(sd, alb_pushed);
2274 else
2275 schedstat_inc(sd, alb_failed);
2276 out:
2277 spin_unlock(&target_rq->lock);
2281 * rebalance_tick will get called every timer tick, on every CPU.
2283 * It checks each scheduling domain to see if it is due to be balanced,
2284 * and initiates a balancing operation if so.
2286 * Balancing parameters are set up in arch_init_sched_domains.
2289 /* Don't have all balancing operations going off at once */
2290 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2292 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2293 enum idle_type idle)
2295 unsigned long old_load, this_load;
2296 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2297 struct sched_domain *sd;
2298 int i;
2300 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2301 /* Update our load */
2302 for (i = 0; i < 3; i++) {
2303 unsigned long new_load = this_load;
2304 int scale = 1 << i;
2305 old_load = this_rq->cpu_load[i];
2307 * Round up the averaging division if load is increasing. This
2308 * prevents us from getting stuck on 9 if the load is 10, for
2309 * example.
2311 if (new_load > old_load)
2312 new_load += scale-1;
2313 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2316 for_each_domain(this_cpu, sd) {
2317 unsigned long interval;
2319 if (!(sd->flags & SD_LOAD_BALANCE))
2320 continue;
2322 interval = sd->balance_interval;
2323 if (idle != SCHED_IDLE)
2324 interval *= sd->busy_factor;
2326 /* scale ms to jiffies */
2327 interval = msecs_to_jiffies(interval);
2328 if (unlikely(!interval))
2329 interval = 1;
2331 if (j - sd->last_balance >= interval) {
2332 if (load_balance(this_cpu, this_rq, sd, idle)) {
2333 /* We've pulled tasks over so no longer idle */
2334 idle = NOT_IDLE;
2336 sd->last_balance += interval;
2340 #else
2342 * on UP we do not need to balance between CPUs:
2344 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2347 static inline void idle_balance(int cpu, runqueue_t *rq)
2350 #endif
2352 static inline int wake_priority_sleeper(runqueue_t *rq)
2354 int ret = 0;
2355 #ifdef CONFIG_SCHED_SMT
2356 spin_lock(&rq->lock);
2358 * If an SMT sibling task has been put to sleep for priority
2359 * reasons reschedule the idle task to see if it can now run.
2361 if (rq->nr_running) {
2362 resched_task(rq->idle);
2363 ret = 1;
2365 spin_unlock(&rq->lock);
2366 #endif
2367 return ret;
2370 DEFINE_PER_CPU(struct kernel_stat, kstat);
2372 EXPORT_PER_CPU_SYMBOL(kstat);
2375 * This is called on clock ticks and on context switches.
2376 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2378 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2379 unsigned long long now)
2381 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2382 p->sched_time += now - last;
2386 * Return current->sched_time plus any more ns on the sched_clock
2387 * that have not yet been banked.
2389 unsigned long long current_sched_time(const task_t *tsk)
2391 unsigned long long ns;
2392 unsigned long flags;
2393 local_irq_save(flags);
2394 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2395 ns = tsk->sched_time + (sched_clock() - ns);
2396 local_irq_restore(flags);
2397 return ns;
2401 * We place interactive tasks back into the active array, if possible.
2403 * To guarantee that this does not starve expired tasks we ignore the
2404 * interactivity of a task if the first expired task had to wait more
2405 * than a 'reasonable' amount of time. This deadline timeout is
2406 * load-dependent, as the frequency of array switched decreases with
2407 * increasing number of running tasks. We also ignore the interactivity
2408 * if a better static_prio task has expired:
2410 #define EXPIRED_STARVING(rq) \
2411 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2412 (jiffies - (rq)->expired_timestamp >= \
2413 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2414 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2417 * Account user cpu time to a process.
2418 * @p: the process that the cpu time gets accounted to
2419 * @hardirq_offset: the offset to subtract from hardirq_count()
2420 * @cputime: the cpu time spent in user space since the last update
2422 void account_user_time(struct task_struct *p, cputime_t cputime)
2424 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2425 cputime64_t tmp;
2427 p->utime = cputime_add(p->utime, cputime);
2429 /* Add user time to cpustat. */
2430 tmp = cputime_to_cputime64(cputime);
2431 if (TASK_NICE(p) > 0)
2432 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2433 else
2434 cpustat->user = cputime64_add(cpustat->user, tmp);
2438 * Account system cpu time to a process.
2439 * @p: the process that the cpu time gets accounted to
2440 * @hardirq_offset: the offset to subtract from hardirq_count()
2441 * @cputime: the cpu time spent in kernel space since the last update
2443 void account_system_time(struct task_struct *p, int hardirq_offset,
2444 cputime_t cputime)
2446 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2447 runqueue_t *rq = this_rq();
2448 cputime64_t tmp;
2450 p->stime = cputime_add(p->stime, cputime);
2452 /* Add system time to cpustat. */
2453 tmp = cputime_to_cputime64(cputime);
2454 if (hardirq_count() - hardirq_offset)
2455 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2456 else if (softirq_count())
2457 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2458 else if (p != rq->idle)
2459 cpustat->system = cputime64_add(cpustat->system, tmp);
2460 else if (atomic_read(&rq->nr_iowait) > 0)
2461 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2462 else
2463 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2464 /* Account for system time used */
2465 acct_update_integrals(p);
2466 /* Update rss highwater mark */
2467 update_mem_hiwater(p);
2471 * Account for involuntary wait time.
2472 * @p: the process from which the cpu time has been stolen
2473 * @steal: the cpu time spent in involuntary wait
2475 void account_steal_time(struct task_struct *p, cputime_t steal)
2477 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2478 cputime64_t tmp = cputime_to_cputime64(steal);
2479 runqueue_t *rq = this_rq();
2481 if (p == rq->idle) {
2482 p->stime = cputime_add(p->stime, steal);
2483 if (atomic_read(&rq->nr_iowait) > 0)
2484 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2485 else
2486 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2487 } else
2488 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2492 * This function gets called by the timer code, with HZ frequency.
2493 * We call it with interrupts disabled.
2495 * It also gets called by the fork code, when changing the parent's
2496 * timeslices.
2498 void scheduler_tick(void)
2500 int cpu = smp_processor_id();
2501 runqueue_t *rq = this_rq();
2502 task_t *p = current;
2503 unsigned long long now = sched_clock();
2505 update_cpu_clock(p, rq, now);
2507 rq->timestamp_last_tick = now;
2509 if (p == rq->idle) {
2510 if (wake_priority_sleeper(rq))
2511 goto out;
2512 rebalance_tick(cpu, rq, SCHED_IDLE);
2513 return;
2516 /* Task might have expired already, but not scheduled off yet */
2517 if (p->array != rq->active) {
2518 set_tsk_need_resched(p);
2519 goto out;
2521 spin_lock(&rq->lock);
2523 * The task was running during this tick - update the
2524 * time slice counter. Note: we do not update a thread's
2525 * priority until it either goes to sleep or uses up its
2526 * timeslice. This makes it possible for interactive tasks
2527 * to use up their timeslices at their highest priority levels.
2529 if (rt_task(p)) {
2531 * RR tasks need a special form of timeslice management.
2532 * FIFO tasks have no timeslices.
2534 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2535 p->time_slice = task_timeslice(p);
2536 p->first_time_slice = 0;
2537 set_tsk_need_resched(p);
2539 /* put it at the end of the queue: */
2540 requeue_task(p, rq->active);
2542 goto out_unlock;
2544 if (!--p->time_slice) {
2545 dequeue_task(p, rq->active);
2546 set_tsk_need_resched(p);
2547 p->prio = effective_prio(p);
2548 p->time_slice = task_timeslice(p);
2549 p->first_time_slice = 0;
2551 if (!rq->expired_timestamp)
2552 rq->expired_timestamp = jiffies;
2553 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2554 enqueue_task(p, rq->expired);
2555 if (p->static_prio < rq->best_expired_prio)
2556 rq->best_expired_prio = p->static_prio;
2557 } else
2558 enqueue_task(p, rq->active);
2559 } else {
2561 * Prevent a too long timeslice allowing a task to monopolize
2562 * the CPU. We do this by splitting up the timeslice into
2563 * smaller pieces.
2565 * Note: this does not mean the task's timeslices expire or
2566 * get lost in any way, they just might be preempted by
2567 * another task of equal priority. (one with higher
2568 * priority would have preempted this task already.) We
2569 * requeue this task to the end of the list on this priority
2570 * level, which is in essence a round-robin of tasks with
2571 * equal priority.
2573 * This only applies to tasks in the interactive
2574 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2576 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2577 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2578 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2579 (p->array == rq->active)) {
2581 requeue_task(p, rq->active);
2582 set_tsk_need_resched(p);
2585 out_unlock:
2586 spin_unlock(&rq->lock);
2587 out:
2588 rebalance_tick(cpu, rq, NOT_IDLE);
2591 #ifdef CONFIG_SCHED_SMT
2592 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2594 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2595 if (rq->curr == rq->idle && rq->nr_running)
2596 resched_task(rq->idle);
2599 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2601 struct sched_domain *tmp, *sd = NULL;
2602 cpumask_t sibling_map;
2603 int i;
2605 for_each_domain(this_cpu, tmp)
2606 if (tmp->flags & SD_SHARE_CPUPOWER)
2607 sd = tmp;
2609 if (!sd)
2610 return;
2613 * Unlock the current runqueue because we have to lock in
2614 * CPU order to avoid deadlocks. Caller knows that we might
2615 * unlock. We keep IRQs disabled.
2617 spin_unlock(&this_rq->lock);
2619 sibling_map = sd->span;
2621 for_each_cpu_mask(i, sibling_map)
2622 spin_lock(&cpu_rq(i)->lock);
2624 * We clear this CPU from the mask. This both simplifies the
2625 * inner loop and keps this_rq locked when we exit:
2627 cpu_clear(this_cpu, sibling_map);
2629 for_each_cpu_mask(i, sibling_map) {
2630 runqueue_t *smt_rq = cpu_rq(i);
2632 wakeup_busy_runqueue(smt_rq);
2635 for_each_cpu_mask(i, sibling_map)
2636 spin_unlock(&cpu_rq(i)->lock);
2638 * We exit with this_cpu's rq still held and IRQs
2639 * still disabled:
2643 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2645 struct sched_domain *tmp, *sd = NULL;
2646 cpumask_t sibling_map;
2647 prio_array_t *array;
2648 int ret = 0, i;
2649 task_t *p;
2651 for_each_domain(this_cpu, tmp)
2652 if (tmp->flags & SD_SHARE_CPUPOWER)
2653 sd = tmp;
2655 if (!sd)
2656 return 0;
2659 * The same locking rules and details apply as for
2660 * wake_sleeping_dependent():
2662 spin_unlock(&this_rq->lock);
2663 sibling_map = sd->span;
2664 for_each_cpu_mask(i, sibling_map)
2665 spin_lock(&cpu_rq(i)->lock);
2666 cpu_clear(this_cpu, sibling_map);
2669 * Establish next task to be run - it might have gone away because
2670 * we released the runqueue lock above:
2672 if (!this_rq->nr_running)
2673 goto out_unlock;
2674 array = this_rq->active;
2675 if (!array->nr_active)
2676 array = this_rq->expired;
2677 BUG_ON(!array->nr_active);
2679 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2680 task_t, run_list);
2682 for_each_cpu_mask(i, sibling_map) {
2683 runqueue_t *smt_rq = cpu_rq(i);
2684 task_t *smt_curr = smt_rq->curr;
2686 /* Kernel threads do not participate in dependent sleeping */
2687 if (!p->mm || !smt_curr->mm || rt_task(p))
2688 goto check_smt_task;
2691 * If a user task with lower static priority than the
2692 * running task on the SMT sibling is trying to schedule,
2693 * delay it till there is proportionately less timeslice
2694 * left of the sibling task to prevent a lower priority
2695 * task from using an unfair proportion of the
2696 * physical cpu's resources. -ck
2698 if (rt_task(smt_curr)) {
2700 * With real time tasks we run non-rt tasks only
2701 * per_cpu_gain% of the time.
2703 if ((jiffies % DEF_TIMESLICE) >
2704 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2705 ret = 1;
2706 } else
2707 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) /
2708 100) > task_timeslice(p)))
2709 ret = 1;
2711 check_smt_task:
2712 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2713 rt_task(smt_curr))
2714 continue;
2715 if (!p->mm) {
2716 wakeup_busy_runqueue(smt_rq);
2717 continue;
2721 * Reschedule a lower priority task on the SMT sibling for
2722 * it to be put to sleep, or wake it up if it has been put to
2723 * sleep for priority reasons to see if it should run now.
2725 if (rt_task(p)) {
2726 if ((jiffies % DEF_TIMESLICE) >
2727 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2728 resched_task(smt_curr);
2729 } else {
2730 if ((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2731 task_timeslice(smt_curr))
2732 resched_task(smt_curr);
2733 else
2734 wakeup_busy_runqueue(smt_rq);
2737 out_unlock:
2738 for_each_cpu_mask(i, sibling_map)
2739 spin_unlock(&cpu_rq(i)->lock);
2740 return ret;
2742 #else
2743 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2747 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2749 return 0;
2751 #endif
2753 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2755 void fastcall add_preempt_count(int val)
2758 * Underflow?
2760 BUG_ON((preempt_count() < 0));
2761 preempt_count() += val;
2763 * Spinlock count overflowing soon?
2765 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2767 EXPORT_SYMBOL(add_preempt_count);
2769 void fastcall sub_preempt_count(int val)
2772 * Underflow?
2774 BUG_ON(val > preempt_count());
2776 * Is the spinlock portion underflowing?
2778 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2779 preempt_count() -= val;
2781 EXPORT_SYMBOL(sub_preempt_count);
2783 #endif
2786 * schedule() is the main scheduler function.
2788 asmlinkage void __sched schedule(void)
2790 long *switch_count;
2791 task_t *prev, *next;
2792 runqueue_t *rq;
2793 prio_array_t *array;
2794 struct list_head *queue;
2795 unsigned long long now;
2796 unsigned long run_time;
2797 int cpu, idx, new_prio;
2800 * Test if we are atomic. Since do_exit() needs to call into
2801 * schedule() atomically, we ignore that path for now.
2802 * Otherwise, whine if we are scheduling when we should not be.
2804 if (likely(!current->exit_state)) {
2805 if (unlikely(in_atomic())) {
2806 printk(KERN_ERR "scheduling while atomic: "
2807 "%s/0x%08x/%d\n",
2808 current->comm, preempt_count(), current->pid);
2809 dump_stack();
2812 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2814 need_resched:
2815 preempt_disable();
2816 prev = current;
2817 release_kernel_lock(prev);
2818 need_resched_nonpreemptible:
2819 rq = this_rq();
2822 * The idle thread is not allowed to schedule!
2823 * Remove this check after it has been exercised a bit.
2825 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2826 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2827 dump_stack();
2830 schedstat_inc(rq, sched_cnt);
2831 now = sched_clock();
2832 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2833 run_time = now - prev->timestamp;
2834 if (unlikely((long long)(now - prev->timestamp) < 0))
2835 run_time = 0;
2836 } else
2837 run_time = NS_MAX_SLEEP_AVG;
2840 * Tasks charged proportionately less run_time at high sleep_avg to
2841 * delay them losing their interactive status
2843 run_time /= (CURRENT_BONUS(prev) ? : 1);
2845 spin_lock_irq(&rq->lock);
2847 if (unlikely(prev->flags & PF_DEAD))
2848 prev->state = EXIT_DEAD;
2850 switch_count = &prev->nivcsw;
2851 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2852 switch_count = &prev->nvcsw;
2853 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2854 unlikely(signal_pending(prev))))
2855 prev->state = TASK_RUNNING;
2856 else {
2857 if (prev->state == TASK_UNINTERRUPTIBLE)
2858 rq->nr_uninterruptible++;
2859 deactivate_task(prev, rq);
2863 cpu = smp_processor_id();
2864 if (unlikely(!rq->nr_running)) {
2865 go_idle:
2866 idle_balance(cpu, rq);
2867 if (!rq->nr_running) {
2868 next = rq->idle;
2869 rq->expired_timestamp = 0;
2870 wake_sleeping_dependent(cpu, rq);
2872 * wake_sleeping_dependent() might have released
2873 * the runqueue, so break out if we got new
2874 * tasks meanwhile:
2876 if (!rq->nr_running)
2877 goto switch_tasks;
2879 } else {
2880 if (dependent_sleeper(cpu, rq)) {
2881 next = rq->idle;
2882 goto switch_tasks;
2885 * dependent_sleeper() releases and reacquires the runqueue
2886 * lock, hence go into the idle loop if the rq went
2887 * empty meanwhile:
2889 if (unlikely(!rq->nr_running))
2890 goto go_idle;
2893 array = rq->active;
2894 if (unlikely(!array->nr_active)) {
2896 * Switch the active and expired arrays.
2898 schedstat_inc(rq, sched_switch);
2899 rq->active = rq->expired;
2900 rq->expired = array;
2901 array = rq->active;
2902 rq->expired_timestamp = 0;
2903 rq->best_expired_prio = MAX_PRIO;
2906 idx = sched_find_first_bit(array->bitmap);
2907 queue = array->queue + idx;
2908 next = list_entry(queue->next, task_t, run_list);
2910 if (!rt_task(next) && next->activated > 0) {
2911 unsigned long long delta = now - next->timestamp;
2912 if (unlikely((long long)(now - next->timestamp) < 0))
2913 delta = 0;
2915 if (next->activated == 1)
2916 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2918 array = next->array;
2919 new_prio = recalc_task_prio(next, next->timestamp + delta);
2921 if (unlikely(next->prio != new_prio)) {
2922 dequeue_task(next, array);
2923 next->prio = new_prio;
2924 enqueue_task(next, array);
2925 } else
2926 requeue_task(next, array);
2928 next->activated = 0;
2929 switch_tasks:
2930 if (next == rq->idle)
2931 schedstat_inc(rq, sched_goidle);
2932 prefetch(next);
2933 prefetch_stack(next);
2934 clear_tsk_need_resched(prev);
2935 rcu_qsctr_inc(task_cpu(prev));
2937 update_cpu_clock(prev, rq, now);
2939 prev->sleep_avg -= run_time;
2940 if ((long)prev->sleep_avg <= 0)
2941 prev->sleep_avg = 0;
2942 prev->timestamp = prev->last_ran = now;
2944 sched_info_switch(prev, next);
2945 if (likely(prev != next)) {
2946 next->timestamp = now;
2947 rq->nr_switches++;
2948 rq->curr = next;
2949 ++*switch_count;
2951 prepare_task_switch(rq, next);
2952 prev = context_switch(rq, prev, next);
2953 barrier();
2955 * this_rq must be evaluated again because prev may have moved
2956 * CPUs since it called schedule(), thus the 'rq' on its stack
2957 * frame will be invalid.
2959 finish_task_switch(this_rq(), prev);
2960 } else
2961 spin_unlock_irq(&rq->lock);
2963 prev = current;
2964 if (unlikely(reacquire_kernel_lock(prev) < 0))
2965 goto need_resched_nonpreemptible;
2966 preempt_enable_no_resched();
2967 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2968 goto need_resched;
2971 EXPORT_SYMBOL(schedule);
2973 #ifdef CONFIG_PREEMPT
2975 * this is is the entry point to schedule() from in-kernel preemption
2976 * off of preempt_enable. Kernel preemptions off return from interrupt
2977 * occur there and call schedule directly.
2979 asmlinkage void __sched preempt_schedule(void)
2981 struct thread_info *ti = current_thread_info();
2982 #ifdef CONFIG_PREEMPT_BKL
2983 struct task_struct *task = current;
2984 int saved_lock_depth;
2985 #endif
2987 * If there is a non-zero preempt_count or interrupts are disabled,
2988 * we do not want to preempt the current task. Just return..
2990 if (unlikely(ti->preempt_count || irqs_disabled()))
2991 return;
2993 need_resched:
2994 add_preempt_count(PREEMPT_ACTIVE);
2996 * We keep the big kernel semaphore locked, but we
2997 * clear ->lock_depth so that schedule() doesnt
2998 * auto-release the semaphore:
3000 #ifdef CONFIG_PREEMPT_BKL
3001 saved_lock_depth = task->lock_depth;
3002 task->lock_depth = -1;
3003 #endif
3004 schedule();
3005 #ifdef CONFIG_PREEMPT_BKL
3006 task->lock_depth = saved_lock_depth;
3007 #endif
3008 sub_preempt_count(PREEMPT_ACTIVE);
3010 /* we could miss a preemption opportunity between schedule and now */
3011 barrier();
3012 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3013 goto need_resched;
3016 EXPORT_SYMBOL(preempt_schedule);
3019 * this is is the entry point to schedule() from kernel preemption
3020 * off of irq context.
3021 * Note, that this is called and return with irqs disabled. This will
3022 * protect us against recursive calling from irq.
3024 asmlinkage void __sched preempt_schedule_irq(void)
3026 struct thread_info *ti = current_thread_info();
3027 #ifdef CONFIG_PREEMPT_BKL
3028 struct task_struct *task = current;
3029 int saved_lock_depth;
3030 #endif
3031 /* Catch callers which need to be fixed*/
3032 BUG_ON(ti->preempt_count || !irqs_disabled());
3034 need_resched:
3035 add_preempt_count(PREEMPT_ACTIVE);
3037 * We keep the big kernel semaphore locked, but we
3038 * clear ->lock_depth so that schedule() doesnt
3039 * auto-release the semaphore:
3041 #ifdef CONFIG_PREEMPT_BKL
3042 saved_lock_depth = task->lock_depth;
3043 task->lock_depth = -1;
3044 #endif
3045 local_irq_enable();
3046 schedule();
3047 local_irq_disable();
3048 #ifdef CONFIG_PREEMPT_BKL
3049 task->lock_depth = saved_lock_depth;
3050 #endif
3051 sub_preempt_count(PREEMPT_ACTIVE);
3053 /* we could miss a preemption opportunity between schedule and now */
3054 barrier();
3055 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3056 goto need_resched;
3059 #endif /* CONFIG_PREEMPT */
3061 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3063 task_t *p = curr->private;
3064 return try_to_wake_up(p, mode, sync);
3067 EXPORT_SYMBOL(default_wake_function);
3070 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3071 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3072 * number) then we wake all the non-exclusive tasks and one exclusive task.
3074 * There are circumstances in which we can try to wake a task which has already
3075 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3076 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3078 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3079 int nr_exclusive, int sync, void *key)
3081 struct list_head *tmp, *next;
3083 list_for_each_safe(tmp, next, &q->task_list) {
3084 wait_queue_t *curr;
3085 unsigned flags;
3086 curr = list_entry(tmp, wait_queue_t, task_list);
3087 flags = curr->flags;
3088 if (curr->func(curr, mode, sync, key) &&
3089 (flags & WQ_FLAG_EXCLUSIVE) &&
3090 !--nr_exclusive)
3091 break;
3096 * __wake_up - wake up threads blocked on a waitqueue.
3097 * @q: the waitqueue
3098 * @mode: which threads
3099 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3100 * @key: is directly passed to the wakeup function
3102 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3103 int nr_exclusive, void *key)
3105 unsigned long flags;
3107 spin_lock_irqsave(&q->lock, flags);
3108 __wake_up_common(q, mode, nr_exclusive, 0, key);
3109 spin_unlock_irqrestore(&q->lock, flags);
3112 EXPORT_SYMBOL(__wake_up);
3115 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3117 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3119 __wake_up_common(q, mode, 1, 0, NULL);
3123 * __wake_up_sync - wake up threads blocked on a waitqueue.
3124 * @q: the waitqueue
3125 * @mode: which threads
3126 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3128 * The sync wakeup differs that the waker knows that it will schedule
3129 * away soon, so while the target thread will be woken up, it will not
3130 * be migrated to another CPU - ie. the two threads are 'synchronized'
3131 * with each other. This can prevent needless bouncing between CPUs.
3133 * On UP it can prevent extra preemption.
3135 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3137 unsigned long flags;
3138 int sync = 1;
3140 if (unlikely(!q))
3141 return;
3143 if (unlikely(!nr_exclusive))
3144 sync = 0;
3146 spin_lock_irqsave(&q->lock, flags);
3147 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3148 spin_unlock_irqrestore(&q->lock, flags);
3150 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3152 void fastcall complete(struct completion *x)
3154 unsigned long flags;
3156 spin_lock_irqsave(&x->wait.lock, flags);
3157 x->done++;
3158 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3159 1, 0, NULL);
3160 spin_unlock_irqrestore(&x->wait.lock, flags);
3162 EXPORT_SYMBOL(complete);
3164 void fastcall complete_all(struct completion *x)
3166 unsigned long flags;
3168 spin_lock_irqsave(&x->wait.lock, flags);
3169 x->done += UINT_MAX/2;
3170 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3171 0, 0, NULL);
3172 spin_unlock_irqrestore(&x->wait.lock, flags);
3174 EXPORT_SYMBOL(complete_all);
3176 void fastcall __sched wait_for_completion(struct completion *x)
3178 might_sleep();
3179 spin_lock_irq(&x->wait.lock);
3180 if (!x->done) {
3181 DECLARE_WAITQUEUE(wait, current);
3183 wait.flags |= WQ_FLAG_EXCLUSIVE;
3184 __add_wait_queue_tail(&x->wait, &wait);
3185 do {
3186 __set_current_state(TASK_UNINTERRUPTIBLE);
3187 spin_unlock_irq(&x->wait.lock);
3188 schedule();
3189 spin_lock_irq(&x->wait.lock);
3190 } while (!x->done);
3191 __remove_wait_queue(&x->wait, &wait);
3193 x->done--;
3194 spin_unlock_irq(&x->wait.lock);
3196 EXPORT_SYMBOL(wait_for_completion);
3198 unsigned long fastcall __sched
3199 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3201 might_sleep();
3203 spin_lock_irq(&x->wait.lock);
3204 if (!x->done) {
3205 DECLARE_WAITQUEUE(wait, current);
3207 wait.flags |= WQ_FLAG_EXCLUSIVE;
3208 __add_wait_queue_tail(&x->wait, &wait);
3209 do {
3210 __set_current_state(TASK_UNINTERRUPTIBLE);
3211 spin_unlock_irq(&x->wait.lock);
3212 timeout = schedule_timeout(timeout);
3213 spin_lock_irq(&x->wait.lock);
3214 if (!timeout) {
3215 __remove_wait_queue(&x->wait, &wait);
3216 goto out;
3218 } while (!x->done);
3219 __remove_wait_queue(&x->wait, &wait);
3221 x->done--;
3222 out:
3223 spin_unlock_irq(&x->wait.lock);
3224 return timeout;
3226 EXPORT_SYMBOL(wait_for_completion_timeout);
3228 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3230 int ret = 0;
3232 might_sleep();
3234 spin_lock_irq(&x->wait.lock);
3235 if (!x->done) {
3236 DECLARE_WAITQUEUE(wait, current);
3238 wait.flags |= WQ_FLAG_EXCLUSIVE;
3239 __add_wait_queue_tail(&x->wait, &wait);
3240 do {
3241 if (signal_pending(current)) {
3242 ret = -ERESTARTSYS;
3243 __remove_wait_queue(&x->wait, &wait);
3244 goto out;
3246 __set_current_state(TASK_INTERRUPTIBLE);
3247 spin_unlock_irq(&x->wait.lock);
3248 schedule();
3249 spin_lock_irq(&x->wait.lock);
3250 } while (!x->done);
3251 __remove_wait_queue(&x->wait, &wait);
3253 x->done--;
3254 out:
3255 spin_unlock_irq(&x->wait.lock);
3257 return ret;
3259 EXPORT_SYMBOL(wait_for_completion_interruptible);
3261 unsigned long fastcall __sched
3262 wait_for_completion_interruptible_timeout(struct completion *x,
3263 unsigned long timeout)
3265 might_sleep();
3267 spin_lock_irq(&x->wait.lock);
3268 if (!x->done) {
3269 DECLARE_WAITQUEUE(wait, current);
3271 wait.flags |= WQ_FLAG_EXCLUSIVE;
3272 __add_wait_queue_tail(&x->wait, &wait);
3273 do {
3274 if (signal_pending(current)) {
3275 timeout = -ERESTARTSYS;
3276 __remove_wait_queue(&x->wait, &wait);
3277 goto out;
3279 __set_current_state(TASK_INTERRUPTIBLE);
3280 spin_unlock_irq(&x->wait.lock);
3281 timeout = schedule_timeout(timeout);
3282 spin_lock_irq(&x->wait.lock);
3283 if (!timeout) {
3284 __remove_wait_queue(&x->wait, &wait);
3285 goto out;
3287 } while (!x->done);
3288 __remove_wait_queue(&x->wait, &wait);
3290 x->done--;
3291 out:
3292 spin_unlock_irq(&x->wait.lock);
3293 return timeout;
3295 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3298 #define SLEEP_ON_VAR \
3299 unsigned long flags; \
3300 wait_queue_t wait; \
3301 init_waitqueue_entry(&wait, current);
3303 #define SLEEP_ON_HEAD \
3304 spin_lock_irqsave(&q->lock,flags); \
3305 __add_wait_queue(q, &wait); \
3306 spin_unlock(&q->lock);
3308 #define SLEEP_ON_TAIL \
3309 spin_lock_irq(&q->lock); \
3310 __remove_wait_queue(q, &wait); \
3311 spin_unlock_irqrestore(&q->lock, flags);
3313 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3315 SLEEP_ON_VAR
3317 current->state = TASK_INTERRUPTIBLE;
3319 SLEEP_ON_HEAD
3320 schedule();
3321 SLEEP_ON_TAIL
3324 EXPORT_SYMBOL(interruptible_sleep_on);
3326 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3328 SLEEP_ON_VAR
3330 current->state = TASK_INTERRUPTIBLE;
3332 SLEEP_ON_HEAD
3333 timeout = schedule_timeout(timeout);
3334 SLEEP_ON_TAIL
3336 return timeout;
3339 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3341 void fastcall __sched sleep_on(wait_queue_head_t *q)
3343 SLEEP_ON_VAR
3345 current->state = TASK_UNINTERRUPTIBLE;
3347 SLEEP_ON_HEAD
3348 schedule();
3349 SLEEP_ON_TAIL
3352 EXPORT_SYMBOL(sleep_on);
3354 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3356 SLEEP_ON_VAR
3358 current->state = TASK_UNINTERRUPTIBLE;
3360 SLEEP_ON_HEAD
3361 timeout = schedule_timeout(timeout);
3362 SLEEP_ON_TAIL
3364 return timeout;
3367 EXPORT_SYMBOL(sleep_on_timeout);
3369 void set_user_nice(task_t *p, long nice)
3371 unsigned long flags;
3372 prio_array_t *array;
3373 runqueue_t *rq;
3374 int old_prio, new_prio, delta;
3376 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3377 return;
3379 * We have to be careful, if called from sys_setpriority(),
3380 * the task might be in the middle of scheduling on another CPU.
3382 rq = task_rq_lock(p, &flags);
3384 * The RT priorities are set via sched_setscheduler(), but we still
3385 * allow the 'normal' nice value to be set - but as expected
3386 * it wont have any effect on scheduling until the task is
3387 * not SCHED_NORMAL:
3389 if (rt_task(p)) {
3390 p->static_prio = NICE_TO_PRIO(nice);
3391 goto out_unlock;
3393 array = p->array;
3394 if (array)
3395 dequeue_task(p, array);
3397 old_prio = p->prio;
3398 new_prio = NICE_TO_PRIO(nice);
3399 delta = new_prio - old_prio;
3400 p->static_prio = NICE_TO_PRIO(nice);
3401 p->prio += delta;
3403 if (array) {
3404 enqueue_task(p, array);
3406 * If the task increased its priority or is running and
3407 * lowered its priority, then reschedule its CPU:
3409 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3410 resched_task(rq->curr);
3412 out_unlock:
3413 task_rq_unlock(rq, &flags);
3416 EXPORT_SYMBOL(set_user_nice);
3419 * can_nice - check if a task can reduce its nice value
3420 * @p: task
3421 * @nice: nice value
3423 int can_nice(const task_t *p, const int nice)
3425 /* convert nice value [19,-20] to rlimit style value [1,40] */
3426 int nice_rlim = 20 - nice;
3427 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3428 capable(CAP_SYS_NICE));
3431 #ifdef __ARCH_WANT_SYS_NICE
3434 * sys_nice - change the priority of the current process.
3435 * @increment: priority increment
3437 * sys_setpriority is a more generic, but much slower function that
3438 * does similar things.
3440 asmlinkage long sys_nice(int increment)
3442 int retval;
3443 long nice;
3446 * Setpriority might change our priority at the same moment.
3447 * We don't have to worry. Conceptually one call occurs first
3448 * and we have a single winner.
3450 if (increment < -40)
3451 increment = -40;
3452 if (increment > 40)
3453 increment = 40;
3455 nice = PRIO_TO_NICE(current->static_prio) + increment;
3456 if (nice < -20)
3457 nice = -20;
3458 if (nice > 19)
3459 nice = 19;
3461 if (increment < 0 && !can_nice(current, nice))
3462 return -EPERM;
3464 retval = security_task_setnice(current, nice);
3465 if (retval)
3466 return retval;
3468 set_user_nice(current, nice);
3469 return 0;
3472 #endif
3475 * task_prio - return the priority value of a given task.
3476 * @p: the task in question.
3478 * This is the priority value as seen by users in /proc.
3479 * RT tasks are offset by -200. Normal tasks are centered
3480 * around 0, value goes from -16 to +15.
3482 int task_prio(const task_t *p)
3484 return p->prio - MAX_RT_PRIO;
3488 * task_nice - return the nice value of a given task.
3489 * @p: the task in question.
3491 int task_nice(const task_t *p)
3493 return TASK_NICE(p);
3495 EXPORT_SYMBOL_GPL(task_nice);
3498 * idle_cpu - is a given cpu idle currently?
3499 * @cpu: the processor in question.
3501 int idle_cpu(int cpu)
3503 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3506 EXPORT_SYMBOL_GPL(idle_cpu);
3509 * idle_task - return the idle task for a given cpu.
3510 * @cpu: the processor in question.
3512 task_t *idle_task(int cpu)
3514 return cpu_rq(cpu)->idle;
3518 * find_process_by_pid - find a process with a matching PID value.
3519 * @pid: the pid in question.
3521 static inline task_t *find_process_by_pid(pid_t pid)
3523 return pid ? find_task_by_pid(pid) : current;
3526 /* Actually do priority change: must hold rq lock. */
3527 static void __setscheduler(struct task_struct *p, int policy, int prio)
3529 BUG_ON(p->array);
3530 p->policy = policy;
3531 p->rt_priority = prio;
3532 if (policy != SCHED_NORMAL)
3533 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3534 else
3535 p->prio = p->static_prio;
3539 * sched_setscheduler - change the scheduling policy and/or RT priority of
3540 * a thread.
3541 * @p: the task in question.
3542 * @policy: new policy.
3543 * @param: structure containing the new RT priority.
3545 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3547 int retval;
3548 int oldprio, oldpolicy = -1;
3549 prio_array_t *array;
3550 unsigned long flags;
3551 runqueue_t *rq;
3553 recheck:
3554 /* double check policy once rq lock held */
3555 if (policy < 0)
3556 policy = oldpolicy = p->policy;
3557 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3558 policy != SCHED_NORMAL)
3559 return -EINVAL;
3561 * Valid priorities for SCHED_FIFO and SCHED_RR are
3562 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3564 if (param->sched_priority < 0 ||
3565 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3566 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3567 return -EINVAL;
3568 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3569 return -EINVAL;
3572 * Allow unprivileged RT tasks to decrease priority:
3574 if (!capable(CAP_SYS_NICE)) {
3575 /* can't change policy */
3576 if (policy != p->policy &&
3577 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3578 return -EPERM;
3579 /* can't increase priority */
3580 if (policy != SCHED_NORMAL &&
3581 param->sched_priority > p->rt_priority &&
3582 param->sched_priority >
3583 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3584 return -EPERM;
3585 /* can't change other user's priorities */
3586 if ((current->euid != p->euid) &&
3587 (current->euid != p->uid))
3588 return -EPERM;
3591 retval = security_task_setscheduler(p, policy, param);
3592 if (retval)
3593 return retval;
3595 * To be able to change p->policy safely, the apropriate
3596 * runqueue lock must be held.
3598 rq = task_rq_lock(p, &flags);
3599 /* recheck policy now with rq lock held */
3600 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3601 policy = oldpolicy = -1;
3602 task_rq_unlock(rq, &flags);
3603 goto recheck;
3605 array = p->array;
3606 if (array)
3607 deactivate_task(p, rq);
3608 oldprio = p->prio;
3609 __setscheduler(p, policy, param->sched_priority);
3610 if (array) {
3611 __activate_task(p, rq);
3613 * Reschedule if we are currently running on this runqueue and
3614 * our priority decreased, or if we are not currently running on
3615 * this runqueue and our priority is higher than the current's
3617 if (task_running(rq, p)) {
3618 if (p->prio > oldprio)
3619 resched_task(rq->curr);
3620 } else if (TASK_PREEMPTS_CURR(p, rq))
3621 resched_task(rq->curr);
3623 task_rq_unlock(rq, &flags);
3624 return 0;
3626 EXPORT_SYMBOL_GPL(sched_setscheduler);
3628 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3630 int retval;
3631 struct sched_param lparam;
3632 struct task_struct *p;
3634 if (!param || pid < 0)
3635 return -EINVAL;
3636 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3637 return -EFAULT;
3638 read_lock_irq(&tasklist_lock);
3639 p = find_process_by_pid(pid);
3640 if (!p) {
3641 read_unlock_irq(&tasklist_lock);
3642 return -ESRCH;
3644 retval = sched_setscheduler(p, policy, &lparam);
3645 read_unlock_irq(&tasklist_lock);
3646 return retval;
3650 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3651 * @pid: the pid in question.
3652 * @policy: new policy.
3653 * @param: structure containing the new RT priority.
3655 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3656 struct sched_param __user *param)
3658 return do_sched_setscheduler(pid, policy, param);
3662 * sys_sched_setparam - set/change the RT priority of a thread
3663 * @pid: the pid in question.
3664 * @param: structure containing the new RT priority.
3666 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3668 return do_sched_setscheduler(pid, -1, param);
3672 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3673 * @pid: the pid in question.
3675 asmlinkage long sys_sched_getscheduler(pid_t pid)
3677 int retval = -EINVAL;
3678 task_t *p;
3680 if (pid < 0)
3681 goto out_nounlock;
3683 retval = -ESRCH;
3684 read_lock(&tasklist_lock);
3685 p = find_process_by_pid(pid);
3686 if (p) {
3687 retval = security_task_getscheduler(p);
3688 if (!retval)
3689 retval = p->policy;
3691 read_unlock(&tasklist_lock);
3693 out_nounlock:
3694 return retval;
3698 * sys_sched_getscheduler - get the RT priority of a thread
3699 * @pid: the pid in question.
3700 * @param: structure containing the RT priority.
3702 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3704 struct sched_param lp;
3705 int retval = -EINVAL;
3706 task_t *p;
3708 if (!param || pid < 0)
3709 goto out_nounlock;
3711 read_lock(&tasklist_lock);
3712 p = find_process_by_pid(pid);
3713 retval = -ESRCH;
3714 if (!p)
3715 goto out_unlock;
3717 retval = security_task_getscheduler(p);
3718 if (retval)
3719 goto out_unlock;
3721 lp.sched_priority = p->rt_priority;
3722 read_unlock(&tasklist_lock);
3725 * This one might sleep, we cannot do it with a spinlock held ...
3727 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3729 out_nounlock:
3730 return retval;
3732 out_unlock:
3733 read_unlock(&tasklist_lock);
3734 return retval;
3737 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3739 task_t *p;
3740 int retval;
3741 cpumask_t cpus_allowed;
3743 lock_cpu_hotplug();
3744 read_lock(&tasklist_lock);
3746 p = find_process_by_pid(pid);
3747 if (!p) {
3748 read_unlock(&tasklist_lock);
3749 unlock_cpu_hotplug();
3750 return -ESRCH;
3754 * It is not safe to call set_cpus_allowed with the
3755 * tasklist_lock held. We will bump the task_struct's
3756 * usage count and then drop tasklist_lock.
3758 get_task_struct(p);
3759 read_unlock(&tasklist_lock);
3761 retval = -EPERM;
3762 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3763 !capable(CAP_SYS_NICE))
3764 goto out_unlock;
3766 cpus_allowed = cpuset_cpus_allowed(p);
3767 cpus_and(new_mask, new_mask, cpus_allowed);
3768 retval = set_cpus_allowed(p, new_mask);
3770 out_unlock:
3771 put_task_struct(p);
3772 unlock_cpu_hotplug();
3773 return retval;
3776 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3777 cpumask_t *new_mask)
3779 if (len < sizeof(cpumask_t)) {
3780 memset(new_mask, 0, sizeof(cpumask_t));
3781 } else if (len > sizeof(cpumask_t)) {
3782 len = sizeof(cpumask_t);
3784 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3788 * sys_sched_setaffinity - set the cpu affinity of a process
3789 * @pid: pid of the process
3790 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3791 * @user_mask_ptr: user-space pointer to the new cpu mask
3793 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3794 unsigned long __user *user_mask_ptr)
3796 cpumask_t new_mask;
3797 int retval;
3799 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3800 if (retval)
3801 return retval;
3803 return sched_setaffinity(pid, new_mask);
3807 * Represents all cpu's present in the system
3808 * In systems capable of hotplug, this map could dynamically grow
3809 * as new cpu's are detected in the system via any platform specific
3810 * method, such as ACPI for e.g.
3813 cpumask_t cpu_present_map;
3814 EXPORT_SYMBOL(cpu_present_map);
3816 #ifndef CONFIG_SMP
3817 cpumask_t cpu_online_map = CPU_MASK_ALL;
3818 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3819 #endif
3821 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3823 int retval;
3824 task_t *p;
3826 lock_cpu_hotplug();
3827 read_lock(&tasklist_lock);
3829 retval = -ESRCH;
3830 p = find_process_by_pid(pid);
3831 if (!p)
3832 goto out_unlock;
3834 retval = 0;
3835 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3837 out_unlock:
3838 read_unlock(&tasklist_lock);
3839 unlock_cpu_hotplug();
3840 if (retval)
3841 return retval;
3843 return 0;
3847 * sys_sched_getaffinity - get the cpu affinity of a process
3848 * @pid: pid of the process
3849 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3850 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3852 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3853 unsigned long __user *user_mask_ptr)
3855 int ret;
3856 cpumask_t mask;
3858 if (len < sizeof(cpumask_t))
3859 return -EINVAL;
3861 ret = sched_getaffinity(pid, &mask);
3862 if (ret < 0)
3863 return ret;
3865 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3866 return -EFAULT;
3868 return sizeof(cpumask_t);
3872 * sys_sched_yield - yield the current processor to other threads.
3874 * this function yields the current CPU by moving the calling thread
3875 * to the expired array. If there are no other threads running on this
3876 * CPU then this function will return.
3878 asmlinkage long sys_sched_yield(void)
3880 runqueue_t *rq = this_rq_lock();
3881 prio_array_t *array = current->array;
3882 prio_array_t *target = rq->expired;
3884 schedstat_inc(rq, yld_cnt);
3886 * We implement yielding by moving the task into the expired
3887 * queue.
3889 * (special rule: RT tasks will just roundrobin in the active
3890 * array.)
3892 if (rt_task(current))
3893 target = rq->active;
3895 if (current->array->nr_active == 1) {
3896 schedstat_inc(rq, yld_act_empty);
3897 if (!rq->expired->nr_active)
3898 schedstat_inc(rq, yld_both_empty);
3899 } else if (!rq->expired->nr_active)
3900 schedstat_inc(rq, yld_exp_empty);
3902 if (array != target) {
3903 dequeue_task(current, array);
3904 enqueue_task(current, target);
3905 } else
3907 * requeue_task is cheaper so perform that if possible.
3909 requeue_task(current, array);
3912 * Since we are going to call schedule() anyway, there's
3913 * no need to preempt or enable interrupts:
3915 __release(rq->lock);
3916 _raw_spin_unlock(&rq->lock);
3917 preempt_enable_no_resched();
3919 schedule();
3921 return 0;
3924 static inline void __cond_resched(void)
3927 * The BKS might be reacquired before we have dropped
3928 * PREEMPT_ACTIVE, which could trigger a second
3929 * cond_resched() call.
3931 if (unlikely(preempt_count()))
3932 return;
3933 do {
3934 add_preempt_count(PREEMPT_ACTIVE);
3935 schedule();
3936 sub_preempt_count(PREEMPT_ACTIVE);
3937 } while (need_resched());
3940 int __sched cond_resched(void)
3942 if (need_resched()) {
3943 __cond_resched();
3944 return 1;
3946 return 0;
3949 EXPORT_SYMBOL(cond_resched);
3952 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3953 * call schedule, and on return reacquire the lock.
3955 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3956 * operations here to prevent schedule() from being called twice (once via
3957 * spin_unlock(), once by hand).
3959 int cond_resched_lock(spinlock_t * lock)
3961 int ret = 0;
3963 if (need_lockbreak(lock)) {
3964 spin_unlock(lock);
3965 cpu_relax();
3966 ret = 1;
3967 spin_lock(lock);
3969 if (need_resched()) {
3970 _raw_spin_unlock(lock);
3971 preempt_enable_no_resched();
3972 __cond_resched();
3973 ret = 1;
3974 spin_lock(lock);
3976 return ret;
3979 EXPORT_SYMBOL(cond_resched_lock);
3981 int __sched cond_resched_softirq(void)
3983 BUG_ON(!in_softirq());
3985 if (need_resched()) {
3986 __local_bh_enable();
3987 __cond_resched();
3988 local_bh_disable();
3989 return 1;
3991 return 0;
3994 EXPORT_SYMBOL(cond_resched_softirq);
3998 * yield - yield the current processor to other threads.
4000 * this is a shortcut for kernel-space yielding - it marks the
4001 * thread runnable and calls sys_sched_yield().
4003 void __sched yield(void)
4005 set_current_state(TASK_RUNNING);
4006 sys_sched_yield();
4009 EXPORT_SYMBOL(yield);
4012 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4013 * that process accounting knows that this is a task in IO wait state.
4015 * But don't do that if it is a deliberate, throttling IO wait (this task
4016 * has set its backing_dev_info: the queue against which it should throttle)
4018 void __sched io_schedule(void)
4020 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4022 atomic_inc(&rq->nr_iowait);
4023 schedule();
4024 atomic_dec(&rq->nr_iowait);
4027 EXPORT_SYMBOL(io_schedule);
4029 long __sched io_schedule_timeout(long timeout)
4031 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4032 long ret;
4034 atomic_inc(&rq->nr_iowait);
4035 ret = schedule_timeout(timeout);
4036 atomic_dec(&rq->nr_iowait);
4037 return ret;
4041 * sys_sched_get_priority_max - return maximum RT priority.
4042 * @policy: scheduling class.
4044 * this syscall returns the maximum rt_priority that can be used
4045 * by a given scheduling class.
4047 asmlinkage long sys_sched_get_priority_max(int policy)
4049 int ret = -EINVAL;
4051 switch (policy) {
4052 case SCHED_FIFO:
4053 case SCHED_RR:
4054 ret = MAX_USER_RT_PRIO-1;
4055 break;
4056 case SCHED_NORMAL:
4057 ret = 0;
4058 break;
4060 return ret;
4064 * sys_sched_get_priority_min - return minimum RT priority.
4065 * @policy: scheduling class.
4067 * this syscall returns the minimum rt_priority that can be used
4068 * by a given scheduling class.
4070 asmlinkage long sys_sched_get_priority_min(int policy)
4072 int ret = -EINVAL;
4074 switch (policy) {
4075 case SCHED_FIFO:
4076 case SCHED_RR:
4077 ret = 1;
4078 break;
4079 case SCHED_NORMAL:
4080 ret = 0;
4082 return ret;
4086 * sys_sched_rr_get_interval - return the default timeslice of a process.
4087 * @pid: pid of the process.
4088 * @interval: userspace pointer to the timeslice value.
4090 * this syscall writes the default timeslice value of a given process
4091 * into the user-space timespec buffer. A value of '0' means infinity.
4093 asmlinkage
4094 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4096 int retval = -EINVAL;
4097 struct timespec t;
4098 task_t *p;
4100 if (pid < 0)
4101 goto out_nounlock;
4103 retval = -ESRCH;
4104 read_lock(&tasklist_lock);
4105 p = find_process_by_pid(pid);
4106 if (!p)
4107 goto out_unlock;
4109 retval = security_task_getscheduler(p);
4110 if (retval)
4111 goto out_unlock;
4113 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4114 0 : task_timeslice(p), &t);
4115 read_unlock(&tasklist_lock);
4116 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4117 out_nounlock:
4118 return retval;
4119 out_unlock:
4120 read_unlock(&tasklist_lock);
4121 return retval;
4124 static inline struct task_struct *eldest_child(struct task_struct *p)
4126 if (list_empty(&p->children)) return NULL;
4127 return list_entry(p->children.next,struct task_struct,sibling);
4130 static inline struct task_struct *older_sibling(struct task_struct *p)
4132 if (p->sibling.prev==&p->parent->children) return NULL;
4133 return list_entry(p->sibling.prev,struct task_struct,sibling);
4136 static inline struct task_struct *younger_sibling(struct task_struct *p)
4138 if (p->sibling.next==&p->parent->children) return NULL;
4139 return list_entry(p->sibling.next,struct task_struct,sibling);
4142 static void show_task(task_t * p)
4144 task_t *relative;
4145 unsigned state;
4146 unsigned long free = 0;
4147 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4149 printk("%-13.13s ", p->comm);
4150 state = p->state ? __ffs(p->state) + 1 : 0;
4151 if (state < ARRAY_SIZE(stat_nam))
4152 printk(stat_nam[state]);
4153 else
4154 printk("?");
4155 #if (BITS_PER_LONG == 32)
4156 if (state == TASK_RUNNING)
4157 printk(" running ");
4158 else
4159 printk(" %08lX ", thread_saved_pc(p));
4160 #else
4161 if (state == TASK_RUNNING)
4162 printk(" running task ");
4163 else
4164 printk(" %016lx ", thread_saved_pc(p));
4165 #endif
4166 #ifdef CONFIG_DEBUG_STACK_USAGE
4168 unsigned long * n = (unsigned long *) (p->thread_info+1);
4169 while (!*n)
4170 n++;
4171 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4173 #endif
4174 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4175 if ((relative = eldest_child(p)))
4176 printk("%5d ", relative->pid);
4177 else
4178 printk(" ");
4179 if ((relative = younger_sibling(p)))
4180 printk("%7d", relative->pid);
4181 else
4182 printk(" ");
4183 if ((relative = older_sibling(p)))
4184 printk(" %5d", relative->pid);
4185 else
4186 printk(" ");
4187 if (!p->mm)
4188 printk(" (L-TLB)\n");
4189 else
4190 printk(" (NOTLB)\n");
4192 if (state != TASK_RUNNING)
4193 show_stack(p, NULL);
4196 void show_state(void)
4198 task_t *g, *p;
4200 #if (BITS_PER_LONG == 32)
4201 printk("\n"
4202 " sibling\n");
4203 printk(" task PC pid father child younger older\n");
4204 #else
4205 printk("\n"
4206 " sibling\n");
4207 printk(" task PC pid father child younger older\n");
4208 #endif
4209 read_lock(&tasklist_lock);
4210 do_each_thread(g, p) {
4212 * reset the NMI-timeout, listing all files on a slow
4213 * console might take alot of time:
4215 touch_nmi_watchdog();
4216 show_task(p);
4217 } while_each_thread(g, p);
4219 read_unlock(&tasklist_lock);
4223 * init_idle - set up an idle thread for a given CPU
4224 * @idle: task in question
4225 * @cpu: cpu the idle task belongs to
4227 * NOTE: this function does not set the idle thread's NEED_RESCHED
4228 * flag, to make booting more robust.
4230 void __devinit init_idle(task_t *idle, int cpu)
4232 runqueue_t *rq = cpu_rq(cpu);
4233 unsigned long flags;
4235 idle->sleep_avg = 0;
4236 idle->array = NULL;
4237 idle->prio = MAX_PRIO;
4238 idle->state = TASK_RUNNING;
4239 idle->cpus_allowed = cpumask_of_cpu(cpu);
4240 set_task_cpu(idle, cpu);
4242 spin_lock_irqsave(&rq->lock, flags);
4243 rq->curr = rq->idle = idle;
4244 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4245 idle->oncpu = 1;
4246 #endif
4247 spin_unlock_irqrestore(&rq->lock, flags);
4249 /* Set the preempt count _outside_ the spinlocks! */
4250 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4251 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4252 #else
4253 idle->thread_info->preempt_count = 0;
4254 #endif
4258 * In a system that switches off the HZ timer nohz_cpu_mask
4259 * indicates which cpus entered this state. This is used
4260 * in the rcu update to wait only for active cpus. For system
4261 * which do not switch off the HZ timer nohz_cpu_mask should
4262 * always be CPU_MASK_NONE.
4264 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4266 #ifdef CONFIG_SMP
4268 * This is how migration works:
4270 * 1) we queue a migration_req_t structure in the source CPU's
4271 * runqueue and wake up that CPU's migration thread.
4272 * 2) we down() the locked semaphore => thread blocks.
4273 * 3) migration thread wakes up (implicitly it forces the migrated
4274 * thread off the CPU)
4275 * 4) it gets the migration request and checks whether the migrated
4276 * task is still in the wrong runqueue.
4277 * 5) if it's in the wrong runqueue then the migration thread removes
4278 * it and puts it into the right queue.
4279 * 6) migration thread up()s the semaphore.
4280 * 7) we wake up and the migration is done.
4284 * Change a given task's CPU affinity. Migrate the thread to a
4285 * proper CPU and schedule it away if the CPU it's executing on
4286 * is removed from the allowed bitmask.
4288 * NOTE: the caller must have a valid reference to the task, the
4289 * task must not exit() & deallocate itself prematurely. The
4290 * call is not atomic; no spinlocks may be held.
4292 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4294 unsigned long flags;
4295 int ret = 0;
4296 migration_req_t req;
4297 runqueue_t *rq;
4299 rq = task_rq_lock(p, &flags);
4300 if (!cpus_intersects(new_mask, cpu_online_map)) {
4301 ret = -EINVAL;
4302 goto out;
4305 p->cpus_allowed = new_mask;
4306 /* Can the task run on the task's current CPU? If so, we're done */
4307 if (cpu_isset(task_cpu(p), new_mask))
4308 goto out;
4310 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4311 /* Need help from migration thread: drop lock and wait. */
4312 task_rq_unlock(rq, &flags);
4313 wake_up_process(rq->migration_thread);
4314 wait_for_completion(&req.done);
4315 tlb_migrate_finish(p->mm);
4316 return 0;
4318 out:
4319 task_rq_unlock(rq, &flags);
4320 return ret;
4323 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4326 * Move (not current) task off this cpu, onto dest cpu. We're doing
4327 * this because either it can't run here any more (set_cpus_allowed()
4328 * away from this CPU, or CPU going down), or because we're
4329 * attempting to rebalance this task on exec (sched_exec).
4331 * So we race with normal scheduler movements, but that's OK, as long
4332 * as the task is no longer on this CPU.
4334 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4336 runqueue_t *rq_dest, *rq_src;
4338 if (unlikely(cpu_is_offline(dest_cpu)))
4339 return;
4341 rq_src = cpu_rq(src_cpu);
4342 rq_dest = cpu_rq(dest_cpu);
4344 double_rq_lock(rq_src, rq_dest);
4345 /* Already moved. */
4346 if (task_cpu(p) != src_cpu)
4347 goto out;
4348 /* Affinity changed (again). */
4349 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4350 goto out;
4352 set_task_cpu(p, dest_cpu);
4353 if (p->array) {
4355 * Sync timestamp with rq_dest's before activating.
4356 * The same thing could be achieved by doing this step
4357 * afterwards, and pretending it was a local activate.
4358 * This way is cleaner and logically correct.
4360 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4361 + rq_dest->timestamp_last_tick;
4362 deactivate_task(p, rq_src);
4363 activate_task(p, rq_dest, 0);
4364 if (TASK_PREEMPTS_CURR(p, rq_dest))
4365 resched_task(rq_dest->curr);
4368 out:
4369 double_rq_unlock(rq_src, rq_dest);
4373 * migration_thread - this is a highprio system thread that performs
4374 * thread migration by bumping thread off CPU then 'pushing' onto
4375 * another runqueue.
4377 static int migration_thread(void * data)
4379 runqueue_t *rq;
4380 int cpu = (long)data;
4382 rq = cpu_rq(cpu);
4383 BUG_ON(rq->migration_thread != current);
4385 set_current_state(TASK_INTERRUPTIBLE);
4386 while (!kthread_should_stop()) {
4387 struct list_head *head;
4388 migration_req_t *req;
4390 try_to_freeze();
4392 spin_lock_irq(&rq->lock);
4394 if (cpu_is_offline(cpu)) {
4395 spin_unlock_irq(&rq->lock);
4396 goto wait_to_die;
4399 if (rq->active_balance) {
4400 active_load_balance(rq, cpu);
4401 rq->active_balance = 0;
4404 head = &rq->migration_queue;
4406 if (list_empty(head)) {
4407 spin_unlock_irq(&rq->lock);
4408 schedule();
4409 set_current_state(TASK_INTERRUPTIBLE);
4410 continue;
4412 req = list_entry(head->next, migration_req_t, list);
4413 list_del_init(head->next);
4415 spin_unlock(&rq->lock);
4416 __migrate_task(req->task, cpu, req->dest_cpu);
4417 local_irq_enable();
4419 complete(&req->done);
4421 __set_current_state(TASK_RUNNING);
4422 return 0;
4424 wait_to_die:
4425 /* Wait for kthread_stop */
4426 set_current_state(TASK_INTERRUPTIBLE);
4427 while (!kthread_should_stop()) {
4428 schedule();
4429 set_current_state(TASK_INTERRUPTIBLE);
4431 __set_current_state(TASK_RUNNING);
4432 return 0;
4435 #ifdef CONFIG_HOTPLUG_CPU
4436 /* Figure out where task on dead CPU should go, use force if neccessary. */
4437 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4439 int dest_cpu;
4440 cpumask_t mask;
4442 /* On same node? */
4443 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4444 cpus_and(mask, mask, tsk->cpus_allowed);
4445 dest_cpu = any_online_cpu(mask);
4447 /* On any allowed CPU? */
4448 if (dest_cpu == NR_CPUS)
4449 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4451 /* No more Mr. Nice Guy. */
4452 if (dest_cpu == NR_CPUS) {
4453 cpus_setall(tsk->cpus_allowed);
4454 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4457 * Don't tell them about moving exiting tasks or
4458 * kernel threads (both mm NULL), since they never
4459 * leave kernel.
4461 if (tsk->mm && printk_ratelimit())
4462 printk(KERN_INFO "process %d (%s) no "
4463 "longer affine to cpu%d\n",
4464 tsk->pid, tsk->comm, dead_cpu);
4466 __migrate_task(tsk, dead_cpu, dest_cpu);
4470 * While a dead CPU has no uninterruptible tasks queued at this point,
4471 * it might still have a nonzero ->nr_uninterruptible counter, because
4472 * for performance reasons the counter is not stricly tracking tasks to
4473 * their home CPUs. So we just add the counter to another CPU's counter,
4474 * to keep the global sum constant after CPU-down:
4476 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4478 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4479 unsigned long flags;
4481 local_irq_save(flags);
4482 double_rq_lock(rq_src, rq_dest);
4483 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4484 rq_src->nr_uninterruptible = 0;
4485 double_rq_unlock(rq_src, rq_dest);
4486 local_irq_restore(flags);
4489 /* Run through task list and migrate tasks from the dead cpu. */
4490 static void migrate_live_tasks(int src_cpu)
4492 struct task_struct *tsk, *t;
4494 write_lock_irq(&tasklist_lock);
4496 do_each_thread(t, tsk) {
4497 if (tsk == current)
4498 continue;
4500 if (task_cpu(tsk) == src_cpu)
4501 move_task_off_dead_cpu(src_cpu, tsk);
4502 } while_each_thread(t, tsk);
4504 write_unlock_irq(&tasklist_lock);
4507 /* Schedules idle task to be the next runnable task on current CPU.
4508 * It does so by boosting its priority to highest possible and adding it to
4509 * the _front_ of runqueue. Used by CPU offline code.
4511 void sched_idle_next(void)
4513 int cpu = smp_processor_id();
4514 runqueue_t *rq = this_rq();
4515 struct task_struct *p = rq->idle;
4516 unsigned long flags;
4518 /* cpu has to be offline */
4519 BUG_ON(cpu_online(cpu));
4521 /* Strictly not necessary since rest of the CPUs are stopped by now
4522 * and interrupts disabled on current cpu.
4524 spin_lock_irqsave(&rq->lock, flags);
4526 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4527 /* Add idle task to _front_ of it's priority queue */
4528 __activate_idle_task(p, rq);
4530 spin_unlock_irqrestore(&rq->lock, flags);
4533 /* Ensures that the idle task is using init_mm right before its cpu goes
4534 * offline.
4536 void idle_task_exit(void)
4538 struct mm_struct *mm = current->active_mm;
4540 BUG_ON(cpu_online(smp_processor_id()));
4542 if (mm != &init_mm)
4543 switch_mm(mm, &init_mm, current);
4544 mmdrop(mm);
4547 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4549 struct runqueue *rq = cpu_rq(dead_cpu);
4551 /* Must be exiting, otherwise would be on tasklist. */
4552 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4554 /* Cannot have done final schedule yet: would have vanished. */
4555 BUG_ON(tsk->flags & PF_DEAD);
4557 get_task_struct(tsk);
4560 * Drop lock around migration; if someone else moves it,
4561 * that's OK. No task can be added to this CPU, so iteration is
4562 * fine.
4564 spin_unlock_irq(&rq->lock);
4565 move_task_off_dead_cpu(dead_cpu, tsk);
4566 spin_lock_irq(&rq->lock);
4568 put_task_struct(tsk);
4571 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4572 static void migrate_dead_tasks(unsigned int dead_cpu)
4574 unsigned arr, i;
4575 struct runqueue *rq = cpu_rq(dead_cpu);
4577 for (arr = 0; arr < 2; arr++) {
4578 for (i = 0; i < MAX_PRIO; i++) {
4579 struct list_head *list = &rq->arrays[arr].queue[i];
4580 while (!list_empty(list))
4581 migrate_dead(dead_cpu,
4582 list_entry(list->next, task_t,
4583 run_list));
4587 #endif /* CONFIG_HOTPLUG_CPU */
4590 * migration_call - callback that gets triggered when a CPU is added.
4591 * Here we can start up the necessary migration thread for the new CPU.
4593 static int migration_call(struct notifier_block *nfb, unsigned long action,
4594 void *hcpu)
4596 int cpu = (long)hcpu;
4597 struct task_struct *p;
4598 struct runqueue *rq;
4599 unsigned long flags;
4601 switch (action) {
4602 case CPU_UP_PREPARE:
4603 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4604 if (IS_ERR(p))
4605 return NOTIFY_BAD;
4606 p->flags |= PF_NOFREEZE;
4607 kthread_bind(p, cpu);
4608 /* Must be high prio: stop_machine expects to yield to it. */
4609 rq = task_rq_lock(p, &flags);
4610 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4611 task_rq_unlock(rq, &flags);
4612 cpu_rq(cpu)->migration_thread = p;
4613 break;
4614 case CPU_ONLINE:
4615 /* Strictly unneccessary, as first user will wake it. */
4616 wake_up_process(cpu_rq(cpu)->migration_thread);
4617 break;
4618 #ifdef CONFIG_HOTPLUG_CPU
4619 case CPU_UP_CANCELED:
4620 /* Unbind it from offline cpu so it can run. Fall thru. */
4621 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4622 kthread_stop(cpu_rq(cpu)->migration_thread);
4623 cpu_rq(cpu)->migration_thread = NULL;
4624 break;
4625 case CPU_DEAD:
4626 migrate_live_tasks(cpu);
4627 rq = cpu_rq(cpu);
4628 kthread_stop(rq->migration_thread);
4629 rq->migration_thread = NULL;
4630 /* Idle task back to normal (off runqueue, low prio) */
4631 rq = task_rq_lock(rq->idle, &flags);
4632 deactivate_task(rq->idle, rq);
4633 rq->idle->static_prio = MAX_PRIO;
4634 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4635 migrate_dead_tasks(cpu);
4636 task_rq_unlock(rq, &flags);
4637 migrate_nr_uninterruptible(rq);
4638 BUG_ON(rq->nr_running != 0);
4640 /* No need to migrate the tasks: it was best-effort if
4641 * they didn't do lock_cpu_hotplug(). Just wake up
4642 * the requestors. */
4643 spin_lock_irq(&rq->lock);
4644 while (!list_empty(&rq->migration_queue)) {
4645 migration_req_t *req;
4646 req = list_entry(rq->migration_queue.next,
4647 migration_req_t, list);
4648 list_del_init(&req->list);
4649 complete(&req->done);
4651 spin_unlock_irq(&rq->lock);
4652 break;
4653 #endif
4655 return NOTIFY_OK;
4658 /* Register at highest priority so that task migration (migrate_all_tasks)
4659 * happens before everything else.
4661 static struct notifier_block __devinitdata migration_notifier = {
4662 .notifier_call = migration_call,
4663 .priority = 10
4666 int __init migration_init(void)
4668 void *cpu = (void *)(long)smp_processor_id();
4669 /* Start one for boot CPU. */
4670 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4671 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4672 register_cpu_notifier(&migration_notifier);
4673 return 0;
4675 #endif
4677 #ifdef CONFIG_SMP
4678 #undef SCHED_DOMAIN_DEBUG
4679 #ifdef SCHED_DOMAIN_DEBUG
4680 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4682 int level = 0;
4684 if (!sd) {
4685 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4686 return;
4689 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4691 do {
4692 int i;
4693 char str[NR_CPUS];
4694 struct sched_group *group = sd->groups;
4695 cpumask_t groupmask;
4697 cpumask_scnprintf(str, NR_CPUS, sd->span);
4698 cpus_clear(groupmask);
4700 printk(KERN_DEBUG);
4701 for (i = 0; i < level + 1; i++)
4702 printk(" ");
4703 printk("domain %d: ", level);
4705 if (!(sd->flags & SD_LOAD_BALANCE)) {
4706 printk("does not load-balance\n");
4707 if (sd->parent)
4708 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4709 break;
4712 printk("span %s\n", str);
4714 if (!cpu_isset(cpu, sd->span))
4715 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4716 if (!cpu_isset(cpu, group->cpumask))
4717 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4719 printk(KERN_DEBUG);
4720 for (i = 0; i < level + 2; i++)
4721 printk(" ");
4722 printk("groups:");
4723 do {
4724 if (!group) {
4725 printk("\n");
4726 printk(KERN_ERR "ERROR: group is NULL\n");
4727 break;
4730 if (!group->cpu_power) {
4731 printk("\n");
4732 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4735 if (!cpus_weight(group->cpumask)) {
4736 printk("\n");
4737 printk(KERN_ERR "ERROR: empty group\n");
4740 if (cpus_intersects(groupmask, group->cpumask)) {
4741 printk("\n");
4742 printk(KERN_ERR "ERROR: repeated CPUs\n");
4745 cpus_or(groupmask, groupmask, group->cpumask);
4747 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4748 printk(" %s", str);
4750 group = group->next;
4751 } while (group != sd->groups);
4752 printk("\n");
4754 if (!cpus_equal(sd->span, groupmask))
4755 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4757 level++;
4758 sd = sd->parent;
4760 if (sd) {
4761 if (!cpus_subset(groupmask, sd->span))
4762 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4765 } while (sd);
4767 #else
4768 #define sched_domain_debug(sd, cpu) {}
4769 #endif
4771 static int sd_degenerate(struct sched_domain *sd)
4773 if (cpus_weight(sd->span) == 1)
4774 return 1;
4776 /* Following flags need at least 2 groups */
4777 if (sd->flags & (SD_LOAD_BALANCE |
4778 SD_BALANCE_NEWIDLE |
4779 SD_BALANCE_FORK |
4780 SD_BALANCE_EXEC)) {
4781 if (sd->groups != sd->groups->next)
4782 return 0;
4785 /* Following flags don't use groups */
4786 if (sd->flags & (SD_WAKE_IDLE |
4787 SD_WAKE_AFFINE |
4788 SD_WAKE_BALANCE))
4789 return 0;
4791 return 1;
4794 static int sd_parent_degenerate(struct sched_domain *sd,
4795 struct sched_domain *parent)
4797 unsigned long cflags = sd->flags, pflags = parent->flags;
4799 if (sd_degenerate(parent))
4800 return 1;
4802 if (!cpus_equal(sd->span, parent->span))
4803 return 0;
4805 /* Does parent contain flags not in child? */
4806 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4807 if (cflags & SD_WAKE_AFFINE)
4808 pflags &= ~SD_WAKE_BALANCE;
4809 /* Flags needing groups don't count if only 1 group in parent */
4810 if (parent->groups == parent->groups->next) {
4811 pflags &= ~(SD_LOAD_BALANCE |
4812 SD_BALANCE_NEWIDLE |
4813 SD_BALANCE_FORK |
4814 SD_BALANCE_EXEC);
4816 if (~cflags & pflags)
4817 return 0;
4819 return 1;
4823 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4824 * hold the hotplug lock.
4826 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4828 runqueue_t *rq = cpu_rq(cpu);
4829 struct sched_domain *tmp;
4831 /* Remove the sched domains which do not contribute to scheduling. */
4832 for (tmp = sd; tmp; tmp = tmp->parent) {
4833 struct sched_domain *parent = tmp->parent;
4834 if (!parent)
4835 break;
4836 if (sd_parent_degenerate(tmp, parent))
4837 tmp->parent = parent->parent;
4840 if (sd && sd_degenerate(sd))
4841 sd = sd->parent;
4843 sched_domain_debug(sd, cpu);
4845 rcu_assign_pointer(rq->sd, sd);
4848 /* cpus with isolated domains */
4849 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4851 /* Setup the mask of cpus configured for isolated domains */
4852 static int __init isolated_cpu_setup(char *str)
4854 int ints[NR_CPUS], i;
4856 str = get_options(str, ARRAY_SIZE(ints), ints);
4857 cpus_clear(cpu_isolated_map);
4858 for (i = 1; i <= ints[0]; i++)
4859 if (ints[i] < NR_CPUS)
4860 cpu_set(ints[i], cpu_isolated_map);
4861 return 1;
4864 __setup ("isolcpus=", isolated_cpu_setup);
4867 * init_sched_build_groups takes an array of groups, the cpumask we wish
4868 * to span, and a pointer to a function which identifies what group a CPU
4869 * belongs to. The return value of group_fn must be a valid index into the
4870 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4871 * keep track of groups covered with a cpumask_t).
4873 * init_sched_build_groups will build a circular linked list of the groups
4874 * covered by the given span, and will set each group's ->cpumask correctly,
4875 * and ->cpu_power to 0.
4877 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4878 int (*group_fn)(int cpu))
4880 struct sched_group *first = NULL, *last = NULL;
4881 cpumask_t covered = CPU_MASK_NONE;
4882 int i;
4884 for_each_cpu_mask(i, span) {
4885 int group = group_fn(i);
4886 struct sched_group *sg = &groups[group];
4887 int j;
4889 if (cpu_isset(i, covered))
4890 continue;
4892 sg->cpumask = CPU_MASK_NONE;
4893 sg->cpu_power = 0;
4895 for_each_cpu_mask(j, span) {
4896 if (group_fn(j) != group)
4897 continue;
4899 cpu_set(j, covered);
4900 cpu_set(j, sg->cpumask);
4902 if (!first)
4903 first = sg;
4904 if (last)
4905 last->next = sg;
4906 last = sg;
4908 last->next = first;
4911 #define SD_NODES_PER_DOMAIN 16
4913 #ifdef CONFIG_NUMA
4915 * find_next_best_node - find the next node to include in a sched_domain
4916 * @node: node whose sched_domain we're building
4917 * @used_nodes: nodes already in the sched_domain
4919 * Find the next node to include in a given scheduling domain. Simply
4920 * finds the closest node not already in the @used_nodes map.
4922 * Should use nodemask_t.
4924 static int find_next_best_node(int node, unsigned long *used_nodes)
4926 int i, n, val, min_val, best_node = 0;
4928 min_val = INT_MAX;
4930 for (i = 0; i < MAX_NUMNODES; i++) {
4931 /* Start at @node */
4932 n = (node + i) % MAX_NUMNODES;
4934 if (!nr_cpus_node(n))
4935 continue;
4937 /* Skip already used nodes */
4938 if (test_bit(n, used_nodes))
4939 continue;
4941 /* Simple min distance search */
4942 val = node_distance(node, n);
4944 if (val < min_val) {
4945 min_val = val;
4946 best_node = n;
4950 set_bit(best_node, used_nodes);
4951 return best_node;
4955 * sched_domain_node_span - get a cpumask for a node's sched_domain
4956 * @node: node whose cpumask we're constructing
4957 * @size: number of nodes to include in this span
4959 * Given a node, construct a good cpumask for its sched_domain to span. It
4960 * should be one that prevents unnecessary balancing, but also spreads tasks
4961 * out optimally.
4963 static cpumask_t sched_domain_node_span(int node)
4965 int i;
4966 cpumask_t span, nodemask;
4967 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4969 cpus_clear(span);
4970 bitmap_zero(used_nodes, MAX_NUMNODES);
4972 nodemask = node_to_cpumask(node);
4973 cpus_or(span, span, nodemask);
4974 set_bit(node, used_nodes);
4976 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4977 int next_node = find_next_best_node(node, used_nodes);
4978 nodemask = node_to_cpumask(next_node);
4979 cpus_or(span, span, nodemask);
4982 return span;
4984 #endif
4987 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
4988 * can switch it on easily if needed.
4990 #ifdef CONFIG_SCHED_SMT
4991 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4992 static struct sched_group sched_group_cpus[NR_CPUS];
4993 static int cpu_to_cpu_group(int cpu)
4995 return cpu;
4997 #endif
4999 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5000 static struct sched_group sched_group_phys[NR_CPUS];
5001 static int cpu_to_phys_group(int cpu)
5003 #ifdef CONFIG_SCHED_SMT
5004 return first_cpu(cpu_sibling_map[cpu]);
5005 #else
5006 return cpu;
5007 #endif
5010 #ifdef CONFIG_NUMA
5012 * The init_sched_build_groups can't handle what we want to do with node
5013 * groups, so roll our own. Now each node has its own list of groups which
5014 * gets dynamically allocated.
5016 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5017 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5019 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5020 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5022 static int cpu_to_allnodes_group(int cpu)
5024 return cpu_to_node(cpu);
5026 #endif
5029 * Build sched domains for a given set of cpus and attach the sched domains
5030 * to the individual cpus
5032 void build_sched_domains(const cpumask_t *cpu_map)
5034 int i;
5035 #ifdef CONFIG_NUMA
5036 struct sched_group **sched_group_nodes = NULL;
5037 struct sched_group *sched_group_allnodes = NULL;
5040 * Allocate the per-node list of sched groups
5042 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5043 GFP_ATOMIC);
5044 if (!sched_group_nodes) {
5045 printk(KERN_WARNING "Can not alloc sched group node list\n");
5046 return;
5048 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5049 #endif
5052 * Set up domains for cpus specified by the cpu_map.
5054 for_each_cpu_mask(i, *cpu_map) {
5055 int group;
5056 struct sched_domain *sd = NULL, *p;
5057 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5059 cpus_and(nodemask, nodemask, *cpu_map);
5061 #ifdef CONFIG_NUMA
5062 if (cpus_weight(*cpu_map)
5063 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5064 if (!sched_group_allnodes) {
5065 sched_group_allnodes
5066 = kmalloc(sizeof(struct sched_group)
5067 * MAX_NUMNODES,
5068 GFP_KERNEL);
5069 if (!sched_group_allnodes) {
5070 printk(KERN_WARNING
5071 "Can not alloc allnodes sched group\n");
5072 break;
5074 sched_group_allnodes_bycpu[i]
5075 = sched_group_allnodes;
5077 sd = &per_cpu(allnodes_domains, i);
5078 *sd = SD_ALLNODES_INIT;
5079 sd->span = *cpu_map;
5080 group = cpu_to_allnodes_group(i);
5081 sd->groups = &sched_group_allnodes[group];
5082 p = sd;
5083 } else
5084 p = NULL;
5086 sd = &per_cpu(node_domains, i);
5087 *sd = SD_NODE_INIT;
5088 sd->span = sched_domain_node_span(cpu_to_node(i));
5089 sd->parent = p;
5090 cpus_and(sd->span, sd->span, *cpu_map);
5091 #endif
5093 p = sd;
5094 sd = &per_cpu(phys_domains, i);
5095 group = cpu_to_phys_group(i);
5096 *sd = SD_CPU_INIT;
5097 sd->span = nodemask;
5098 sd->parent = p;
5099 sd->groups = &sched_group_phys[group];
5101 #ifdef CONFIG_SCHED_SMT
5102 p = sd;
5103 sd = &per_cpu(cpu_domains, i);
5104 group = cpu_to_cpu_group(i);
5105 *sd = SD_SIBLING_INIT;
5106 sd->span = cpu_sibling_map[i];
5107 cpus_and(sd->span, sd->span, *cpu_map);
5108 sd->parent = p;
5109 sd->groups = &sched_group_cpus[group];
5110 #endif
5113 #ifdef CONFIG_SCHED_SMT
5114 /* Set up CPU (sibling) groups */
5115 for_each_cpu_mask(i, *cpu_map) {
5116 cpumask_t this_sibling_map = cpu_sibling_map[i];
5117 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5118 if (i != first_cpu(this_sibling_map))
5119 continue;
5121 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5122 &cpu_to_cpu_group);
5124 #endif
5126 /* Set up physical groups */
5127 for (i = 0; i < MAX_NUMNODES; i++) {
5128 cpumask_t nodemask = node_to_cpumask(i);
5130 cpus_and(nodemask, nodemask, *cpu_map);
5131 if (cpus_empty(nodemask))
5132 continue;
5134 init_sched_build_groups(sched_group_phys, nodemask,
5135 &cpu_to_phys_group);
5138 #ifdef CONFIG_NUMA
5139 /* Set up node groups */
5140 if (sched_group_allnodes)
5141 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5142 &cpu_to_allnodes_group);
5144 for (i = 0; i < MAX_NUMNODES; i++) {
5145 /* Set up node groups */
5146 struct sched_group *sg, *prev;
5147 cpumask_t nodemask = node_to_cpumask(i);
5148 cpumask_t domainspan;
5149 cpumask_t covered = CPU_MASK_NONE;
5150 int j;
5152 cpus_and(nodemask, nodemask, *cpu_map);
5153 if (cpus_empty(nodemask)) {
5154 sched_group_nodes[i] = NULL;
5155 continue;
5158 domainspan = sched_domain_node_span(i);
5159 cpus_and(domainspan, domainspan, *cpu_map);
5161 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5162 sched_group_nodes[i] = sg;
5163 for_each_cpu_mask(j, nodemask) {
5164 struct sched_domain *sd;
5165 sd = &per_cpu(node_domains, j);
5166 sd->groups = sg;
5167 if (sd->groups == NULL) {
5168 /* Turn off balancing if we have no groups */
5169 sd->flags = 0;
5172 if (!sg) {
5173 printk(KERN_WARNING
5174 "Can not alloc domain group for node %d\n", i);
5175 continue;
5177 sg->cpu_power = 0;
5178 sg->cpumask = nodemask;
5179 cpus_or(covered, covered, nodemask);
5180 prev = sg;
5182 for (j = 0; j < MAX_NUMNODES; j++) {
5183 cpumask_t tmp, notcovered;
5184 int n = (i + j) % MAX_NUMNODES;
5186 cpus_complement(notcovered, covered);
5187 cpus_and(tmp, notcovered, *cpu_map);
5188 cpus_and(tmp, tmp, domainspan);
5189 if (cpus_empty(tmp))
5190 break;
5192 nodemask = node_to_cpumask(n);
5193 cpus_and(tmp, tmp, nodemask);
5194 if (cpus_empty(tmp))
5195 continue;
5197 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5198 if (!sg) {
5199 printk(KERN_WARNING
5200 "Can not alloc domain group for node %d\n", j);
5201 break;
5203 sg->cpu_power = 0;
5204 sg->cpumask = tmp;
5205 cpus_or(covered, covered, tmp);
5206 prev->next = sg;
5207 prev = sg;
5209 prev->next = sched_group_nodes[i];
5211 #endif
5213 /* Calculate CPU power for physical packages and nodes */
5214 for_each_cpu_mask(i, *cpu_map) {
5215 int power;
5216 struct sched_domain *sd;
5217 #ifdef CONFIG_SCHED_SMT
5218 sd = &per_cpu(cpu_domains, i);
5219 power = SCHED_LOAD_SCALE;
5220 sd->groups->cpu_power = power;
5221 #endif
5223 sd = &per_cpu(phys_domains, i);
5224 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5225 (cpus_weight(sd->groups->cpumask)-1) / 10;
5226 sd->groups->cpu_power = power;
5228 #ifdef CONFIG_NUMA
5229 sd = &per_cpu(allnodes_domains, i);
5230 if (sd->groups) {
5231 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5232 (cpus_weight(sd->groups->cpumask)-1) / 10;
5233 sd->groups->cpu_power = power;
5235 #endif
5238 #ifdef CONFIG_NUMA
5239 for (i = 0; i < MAX_NUMNODES; i++) {
5240 struct sched_group *sg = sched_group_nodes[i];
5241 int j;
5243 if (sg == NULL)
5244 continue;
5245 next_sg:
5246 for_each_cpu_mask(j, sg->cpumask) {
5247 struct sched_domain *sd;
5248 int power;
5250 sd = &per_cpu(phys_domains, j);
5251 if (j != first_cpu(sd->groups->cpumask)) {
5253 * Only add "power" once for each
5254 * physical package.
5256 continue;
5258 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5259 (cpus_weight(sd->groups->cpumask)-1) / 10;
5261 sg->cpu_power += power;
5263 sg = sg->next;
5264 if (sg != sched_group_nodes[i])
5265 goto next_sg;
5267 #endif
5269 /* Attach the domains */
5270 for_each_cpu_mask(i, *cpu_map) {
5271 struct sched_domain *sd;
5272 #ifdef CONFIG_SCHED_SMT
5273 sd = &per_cpu(cpu_domains, i);
5274 #else
5275 sd = &per_cpu(phys_domains, i);
5276 #endif
5277 cpu_attach_domain(sd, i);
5281 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5283 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5285 cpumask_t cpu_default_map;
5288 * Setup mask for cpus without special case scheduling requirements.
5289 * For now this just excludes isolated cpus, but could be used to
5290 * exclude other special cases in the future.
5292 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5294 build_sched_domains(&cpu_default_map);
5297 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5299 #ifdef CONFIG_NUMA
5300 int i;
5301 int cpu;
5303 for_each_cpu_mask(cpu, *cpu_map) {
5304 struct sched_group *sched_group_allnodes
5305 = sched_group_allnodes_bycpu[cpu];
5306 struct sched_group **sched_group_nodes
5307 = sched_group_nodes_bycpu[cpu];
5309 if (sched_group_allnodes) {
5310 kfree(sched_group_allnodes);
5311 sched_group_allnodes_bycpu[cpu] = NULL;
5314 if (!sched_group_nodes)
5315 continue;
5317 for (i = 0; i < MAX_NUMNODES; i++) {
5318 cpumask_t nodemask = node_to_cpumask(i);
5319 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5321 cpus_and(nodemask, nodemask, *cpu_map);
5322 if (cpus_empty(nodemask))
5323 continue;
5325 if (sg == NULL)
5326 continue;
5327 sg = sg->next;
5328 next_sg:
5329 oldsg = sg;
5330 sg = sg->next;
5331 kfree(oldsg);
5332 if (oldsg != sched_group_nodes[i])
5333 goto next_sg;
5335 kfree(sched_group_nodes);
5336 sched_group_nodes_bycpu[cpu] = NULL;
5338 #endif
5342 * Detach sched domains from a group of cpus specified in cpu_map
5343 * These cpus will now be attached to the NULL domain
5345 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5347 int i;
5349 for_each_cpu_mask(i, *cpu_map)
5350 cpu_attach_domain(NULL, i);
5351 synchronize_sched();
5352 arch_destroy_sched_domains(cpu_map);
5356 * Partition sched domains as specified by the cpumasks below.
5357 * This attaches all cpus from the cpumasks to the NULL domain,
5358 * waits for a RCU quiescent period, recalculates sched
5359 * domain information and then attaches them back to the
5360 * correct sched domains
5361 * Call with hotplug lock held
5363 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5365 cpumask_t change_map;
5367 cpus_and(*partition1, *partition1, cpu_online_map);
5368 cpus_and(*partition2, *partition2, cpu_online_map);
5369 cpus_or(change_map, *partition1, *partition2);
5371 /* Detach sched domains from all of the affected cpus */
5372 detach_destroy_domains(&change_map);
5373 if (!cpus_empty(*partition1))
5374 build_sched_domains(partition1);
5375 if (!cpus_empty(*partition2))
5376 build_sched_domains(partition2);
5379 #ifdef CONFIG_HOTPLUG_CPU
5381 * Force a reinitialization of the sched domains hierarchy. The domains
5382 * and groups cannot be updated in place without racing with the balancing
5383 * code, so we temporarily attach all running cpus to the NULL domain
5384 * which will prevent rebalancing while the sched domains are recalculated.
5386 static int update_sched_domains(struct notifier_block *nfb,
5387 unsigned long action, void *hcpu)
5389 switch (action) {
5390 case CPU_UP_PREPARE:
5391 case CPU_DOWN_PREPARE:
5392 detach_destroy_domains(&cpu_online_map);
5393 return NOTIFY_OK;
5395 case CPU_UP_CANCELED:
5396 case CPU_DOWN_FAILED:
5397 case CPU_ONLINE:
5398 case CPU_DEAD:
5400 * Fall through and re-initialise the domains.
5402 break;
5403 default:
5404 return NOTIFY_DONE;
5407 /* The hotplug lock is already held by cpu_up/cpu_down */
5408 arch_init_sched_domains(&cpu_online_map);
5410 return NOTIFY_OK;
5412 #endif
5414 void __init sched_init_smp(void)
5416 lock_cpu_hotplug();
5417 arch_init_sched_domains(&cpu_online_map);
5418 unlock_cpu_hotplug();
5419 /* XXX: Theoretical race here - CPU may be hotplugged now */
5420 hotcpu_notifier(update_sched_domains, 0);
5422 #else
5423 void __init sched_init_smp(void)
5426 #endif /* CONFIG_SMP */
5428 int in_sched_functions(unsigned long addr)
5430 /* Linker adds these: start and end of __sched functions */
5431 extern char __sched_text_start[], __sched_text_end[];
5432 return in_lock_functions(addr) ||
5433 (addr >= (unsigned long)__sched_text_start
5434 && addr < (unsigned long)__sched_text_end);
5437 void __init sched_init(void)
5439 runqueue_t *rq;
5440 int i, j, k;
5442 for (i = 0; i < NR_CPUS; i++) {
5443 prio_array_t *array;
5445 rq = cpu_rq(i);
5446 spin_lock_init(&rq->lock);
5447 rq->nr_running = 0;
5448 rq->active = rq->arrays;
5449 rq->expired = rq->arrays + 1;
5450 rq->best_expired_prio = MAX_PRIO;
5452 #ifdef CONFIG_SMP
5453 rq->sd = NULL;
5454 for (j = 1; j < 3; j++)
5455 rq->cpu_load[j] = 0;
5456 rq->active_balance = 0;
5457 rq->push_cpu = 0;
5458 rq->migration_thread = NULL;
5459 INIT_LIST_HEAD(&rq->migration_queue);
5460 #endif
5461 atomic_set(&rq->nr_iowait, 0);
5463 for (j = 0; j < 2; j++) {
5464 array = rq->arrays + j;
5465 for (k = 0; k < MAX_PRIO; k++) {
5466 INIT_LIST_HEAD(array->queue + k);
5467 __clear_bit(k, array->bitmap);
5469 // delimiter for bitsearch
5470 __set_bit(MAX_PRIO, array->bitmap);
5475 * The boot idle thread does lazy MMU switching as well:
5477 atomic_inc(&init_mm.mm_count);
5478 enter_lazy_tlb(&init_mm, current);
5481 * Make us the idle thread. Technically, schedule() should not be
5482 * called from this thread, however somewhere below it might be,
5483 * but because we are the idle thread, we just pick up running again
5484 * when this runqueue becomes "idle".
5486 init_idle(current, smp_processor_id());
5489 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5490 void __might_sleep(char *file, int line)
5492 #if defined(in_atomic)
5493 static unsigned long prev_jiffy; /* ratelimiting */
5495 if ((in_atomic() || irqs_disabled()) &&
5496 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5497 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5498 return;
5499 prev_jiffy = jiffies;
5500 printk(KERN_ERR "Debug: sleeping function called from invalid"
5501 " context at %s:%d\n", file, line);
5502 printk("in_atomic():%d, irqs_disabled():%d\n",
5503 in_atomic(), irqs_disabled());
5504 dump_stack();
5506 #endif
5508 EXPORT_SYMBOL(__might_sleep);
5509 #endif
5511 #ifdef CONFIG_MAGIC_SYSRQ
5512 void normalize_rt_tasks(void)
5514 struct task_struct *p;
5515 prio_array_t *array;
5516 unsigned long flags;
5517 runqueue_t *rq;
5519 read_lock_irq(&tasklist_lock);
5520 for_each_process (p) {
5521 if (!rt_task(p))
5522 continue;
5524 rq = task_rq_lock(p, &flags);
5526 array = p->array;
5527 if (array)
5528 deactivate_task(p, task_rq(p));
5529 __setscheduler(p, SCHED_NORMAL, 0);
5530 if (array) {
5531 __activate_task(p, task_rq(p));
5532 resched_task(rq->curr);
5535 task_rq_unlock(rq, &flags);
5537 read_unlock_irq(&tasklist_lock);
5540 #endif /* CONFIG_MAGIC_SYSRQ */