[NETFILTER]: nf_conntrack: add helper function for expectation initialization
[linux-2.6.22.y-op.git] / arch / ia64 / pci / pci.c
blobf4edfbf27134e5e0c19432f750173ae1932d34f8
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/smp_lock.h>
22 #include <linux/spinlock.h>
24 #include <asm/machvec.h>
25 #include <asm/page.h>
26 #include <asm/system.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
34 * Low-level SAL-based PCI configuration access functions. Note that SAL
35 * calls are already serialized (via sal_lock), so we don't need another
36 * synchronization mechanism here.
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 /* SAL 3.2 adds support for extended config space. */
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 static int
48 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
49 int reg, int len, u32 *value)
51 u64 addr, data = 0;
52 int mode, result;
54 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
55 return -EINVAL;
57 if ((seg | reg) <= 255) {
58 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
59 mode = 0;
60 } else {
61 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
62 mode = 1;
64 result = ia64_sal_pci_config_read(addr, mode, len, &data);
65 if (result != 0)
66 return -EINVAL;
68 *value = (u32) data;
69 return 0;
72 static int
73 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
74 int reg, int len, u32 value)
76 u64 addr;
77 int mode, result;
79 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
80 return -EINVAL;
82 if ((seg | reg) <= 255) {
83 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
84 mode = 0;
85 } else {
86 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
87 mode = 1;
89 result = ia64_sal_pci_config_write(addr, mode, len, value);
90 if (result != 0)
91 return -EINVAL;
92 return 0;
95 static struct pci_raw_ops pci_sal_ops = {
96 .read = pci_sal_read,
97 .write = pci_sal_write
100 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
102 static int
103 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
105 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
106 devfn, where, size, value);
109 static int
110 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
112 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
113 devfn, where, size, value);
116 struct pci_ops pci_root_ops = {
117 .read = pci_read,
118 .write = pci_write,
121 /* Called by ACPI when it finds a new root bus. */
123 static struct pci_controller * __devinit
124 alloc_pci_controller (int seg)
126 struct pci_controller *controller;
128 controller = kmalloc(sizeof(*controller), GFP_KERNEL);
129 if (!controller)
130 return NULL;
132 memset(controller, 0, sizeof(*controller));
133 controller->segment = seg;
134 controller->node = -1;
135 return controller;
138 struct pci_root_info {
139 struct pci_controller *controller;
140 char *name;
143 static unsigned int
144 new_space (u64 phys_base, int sparse)
146 u64 mmio_base;
147 int i;
149 if (phys_base == 0)
150 return 0; /* legacy I/O port space */
152 mmio_base = (u64) ioremap(phys_base, 0);
153 for (i = 0; i < num_io_spaces; i++)
154 if (io_space[i].mmio_base == mmio_base &&
155 io_space[i].sparse == sparse)
156 return i;
158 if (num_io_spaces == MAX_IO_SPACES) {
159 printk(KERN_ERR "PCI: Too many IO port spaces "
160 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
161 return ~0;
164 i = num_io_spaces++;
165 io_space[i].mmio_base = mmio_base;
166 io_space[i].sparse = sparse;
168 return i;
171 static u64 __devinit
172 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
174 struct resource *resource;
175 char *name;
176 u64 base, min, max, base_port;
177 unsigned int sparse = 0, space_nr, len;
179 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
180 if (!resource) {
181 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
182 info->name);
183 goto out;
186 len = strlen(info->name) + 32;
187 name = kzalloc(len, GFP_KERNEL);
188 if (!name) {
189 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
190 info->name);
191 goto free_resource;
194 min = addr->minimum;
195 max = min + addr->address_length - 1;
196 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
197 sparse = 1;
199 space_nr = new_space(addr->translation_offset, sparse);
200 if (space_nr == ~0)
201 goto free_name;
203 base = __pa(io_space[space_nr].mmio_base);
204 base_port = IO_SPACE_BASE(space_nr);
205 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
206 base_port + min, base_port + max);
209 * The SDM guarantees the legacy 0-64K space is sparse, but if the
210 * mapping is done by the processor (not the bridge), ACPI may not
211 * mark it as sparse.
213 if (space_nr == 0)
214 sparse = 1;
216 resource->name = name;
217 resource->flags = IORESOURCE_MEM;
218 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
219 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
220 insert_resource(&iomem_resource, resource);
222 return base_port;
224 free_name:
225 kfree(name);
226 free_resource:
227 kfree(resource);
228 out:
229 return ~0;
232 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
233 struct acpi_resource_address64 *addr)
235 acpi_status status;
238 * We're only interested in _CRS descriptors that are
239 * - address space descriptors for memory or I/O space
240 * - non-zero size
241 * - producers, i.e., the address space is routed downstream,
242 * not consumed by the bridge itself
244 status = acpi_resource_to_address64(resource, addr);
245 if (ACPI_SUCCESS(status) &&
246 (addr->resource_type == ACPI_MEMORY_RANGE ||
247 addr->resource_type == ACPI_IO_RANGE) &&
248 addr->address_length &&
249 addr->producer_consumer == ACPI_PRODUCER)
250 return AE_OK;
252 return AE_ERROR;
255 static acpi_status __devinit
256 count_window (struct acpi_resource *resource, void *data)
258 unsigned int *windows = (unsigned int *) data;
259 struct acpi_resource_address64 addr;
260 acpi_status status;
262 status = resource_to_window(resource, &addr);
263 if (ACPI_SUCCESS(status))
264 (*windows)++;
266 return AE_OK;
269 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
271 struct pci_root_info *info = data;
272 struct pci_window *window;
273 struct acpi_resource_address64 addr;
274 acpi_status status;
275 unsigned long flags, offset = 0;
276 struct resource *root;
278 /* Return AE_OK for non-window resources to keep scanning for more */
279 status = resource_to_window(res, &addr);
280 if (!ACPI_SUCCESS(status))
281 return AE_OK;
283 if (addr.resource_type == ACPI_MEMORY_RANGE) {
284 flags = IORESOURCE_MEM;
285 root = &iomem_resource;
286 offset = addr.translation_offset;
287 } else if (addr.resource_type == ACPI_IO_RANGE) {
288 flags = IORESOURCE_IO;
289 root = &ioport_resource;
290 offset = add_io_space(info, &addr);
291 if (offset == ~0)
292 return AE_OK;
293 } else
294 return AE_OK;
296 window = &info->controller->window[info->controller->windows++];
297 window->resource.name = info->name;
298 window->resource.flags = flags;
299 window->resource.start = addr.minimum + offset;
300 window->resource.end = window->resource.start + addr.address_length - 1;
301 window->resource.child = NULL;
302 window->offset = offset;
304 if (insert_resource(root, &window->resource)) {
305 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
306 window->resource.start, window->resource.end,
307 root->name, info->name);
310 return AE_OK;
313 static void __devinit
314 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
316 int i, j;
318 j = 0;
319 for (i = 0; i < ctrl->windows; i++) {
320 struct resource *res = &ctrl->window[i].resource;
321 /* HP's firmware has a hack to work around a Windows bug.
322 * Ignore these tiny memory ranges */
323 if ((res->flags & IORESOURCE_MEM) &&
324 (res->end - res->start < 16))
325 continue;
326 if (j >= PCI_BUS_NUM_RESOURCES) {
327 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
328 res->end, res->flags);
329 continue;
331 bus->resource[j++] = res;
335 struct pci_bus * __devinit
336 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
338 struct pci_root_info info;
339 struct pci_controller *controller;
340 unsigned int windows = 0;
341 struct pci_bus *pbus;
342 char *name;
343 int pxm;
345 controller = alloc_pci_controller(domain);
346 if (!controller)
347 goto out1;
349 controller->acpi_handle = device->handle;
351 pxm = acpi_get_pxm(controller->acpi_handle);
352 #ifdef CONFIG_NUMA
353 if (pxm >= 0)
354 controller->node = pxm_to_node(pxm);
355 #endif
357 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
358 &windows);
359 controller->window = kmalloc_node(sizeof(*controller->window) * windows,
360 GFP_KERNEL, controller->node);
361 if (!controller->window)
362 goto out2;
364 name = kmalloc(16, GFP_KERNEL);
365 if (!name)
366 goto out3;
368 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
369 info.controller = controller;
370 info.name = name;
371 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
372 &info);
374 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
375 if (pbus)
376 pcibios_setup_root_windows(pbus, controller);
378 return pbus;
380 out3:
381 kfree(controller->window);
382 out2:
383 kfree(controller);
384 out1:
385 return NULL;
388 void pcibios_resource_to_bus(struct pci_dev *dev,
389 struct pci_bus_region *region, struct resource *res)
391 struct pci_controller *controller = PCI_CONTROLLER(dev);
392 unsigned long offset = 0;
393 int i;
395 for (i = 0; i < controller->windows; i++) {
396 struct pci_window *window = &controller->window[i];
397 if (!(window->resource.flags & res->flags))
398 continue;
399 if (window->resource.start > res->start)
400 continue;
401 if (window->resource.end < res->end)
402 continue;
403 offset = window->offset;
404 break;
407 region->start = res->start - offset;
408 region->end = res->end - offset;
410 EXPORT_SYMBOL(pcibios_resource_to_bus);
412 void pcibios_bus_to_resource(struct pci_dev *dev,
413 struct resource *res, struct pci_bus_region *region)
415 struct pci_controller *controller = PCI_CONTROLLER(dev);
416 unsigned long offset = 0;
417 int i;
419 for (i = 0; i < controller->windows; i++) {
420 struct pci_window *window = &controller->window[i];
421 if (!(window->resource.flags & res->flags))
422 continue;
423 if (window->resource.start - window->offset > region->start)
424 continue;
425 if (window->resource.end - window->offset < region->end)
426 continue;
427 offset = window->offset;
428 break;
431 res->start = region->start + offset;
432 res->end = region->end + offset;
434 EXPORT_SYMBOL(pcibios_bus_to_resource);
436 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
438 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
439 struct resource *devr = &dev->resource[idx];
441 if (!dev->bus)
442 return 0;
443 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
444 struct resource *busr = dev->bus->resource[i];
446 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
447 continue;
448 if ((devr->start) && (devr->start >= busr->start) &&
449 (devr->end <= busr->end))
450 return 1;
452 return 0;
455 static void __devinit
456 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
458 struct pci_bus_region region;
459 int i;
461 for (i = start; i < limit; i++) {
462 if (!dev->resource[i].flags)
463 continue;
464 region.start = dev->resource[i].start;
465 region.end = dev->resource[i].end;
466 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
467 if ((is_valid_resource(dev, i)))
468 pci_claim_resource(dev, i);
472 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
474 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
476 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
478 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
480 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
484 * Called after each bus is probed, but before its children are examined.
486 void __devinit
487 pcibios_fixup_bus (struct pci_bus *b)
489 struct pci_dev *dev;
491 if (b->self) {
492 pci_read_bridge_bases(b);
493 pcibios_fixup_bridge_resources(b->self);
495 list_for_each_entry(dev, &b->devices, bus_list)
496 pcibios_fixup_device_resources(dev);
497 platform_pci_fixup_bus(b);
499 return;
502 void __devinit
503 pcibios_update_irq (struct pci_dev *dev, int irq)
505 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
507 /* ??? FIXME -- record old value for shutdown. */
510 static inline int
511 pcibios_enable_resources (struct pci_dev *dev, int mask)
513 u16 cmd, old_cmd;
514 int idx;
515 struct resource *r;
516 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
518 if (!dev)
519 return -EINVAL;
521 pci_read_config_word(dev, PCI_COMMAND, &cmd);
522 old_cmd = cmd;
523 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
524 /* Only set up the desired resources. */
525 if (!(mask & (1 << idx)))
526 continue;
528 r = &dev->resource[idx];
529 if (!(r->flags & type_mask))
530 continue;
531 if ((idx == PCI_ROM_RESOURCE) &&
532 (!(r->flags & IORESOURCE_ROM_ENABLE)))
533 continue;
534 if (!r->start && r->end) {
535 printk(KERN_ERR
536 "PCI: Device %s not available because of resource collisions\n",
537 pci_name(dev));
538 return -EINVAL;
540 if (r->flags & IORESOURCE_IO)
541 cmd |= PCI_COMMAND_IO;
542 if (r->flags & IORESOURCE_MEM)
543 cmd |= PCI_COMMAND_MEMORY;
545 if (cmd != old_cmd) {
546 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
547 pci_write_config_word(dev, PCI_COMMAND, cmd);
549 return 0;
553 pcibios_enable_device (struct pci_dev *dev, int mask)
555 int ret;
557 ret = pcibios_enable_resources(dev, mask);
558 if (ret < 0)
559 return ret;
561 return acpi_pci_irq_enable(dev);
564 void
565 pcibios_disable_device (struct pci_dev *dev)
567 if (dev->is_enabled)
568 acpi_pci_irq_disable(dev);
571 void
572 pcibios_align_resource (void *data, struct resource *res,
573 resource_size_t size, resource_size_t align)
578 * PCI BIOS setup, always defaults to SAL interface
580 char * __init
581 pcibios_setup (char *str)
583 return str;
587 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
588 enum pci_mmap_state mmap_state, int write_combine)
591 * I/O space cannot be accessed via normal processor loads and
592 * stores on this platform.
594 if (mmap_state == pci_mmap_io)
596 * XXX we could relax this for I/O spaces for which ACPI
597 * indicates that the space is 1-to-1 mapped. But at the
598 * moment, we don't support multiple PCI address spaces and
599 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
601 return -EINVAL;
604 * Leave vm_pgoff as-is, the PCI space address is the physical
605 * address on this platform.
607 if (write_combine && efi_range_is_wc(vma->vm_start,
608 vma->vm_end - vma->vm_start))
609 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
610 else
611 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
613 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
614 vma->vm_end - vma->vm_start, vma->vm_page_prot))
615 return -EAGAIN;
617 return 0;
621 * ia64_pci_get_legacy_mem - generic legacy mem routine
622 * @bus: bus to get legacy memory base address for
624 * Find the base of legacy memory for @bus. This is typically the first
625 * megabyte of bus address space for @bus or is simply 0 on platforms whose
626 * chipsets support legacy I/O and memory routing. Returns the base address
627 * or an error pointer if an error occurred.
629 * This is the ia64 generic version of this routine. Other platforms
630 * are free to override it with a machine vector.
632 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
634 return (char *)__IA64_UNCACHED_OFFSET;
638 * pci_mmap_legacy_page_range - map legacy memory space to userland
639 * @bus: bus whose legacy space we're mapping
640 * @vma: vma passed in by mmap
642 * Map legacy memory space for this device back to userspace using a machine
643 * vector to get the base address.
646 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
648 unsigned long size = vma->vm_end - vma->vm_start;
649 pgprot_t prot;
650 char *addr;
653 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
654 * for more details.
656 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
657 return -EINVAL;
658 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
659 vma->vm_page_prot);
660 if (pgprot_val(prot) != pgprot_val(pgprot_noncached(vma->vm_page_prot)))
661 return -EINVAL;
663 addr = pci_get_legacy_mem(bus);
664 if (IS_ERR(addr))
665 return PTR_ERR(addr);
667 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
668 vma->vm_page_prot = prot;
670 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
671 size, vma->vm_page_prot))
672 return -EAGAIN;
674 return 0;
678 * ia64_pci_legacy_read - read from legacy I/O space
679 * @bus: bus to read
680 * @port: legacy port value
681 * @val: caller allocated storage for returned value
682 * @size: number of bytes to read
684 * Simply reads @size bytes from @port and puts the result in @val.
686 * Again, this (and the write routine) are generic versions that can be
687 * overridden by the platform. This is necessary on platforms that don't
688 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
690 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
692 int ret = size;
694 switch (size) {
695 case 1:
696 *val = inb(port);
697 break;
698 case 2:
699 *val = inw(port);
700 break;
701 case 4:
702 *val = inl(port);
703 break;
704 default:
705 ret = -EINVAL;
706 break;
709 return ret;
713 * ia64_pci_legacy_write - perform a legacy I/O write
714 * @bus: bus pointer
715 * @port: port to write
716 * @val: value to write
717 * @size: number of bytes to write from @val
719 * Simply writes @size bytes of @val to @port.
721 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
723 int ret = size;
725 switch (size) {
726 case 1:
727 outb(val, port);
728 break;
729 case 2:
730 outw(val, port);
731 break;
732 case 4:
733 outl(val, port);
734 break;
735 default:
736 ret = -EINVAL;
737 break;
740 return ret;
743 /* It's defined in drivers/pci/pci.c */
744 extern u8 pci_cache_line_size;
747 * set_pci_cacheline_size - determine cacheline size for PCI devices
749 * We want to use the line-size of the outer-most cache. We assume
750 * that this line-size is the same for all CPUs.
752 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
754 static void __init set_pci_cacheline_size(void)
756 u64 levels, unique_caches;
757 s64 status;
758 pal_cache_config_info_t cci;
760 status = ia64_pal_cache_summary(&levels, &unique_caches);
761 if (status != 0) {
762 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
763 "(status=%ld)\n", __FUNCTION__, status);
764 return;
767 status = ia64_pal_cache_config_info(levels - 1,
768 /* cache_type (data_or_unified)= */ 2, &cci);
769 if (status != 0) {
770 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
771 "(status=%ld)\n", __FUNCTION__, status);
772 return;
774 pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
777 static int __init pcibios_init(void)
779 set_pci_cacheline_size();
780 return 0;
783 subsys_initcall(pcibios_init);