ieee80211 subsystem:
[linux-2.6.22.y-op.git] / net / ieee80211 / ieee80211_tx.c
blobfb4509032402579e66934fbd4650bab215e40306
1 /******************************************************************************
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
26 #include <linux/compiler.h>
27 #include <linux/config.h>
28 #include <linux/errno.h>
29 #include <linux/if_arp.h>
30 #include <linux/in6.h>
31 #include <linux/in.h>
32 #include <linux/ip.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <linux/proc_fs.h>
37 #include <linux/skbuff.h>
38 #include <linux/slab.h>
39 #include <linux/tcp.h>
40 #include <linux/types.h>
41 #include <linux/version.h>
42 #include <linux/wireless.h>
43 #include <linux/etherdevice.h>
44 #include <asm/uaccess.h>
46 #include <net/ieee80211.h>
50 802.11 Data Frame
52 ,-------------------------------------------------------------------.
53 Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
54 |------|------|---------|---------|---------|------|---------|------|
55 Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
56 | | tion | (BSSID) | | | ence | data | |
57 `--------------------------------------------------| |------'
58 Total: 28 non-data bytes `----.----'
60 .- 'Frame data' expands to <---------------------------'
63 ,---------------------------------------------------.
64 Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
65 |------|------|---------|----------|------|---------|
66 Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
67 | DSAP | SSAP | | | | Packet |
68 | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
69 `-----------------------------------------| |
70 Total: 8 non-data bytes `----.----'
72 .- 'IP Packet' expands, if WEP enabled, to <--'
75 ,-----------------------.
76 Bytes | 4 | 0-2296 | 4 |
77 |-----|-----------|-----|
78 Desc. | IV | Encrypted | ICV |
79 | | IP Packet | |
80 `-----------------------'
81 Total: 8 non-data bytes
83 802.3 Ethernet Data Frame
85 ,-----------------------------------------.
86 Bytes | 6 | 6 | 2 | Variable | 4 |
87 |-------|-------|------|-----------|------|
88 Desc. | Dest. | Source| Type | IP Packet | fcs |
89 | MAC | MAC | | | |
90 `-----------------------------------------'
91 Total: 18 non-data bytes
93 In the event that fragmentation is required, the incoming payload is split into
94 N parts of size ieee->fts. The first fragment contains the SNAP header and the
95 remaining packets are just data.
97 If encryption is enabled, each fragment payload size is reduced by enough space
98 to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
99 So if you have 1500 bytes of payload with ieee->fts set to 500 without
100 encryption it will take 3 frames. With WEP it will take 4 frames as the
101 payload of each frame is reduced to 492 bytes.
103 * SKB visualization
105 * ,- skb->data
107 * | ETHERNET HEADER ,-<-- PAYLOAD
108 * | | 14 bytes from skb->data
109 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
110 * | | | |
111 * |,-Dest.--. ,--Src.---. | | |
112 * | 6 bytes| | 6 bytes | | | |
113 * v | | | | | |
114 * 0 | v 1 | v | v 2
115 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
116 * ^ | ^ | ^ |
117 * | | | | | |
118 * | | | | `T' <---- 2 bytes for Type
119 * | | | |
120 * | | '---SNAP--' <-------- 6 bytes for SNAP
121 * | |
122 * `-IV--' <-------------------- 4 bytes for IV (WEP)
124 * SNAP HEADER
128 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
129 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
131 static inline int ieee80211_copy_snap(u8 * data, u16 h_proto)
133 struct ieee80211_snap_hdr *snap;
134 u8 *oui;
136 snap = (struct ieee80211_snap_hdr *)data;
137 snap->dsap = 0xaa;
138 snap->ssap = 0xaa;
139 snap->ctrl = 0x03;
141 if (h_proto == 0x8137 || h_proto == 0x80f3)
142 oui = P802_1H_OUI;
143 else
144 oui = RFC1042_OUI;
145 snap->oui[0] = oui[0];
146 snap->oui[1] = oui[1];
147 snap->oui[2] = oui[2];
149 *(u16 *) (data + SNAP_SIZE) = htons(h_proto);
151 return SNAP_SIZE + sizeof(u16);
154 static inline int ieee80211_encrypt_fragment(struct ieee80211_device *ieee,
155 struct sk_buff *frag, int hdr_len)
157 struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
158 int res;
160 if (crypt == NULL)
161 return -1;
163 /* To encrypt, frame format is:
164 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */
165 atomic_inc(&crypt->refcnt);
166 res = 0;
167 if (crypt->ops && crypt->ops->encrypt_mpdu)
168 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
170 atomic_dec(&crypt->refcnt);
171 if (res < 0) {
172 printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
173 ieee->dev->name, frag->len);
174 ieee->ieee_stats.tx_discards++;
175 return -1;
178 return 0;
181 void ieee80211_txb_free(struct ieee80211_txb *txb)
183 int i;
184 if (unlikely(!txb))
185 return;
186 for (i = 0; i < txb->nr_frags; i++)
187 if (txb->fragments[i])
188 dev_kfree_skb_any(txb->fragments[i]);
189 kfree(txb);
192 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
193 int headroom, gfp_t gfp_mask)
195 struct ieee80211_txb *txb;
196 int i;
197 txb = kmalloc(sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
198 gfp_mask);
199 if (!txb)
200 return NULL;
202 memset(txb, 0, sizeof(struct ieee80211_txb));
203 txb->nr_frags = nr_frags;
204 txb->frag_size = txb_size;
206 for (i = 0; i < nr_frags; i++) {
207 txb->fragments[i] = __dev_alloc_skb(txb_size + headroom,
208 gfp_mask);
209 if (unlikely(!txb->fragments[i])) {
210 i--;
211 break;
213 skb_reserve(txb->fragments[i], headroom);
215 if (unlikely(i != nr_frags)) {
216 while (i >= 0)
217 dev_kfree_skb_any(txb->fragments[i--]);
218 kfree(txb);
219 return NULL;
221 return txb;
224 /* Incoming skb is converted to a txb which consists of
225 * a block of 802.11 fragment packets (stored as skbs) */
226 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
228 struct ieee80211_device *ieee = netdev_priv(dev);
229 struct ieee80211_txb *txb = NULL;
230 struct ieee80211_hdr_3addr *frag_hdr;
231 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size,
232 rts_required;
233 unsigned long flags;
234 struct net_device_stats *stats = &ieee->stats;
235 int ether_type, encrypt, host_encrypt, host_encrypt_msdu, host_build_iv;
236 int bytes, fc, hdr_len;
237 struct sk_buff *skb_frag;
238 struct ieee80211_hdr_3addr header = { /* Ensure zero initialized */
239 .duration_id = 0,
240 .seq_ctl = 0
242 u8 dest[ETH_ALEN], src[ETH_ALEN];
243 struct ieee80211_crypt_data *crypt;
244 int priority = skb->priority;
245 int snapped = 0;
247 if (ieee->is_queue_full && (*ieee->is_queue_full) (dev, priority))
248 return NETDEV_TX_BUSY;
250 spin_lock_irqsave(&ieee->lock, flags);
252 /* If there is no driver handler to take the TXB, dont' bother
253 * creating it... */
254 if (!ieee->hard_start_xmit) {
255 printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
256 goto success;
259 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
260 printk(KERN_WARNING "%s: skb too small (%d).\n",
261 ieee->dev->name, skb->len);
262 goto success;
265 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
267 crypt = ieee->crypt[ieee->tx_keyidx];
269 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
270 ieee->sec.encrypt;
272 host_encrypt = ieee->host_encrypt && encrypt && crypt;
273 host_encrypt_msdu = ieee->host_encrypt_msdu && encrypt && crypt;
274 host_build_iv = ieee->host_build_iv && encrypt && crypt;
276 if (!encrypt && ieee->ieee802_1x &&
277 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
278 stats->tx_dropped++;
279 goto success;
282 /* Save source and destination addresses */
283 memcpy(dest, skb->data, ETH_ALEN);
284 memcpy(src, skb->data + ETH_ALEN, ETH_ALEN);
286 /* Advance the SKB to the start of the payload */
287 skb_pull(skb, sizeof(struct ethhdr));
289 /* Determine total amount of storage required for TXB packets */
290 bytes = skb->len + SNAP_SIZE + sizeof(u16);
292 if (host_encrypt)
293 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA |
294 IEEE80211_FCTL_PROTECTED;
295 else
296 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
298 if (ieee->iw_mode == IW_MODE_INFRA) {
299 fc |= IEEE80211_FCTL_TODS;
300 /* To DS: Addr1 = BSSID, Addr2 = SA, Addr3 = DA */
301 memcpy(header.addr1, ieee->bssid, ETH_ALEN);
302 memcpy(header.addr2, src, ETH_ALEN);
303 memcpy(header.addr3, dest, ETH_ALEN);
304 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
305 /* not From/To DS: Addr1 = DA, Addr2 = SA, Addr3 = BSSID */
306 memcpy(header.addr1, dest, ETH_ALEN);
307 memcpy(header.addr2, src, ETH_ALEN);
308 memcpy(header.addr3, ieee->bssid, ETH_ALEN);
310 header.frame_ctl = cpu_to_le16(fc);
311 hdr_len = IEEE80211_3ADDR_LEN;
313 /* Encrypt msdu first on the whole data packet. */
314 if ((host_encrypt || host_encrypt_msdu) &&
315 crypt && crypt->ops && crypt->ops->encrypt_msdu) {
316 int res = 0;
317 int len = bytes + hdr_len + crypt->ops->extra_msdu_prefix_len +
318 crypt->ops->extra_msdu_postfix_len;
319 struct sk_buff *skb_new = dev_alloc_skb(len);
321 if (unlikely(!skb_new))
322 goto failed;
324 skb_reserve(skb_new, crypt->ops->extra_msdu_prefix_len);
325 memcpy(skb_put(skb_new, hdr_len), &header, hdr_len);
326 snapped = 1;
327 ieee80211_copy_snap(skb_put(skb_new, SNAP_SIZE + sizeof(u16)),
328 ether_type);
329 memcpy(skb_put(skb_new, skb->len), skb->data, skb->len);
330 res = crypt->ops->encrypt_msdu(skb_new, hdr_len, crypt->priv);
331 if (res < 0) {
332 IEEE80211_ERROR("msdu encryption failed\n");
333 dev_kfree_skb_any(skb_new);
334 goto failed;
336 dev_kfree_skb_any(skb);
337 skb = skb_new;
338 bytes += crypt->ops->extra_msdu_prefix_len +
339 crypt->ops->extra_msdu_postfix_len;
340 skb_pull(skb, hdr_len);
343 if (host_encrypt || ieee->host_open_frag) {
344 /* Determine fragmentation size based on destination (multicast
345 * and broadcast are not fragmented) */
346 if (is_multicast_ether_addr(dest) ||
347 is_broadcast_ether_addr(dest))
348 frag_size = MAX_FRAG_THRESHOLD;
349 else
350 frag_size = ieee->fts;
352 /* Determine amount of payload per fragment. Regardless of if
353 * this stack is providing the full 802.11 header, one will
354 * eventually be affixed to this fragment -- so we must account
355 * for it when determining the amount of payload space. */
356 bytes_per_frag = frag_size - IEEE80211_3ADDR_LEN;
357 if (ieee->config &
358 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
359 bytes_per_frag -= IEEE80211_FCS_LEN;
361 /* Each fragment may need to have room for encryptiong
362 * pre/postfix */
363 if (host_encrypt)
364 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
365 crypt->ops->extra_mpdu_postfix_len;
367 /* Number of fragments is the total
368 * bytes_per_frag / payload_per_fragment */
369 nr_frags = bytes / bytes_per_frag;
370 bytes_last_frag = bytes % bytes_per_frag;
371 if (bytes_last_frag)
372 nr_frags++;
373 else
374 bytes_last_frag = bytes_per_frag;
375 } else {
376 nr_frags = 1;
377 bytes_per_frag = bytes_last_frag = bytes;
378 frag_size = bytes + IEEE80211_3ADDR_LEN;
381 rts_required = (frag_size > ieee->rts
382 && ieee->config & CFG_IEEE80211_RTS);
383 if (rts_required)
384 nr_frags++;
386 /* When we allocate the TXB we allocate enough space for the reserve
387 * and full fragment bytes (bytes_per_frag doesn't include prefix,
388 * postfix, header, FCS, etc.) */
389 txb = ieee80211_alloc_txb(nr_frags, frag_size,
390 ieee->tx_headroom, GFP_ATOMIC);
391 if (unlikely(!txb)) {
392 printk(KERN_WARNING "%s: Could not allocate TXB\n",
393 ieee->dev->name);
394 goto failed;
396 txb->encrypted = encrypt;
397 if (host_encrypt)
398 txb->payload_size = frag_size * (nr_frags - 1) +
399 bytes_last_frag;
400 else
401 txb->payload_size = bytes;
403 if (rts_required) {
404 skb_frag = txb->fragments[0];
405 frag_hdr =
406 (struct ieee80211_hdr_3addr *)skb_put(skb_frag, hdr_len);
409 * Set header frame_ctl to the RTS.
411 header.frame_ctl =
412 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
413 memcpy(frag_hdr, &header, hdr_len);
416 * Restore header frame_ctl to the original data setting.
418 header.frame_ctl = cpu_to_le16(fc);
420 if (ieee->config &
421 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
422 skb_put(skb_frag, 4);
424 txb->rts_included = 1;
425 i = 1;
426 } else
427 i = 0;
429 for (; i < nr_frags; i++) {
430 skb_frag = txb->fragments[i];
432 if (host_encrypt || host_build_iv)
433 skb_reserve(skb_frag,
434 crypt->ops->extra_mpdu_prefix_len);
436 frag_hdr =
437 (struct ieee80211_hdr_3addr *)skb_put(skb_frag, hdr_len);
438 memcpy(frag_hdr, &header, hdr_len);
440 /* If this is not the last fragment, then add the MOREFRAGS
441 * bit to the frame control */
442 if (i != nr_frags - 1) {
443 frag_hdr->frame_ctl =
444 cpu_to_le16(fc | IEEE80211_FCTL_MOREFRAGS);
445 bytes = bytes_per_frag;
446 } else {
447 /* The last fragment takes the remaining length */
448 bytes = bytes_last_frag;
451 if (i == 0 && !snapped) {
452 ieee80211_copy_snap(skb_put
453 (skb_frag, SNAP_SIZE + sizeof(u16)),
454 ether_type);
455 bytes -= SNAP_SIZE + sizeof(u16);
458 memcpy(skb_put(skb_frag, bytes), skb->data, bytes);
460 /* Advance the SKB... */
461 skb_pull(skb, bytes);
463 /* Encryption routine will move the header forward in order
464 * to insert the IV between the header and the payload */
465 if (host_encrypt)
466 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
467 else if (host_build_iv) {
468 struct ieee80211_crypt_data *crypt;
470 crypt = ieee->crypt[ieee->tx_keyidx];
471 atomic_inc(&crypt->refcnt);
472 if (crypt->ops->build_iv)
473 crypt->ops->build_iv(skb_frag, hdr_len,
474 crypt->priv);
475 atomic_dec(&crypt->refcnt);
478 if (ieee->config &
479 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
480 skb_put(skb_frag, 4);
483 success:
484 spin_unlock_irqrestore(&ieee->lock, flags);
486 dev_kfree_skb_any(skb);
488 if (txb) {
489 int ret = (*ieee->hard_start_xmit) (txb, dev, priority);
490 if (ret == 0) {
491 stats->tx_packets++;
492 stats->tx_bytes += txb->payload_size;
493 return 0;
496 if (ret == NETDEV_TX_BUSY) {
497 printk(KERN_ERR "%s: NETDEV_TX_BUSY returned; "
498 "driver should report queue full via "
499 "ieee_device->is_queue_full.\n",
500 ieee->dev->name);
503 ieee80211_txb_free(txb);
506 return 0;
508 failed:
509 spin_unlock_irqrestore(&ieee->lock, flags);
510 netif_stop_queue(dev);
511 stats->tx_errors++;
512 return 1;
515 /* Incoming 802.11 strucure is converted to a TXB
516 * a block of 802.11 fragment packets (stored as skbs) */
517 int ieee80211_tx_frame(struct ieee80211_device *ieee,
518 struct ieee80211_hdr *frame, int len)
520 struct ieee80211_txb *txb = NULL;
521 unsigned long flags;
522 struct net_device_stats *stats = &ieee->stats;
523 struct sk_buff *skb_frag;
524 int priority = -1;
526 spin_lock_irqsave(&ieee->lock, flags);
528 /* If there is no driver handler to take the TXB, dont' bother
529 * creating it... */
530 if (!ieee->hard_start_xmit) {
531 printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
532 goto success;
535 if (unlikely(len < 24)) {
536 printk(KERN_WARNING "%s: skb too small (%d).\n",
537 ieee->dev->name, len);
538 goto success;
541 /* When we allocate the TXB we allocate enough space for the reserve
542 * and full fragment bytes (bytes_per_frag doesn't include prefix,
543 * postfix, header, FCS, etc.) */
544 txb = ieee80211_alloc_txb(1, len, GFP_ATOMIC);
545 if (unlikely(!txb)) {
546 printk(KERN_WARNING "%s: Could not allocate TXB\n",
547 ieee->dev->name);
548 goto failed;
550 txb->encrypted = 0;
551 txb->payload_size = len;
553 skb_frag = txb->fragments[0];
555 memcpy(skb_put(skb_frag, len), frame, len);
557 if (ieee->config &
558 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
559 skb_put(skb_frag, 4);
561 success:
562 spin_unlock_irqrestore(&ieee->lock, flags);
564 if (txb) {
565 if ((*ieee->hard_start_xmit) (txb, ieee->dev, priority) == 0) {
566 stats->tx_packets++;
567 stats->tx_bytes += txb->payload_size;
568 return 0;
570 ieee80211_txb_free(txb);
572 return 0;
574 failed:
575 spin_unlock_irqrestore(&ieee->lock, flags);
576 stats->tx_errors++;
577 return 1;
580 EXPORT_SYMBOL(ieee80211_tx_frame);
581 EXPORT_SYMBOL(ieee80211_txb_free);