3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
80 #include <linux/config.h>
81 #include <linux/slab.h>
83 #include <linux/swap.h>
84 #include <linux/cache.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compiler.h>
88 #include <linux/seq_file.h>
89 #include <linux/notifier.h>
90 #include <linux/kallsyms.h>
91 #include <linux/cpu.h>
92 #include <linux/sysctl.h>
93 #include <linux/module.h>
94 #include <linux/rcupdate.h>
96 #include <asm/uaccess.h>
97 #include <asm/cacheflush.h>
98 #include <asm/tlbflush.h>
102 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
103 * SLAB_RED_ZONE & SLAB_POISON.
104 * 0 for faster, smaller code (especially in the critical paths).
106 * STATS - 1 to collect stats for /proc/slabinfo.
107 * 0 for faster, smaller code (especially in the critical paths).
109 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
112 #ifdef CONFIG_DEBUG_SLAB
115 #define FORCED_DEBUG 1
119 #define FORCED_DEBUG 0
123 /* Shouldn't this be in a header file somewhere? */
124 #define BYTES_PER_WORD sizeof(void *)
126 #ifndef cache_line_size
127 #define cache_line_size() L1_CACHE_BYTES
130 #ifndef ARCH_KMALLOC_MINALIGN
132 * Enforce a minimum alignment for the kmalloc caches.
133 * Usually, the kmalloc caches are cache_line_size() aligned, except when
134 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
135 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
136 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
137 * Note that this flag disables some debug features.
139 #define ARCH_KMALLOC_MINALIGN 0
142 #ifndef ARCH_SLAB_MINALIGN
144 * Enforce a minimum alignment for all caches.
145 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
146 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
147 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
148 * some debug features.
150 #define ARCH_SLAB_MINALIGN 0
153 #ifndef ARCH_KMALLOC_FLAGS
154 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157 /* Legal flag mask for kmem_cache_create(). */
159 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
160 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
161 SLAB_NO_REAP | SLAB_CACHE_DMA | \
162 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
166 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
167 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
168 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175 * Bufctl's are used for linking objs within a slab
178 * This implementation relies on "struct page" for locating the cache &
179 * slab an object belongs to.
180 * This allows the bufctl structure to be small (one int), but limits
181 * the number of objects a slab (not a cache) can contain when off-slab
182 * bufctls are used. The limit is the size of the largest general cache
183 * that does not use off-slab slabs.
184 * For 32bit archs with 4 kB pages, is this 56.
185 * This is not serious, as it is only for large objects, when it is unwise
186 * to have too many per slab.
187 * Note: This limit can be raised by introducing a general cache whose size
188 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
193 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
195 /* Max number of objs-per-slab for caches which use off-slab slabs.
196 * Needed to avoid a possible looping condition in cache_grow().
198 static unsigned long offslab_limit
;
203 * Manages the objs in a slab. Placed either at the beginning of mem allocated
204 * for a slab, or allocated from an general cache.
205 * Slabs are chained into three list: fully used, partial, fully free slabs.
208 struct list_head list
;
209 unsigned long colouroff
;
210 void *s_mem
; /* including colour offset */
211 unsigned int inuse
; /* num of objs active in slab */
218 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
219 * arrange for kmem_freepages to be called via RCU. This is useful if
220 * we need to approach a kernel structure obliquely, from its address
221 * obtained without the usual locking. We can lock the structure to
222 * stabilize it and check it's still at the given address, only if we
223 * can be sure that the memory has not been meanwhile reused for some
224 * other kind of object (which our subsystem's lock might corrupt).
226 * rcu_read_lock before reading the address, then rcu_read_unlock after
227 * taking the spinlock within the structure expected at that address.
229 * We assume struct slab_rcu can overlay struct slab when destroying.
232 struct rcu_head head
;
233 kmem_cache_t
*cachep
;
242 * - LIFO ordering, to hand out cache-warm objects from _alloc
243 * - reduce the number of linked list operations
244 * - reduce spinlock operations
246 * The limit is stored in the per-cpu structure to reduce the data cache
253 unsigned int batchcount
;
254 unsigned int touched
;
257 /* bootstrap: The caches do not work without cpuarrays anymore,
258 * but the cpuarrays are allocated from the generic caches...
260 #define BOOT_CPUCACHE_ENTRIES 1
261 struct arraycache_init
{
262 struct array_cache cache
;
263 void * entries
[BOOT_CPUCACHE_ENTRIES
];
267 * The slab lists of all objects.
268 * Hopefully reduce the internal fragmentation
269 * NUMA: The spinlock could be moved from the kmem_cache_t
270 * into this structure, too. Figure out what causes
271 * fewer cross-node spinlock operations.
274 struct list_head slabs_partial
; /* partial list first, better asm code */
275 struct list_head slabs_full
;
276 struct list_head slabs_free
;
277 unsigned long free_objects
;
279 unsigned long next_reap
;
280 struct array_cache
*shared
;
283 #define LIST3_INIT(parent) \
285 .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
286 .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
287 .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
289 #define list3_data(cachep) \
293 #define list3_data_ptr(cachep, ptr) \
302 struct kmem_cache_s
{
303 /* 1) per-cpu data, touched during every alloc/free */
304 struct array_cache
*array
[NR_CPUS
];
305 unsigned int batchcount
;
307 /* 2) touched by every alloc & free from the backend */
308 struct kmem_list3 lists
;
309 /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */
310 unsigned int objsize
;
311 unsigned int flags
; /* constant flags */
312 unsigned int num
; /* # of objs per slab */
313 unsigned int free_limit
; /* upper limit of objects in the lists */
316 /* 3) cache_grow/shrink */
317 /* order of pgs per slab (2^n) */
318 unsigned int gfporder
;
320 /* force GFP flags, e.g. GFP_DMA */
321 unsigned int gfpflags
;
323 size_t colour
; /* cache colouring range */
324 unsigned int colour_off
; /* colour offset */
325 unsigned int colour_next
; /* cache colouring */
326 kmem_cache_t
*slabp_cache
;
327 unsigned int slab_size
;
328 unsigned int dflags
; /* dynamic flags */
330 /* constructor func */
331 void (*ctor
)(void *, kmem_cache_t
*, unsigned long);
333 /* de-constructor func */
334 void (*dtor
)(void *, kmem_cache_t
*, unsigned long);
336 /* 4) cache creation/removal */
338 struct list_head next
;
342 unsigned long num_active
;
343 unsigned long num_allocations
;
344 unsigned long high_mark
;
346 unsigned long reaped
;
347 unsigned long errors
;
348 unsigned long max_freeable
;
349 unsigned long node_allocs
;
361 #define CFLGS_OFF_SLAB (0x80000000UL)
362 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
364 #define BATCHREFILL_LIMIT 16
365 /* Optimization question: fewer reaps means less
366 * probability for unnessary cpucache drain/refill cycles.
368 * OTHO the cpuarrays can contain lots of objects,
369 * which could lock up otherwise freeable slabs.
371 #define REAPTIMEOUT_CPUC (2*HZ)
372 #define REAPTIMEOUT_LIST3 (4*HZ)
375 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378 #define STATS_INC_GROWN(x) ((x)->grown++)
379 #define STATS_INC_REAPED(x) ((x)->reaped++)
380 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
381 (x)->high_mark = (x)->num_active; \
383 #define STATS_INC_ERR(x) ((x)->errors++)
384 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
385 #define STATS_SET_FREEABLE(x, i) \
386 do { if ((x)->max_freeable < i) \
387 (x)->max_freeable = i; \
390 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
391 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
392 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
393 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
395 #define STATS_INC_ACTIVE(x) do { } while (0)
396 #define STATS_DEC_ACTIVE(x) do { } while (0)
397 #define STATS_INC_ALLOCED(x) do { } while (0)
398 #define STATS_INC_GROWN(x) do { } while (0)
399 #define STATS_INC_REAPED(x) do { } while (0)
400 #define STATS_SET_HIGH(x) do { } while (0)
401 #define STATS_INC_ERR(x) do { } while (0)
402 #define STATS_INC_NODEALLOCS(x) do { } while (0)
403 #define STATS_SET_FREEABLE(x, i) \
406 #define STATS_INC_ALLOCHIT(x) do { } while (0)
407 #define STATS_INC_ALLOCMISS(x) do { } while (0)
408 #define STATS_INC_FREEHIT(x) do { } while (0)
409 #define STATS_INC_FREEMISS(x) do { } while (0)
413 /* Magic nums for obj red zoning.
414 * Placed in the first word before and the first word after an obj.
416 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
417 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
419 /* ...and for poisoning */
420 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
421 #define POISON_FREE 0x6b /* for use-after-free poisoning */
422 #define POISON_END 0xa5 /* end-byte of poisoning */
424 /* memory layout of objects:
426 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
427 * the end of an object is aligned with the end of the real
428 * allocation. Catches writes behind the end of the allocation.
429 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
431 * cachep->dbghead: The real object.
432 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
433 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
435 static int obj_dbghead(kmem_cache_t
*cachep
)
437 return cachep
->dbghead
;
440 static int obj_reallen(kmem_cache_t
*cachep
)
442 return cachep
->reallen
;
445 static unsigned long *dbg_redzone1(kmem_cache_t
*cachep
, void *objp
)
447 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
448 return (unsigned long*) (objp
+obj_dbghead(cachep
)-BYTES_PER_WORD
);
451 static unsigned long *dbg_redzone2(kmem_cache_t
*cachep
, void *objp
)
453 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
454 if (cachep
->flags
& SLAB_STORE_USER
)
455 return (unsigned long*) (objp
+cachep
->objsize
-2*BYTES_PER_WORD
);
456 return (unsigned long*) (objp
+cachep
->objsize
-BYTES_PER_WORD
);
459 static void **dbg_userword(kmem_cache_t
*cachep
, void *objp
)
461 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
462 return (void**)(objp
+cachep
->objsize
-BYTES_PER_WORD
);
467 #define obj_dbghead(x) 0
468 #define obj_reallen(cachep) (cachep->objsize)
469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
476 * Maximum size of an obj (in 2^order pages)
477 * and absolute limit for the gfp order.
479 #if defined(CONFIG_LARGE_ALLOCS)
480 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
481 #define MAX_GFP_ORDER 13 /* up to 32Mb */
482 #elif defined(CONFIG_MMU)
483 #define MAX_OBJ_ORDER 5 /* 32 pages */
484 #define MAX_GFP_ORDER 5 /* 32 pages */
486 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
487 #define MAX_GFP_ORDER 8 /* up to 1Mb */
491 * Do not go above this order unless 0 objects fit into the slab.
493 #define BREAK_GFP_ORDER_HI 1
494 #define BREAK_GFP_ORDER_LO 0
495 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
497 /* Macros for storing/retrieving the cachep and or slab from the
498 * global 'mem_map'. These are used to find the slab an obj belongs to.
499 * With kfree(), these are used to find the cache which an obj belongs to.
501 #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
502 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
503 #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
504 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
506 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
507 struct cache_sizes malloc_sizes
[] = {
508 #define CACHE(x) { .cs_size = (x) },
509 #include <linux/kmalloc_sizes.h>
513 EXPORT_SYMBOL(malloc_sizes
);
515 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
521 static struct cache_names __initdata cache_names
[] = {
522 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
523 #include <linux/kmalloc_sizes.h>
528 static struct arraycache_init initarray_cache __initdata
=
529 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
530 static struct arraycache_init initarray_generic
=
531 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
533 /* internal cache of cache description objs */
534 static kmem_cache_t cache_cache
= {
535 .lists
= LIST3_INIT(cache_cache
.lists
),
537 .limit
= BOOT_CPUCACHE_ENTRIES
,
538 .objsize
= sizeof(kmem_cache_t
),
539 .flags
= SLAB_NO_REAP
,
540 .spinlock
= SPIN_LOCK_UNLOCKED
,
541 .name
= "kmem_cache",
543 .reallen
= sizeof(kmem_cache_t
),
547 /* Guard access to the cache-chain. */
548 static struct semaphore cache_chain_sem
;
549 static struct list_head cache_chain
;
552 * vm_enough_memory() looks at this to determine how many
553 * slab-allocated pages are possibly freeable under pressure
555 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
557 atomic_t slab_reclaim_pages
;
558 EXPORT_SYMBOL(slab_reclaim_pages
);
561 * chicken and egg problem: delay the per-cpu array allocation
562 * until the general caches are up.
570 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
572 static void free_block(kmem_cache_t
* cachep
, void** objpp
, int len
);
573 static void enable_cpucache (kmem_cache_t
*cachep
);
574 static void cache_reap (void *unused
);
576 static inline void **ac_entry(struct array_cache
*ac
)
578 return (void**)(ac
+1);
581 static inline struct array_cache
*ac_data(kmem_cache_t
*cachep
)
583 return cachep
->array
[smp_processor_id()];
586 static inline kmem_cache_t
*__find_general_cachep(size_t size
, int gfpflags
)
588 struct cache_sizes
*csizep
= malloc_sizes
;
591 /* This happens if someone tries to call
592 * kmem_cache_create(), or __kmalloc(), before
593 * the generic caches are initialized.
595 BUG_ON(csizep
->cs_cachep
== NULL
);
597 while (size
> csizep
->cs_size
)
601 * Really subtile: The last entry with cs->cs_size==ULONG_MAX
602 * has cs_{dma,}cachep==NULL. Thus no special case
603 * for large kmalloc calls required.
605 if (unlikely(gfpflags
& GFP_DMA
))
606 return csizep
->cs_dmacachep
;
607 return csizep
->cs_cachep
;
610 kmem_cache_t
*kmem_find_general_cachep(size_t size
, int gfpflags
)
612 return __find_general_cachep(size
, gfpflags
);
614 EXPORT_SYMBOL(kmem_find_general_cachep
);
616 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
617 static void cache_estimate(unsigned long gfporder
, size_t size
, size_t align
,
618 int flags
, size_t *left_over
, unsigned int *num
)
621 size_t wastage
= PAGE_SIZE
<<gfporder
;
625 if (!(flags
& CFLGS_OFF_SLAB
)) {
626 base
= sizeof(struct slab
);
627 extra
= sizeof(kmem_bufctl_t
);
630 while (i
*size
+ ALIGN(base
+i
*extra
, align
) <= wastage
)
640 wastage
-= ALIGN(base
+i
*extra
, align
);
641 *left_over
= wastage
;
644 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
646 static void __slab_error(const char *function
, kmem_cache_t
*cachep
, char *msg
)
648 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
649 function
, cachep
->name
, msg
);
654 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
655 * via the workqueue/eventd.
656 * Add the CPU number into the expiration time to minimize the possibility of
657 * the CPUs getting into lockstep and contending for the global cache chain
660 static void __devinit
start_cpu_timer(int cpu
)
662 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
665 * When this gets called from do_initcalls via cpucache_init(),
666 * init_workqueues() has already run, so keventd will be setup
669 if (keventd_up() && reap_work
->func
== NULL
) {
670 INIT_WORK(reap_work
, cache_reap
, NULL
);
671 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
675 static struct array_cache
*alloc_arraycache(int cpu
, int entries
,
678 int memsize
= sizeof(void*)*entries
+sizeof(struct array_cache
);
679 struct array_cache
*nc
= NULL
;
682 nc
= kmalloc(memsize
, GFP_KERNEL
);
684 nc
= kmalloc_node(memsize
, GFP_KERNEL
, cpu_to_node(cpu
));
689 nc
->batchcount
= batchcount
;
695 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
696 unsigned long action
, void *hcpu
)
698 long cpu
= (long)hcpu
;
699 kmem_cache_t
* cachep
;
703 down(&cache_chain_sem
);
704 list_for_each_entry(cachep
, &cache_chain
, next
) {
705 struct array_cache
*nc
;
707 nc
= alloc_arraycache(cpu
, cachep
->limit
, cachep
->batchcount
);
711 spin_lock_irq(&cachep
->spinlock
);
712 cachep
->array
[cpu
] = nc
;
713 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
715 spin_unlock_irq(&cachep
->spinlock
);
718 up(&cache_chain_sem
);
721 start_cpu_timer(cpu
);
723 #ifdef CONFIG_HOTPLUG_CPU
726 case CPU_UP_CANCELED
:
727 down(&cache_chain_sem
);
729 list_for_each_entry(cachep
, &cache_chain
, next
) {
730 struct array_cache
*nc
;
732 spin_lock_irq(&cachep
->spinlock
);
733 /* cpu is dead; no one can alloc from it. */
734 nc
= cachep
->array
[cpu
];
735 cachep
->array
[cpu
] = NULL
;
736 cachep
->free_limit
-= cachep
->batchcount
;
737 free_block(cachep
, ac_entry(nc
), nc
->avail
);
738 spin_unlock_irq(&cachep
->spinlock
);
741 up(&cache_chain_sem
);
747 up(&cache_chain_sem
);
751 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
754 * Called after the gfp() functions have been enabled, and before smp_init().
756 void __init
kmem_cache_init(void)
759 struct cache_sizes
*sizes
;
760 struct cache_names
*names
;
763 * Fragmentation resistance on low memory - only use bigger
764 * page orders on machines with more than 32MB of memory.
766 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
767 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
770 /* Bootstrap is tricky, because several objects are allocated
771 * from caches that do not exist yet:
772 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
773 * structures of all caches, except cache_cache itself: cache_cache
774 * is statically allocated.
775 * Initially an __init data area is used for the head array, it's
776 * replaced with a kmalloc allocated array at the end of the bootstrap.
777 * 2) Create the first kmalloc cache.
778 * The kmem_cache_t for the new cache is allocated normally. An __init
779 * data area is used for the head array.
780 * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
781 * 4) Replace the __init data head arrays for cache_cache and the first
782 * kmalloc cache with kmalloc allocated arrays.
783 * 5) Resize the head arrays of the kmalloc caches to their final sizes.
786 /* 1) create the cache_cache */
787 init_MUTEX(&cache_chain_sem
);
788 INIT_LIST_HEAD(&cache_chain
);
789 list_add(&cache_cache
.next
, &cache_chain
);
790 cache_cache
.colour_off
= cache_line_size();
791 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
793 cache_cache
.objsize
= ALIGN(cache_cache
.objsize
, cache_line_size());
795 cache_estimate(0, cache_cache
.objsize
, cache_line_size(), 0,
796 &left_over
, &cache_cache
.num
);
797 if (!cache_cache
.num
)
800 cache_cache
.colour
= left_over
/cache_cache
.colour_off
;
801 cache_cache
.colour_next
= 0;
802 cache_cache
.slab_size
= ALIGN(cache_cache
.num
*sizeof(kmem_bufctl_t
) +
803 sizeof(struct slab
), cache_line_size());
805 /* 2+3) create the kmalloc caches */
806 sizes
= malloc_sizes
;
809 while (sizes
->cs_size
!= ULONG_MAX
) {
810 /* For performance, all the general caches are L1 aligned.
811 * This should be particularly beneficial on SMP boxes, as it
812 * eliminates "false sharing".
813 * Note for systems short on memory removing the alignment will
814 * allow tighter packing of the smaller caches. */
815 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
816 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
817 (ARCH_KMALLOC_FLAGS
| SLAB_PANIC
), NULL
, NULL
);
819 /* Inc off-slab bufctl limit until the ceiling is hit. */
820 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
821 offslab_limit
= sizes
->cs_size
-sizeof(struct slab
);
822 offslab_limit
/= sizeof(kmem_bufctl_t
);
825 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
826 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
827 (ARCH_KMALLOC_FLAGS
| SLAB_CACHE_DMA
| SLAB_PANIC
),
833 /* 4) Replace the bootstrap head arrays */
837 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
839 BUG_ON(ac_data(&cache_cache
) != &initarray_cache
.cache
);
840 memcpy(ptr
, ac_data(&cache_cache
), sizeof(struct arraycache_init
));
841 cache_cache
.array
[smp_processor_id()] = ptr
;
844 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
846 BUG_ON(ac_data(malloc_sizes
[0].cs_cachep
) != &initarray_generic
.cache
);
847 memcpy(ptr
, ac_data(malloc_sizes
[0].cs_cachep
),
848 sizeof(struct arraycache_init
));
849 malloc_sizes
[0].cs_cachep
->array
[smp_processor_id()] = ptr
;
853 /* 5) resize the head arrays to their final sizes */
855 kmem_cache_t
*cachep
;
856 down(&cache_chain_sem
);
857 list_for_each_entry(cachep
, &cache_chain
, next
)
858 enable_cpucache(cachep
);
859 up(&cache_chain_sem
);
863 g_cpucache_up
= FULL
;
865 /* Register a cpu startup notifier callback
866 * that initializes ac_data for all new cpus
868 register_cpu_notifier(&cpucache_notifier
);
871 /* The reap timers are started later, with a module init call:
872 * That part of the kernel is not yet operational.
876 static int __init
cpucache_init(void)
881 * Register the timers that return unneeded
884 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
886 start_cpu_timer(cpu
);
892 __initcall(cpucache_init
);
895 * Interface to system's page allocator. No need to hold the cache-lock.
897 * If we requested dmaable memory, we will get it. Even if we
898 * did not request dmaable memory, we might get it, but that
899 * would be relatively rare and ignorable.
901 static void *kmem_getpages(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
907 flags
|= cachep
->gfpflags
;
908 if (likely(nodeid
== -1)) {
909 page
= alloc_pages(flags
, cachep
->gfporder
);
911 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
915 addr
= page_address(page
);
917 i
= (1 << cachep
->gfporder
);
918 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
919 atomic_add(i
, &slab_reclaim_pages
);
920 add_page_state(nr_slab
, i
);
929 * Interface to system's page release.
931 static void kmem_freepages(kmem_cache_t
*cachep
, void *addr
)
933 unsigned long i
= (1<<cachep
->gfporder
);
934 struct page
*page
= virt_to_page(addr
);
935 const unsigned long nr_freed
= i
;
938 if (!TestClearPageSlab(page
))
942 sub_page_state(nr_slab
, nr_freed
);
943 if (current
->reclaim_state
)
944 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
945 free_pages((unsigned long)addr
, cachep
->gfporder
);
946 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
947 atomic_sub(1<<cachep
->gfporder
, &slab_reclaim_pages
);
950 static void kmem_rcu_free(struct rcu_head
*head
)
952 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*) head
;
953 kmem_cache_t
*cachep
= slab_rcu
->cachep
;
955 kmem_freepages(cachep
, slab_rcu
->addr
);
956 if (OFF_SLAB(cachep
))
957 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
962 #ifdef CONFIG_DEBUG_PAGEALLOC
963 static void store_stackinfo(kmem_cache_t
*cachep
, unsigned long *addr
,
964 unsigned long caller
)
966 int size
= obj_reallen(cachep
);
968 addr
= (unsigned long *)&((char*)addr
)[obj_dbghead(cachep
)];
970 if (size
< 5*sizeof(unsigned long))
975 *addr
++=smp_processor_id();
976 size
-= 3*sizeof(unsigned long);
978 unsigned long *sptr
= &caller
;
979 unsigned long svalue
;
981 while (!kstack_end(sptr
)) {
983 if (kernel_text_address(svalue
)) {
985 size
-= sizeof(unsigned long);
986 if (size
<= sizeof(unsigned long))
996 static void poison_obj(kmem_cache_t
*cachep
, void *addr
, unsigned char val
)
998 int size
= obj_reallen(cachep
);
999 addr
= &((char*)addr
)[obj_dbghead(cachep
)];
1001 memset(addr
, val
, size
);
1002 *(unsigned char *)(addr
+size
-1) = POISON_END
;
1005 static void dump_line(char *data
, int offset
, int limit
)
1008 printk(KERN_ERR
"%03x:", offset
);
1009 for (i
=0;i
<limit
;i
++) {
1010 printk(" %02x", (unsigned char)data
[offset
+i
]);
1018 static void print_objinfo(kmem_cache_t
*cachep
, void *objp
, int lines
)
1023 if (cachep
->flags
& SLAB_RED_ZONE
) {
1024 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1025 *dbg_redzone1(cachep
, objp
),
1026 *dbg_redzone2(cachep
, objp
));
1029 if (cachep
->flags
& SLAB_STORE_USER
) {
1030 printk(KERN_ERR
"Last user: [<%p>]",
1031 *dbg_userword(cachep
, objp
));
1032 print_symbol("(%s)",
1033 (unsigned long)*dbg_userword(cachep
, objp
));
1036 realobj
= (char*)objp
+obj_dbghead(cachep
);
1037 size
= obj_reallen(cachep
);
1038 for (i
=0; i
<size
&& lines
;i
+=16, lines
--) {
1043 dump_line(realobj
, i
, limit
);
1047 static void check_poison_obj(kmem_cache_t
*cachep
, void *objp
)
1053 realobj
= (char*)objp
+obj_dbghead(cachep
);
1054 size
= obj_reallen(cachep
);
1056 for (i
=0;i
<size
;i
++) {
1057 char exp
= POISON_FREE
;
1060 if (realobj
[i
] != exp
) {
1065 printk(KERN_ERR
"Slab corruption: start=%p, len=%d\n",
1067 print_objinfo(cachep
, objp
, 0);
1069 /* Hexdump the affected line */
1074 dump_line(realobj
, i
, limit
);
1077 /* Limit to 5 lines */
1083 /* Print some data about the neighboring objects, if they
1086 struct slab
*slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
1089 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1091 objp
= slabp
->s_mem
+(objnr
-1)*cachep
->objsize
;
1092 realobj
= (char*)objp
+obj_dbghead(cachep
);
1093 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1095 print_objinfo(cachep
, objp
, 2);
1097 if (objnr
+1 < cachep
->num
) {
1098 objp
= slabp
->s_mem
+(objnr
+1)*cachep
->objsize
;
1099 realobj
= (char*)objp
+obj_dbghead(cachep
);
1100 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1102 print_objinfo(cachep
, objp
, 2);
1108 /* Destroy all the objs in a slab, and release the mem back to the system.
1109 * Before calling the slab must have been unlinked from the cache.
1110 * The cache-lock is not held/needed.
1112 static void slab_destroy (kmem_cache_t
*cachep
, struct slab
*slabp
)
1114 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1118 for (i
= 0; i
< cachep
->num
; i
++) {
1119 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
1121 if (cachep
->flags
& SLAB_POISON
) {
1122 #ifdef CONFIG_DEBUG_PAGEALLOC
1123 if ((cachep
->objsize
%PAGE_SIZE
)==0 && OFF_SLAB(cachep
))
1124 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
,1);
1126 check_poison_obj(cachep
, objp
);
1128 check_poison_obj(cachep
, objp
);
1131 if (cachep
->flags
& SLAB_RED_ZONE
) {
1132 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1133 slab_error(cachep
, "start of a freed object "
1135 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1136 slab_error(cachep
, "end of a freed object "
1139 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1140 (cachep
->dtor
)(objp
+obj_dbghead(cachep
), cachep
, 0);
1145 for (i
= 0; i
< cachep
->num
; i
++) {
1146 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1147 (cachep
->dtor
)(objp
, cachep
, 0);
1152 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1153 struct slab_rcu
*slab_rcu
;
1155 slab_rcu
= (struct slab_rcu
*) slabp
;
1156 slab_rcu
->cachep
= cachep
;
1157 slab_rcu
->addr
= addr
;
1158 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1160 kmem_freepages(cachep
, addr
);
1161 if (OFF_SLAB(cachep
))
1162 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1167 * kmem_cache_create - Create a cache.
1168 * @name: A string which is used in /proc/slabinfo to identify this cache.
1169 * @size: The size of objects to be created in this cache.
1170 * @align: The required alignment for the objects.
1171 * @flags: SLAB flags
1172 * @ctor: A constructor for the objects.
1173 * @dtor: A destructor for the objects.
1175 * Returns a ptr to the cache on success, NULL on failure.
1176 * Cannot be called within a int, but can be interrupted.
1177 * The @ctor is run when new pages are allocated by the cache
1178 * and the @dtor is run before the pages are handed back.
1180 * @name must be valid until the cache is destroyed. This implies that
1181 * the module calling this has to destroy the cache before getting
1186 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1187 * to catch references to uninitialised memory.
1189 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1190 * for buffer overruns.
1192 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1195 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1196 * cacheline. This can be beneficial if you're counting cycles as closely
1200 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1201 unsigned long flags
, void (*ctor
)(void*, kmem_cache_t
*, unsigned long),
1202 void (*dtor
)(void*, kmem_cache_t
*, unsigned long))
1204 size_t left_over
, slab_size
, ralign
;
1205 kmem_cache_t
*cachep
= NULL
;
1208 * Sanity checks... these are all serious usage bugs.
1212 (size
< BYTES_PER_WORD
) ||
1213 (size
> (1<<MAX_OBJ_ORDER
)*PAGE_SIZE
) ||
1215 printk(KERN_ERR
"%s: Early error in slab %s\n",
1216 __FUNCTION__
, name
);
1221 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1222 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1223 /* No constructor, but inital state check requested */
1224 printk(KERN_ERR
"%s: No con, but init state check "
1225 "requested - %s\n", __FUNCTION__
, name
);
1226 flags
&= ~SLAB_DEBUG_INITIAL
;
1231 * Enable redzoning and last user accounting, except for caches with
1232 * large objects, if the increased size would increase the object size
1233 * above the next power of two: caches with object sizes just above a
1234 * power of two have a significant amount of internal fragmentation.
1236 if ((size
< 4096 || fls(size
-1) == fls(size
-1+3*BYTES_PER_WORD
)))
1237 flags
|= SLAB_RED_ZONE
|SLAB_STORE_USER
;
1238 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1239 flags
|= SLAB_POISON
;
1241 if (flags
& SLAB_DESTROY_BY_RCU
)
1242 BUG_ON(flags
& SLAB_POISON
);
1244 if (flags
& SLAB_DESTROY_BY_RCU
)
1248 * Always checks flags, a caller might be expecting debug
1249 * support which isn't available.
1251 if (flags
& ~CREATE_MASK
)
1254 /* Check that size is in terms of words. This is needed to avoid
1255 * unaligned accesses for some archs when redzoning is used, and makes
1256 * sure any on-slab bufctl's are also correctly aligned.
1258 if (size
& (BYTES_PER_WORD
-1)) {
1259 size
+= (BYTES_PER_WORD
-1);
1260 size
&= ~(BYTES_PER_WORD
-1);
1263 /* calculate out the final buffer alignment: */
1264 /* 1) arch recommendation: can be overridden for debug */
1265 if (flags
& SLAB_HWCACHE_ALIGN
) {
1266 /* Default alignment: as specified by the arch code.
1267 * Except if an object is really small, then squeeze multiple
1268 * objects into one cacheline.
1270 ralign
= cache_line_size();
1271 while (size
<= ralign
/2)
1274 ralign
= BYTES_PER_WORD
;
1276 /* 2) arch mandated alignment: disables debug if necessary */
1277 if (ralign
< ARCH_SLAB_MINALIGN
) {
1278 ralign
= ARCH_SLAB_MINALIGN
;
1279 if (ralign
> BYTES_PER_WORD
)
1280 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1282 /* 3) caller mandated alignment: disables debug if necessary */
1283 if (ralign
< align
) {
1285 if (ralign
> BYTES_PER_WORD
)
1286 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1288 /* 4) Store it. Note that the debug code below can reduce
1289 * the alignment to BYTES_PER_WORD.
1293 /* Get cache's description obj. */
1294 cachep
= (kmem_cache_t
*) kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
1297 memset(cachep
, 0, sizeof(kmem_cache_t
));
1300 cachep
->reallen
= size
;
1302 if (flags
& SLAB_RED_ZONE
) {
1303 /* redzoning only works with word aligned caches */
1304 align
= BYTES_PER_WORD
;
1306 /* add space for red zone words */
1307 cachep
->dbghead
+= BYTES_PER_WORD
;
1308 size
+= 2*BYTES_PER_WORD
;
1310 if (flags
& SLAB_STORE_USER
) {
1311 /* user store requires word alignment and
1312 * one word storage behind the end of the real
1315 align
= BYTES_PER_WORD
;
1316 size
+= BYTES_PER_WORD
;
1318 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1319 if (size
> 128 && cachep
->reallen
> cache_line_size() && size
< PAGE_SIZE
) {
1320 cachep
->dbghead
+= PAGE_SIZE
- size
;
1326 /* Determine if the slab management is 'on' or 'off' slab. */
1327 if (size
>= (PAGE_SIZE
>>3))
1329 * Size is large, assume best to place the slab management obj
1330 * off-slab (should allow better packing of objs).
1332 flags
|= CFLGS_OFF_SLAB
;
1334 size
= ALIGN(size
, align
);
1336 if ((flags
& SLAB_RECLAIM_ACCOUNT
) && size
<= PAGE_SIZE
) {
1338 * A VFS-reclaimable slab tends to have most allocations
1339 * as GFP_NOFS and we really don't want to have to be allocating
1340 * higher-order pages when we are unable to shrink dcache.
1342 cachep
->gfporder
= 0;
1343 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1344 &left_over
, &cachep
->num
);
1347 * Calculate size (in pages) of slabs, and the num of objs per
1348 * slab. This could be made much more intelligent. For now,
1349 * try to avoid using high page-orders for slabs. When the
1350 * gfp() funcs are more friendly towards high-order requests,
1351 * this should be changed.
1354 unsigned int break_flag
= 0;
1356 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1357 &left_over
, &cachep
->num
);
1360 if (cachep
->gfporder
>= MAX_GFP_ORDER
)
1364 if (flags
& CFLGS_OFF_SLAB
&&
1365 cachep
->num
> offslab_limit
) {
1366 /* This num of objs will cause problems. */
1373 * Large num of objs is good, but v. large slabs are
1374 * currently bad for the gfp()s.
1376 if (cachep
->gfporder
>= slab_break_gfp_order
)
1379 if ((left_over
*8) <= (PAGE_SIZE
<<cachep
->gfporder
))
1380 break; /* Acceptable internal fragmentation. */
1387 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
1388 kmem_cache_free(&cache_cache
, cachep
);
1392 slab_size
= ALIGN(cachep
->num
*sizeof(kmem_bufctl_t
)
1393 + sizeof(struct slab
), align
);
1396 * If the slab has been placed off-slab, and we have enough space then
1397 * move it on-slab. This is at the expense of any extra colouring.
1399 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
1400 flags
&= ~CFLGS_OFF_SLAB
;
1401 left_over
-= slab_size
;
1404 if (flags
& CFLGS_OFF_SLAB
) {
1405 /* really off slab. No need for manual alignment */
1406 slab_size
= cachep
->num
*sizeof(kmem_bufctl_t
)+sizeof(struct slab
);
1409 cachep
->colour_off
= cache_line_size();
1410 /* Offset must be a multiple of the alignment. */
1411 if (cachep
->colour_off
< align
)
1412 cachep
->colour_off
= align
;
1413 cachep
->colour
= left_over
/cachep
->colour_off
;
1414 cachep
->slab_size
= slab_size
;
1415 cachep
->flags
= flags
;
1416 cachep
->gfpflags
= 0;
1417 if (flags
& SLAB_CACHE_DMA
)
1418 cachep
->gfpflags
|= GFP_DMA
;
1419 spin_lock_init(&cachep
->spinlock
);
1420 cachep
->objsize
= size
;
1422 INIT_LIST_HEAD(&cachep
->lists
.slabs_full
);
1423 INIT_LIST_HEAD(&cachep
->lists
.slabs_partial
);
1424 INIT_LIST_HEAD(&cachep
->lists
.slabs_free
);
1426 if (flags
& CFLGS_OFF_SLAB
)
1427 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
,0);
1428 cachep
->ctor
= ctor
;
1429 cachep
->dtor
= dtor
;
1430 cachep
->name
= name
;
1432 /* Don't let CPUs to come and go */
1435 if (g_cpucache_up
== FULL
) {
1436 enable_cpucache(cachep
);
1438 if (g_cpucache_up
== NONE
) {
1439 /* Note: the first kmem_cache_create must create
1440 * the cache that's used by kmalloc(24), otherwise
1441 * the creation of further caches will BUG().
1443 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1444 g_cpucache_up
= PARTIAL
;
1446 cachep
->array
[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init
),GFP_KERNEL
);
1448 BUG_ON(!ac_data(cachep
));
1449 ac_data(cachep
)->avail
= 0;
1450 ac_data(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1451 ac_data(cachep
)->batchcount
= 1;
1452 ac_data(cachep
)->touched
= 0;
1453 cachep
->batchcount
= 1;
1454 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1455 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
1459 cachep
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1460 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
1462 /* Need the semaphore to access the chain. */
1463 down(&cache_chain_sem
);
1465 struct list_head
*p
;
1466 mm_segment_t old_fs
;
1470 list_for_each(p
, &cache_chain
) {
1471 kmem_cache_t
*pc
= list_entry(p
, kmem_cache_t
, next
);
1473 /* This happens when the module gets unloaded and doesn't
1474 destroy its slab cache and noone else reuses the vmalloc
1475 area of the module. Print a warning. */
1476 if (__get_user(tmp
,pc
->name
)) {
1477 printk("SLAB: cache with size %d has lost its name\n",
1481 if (!strcmp(pc
->name
,name
)) {
1482 printk("kmem_cache_create: duplicate cache %s\n",name
);
1483 up(&cache_chain_sem
);
1484 unlock_cpu_hotplug();
1491 /* cache setup completed, link it into the list */
1492 list_add(&cachep
->next
, &cache_chain
);
1493 up(&cache_chain_sem
);
1494 unlock_cpu_hotplug();
1496 if (!cachep
&& (flags
& SLAB_PANIC
))
1497 panic("kmem_cache_create(): failed to create slab `%s'\n",
1501 EXPORT_SYMBOL(kmem_cache_create
);
1504 static void check_irq_off(void)
1506 BUG_ON(!irqs_disabled());
1509 static void check_irq_on(void)
1511 BUG_ON(irqs_disabled());
1514 static void check_spinlock_acquired(kmem_cache_t
*cachep
)
1518 BUG_ON(spin_trylock(&cachep
->spinlock
));
1522 #define check_irq_off() do { } while(0)
1523 #define check_irq_on() do { } while(0)
1524 #define check_spinlock_acquired(x) do { } while(0)
1528 * Waits for all CPUs to execute func().
1530 static void smp_call_function_all_cpus(void (*func
) (void *arg
), void *arg
)
1535 local_irq_disable();
1539 if (smp_call_function(func
, arg
, 1, 1))
1545 static void drain_array_locked(kmem_cache_t
* cachep
,
1546 struct array_cache
*ac
, int force
);
1548 static void do_drain(void *arg
)
1550 kmem_cache_t
*cachep
= (kmem_cache_t
*)arg
;
1551 struct array_cache
*ac
;
1554 ac
= ac_data(cachep
);
1555 spin_lock(&cachep
->spinlock
);
1556 free_block(cachep
, &ac_entry(ac
)[0], ac
->avail
);
1557 spin_unlock(&cachep
->spinlock
);
1561 static void drain_cpu_caches(kmem_cache_t
*cachep
)
1563 smp_call_function_all_cpus(do_drain
, cachep
);
1565 spin_lock_irq(&cachep
->spinlock
);
1566 if (cachep
->lists
.shared
)
1567 drain_array_locked(cachep
, cachep
->lists
.shared
, 1);
1568 spin_unlock_irq(&cachep
->spinlock
);
1572 /* NUMA shrink all list3s */
1573 static int __cache_shrink(kmem_cache_t
*cachep
)
1578 drain_cpu_caches(cachep
);
1581 spin_lock_irq(&cachep
->spinlock
);
1584 struct list_head
*p
;
1586 p
= cachep
->lists
.slabs_free
.prev
;
1587 if (p
== &cachep
->lists
.slabs_free
)
1590 slabp
= list_entry(cachep
->lists
.slabs_free
.prev
, struct slab
, list
);
1595 list_del(&slabp
->list
);
1597 cachep
->lists
.free_objects
-= cachep
->num
;
1598 spin_unlock_irq(&cachep
->spinlock
);
1599 slab_destroy(cachep
, slabp
);
1600 spin_lock_irq(&cachep
->spinlock
);
1602 ret
= !list_empty(&cachep
->lists
.slabs_full
) ||
1603 !list_empty(&cachep
->lists
.slabs_partial
);
1604 spin_unlock_irq(&cachep
->spinlock
);
1609 * kmem_cache_shrink - Shrink a cache.
1610 * @cachep: The cache to shrink.
1612 * Releases as many slabs as possible for a cache.
1613 * To help debugging, a zero exit status indicates all slabs were released.
1615 int kmem_cache_shrink(kmem_cache_t
*cachep
)
1617 if (!cachep
|| in_interrupt())
1620 return __cache_shrink(cachep
);
1622 EXPORT_SYMBOL(kmem_cache_shrink
);
1625 * kmem_cache_destroy - delete a cache
1626 * @cachep: the cache to destroy
1628 * Remove a kmem_cache_t object from the slab cache.
1629 * Returns 0 on success.
1631 * It is expected this function will be called by a module when it is
1632 * unloaded. This will remove the cache completely, and avoid a duplicate
1633 * cache being allocated each time a module is loaded and unloaded, if the
1634 * module doesn't have persistent in-kernel storage across loads and unloads.
1636 * The cache must be empty before calling this function.
1638 * The caller must guarantee that noone will allocate memory from the cache
1639 * during the kmem_cache_destroy().
1641 int kmem_cache_destroy(kmem_cache_t
* cachep
)
1645 if (!cachep
|| in_interrupt())
1648 /* Don't let CPUs to come and go */
1651 /* Find the cache in the chain of caches. */
1652 down(&cache_chain_sem
);
1654 * the chain is never empty, cache_cache is never destroyed
1656 list_del(&cachep
->next
);
1657 up(&cache_chain_sem
);
1659 if (__cache_shrink(cachep
)) {
1660 slab_error(cachep
, "Can't free all objects");
1661 down(&cache_chain_sem
);
1662 list_add(&cachep
->next
,&cache_chain
);
1663 up(&cache_chain_sem
);
1664 unlock_cpu_hotplug();
1668 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1671 /* no cpu_online check required here since we clear the percpu
1672 * array on cpu offline and set this to NULL.
1674 for (i
= 0; i
< NR_CPUS
; i
++)
1675 kfree(cachep
->array
[i
]);
1677 /* NUMA: free the list3 structures */
1678 kfree(cachep
->lists
.shared
);
1679 cachep
->lists
.shared
= NULL
;
1680 kmem_cache_free(&cache_cache
, cachep
);
1682 unlock_cpu_hotplug();
1686 EXPORT_SYMBOL(kmem_cache_destroy
);
1688 /* Get the memory for a slab management obj. */
1689 static struct slab
* alloc_slabmgmt(kmem_cache_t
*cachep
,
1690 void *objp
, int colour_off
, unsigned int __nocast local_flags
)
1694 if (OFF_SLAB(cachep
)) {
1695 /* Slab management obj is off-slab. */
1696 slabp
= kmem_cache_alloc(cachep
->slabp_cache
, local_flags
);
1700 slabp
= objp
+colour_off
;
1701 colour_off
+= cachep
->slab_size
;
1704 slabp
->colouroff
= colour_off
;
1705 slabp
->s_mem
= objp
+colour_off
;
1710 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
1712 return (kmem_bufctl_t
*)(slabp
+1);
1715 static void cache_init_objs(kmem_cache_t
*cachep
,
1716 struct slab
*slabp
, unsigned long ctor_flags
)
1720 for (i
= 0; i
< cachep
->num
; i
++) {
1721 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1723 /* need to poison the objs? */
1724 if (cachep
->flags
& SLAB_POISON
)
1725 poison_obj(cachep
, objp
, POISON_FREE
);
1726 if (cachep
->flags
& SLAB_STORE_USER
)
1727 *dbg_userword(cachep
, objp
) = NULL
;
1729 if (cachep
->flags
& SLAB_RED_ZONE
) {
1730 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
1731 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
1734 * Constructors are not allowed to allocate memory from
1735 * the same cache which they are a constructor for.
1736 * Otherwise, deadlock. They must also be threaded.
1738 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
1739 cachep
->ctor(objp
+obj_dbghead(cachep
), cachep
, ctor_flags
);
1741 if (cachep
->flags
& SLAB_RED_ZONE
) {
1742 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1743 slab_error(cachep
, "constructor overwrote the"
1744 " end of an object");
1745 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1746 slab_error(cachep
, "constructor overwrote the"
1747 " start of an object");
1749 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
1750 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1753 cachep
->ctor(objp
, cachep
, ctor_flags
);
1755 slab_bufctl(slabp
)[i
] = i
+1;
1757 slab_bufctl(slabp
)[i
-1] = BUFCTL_END
;
1761 static void kmem_flagcheck(kmem_cache_t
*cachep
, unsigned int flags
)
1763 if (flags
& SLAB_DMA
) {
1764 if (!(cachep
->gfpflags
& GFP_DMA
))
1767 if (cachep
->gfpflags
& GFP_DMA
)
1772 static void set_slab_attr(kmem_cache_t
*cachep
, struct slab
*slabp
, void *objp
)
1777 /* Nasty!!!!!! I hope this is OK. */
1778 i
= 1 << cachep
->gfporder
;
1779 page
= virt_to_page(objp
);
1781 SET_PAGE_CACHE(page
, cachep
);
1782 SET_PAGE_SLAB(page
, slabp
);
1788 * Grow (by 1) the number of slabs within a cache. This is called by
1789 * kmem_cache_alloc() when there are no active objs left in a cache.
1791 static int cache_grow(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
1796 unsigned int local_flags
;
1797 unsigned long ctor_flags
;
1799 /* Be lazy and only check for valid flags here,
1800 * keeping it out of the critical path in kmem_cache_alloc().
1802 if (flags
& ~(SLAB_DMA
|SLAB_LEVEL_MASK
|SLAB_NO_GROW
))
1804 if (flags
& SLAB_NO_GROW
)
1807 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
1808 local_flags
= (flags
& SLAB_LEVEL_MASK
);
1809 if (!(local_flags
& __GFP_WAIT
))
1811 * Not allowed to sleep. Need to tell a constructor about
1812 * this - it might need to know...
1814 ctor_flags
|= SLAB_CTOR_ATOMIC
;
1816 /* About to mess with non-constant members - lock. */
1818 spin_lock(&cachep
->spinlock
);
1820 /* Get colour for the slab, and cal the next value. */
1821 offset
= cachep
->colour_next
;
1822 cachep
->colour_next
++;
1823 if (cachep
->colour_next
>= cachep
->colour
)
1824 cachep
->colour_next
= 0;
1825 offset
*= cachep
->colour_off
;
1827 spin_unlock(&cachep
->spinlock
);
1829 if (local_flags
& __GFP_WAIT
)
1833 * The test for missing atomic flag is performed here, rather than
1834 * the more obvious place, simply to reduce the critical path length
1835 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
1836 * will eventually be caught here (where it matters).
1838 kmem_flagcheck(cachep
, flags
);
1841 /* Get mem for the objs. */
1842 if (!(objp
= kmem_getpages(cachep
, flags
, nodeid
)))
1845 /* Get slab management. */
1846 if (!(slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
)))
1849 set_slab_attr(cachep
, slabp
, objp
);
1851 cache_init_objs(cachep
, slabp
, ctor_flags
);
1853 if (local_flags
& __GFP_WAIT
)
1854 local_irq_disable();
1856 spin_lock(&cachep
->spinlock
);
1858 /* Make slab active. */
1859 list_add_tail(&slabp
->list
, &(list3_data(cachep
)->slabs_free
));
1860 STATS_INC_GROWN(cachep
);
1861 list3_data(cachep
)->free_objects
+= cachep
->num
;
1862 spin_unlock(&cachep
->spinlock
);
1865 kmem_freepages(cachep
, objp
);
1867 if (local_flags
& __GFP_WAIT
)
1868 local_irq_disable();
1875 * Perform extra freeing checks:
1876 * - detect bad pointers.
1877 * - POISON/RED_ZONE checking
1878 * - destructor calls, for caches with POISON+dtor
1880 static void kfree_debugcheck(const void *objp
)
1884 if (!virt_addr_valid(objp
)) {
1885 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
1886 (unsigned long)objp
);
1889 page
= virt_to_page(objp
);
1890 if (!PageSlab(page
)) {
1891 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp
);
1896 static void *cache_free_debugcheck(kmem_cache_t
*cachep
, void *objp
,
1903 objp
-= obj_dbghead(cachep
);
1904 kfree_debugcheck(objp
);
1905 page
= virt_to_page(objp
);
1907 if (GET_PAGE_CACHE(page
) != cachep
) {
1908 printk(KERN_ERR
"mismatch in kmem_cache_free: expected cache %p, got %p\n",
1909 GET_PAGE_CACHE(page
),cachep
);
1910 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
1911 printk(KERN_ERR
"%p is %s.\n", GET_PAGE_CACHE(page
), GET_PAGE_CACHE(page
)->name
);
1914 slabp
= GET_PAGE_SLAB(page
);
1916 if (cachep
->flags
& SLAB_RED_ZONE
) {
1917 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
1918 slab_error(cachep
, "double free, or memory outside"
1919 " object was overwritten");
1920 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
1921 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
1923 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
1924 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
1926 if (cachep
->flags
& SLAB_STORE_USER
)
1927 *dbg_userword(cachep
, objp
) = caller
;
1929 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1931 BUG_ON(objnr
>= cachep
->num
);
1932 BUG_ON(objp
!= slabp
->s_mem
+ objnr
*cachep
->objsize
);
1934 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
1935 /* Need to call the slab's constructor so the
1936 * caller can perform a verify of its state (debugging).
1937 * Called without the cache-lock held.
1939 cachep
->ctor(objp
+obj_dbghead(cachep
),
1940 cachep
, SLAB_CTOR_CONSTRUCTOR
|SLAB_CTOR_VERIFY
);
1942 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
1943 /* we want to cache poison the object,
1944 * call the destruction callback
1946 cachep
->dtor(objp
+obj_dbghead(cachep
), cachep
, 0);
1948 if (cachep
->flags
& SLAB_POISON
) {
1949 #ifdef CONFIG_DEBUG_PAGEALLOC
1950 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
)) {
1951 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
1952 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1954 poison_obj(cachep
, objp
, POISON_FREE
);
1957 poison_obj(cachep
, objp
, POISON_FREE
);
1963 static void check_slabp(kmem_cache_t
*cachep
, struct slab
*slabp
)
1968 check_spinlock_acquired(cachep
);
1969 /* Check slab's freelist to see if this obj is there. */
1970 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
1972 if (entries
> cachep
->num
|| i
>= cachep
->num
)
1975 if (entries
!= cachep
->num
- slabp
->inuse
) {
1977 printk(KERN_ERR
"slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
1978 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
1979 for (i
=0;i
<sizeof(slabp
)+cachep
->num
*sizeof(kmem_bufctl_t
);i
++) {
1981 printk("\n%03x:", i
);
1982 printk(" %02x", ((unsigned char*)slabp
)[i
]);
1989 #define kfree_debugcheck(x) do { } while(0)
1990 #define cache_free_debugcheck(x,objp,z) (objp)
1991 #define check_slabp(x,y) do { } while(0)
1994 static void *cache_alloc_refill(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
1997 struct kmem_list3
*l3
;
1998 struct array_cache
*ac
;
2001 ac
= ac_data(cachep
);
2003 batchcount
= ac
->batchcount
;
2004 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2005 /* if there was little recent activity on this
2006 * cache, then perform only a partial refill.
2007 * Otherwise we could generate refill bouncing.
2009 batchcount
= BATCHREFILL_LIMIT
;
2011 l3
= list3_data(cachep
);
2013 BUG_ON(ac
->avail
> 0);
2014 spin_lock(&cachep
->spinlock
);
2016 struct array_cache
*shared_array
= l3
->shared
;
2017 if (shared_array
->avail
) {
2018 if (batchcount
> shared_array
->avail
)
2019 batchcount
= shared_array
->avail
;
2020 shared_array
->avail
-= batchcount
;
2021 ac
->avail
= batchcount
;
2022 memcpy(ac_entry(ac
), &ac_entry(shared_array
)[shared_array
->avail
],
2023 sizeof(void*)*batchcount
);
2024 shared_array
->touched
= 1;
2028 while (batchcount
> 0) {
2029 struct list_head
*entry
;
2031 /* Get slab alloc is to come from. */
2032 entry
= l3
->slabs_partial
.next
;
2033 if (entry
== &l3
->slabs_partial
) {
2034 l3
->free_touched
= 1;
2035 entry
= l3
->slabs_free
.next
;
2036 if (entry
== &l3
->slabs_free
)
2040 slabp
= list_entry(entry
, struct slab
, list
);
2041 check_slabp(cachep
, slabp
);
2042 check_spinlock_acquired(cachep
);
2043 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2045 STATS_INC_ALLOCED(cachep
);
2046 STATS_INC_ACTIVE(cachep
);
2047 STATS_SET_HIGH(cachep
);
2049 /* get obj pointer */
2050 ac_entry(ac
)[ac
->avail
++] = slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
2053 next
= slab_bufctl(slabp
)[slabp
->free
];
2055 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2059 check_slabp(cachep
, slabp
);
2061 /* move slabp to correct slabp list: */
2062 list_del(&slabp
->list
);
2063 if (slabp
->free
== BUFCTL_END
)
2064 list_add(&slabp
->list
, &l3
->slabs_full
);
2066 list_add(&slabp
->list
, &l3
->slabs_partial
);
2070 l3
->free_objects
-= ac
->avail
;
2072 spin_unlock(&cachep
->spinlock
);
2074 if (unlikely(!ac
->avail
)) {
2076 x
= cache_grow(cachep
, flags
, -1);
2078 // cache_grow can reenable interrupts, then ac could change.
2079 ac
= ac_data(cachep
);
2080 if (!x
&& ac
->avail
== 0) // no objects in sight? abort
2083 if (!ac
->avail
) // objects refilled by interrupt?
2087 return ac_entry(ac
)[--ac
->avail
];
2091 cache_alloc_debugcheck_before(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2093 might_sleep_if(flags
& __GFP_WAIT
);
2095 kmem_flagcheck(cachep
, flags
);
2101 cache_alloc_debugcheck_after(kmem_cache_t
*cachep
,
2102 unsigned long flags
, void *objp
, void *caller
)
2106 if (cachep
->flags
& SLAB_POISON
) {
2107 #ifdef CONFIG_DEBUG_PAGEALLOC
2108 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2109 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 1);
2111 check_poison_obj(cachep
, objp
);
2113 check_poison_obj(cachep
, objp
);
2115 poison_obj(cachep
, objp
, POISON_INUSE
);
2117 if (cachep
->flags
& SLAB_STORE_USER
)
2118 *dbg_userword(cachep
, objp
) = caller
;
2120 if (cachep
->flags
& SLAB_RED_ZONE
) {
2121 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2122 slab_error(cachep
, "double free, or memory outside"
2123 " object was overwritten");
2124 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2125 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
2127 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2128 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2130 objp
+= obj_dbghead(cachep
);
2131 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2132 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2134 if (!(flags
& __GFP_WAIT
))
2135 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2137 cachep
->ctor(objp
, cachep
, ctor_flags
);
2142 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2146 static inline void *__cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2148 unsigned long save_flags
;
2150 struct array_cache
*ac
;
2152 cache_alloc_debugcheck_before(cachep
, flags
);
2154 local_irq_save(save_flags
);
2155 ac
= ac_data(cachep
);
2156 if (likely(ac
->avail
)) {
2157 STATS_INC_ALLOCHIT(cachep
);
2159 objp
= ac_entry(ac
)[--ac
->avail
];
2161 STATS_INC_ALLOCMISS(cachep
);
2162 objp
= cache_alloc_refill(cachep
, flags
);
2164 local_irq_restore(save_flags
);
2165 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, __builtin_return_address(0));
2170 * NUMA: different approach needed if the spinlock is moved into
2174 static void free_block(kmem_cache_t
*cachep
, void **objpp
, int nr_objects
)
2178 check_spinlock_acquired(cachep
);
2180 /* NUMA: move add into loop */
2181 cachep
->lists
.free_objects
+= nr_objects
;
2183 for (i
= 0; i
< nr_objects
; i
++) {
2184 void *objp
= objpp
[i
];
2188 slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
2189 list_del(&slabp
->list
);
2190 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
2191 check_slabp(cachep
, slabp
);
2193 if (slab_bufctl(slabp
)[objnr
] != BUFCTL_FREE
) {
2194 printk(KERN_ERR
"slab: double free detected in cache '%s', objp %p.\n",
2195 cachep
->name
, objp
);
2199 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2200 slabp
->free
= objnr
;
2201 STATS_DEC_ACTIVE(cachep
);
2203 check_slabp(cachep
, slabp
);
2205 /* fixup slab chains */
2206 if (slabp
->inuse
== 0) {
2207 if (cachep
->lists
.free_objects
> cachep
->free_limit
) {
2208 cachep
->lists
.free_objects
-= cachep
->num
;
2209 slab_destroy(cachep
, slabp
);
2211 list_add(&slabp
->list
,
2212 &list3_data_ptr(cachep
, objp
)->slabs_free
);
2215 /* Unconditionally move a slab to the end of the
2216 * partial list on free - maximum time for the
2217 * other objects to be freed, too.
2219 list_add_tail(&slabp
->list
,
2220 &list3_data_ptr(cachep
, objp
)->slabs_partial
);
2225 static void cache_flusharray(kmem_cache_t
*cachep
, struct array_cache
*ac
)
2229 batchcount
= ac
->batchcount
;
2231 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
2234 spin_lock(&cachep
->spinlock
);
2235 if (cachep
->lists
.shared
) {
2236 struct array_cache
*shared_array
= cachep
->lists
.shared
;
2237 int max
= shared_array
->limit
-shared_array
->avail
;
2239 if (batchcount
> max
)
2241 memcpy(&ac_entry(shared_array
)[shared_array
->avail
],
2243 sizeof(void*)*batchcount
);
2244 shared_array
->avail
+= batchcount
;
2249 free_block(cachep
, &ac_entry(ac
)[0], batchcount
);
2254 struct list_head
*p
;
2256 p
= list3_data(cachep
)->slabs_free
.next
;
2257 while (p
!= &(list3_data(cachep
)->slabs_free
)) {
2260 slabp
= list_entry(p
, struct slab
, list
);
2261 BUG_ON(slabp
->inuse
);
2266 STATS_SET_FREEABLE(cachep
, i
);
2269 spin_unlock(&cachep
->spinlock
);
2270 ac
->avail
-= batchcount
;
2271 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[batchcount
],
2272 sizeof(void*)*ac
->avail
);
2277 * Release an obj back to its cache. If the obj has a constructed
2278 * state, it must be in this state _before_ it is released.
2280 * Called with disabled ints.
2282 static inline void __cache_free(kmem_cache_t
*cachep
, void *objp
)
2284 struct array_cache
*ac
= ac_data(cachep
);
2287 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
2289 if (likely(ac
->avail
< ac
->limit
)) {
2290 STATS_INC_FREEHIT(cachep
);
2291 ac_entry(ac
)[ac
->avail
++] = objp
;
2294 STATS_INC_FREEMISS(cachep
);
2295 cache_flusharray(cachep
, ac
);
2296 ac_entry(ac
)[ac
->avail
++] = objp
;
2301 * kmem_cache_alloc - Allocate an object
2302 * @cachep: The cache to allocate from.
2303 * @flags: See kmalloc().
2305 * Allocate an object from this cache. The flags are only relevant
2306 * if the cache has no available objects.
2308 void *kmem_cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2310 return __cache_alloc(cachep
, flags
);
2312 EXPORT_SYMBOL(kmem_cache_alloc
);
2315 * kmem_ptr_validate - check if an untrusted pointer might
2317 * @cachep: the cache we're checking against
2318 * @ptr: pointer to validate
2320 * This verifies that the untrusted pointer looks sane:
2321 * it is _not_ a guarantee that the pointer is actually
2322 * part of the slab cache in question, but it at least
2323 * validates that the pointer can be dereferenced and
2324 * looks half-way sane.
2326 * Currently only used for dentry validation.
2328 int fastcall
kmem_ptr_validate(kmem_cache_t
*cachep
, void *ptr
)
2330 unsigned long addr
= (unsigned long) ptr
;
2331 unsigned long min_addr
= PAGE_OFFSET
;
2332 unsigned long align_mask
= BYTES_PER_WORD
-1;
2333 unsigned long size
= cachep
->objsize
;
2336 if (unlikely(addr
< min_addr
))
2338 if (unlikely(addr
> (unsigned long)high_memory
- size
))
2340 if (unlikely(addr
& align_mask
))
2342 if (unlikely(!kern_addr_valid(addr
)))
2344 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
2346 page
= virt_to_page(ptr
);
2347 if (unlikely(!PageSlab(page
)))
2349 if (unlikely(GET_PAGE_CACHE(page
) != cachep
))
2358 * kmem_cache_alloc_node - Allocate an object on the specified node
2359 * @cachep: The cache to allocate from.
2360 * @flags: See kmalloc().
2361 * @nodeid: node number of the target node.
2363 * Identical to kmem_cache_alloc, except that this function is slow
2364 * and can sleep. And it will allocate memory on the given node, which
2365 * can improve the performance for cpu bound structures.
2367 void *kmem_cache_alloc_node(kmem_cache_t
*cachep
, int flags
, int nodeid
)
2374 for (loop
= 0;;loop
++) {
2375 struct list_head
*q
;
2379 spin_lock_irq(&cachep
->spinlock
);
2380 /* walk through all partial and empty slab and find one
2381 * from the right node */
2382 list_for_each(q
,&cachep
->lists
.slabs_partial
) {
2383 slabp
= list_entry(q
, struct slab
, list
);
2385 if (page_to_nid(virt_to_page(slabp
->s_mem
)) == nodeid
||
2389 list_for_each(q
, &cachep
->lists
.slabs_free
) {
2390 slabp
= list_entry(q
, struct slab
, list
);
2392 if (page_to_nid(virt_to_page(slabp
->s_mem
)) == nodeid
||
2396 spin_unlock_irq(&cachep
->spinlock
);
2398 local_irq_disable();
2399 if (!cache_grow(cachep
, flags
, nodeid
)) {
2406 /* found one: allocate object */
2407 check_slabp(cachep
, slabp
);
2408 check_spinlock_acquired(cachep
);
2410 STATS_INC_ALLOCED(cachep
);
2411 STATS_INC_ACTIVE(cachep
);
2412 STATS_SET_HIGH(cachep
);
2413 STATS_INC_NODEALLOCS(cachep
);
2415 objp
= slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
2418 next
= slab_bufctl(slabp
)[slabp
->free
];
2420 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2423 check_slabp(cachep
, slabp
);
2425 /* move slabp to correct slabp list: */
2426 list_del(&slabp
->list
);
2427 if (slabp
->free
== BUFCTL_END
)
2428 list_add(&slabp
->list
, &cachep
->lists
.slabs_full
);
2430 list_add(&slabp
->list
, &cachep
->lists
.slabs_partial
);
2432 list3_data(cachep
)->free_objects
--;
2433 spin_unlock_irq(&cachep
->spinlock
);
2435 objp
= cache_alloc_debugcheck_after(cachep
, GFP_KERNEL
, objp
,
2436 __builtin_return_address(0));
2439 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2441 void *kmalloc_node(size_t size
, int flags
, int node
)
2443 kmem_cache_t
*cachep
;
2445 cachep
= kmem_find_general_cachep(size
, flags
);
2446 if (unlikely(cachep
== NULL
))
2448 return kmem_cache_alloc_node(cachep
, flags
, node
);
2450 EXPORT_SYMBOL(kmalloc_node
);
2454 * kmalloc - allocate memory
2455 * @size: how many bytes of memory are required.
2456 * @flags: the type of memory to allocate.
2458 * kmalloc is the normal method of allocating memory
2461 * The @flags argument may be one of:
2463 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2465 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2467 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2469 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2470 * must be suitable for DMA. This can mean different things on different
2471 * platforms. For example, on i386, it means that the memory must come
2472 * from the first 16MB.
2474 void *__kmalloc(size_t size
, unsigned int __nocast flags
)
2476 kmem_cache_t
*cachep
;
2478 /* If you want to save a few bytes .text space: replace
2480 * Then kmalloc uses the uninlined functions instead of the inline
2483 cachep
= __find_general_cachep(size
, flags
);
2484 if (unlikely(cachep
== NULL
))
2486 return __cache_alloc(cachep
, flags
);
2488 EXPORT_SYMBOL(__kmalloc
);
2492 * __alloc_percpu - allocate one copy of the object for every present
2493 * cpu in the system, zeroing them.
2494 * Objects should be dereferenced using the per_cpu_ptr macro only.
2496 * @size: how many bytes of memory are required.
2497 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2499 void *__alloc_percpu(size_t size
, size_t align
)
2502 struct percpu_data
*pdata
= kmalloc(sizeof (*pdata
), GFP_KERNEL
);
2507 for (i
= 0; i
< NR_CPUS
; i
++) {
2508 if (!cpu_possible(i
))
2510 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
,
2513 if (!pdata
->ptrs
[i
])
2515 memset(pdata
->ptrs
[i
], 0, size
);
2518 /* Catch derefs w/o wrappers */
2519 return (void *) (~(unsigned long) pdata
);
2523 if (!cpu_possible(i
))
2525 kfree(pdata
->ptrs
[i
]);
2530 EXPORT_SYMBOL(__alloc_percpu
);
2534 * kmem_cache_free - Deallocate an object
2535 * @cachep: The cache the allocation was from.
2536 * @objp: The previously allocated object.
2538 * Free an object which was previously allocated from this
2541 void kmem_cache_free(kmem_cache_t
*cachep
, void *objp
)
2543 unsigned long flags
;
2545 local_irq_save(flags
);
2546 __cache_free(cachep
, objp
);
2547 local_irq_restore(flags
);
2549 EXPORT_SYMBOL(kmem_cache_free
);
2552 * kcalloc - allocate memory for an array. The memory is set to zero.
2553 * @n: number of elements.
2554 * @size: element size.
2555 * @flags: the type of memory to allocate.
2557 void *kcalloc(size_t n
, size_t size
, unsigned int __nocast flags
)
2561 if (n
!= 0 && size
> INT_MAX
/ n
)
2564 ret
= kmalloc(n
* size
, flags
);
2566 memset(ret
, 0, n
* size
);
2569 EXPORT_SYMBOL(kcalloc
);
2572 * kfree - free previously allocated memory
2573 * @objp: pointer returned by kmalloc.
2575 * Don't free memory not originally allocated by kmalloc()
2576 * or you will run into trouble.
2578 void kfree(const void *objp
)
2581 unsigned long flags
;
2583 if (unlikely(!objp
))
2585 local_irq_save(flags
);
2586 kfree_debugcheck(objp
);
2587 c
= GET_PAGE_CACHE(virt_to_page(objp
));
2588 __cache_free(c
, (void*)objp
);
2589 local_irq_restore(flags
);
2591 EXPORT_SYMBOL(kfree
);
2595 * free_percpu - free previously allocated percpu memory
2596 * @objp: pointer returned by alloc_percpu.
2598 * Don't free memory not originally allocated by alloc_percpu()
2599 * The complemented objp is to check for that.
2602 free_percpu(const void *objp
)
2605 struct percpu_data
*p
= (struct percpu_data
*) (~(unsigned long) objp
);
2607 for (i
= 0; i
< NR_CPUS
; i
++) {
2608 if (!cpu_possible(i
))
2614 EXPORT_SYMBOL(free_percpu
);
2617 unsigned int kmem_cache_size(kmem_cache_t
*cachep
)
2619 return obj_reallen(cachep
);
2621 EXPORT_SYMBOL(kmem_cache_size
);
2623 struct ccupdate_struct
{
2624 kmem_cache_t
*cachep
;
2625 struct array_cache
*new[NR_CPUS
];
2628 static void do_ccupdate_local(void *info
)
2630 struct ccupdate_struct
*new = (struct ccupdate_struct
*)info
;
2631 struct array_cache
*old
;
2634 old
= ac_data(new->cachep
);
2636 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
2637 new->new[smp_processor_id()] = old
;
2641 static int do_tune_cpucache(kmem_cache_t
*cachep
, int limit
, int batchcount
,
2644 struct ccupdate_struct
new;
2645 struct array_cache
*new_shared
;
2648 memset(&new.new,0,sizeof(new.new));
2649 for (i
= 0; i
< NR_CPUS
; i
++) {
2650 if (cpu_online(i
)) {
2651 new.new[i
] = alloc_arraycache(i
, limit
, batchcount
);
2653 for (i
--; i
>= 0; i
--) kfree(new.new[i
]);
2660 new.cachep
= cachep
;
2662 smp_call_function_all_cpus(do_ccupdate_local
, (void *)&new);
2665 spin_lock_irq(&cachep
->spinlock
);
2666 cachep
->batchcount
= batchcount
;
2667 cachep
->limit
= limit
;
2668 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
+ cachep
->num
;
2669 spin_unlock_irq(&cachep
->spinlock
);
2671 for (i
= 0; i
< NR_CPUS
; i
++) {
2672 struct array_cache
*ccold
= new.new[i
];
2675 spin_lock_irq(&cachep
->spinlock
);
2676 free_block(cachep
, ac_entry(ccold
), ccold
->avail
);
2677 spin_unlock_irq(&cachep
->spinlock
);
2680 new_shared
= alloc_arraycache(-1, batchcount
*shared
, 0xbaadf00d);
2682 struct array_cache
*old
;
2684 spin_lock_irq(&cachep
->spinlock
);
2685 old
= cachep
->lists
.shared
;
2686 cachep
->lists
.shared
= new_shared
;
2688 free_block(cachep
, ac_entry(old
), old
->avail
);
2689 spin_unlock_irq(&cachep
->spinlock
);
2697 static void enable_cpucache(kmem_cache_t
*cachep
)
2702 /* The head array serves three purposes:
2703 * - create a LIFO ordering, i.e. return objects that are cache-warm
2704 * - reduce the number of spinlock operations.
2705 * - reduce the number of linked list operations on the slab and
2706 * bufctl chains: array operations are cheaper.
2707 * The numbers are guessed, we should auto-tune as described by
2710 if (cachep
->objsize
> 131072)
2712 else if (cachep
->objsize
> PAGE_SIZE
)
2714 else if (cachep
->objsize
> 1024)
2716 else if (cachep
->objsize
> 256)
2721 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
2722 * allocation behaviour: Most allocs on one cpu, most free operations
2723 * on another cpu. For these cases, an efficient object passing between
2724 * cpus is necessary. This is provided by a shared array. The array
2725 * replaces Bonwick's magazine layer.
2726 * On uniprocessor, it's functionally equivalent (but less efficient)
2727 * to a larger limit. Thus disabled by default.
2731 if (cachep
->objsize
<= PAGE_SIZE
)
2736 /* With debugging enabled, large batchcount lead to excessively
2737 * long periods with disabled local interrupts. Limit the
2743 err
= do_tune_cpucache(cachep
, limit
, (limit
+1)/2, shared
);
2745 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
2746 cachep
->name
, -err
);
2749 static void drain_array_locked(kmem_cache_t
*cachep
,
2750 struct array_cache
*ac
, int force
)
2754 check_spinlock_acquired(cachep
);
2755 if (ac
->touched
&& !force
) {
2757 } else if (ac
->avail
) {
2758 tofree
= force
? ac
->avail
: (ac
->limit
+4)/5;
2759 if (tofree
> ac
->avail
) {
2760 tofree
= (ac
->avail
+1)/2;
2762 free_block(cachep
, ac_entry(ac
), tofree
);
2763 ac
->avail
-= tofree
;
2764 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[tofree
],
2765 sizeof(void*)*ac
->avail
);
2770 * cache_reap - Reclaim memory from caches.
2772 * Called from workqueue/eventd every few seconds.
2774 * - clear the per-cpu caches for this CPU.
2775 * - return freeable pages to the main free memory pool.
2777 * If we cannot acquire the cache chain semaphore then just give up - we'll
2778 * try again on the next iteration.
2780 static void cache_reap(void *unused
)
2782 struct list_head
*walk
;
2784 if (down_trylock(&cache_chain_sem
)) {
2785 /* Give up. Setup the next iteration. */
2786 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
2790 list_for_each(walk
, &cache_chain
) {
2791 kmem_cache_t
*searchp
;
2792 struct list_head
* p
;
2796 searchp
= list_entry(walk
, kmem_cache_t
, next
);
2798 if (searchp
->flags
& SLAB_NO_REAP
)
2803 spin_lock_irq(&searchp
->spinlock
);
2805 drain_array_locked(searchp
, ac_data(searchp
), 0);
2807 if(time_after(searchp
->lists
.next_reap
, jiffies
))
2810 searchp
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
2812 if (searchp
->lists
.shared
)
2813 drain_array_locked(searchp
, searchp
->lists
.shared
, 0);
2815 if (searchp
->lists
.free_touched
) {
2816 searchp
->lists
.free_touched
= 0;
2820 tofree
= (searchp
->free_limit
+5*searchp
->num
-1)/(5*searchp
->num
);
2822 p
= list3_data(searchp
)->slabs_free
.next
;
2823 if (p
== &(list3_data(searchp
)->slabs_free
))
2826 slabp
= list_entry(p
, struct slab
, list
);
2827 BUG_ON(slabp
->inuse
);
2828 list_del(&slabp
->list
);
2829 STATS_INC_REAPED(searchp
);
2831 /* Safe to drop the lock. The slab is no longer
2832 * linked to the cache.
2833 * searchp cannot disappear, we hold
2836 searchp
->lists
.free_objects
-= searchp
->num
;
2837 spin_unlock_irq(&searchp
->spinlock
);
2838 slab_destroy(searchp
, slabp
);
2839 spin_lock_irq(&searchp
->spinlock
);
2840 } while(--tofree
> 0);
2842 spin_unlock_irq(&searchp
->spinlock
);
2847 up(&cache_chain_sem
);
2848 /* Setup the next iteration */
2849 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
2852 #ifdef CONFIG_PROC_FS
2854 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2857 struct list_head
*p
;
2859 down(&cache_chain_sem
);
2862 * Output format version, so at least we can change it
2863 * without _too_ many complaints.
2866 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
2868 seq_puts(m
, "slabinfo - version: 2.1\n");
2870 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
2871 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
2872 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
2874 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
2875 " <error> <maxfreeable> <freelimit> <nodeallocs>");
2876 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
2880 p
= cache_chain
.next
;
2883 if (p
== &cache_chain
)
2886 return list_entry(p
, kmem_cache_t
, next
);
2889 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2891 kmem_cache_t
*cachep
= p
;
2893 return cachep
->next
.next
== &cache_chain
? NULL
2894 : list_entry(cachep
->next
.next
, kmem_cache_t
, next
);
2897 static void s_stop(struct seq_file
*m
, void *p
)
2899 up(&cache_chain_sem
);
2902 static int s_show(struct seq_file
*m
, void *p
)
2904 kmem_cache_t
*cachep
= p
;
2905 struct list_head
*q
;
2907 unsigned long active_objs
;
2908 unsigned long num_objs
;
2909 unsigned long active_slabs
= 0;
2910 unsigned long num_slabs
;
2915 spin_lock_irq(&cachep
->spinlock
);
2918 list_for_each(q
,&cachep
->lists
.slabs_full
) {
2919 slabp
= list_entry(q
, struct slab
, list
);
2920 if (slabp
->inuse
!= cachep
->num
&& !error
)
2921 error
= "slabs_full accounting error";
2922 active_objs
+= cachep
->num
;
2925 list_for_each(q
,&cachep
->lists
.slabs_partial
) {
2926 slabp
= list_entry(q
, struct slab
, list
);
2927 if (slabp
->inuse
== cachep
->num
&& !error
)
2928 error
= "slabs_partial inuse accounting error";
2929 if (!slabp
->inuse
&& !error
)
2930 error
= "slabs_partial/inuse accounting error";
2931 active_objs
+= slabp
->inuse
;
2934 list_for_each(q
,&cachep
->lists
.slabs_free
) {
2935 slabp
= list_entry(q
, struct slab
, list
);
2936 if (slabp
->inuse
&& !error
)
2937 error
= "slabs_free/inuse accounting error";
2940 num_slabs
+=active_slabs
;
2941 num_objs
= num_slabs
*cachep
->num
;
2942 if (num_objs
- active_objs
!= cachep
->lists
.free_objects
&& !error
)
2943 error
= "free_objects accounting error";
2945 name
= cachep
->name
;
2947 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
2949 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
2950 name
, active_objs
, num_objs
, cachep
->objsize
,
2951 cachep
->num
, (1<<cachep
->gfporder
));
2952 seq_printf(m
, " : tunables %4u %4u %4u",
2953 cachep
->limit
, cachep
->batchcount
,
2954 cachep
->lists
.shared
->limit
/cachep
->batchcount
);
2955 seq_printf(m
, " : slabdata %6lu %6lu %6u",
2956 active_slabs
, num_slabs
, cachep
->lists
.shared
->avail
);
2959 unsigned long high
= cachep
->high_mark
;
2960 unsigned long allocs
= cachep
->num_allocations
;
2961 unsigned long grown
= cachep
->grown
;
2962 unsigned long reaped
= cachep
->reaped
;
2963 unsigned long errors
= cachep
->errors
;
2964 unsigned long max_freeable
= cachep
->max_freeable
;
2965 unsigned long free_limit
= cachep
->free_limit
;
2966 unsigned long node_allocs
= cachep
->node_allocs
;
2968 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu",
2969 allocs
, high
, grown
, reaped
, errors
,
2970 max_freeable
, free_limit
, node_allocs
);
2974 unsigned long allochit
= atomic_read(&cachep
->allochit
);
2975 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
2976 unsigned long freehit
= atomic_read(&cachep
->freehit
);
2977 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
2979 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
2980 allochit
, allocmiss
, freehit
, freemiss
);
2984 spin_unlock_irq(&cachep
->spinlock
);
2989 * slabinfo_op - iterator that generates /proc/slabinfo
2998 * num-pages-per-slab
2999 * + further values on SMP and with statistics enabled
3002 struct seq_operations slabinfo_op
= {
3009 #define MAX_SLABINFO_WRITE 128
3011 * slabinfo_write - Tuning for the slab allocator
3013 * @buffer: user buffer
3014 * @count: data length
3017 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
3018 size_t count
, loff_t
*ppos
)
3020 char kbuf
[MAX_SLABINFO_WRITE
+1], *tmp
;
3021 int limit
, batchcount
, shared
, res
;
3022 struct list_head
*p
;
3024 if (count
> MAX_SLABINFO_WRITE
)
3026 if (copy_from_user(&kbuf
, buffer
, count
))
3028 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3030 tmp
= strchr(kbuf
, ' ');
3035 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3038 /* Find the cache in the chain of caches. */
3039 down(&cache_chain_sem
);
3041 list_for_each(p
,&cache_chain
) {
3042 kmem_cache_t
*cachep
= list_entry(p
, kmem_cache_t
, next
);
3044 if (!strcmp(cachep
->name
, kbuf
)) {
3047 batchcount
> limit
||
3051 res
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
);
3056 up(&cache_chain_sem
);
3063 unsigned int ksize(const void *objp
)
3066 unsigned long flags
;
3067 unsigned int size
= 0;
3069 if (likely(objp
!= NULL
)) {
3070 local_irq_save(flags
);
3071 c
= GET_PAGE_CACHE(virt_to_page(objp
));
3072 size
= kmem_cache_size(c
);
3073 local_irq_restore(flags
);