[PATCH] Document how to decode an IOCTL number
[linux-2.6.22.y-op.git] / net / irda / af_irda.c
blob7e1aea89ef05b60709fcb37e1f5ec531303f0359
1 /*********************************************************************
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
32 * Linux-IrDA now supports four different types of IrDA sockets:
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
43 ********************************************************************/
45 #include <linux/capability.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/init.h>
51 #include <linux/net.h>
52 #include <linux/irda.h>
53 #include <linux/poll.h>
55 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56 #include <asm/uaccess.h>
58 #include <net/sock.h>
59 #include <net/tcp_states.h>
61 #include <net/irda/af_irda.h>
63 static int irda_create(struct socket *sock, int protocol);
65 static const struct proto_ops irda_stream_ops;
66 static const struct proto_ops irda_seqpacket_ops;
67 static const struct proto_ops irda_dgram_ops;
69 #ifdef CONFIG_IRDA_ULTRA
70 static const struct proto_ops irda_ultra_ops;
71 #define ULTRA_MAX_DATA 382
72 #endif /* CONFIG_IRDA_ULTRA */
74 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
77 * Function irda_data_indication (instance, sap, skb)
79 * Received some data from TinyTP. Just queue it on the receive queue
82 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
88 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
90 self = instance;
91 sk = instance;
92 IRDA_ASSERT(sk != NULL, return -1;);
94 err = sock_queue_rcv_skb(sk, skb);
95 if (err) {
96 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
97 self->rx_flow = FLOW_STOP;
99 /* When we return error, TTP will need to requeue the skb */
100 return err;
103 return 0;
107 * Function irda_disconnect_indication (instance, sap, reason, skb)
109 * Connection has been closed. Check reason to find out why
112 static void irda_disconnect_indication(void *instance, void *sap,
113 LM_REASON reason, struct sk_buff *skb)
115 struct irda_sock *self;
116 struct sock *sk;
118 self = instance;
120 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
122 /* Don't care about it, but let's not leak it */
123 if(skb)
124 dev_kfree_skb(skb);
126 sk = instance;
127 if (sk == NULL) {
128 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
129 __FUNCTION__, self);
130 return;
133 /* Prevent race conditions with irda_release() and irda_shutdown() */
134 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
135 lock_sock(sk);
136 sk->sk_state = TCP_CLOSE;
137 sk->sk_err = ECONNRESET;
138 sk->sk_shutdown |= SEND_SHUTDOWN;
140 sk->sk_state_change(sk);
141 sock_orphan(sk);
142 release_sock(sk);
144 /* Close our TSAP.
145 * If we leave it open, IrLMP put it back into the list of
146 * unconnected LSAPs. The problem is that any incoming request
147 * can then be matched to this socket (and it will be, because
148 * it is at the head of the list). This would prevent any
149 * listening socket waiting on the same TSAP to get those
150 * requests. Some apps forget to close sockets, or hang to it
151 * a bit too long, so we may stay in this dead state long
152 * enough to be noticed...
153 * Note : all socket function do check sk->sk_state, so we are
154 * safe...
155 * Jean II
157 if (self->tsap) {
158 irttp_close_tsap(self->tsap);
159 self->tsap = NULL;
163 /* Note : once we are there, there is not much you want to do
164 * with the socket anymore, apart from closing it.
165 * For example, bind() and connect() won't reset sk->sk_err,
166 * sk->sk_shutdown and sk->sk_flags to valid values...
167 * Jean II
172 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
174 * Connections has been confirmed by the remote device
177 static void irda_connect_confirm(void *instance, void *sap,
178 struct qos_info *qos,
179 __u32 max_sdu_size, __u8 max_header_size,
180 struct sk_buff *skb)
182 struct irda_sock *self;
183 struct sock *sk;
185 self = instance;
187 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
189 sk = instance;
190 if (sk == NULL) {
191 dev_kfree_skb(skb);
192 return;
195 dev_kfree_skb(skb);
196 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
198 /* How much header space do we need to reserve */
199 self->max_header_size = max_header_size;
201 /* IrTTP max SDU size in transmit direction */
202 self->max_sdu_size_tx = max_sdu_size;
204 /* Find out what the largest chunk of data that we can transmit is */
205 switch (sk->sk_type) {
206 case SOCK_STREAM:
207 if (max_sdu_size != 0) {
208 IRDA_ERROR("%s: max_sdu_size must be 0\n",
209 __FUNCTION__);
210 return;
212 self->max_data_size = irttp_get_max_seg_size(self->tsap);
213 break;
214 case SOCK_SEQPACKET:
215 if (max_sdu_size == 0) {
216 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
217 __FUNCTION__);
218 return;
220 self->max_data_size = max_sdu_size;
221 break;
222 default:
223 self->max_data_size = irttp_get_max_seg_size(self->tsap);
226 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
227 self->max_data_size);
229 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
231 /* We are now connected! */
232 sk->sk_state = TCP_ESTABLISHED;
233 sk->sk_state_change(sk);
237 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
239 * Incoming connection
242 static void irda_connect_indication(void *instance, void *sap,
243 struct qos_info *qos, __u32 max_sdu_size,
244 __u8 max_header_size, struct sk_buff *skb)
246 struct irda_sock *self;
247 struct sock *sk;
249 self = instance;
251 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
253 sk = instance;
254 if (sk == NULL) {
255 dev_kfree_skb(skb);
256 return;
259 /* How much header space do we need to reserve */
260 self->max_header_size = max_header_size;
262 /* IrTTP max SDU size in transmit direction */
263 self->max_sdu_size_tx = max_sdu_size;
265 /* Find out what the largest chunk of data that we can transmit is */
266 switch (sk->sk_type) {
267 case SOCK_STREAM:
268 if (max_sdu_size != 0) {
269 IRDA_ERROR("%s: max_sdu_size must be 0\n",
270 __FUNCTION__);
271 kfree_skb(skb);
272 return;
274 self->max_data_size = irttp_get_max_seg_size(self->tsap);
275 break;
276 case SOCK_SEQPACKET:
277 if (max_sdu_size == 0) {
278 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
279 __FUNCTION__);
280 kfree_skb(skb);
281 return;
283 self->max_data_size = max_sdu_size;
284 break;
285 default:
286 self->max_data_size = irttp_get_max_seg_size(self->tsap);
289 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
290 self->max_data_size);
292 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
294 skb_queue_tail(&sk->sk_receive_queue, skb);
295 sk->sk_state_change(sk);
299 * Function irda_connect_response (handle)
301 * Accept incoming connection
304 static void irda_connect_response(struct irda_sock *self)
306 struct sk_buff *skb;
308 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
310 IRDA_ASSERT(self != NULL, return;);
312 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
313 GFP_ATOMIC);
314 if (skb == NULL) {
315 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
316 __FUNCTION__);
317 return;
320 /* Reserve space for MUX_CONTROL and LAP header */
321 skb_reserve(skb, IRDA_MAX_HEADER);
323 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
327 * Function irda_flow_indication (instance, sap, flow)
329 * Used by TinyTP to tell us if it can accept more data or not
332 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
334 struct irda_sock *self;
335 struct sock *sk;
337 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
339 self = instance;
340 sk = instance;
341 IRDA_ASSERT(sk != NULL, return;);
343 switch (flow) {
344 case FLOW_STOP:
345 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
346 __FUNCTION__);
347 self->tx_flow = flow;
348 break;
349 case FLOW_START:
350 self->tx_flow = flow;
351 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
352 __FUNCTION__);
353 wake_up_interruptible(sk->sk_sleep);
354 break;
355 default:
356 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
357 /* Unknown flow command, better stop */
358 self->tx_flow = flow;
359 break;
364 * Function irda_getvalue_confirm (obj_id, value, priv)
366 * Got answer from remote LM-IAS, just pass object to requester...
368 * Note : duplicate from above, but we need our own version that
369 * doesn't touch the dtsap_sel and save the full value structure...
371 static void irda_getvalue_confirm(int result, __u16 obj_id,
372 struct ias_value *value, void *priv)
374 struct irda_sock *self;
376 self = (struct irda_sock *) priv;
377 if (!self) {
378 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
379 return;
382 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
384 /* We probably don't need to make any more queries */
385 iriap_close(self->iriap);
386 self->iriap = NULL;
388 /* Check if request succeeded */
389 if (result != IAS_SUCCESS) {
390 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
391 result);
393 self->errno = result; /* We really need it later */
395 /* Wake up any processes waiting for result */
396 wake_up_interruptible(&self->query_wait);
398 return;
401 /* Pass the object to the caller (so the caller must delete it) */
402 self->ias_result = value;
403 self->errno = 0;
405 /* Wake up any processes waiting for result */
406 wake_up_interruptible(&self->query_wait);
410 * Function irda_selective_discovery_indication (discovery)
412 * Got a selective discovery indication from IrLMP.
414 * IrLMP is telling us that this node is new and matching our hint bit
415 * filter. Wake up any process waiting for answer...
417 static void irda_selective_discovery_indication(discinfo_t *discovery,
418 DISCOVERY_MODE mode,
419 void *priv)
421 struct irda_sock *self;
423 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
425 self = (struct irda_sock *) priv;
426 if (!self) {
427 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
428 return;
431 /* Pass parameter to the caller */
432 self->cachedaddr = discovery->daddr;
434 /* Wake up process if its waiting for device to be discovered */
435 wake_up_interruptible(&self->query_wait);
439 * Function irda_discovery_timeout (priv)
441 * Timeout in the selective discovery process
443 * We were waiting for a node to be discovered, but nothing has come up
444 * so far. Wake up the user and tell him that we failed...
446 static void irda_discovery_timeout(u_long priv)
448 struct irda_sock *self;
450 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
452 self = (struct irda_sock *) priv;
453 IRDA_ASSERT(self != NULL, return;);
455 /* Nothing for the caller */
456 self->cachelog = NULL;
457 self->cachedaddr = 0;
458 self->errno = -ETIME;
460 /* Wake up process if its still waiting... */
461 wake_up_interruptible(&self->query_wait);
465 * Function irda_open_tsap (self)
467 * Open local Transport Service Access Point (TSAP)
470 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
472 notify_t notify;
474 if (self->tsap) {
475 IRDA_WARNING("%s: busy!\n", __FUNCTION__);
476 return -EBUSY;
479 /* Initialize callbacks to be used by the IrDA stack */
480 irda_notify_init(&notify);
481 notify.connect_confirm = irda_connect_confirm;
482 notify.connect_indication = irda_connect_indication;
483 notify.disconnect_indication = irda_disconnect_indication;
484 notify.data_indication = irda_data_indication;
485 notify.udata_indication = irda_data_indication;
486 notify.flow_indication = irda_flow_indication;
487 notify.instance = self;
488 strncpy(notify.name, name, NOTIFY_MAX_NAME);
490 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
491 &notify);
492 if (self->tsap == NULL) {
493 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
494 __FUNCTION__);
495 return -ENOMEM;
497 /* Remember which TSAP selector we actually got */
498 self->stsap_sel = self->tsap->stsap_sel;
500 return 0;
504 * Function irda_open_lsap (self)
506 * Open local Link Service Access Point (LSAP). Used for opening Ultra
507 * sockets
509 #ifdef CONFIG_IRDA_ULTRA
510 static int irda_open_lsap(struct irda_sock *self, int pid)
512 notify_t notify;
514 if (self->lsap) {
515 IRDA_WARNING("%s(), busy!\n", __FUNCTION__);
516 return -EBUSY;
519 /* Initialize callbacks to be used by the IrDA stack */
520 irda_notify_init(&notify);
521 notify.udata_indication = irda_data_indication;
522 notify.instance = self;
523 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
525 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
526 if (self->lsap == NULL) {
527 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
528 return -ENOMEM;
531 return 0;
533 #endif /* CONFIG_IRDA_ULTRA */
536 * Function irda_find_lsap_sel (self, name)
538 * Try to lookup LSAP selector in remote LM-IAS
540 * Basically, we start a IAP query, and then go to sleep. When the query
541 * return, irda_getvalue_confirm will wake us up, and we can examine the
542 * result of the query...
543 * Note that in some case, the query fail even before we go to sleep,
544 * creating some races...
546 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
548 IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);
550 IRDA_ASSERT(self != NULL, return -1;);
552 if (self->iriap) {
553 IRDA_WARNING("%s(): busy with a previous query\n",
554 __FUNCTION__);
555 return -EBUSY;
558 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
559 irda_getvalue_confirm);
560 if(self->iriap == NULL)
561 return -ENOMEM;
563 /* Treat unexpected wakeup as disconnect */
564 self->errno = -EHOSTUNREACH;
566 /* Query remote LM-IAS */
567 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
568 name, "IrDA:TinyTP:LsapSel");
570 /* Wait for answer, if not yet finished (or failed) */
571 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
572 /* Treat signals as disconnect */
573 return -EHOSTUNREACH;
575 /* Check what happened */
576 if (self->errno)
578 /* Requested object/attribute doesn't exist */
579 if((self->errno == IAS_CLASS_UNKNOWN) ||
580 (self->errno == IAS_ATTRIB_UNKNOWN))
581 return (-EADDRNOTAVAIL);
582 else
583 return (-EHOSTUNREACH);
586 /* Get the remote TSAP selector */
587 switch (self->ias_result->type) {
588 case IAS_INTEGER:
589 IRDA_DEBUG(4, "%s() int=%d\n",
590 __FUNCTION__, self->ias_result->t.integer);
592 if (self->ias_result->t.integer != -1)
593 self->dtsap_sel = self->ias_result->t.integer;
594 else
595 self->dtsap_sel = 0;
596 break;
597 default:
598 self->dtsap_sel = 0;
599 IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
600 break;
602 if (self->ias_result)
603 irias_delete_value(self->ias_result);
605 if (self->dtsap_sel)
606 return 0;
608 return -EADDRNOTAVAIL;
612 * Function irda_discover_daddr_and_lsap_sel (self, name)
614 * This try to find a device with the requested service.
616 * It basically look into the discovery log. For each address in the list,
617 * it queries the LM-IAS of the device to find if this device offer
618 * the requested service.
619 * If there is more than one node supporting the service, we complain
620 * to the user (it should move devices around).
621 * The, we set both the destination address and the lsap selector to point
622 * on the service on the unique device we have found.
624 * Note : this function fails if there is more than one device in range,
625 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
626 * Moreover, we would need to wait the LAP disconnection...
628 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
630 discinfo_t *discoveries; /* Copy of the discovery log */
631 int number; /* Number of nodes in the log */
632 int i;
633 int err = -ENETUNREACH;
634 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
635 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
637 IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);
639 IRDA_ASSERT(self != NULL, return -1;);
641 /* Ask lmp for the current discovery log
642 * Note : we have to use irlmp_get_discoveries(), as opposed
643 * to play with the cachelog directly, because while we are
644 * making our ias query, le log might change... */
645 discoveries = irlmp_get_discoveries(&number, self->mask.word,
646 self->nslots);
647 /* Check if the we got some results */
648 if (discoveries == NULL)
649 return -ENETUNREACH; /* No nodes discovered */
652 * Now, check all discovered devices (if any), and connect
653 * client only about the services that the client is
654 * interested in...
656 for(i = 0; i < number; i++) {
657 /* Try the address in the log */
658 self->daddr = discoveries[i].daddr;
659 self->saddr = 0x0;
660 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
661 __FUNCTION__, self->daddr);
663 /* Query remote LM-IAS for this service */
664 err = irda_find_lsap_sel(self, name);
665 switch (err) {
666 case 0:
667 /* We found the requested service */
668 if(daddr != DEV_ADDR_ANY) {
669 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
670 __FUNCTION__, name);
671 self->daddr = DEV_ADDR_ANY;
672 kfree(discoveries);
673 return(-ENOTUNIQ);
675 /* First time we found that one, save it ! */
676 daddr = self->daddr;
677 dtsap_sel = self->dtsap_sel;
678 break;
679 case -EADDRNOTAVAIL:
680 /* Requested service simply doesn't exist on this node */
681 break;
682 default:
683 /* Something bad did happen :-( */
684 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
685 self->daddr = DEV_ADDR_ANY;
686 kfree(discoveries);
687 return(-EHOSTUNREACH);
688 break;
691 /* Cleanup our copy of the discovery log */
692 kfree(discoveries);
694 /* Check out what we found */
695 if(daddr == DEV_ADDR_ANY) {
696 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
697 __FUNCTION__, name);
698 self->daddr = DEV_ADDR_ANY;
699 return(-EADDRNOTAVAIL);
702 /* Revert back to discovered device & service */
703 self->daddr = daddr;
704 self->saddr = 0x0;
705 self->dtsap_sel = dtsap_sel;
707 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
708 __FUNCTION__, name, self->daddr);
710 return 0;
714 * Function irda_getname (sock, uaddr, uaddr_len, peer)
716 * Return the our own, or peers socket address (sockaddr_irda)
719 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
720 int *uaddr_len, int peer)
722 struct sockaddr_irda saddr;
723 struct sock *sk = sock->sk;
724 struct irda_sock *self = irda_sk(sk);
726 if (peer) {
727 if (sk->sk_state != TCP_ESTABLISHED)
728 return -ENOTCONN;
730 saddr.sir_family = AF_IRDA;
731 saddr.sir_lsap_sel = self->dtsap_sel;
732 saddr.sir_addr = self->daddr;
733 } else {
734 saddr.sir_family = AF_IRDA;
735 saddr.sir_lsap_sel = self->stsap_sel;
736 saddr.sir_addr = self->saddr;
739 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
740 IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);
742 /* uaddr_len come to us uninitialised */
743 *uaddr_len = sizeof (struct sockaddr_irda);
744 memcpy(uaddr, &saddr, *uaddr_len);
746 return 0;
750 * Function irda_listen (sock, backlog)
752 * Just move to the listen state
755 static int irda_listen(struct socket *sock, int backlog)
757 struct sock *sk = sock->sk;
759 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
761 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
762 (sk->sk_type != SOCK_DGRAM))
763 return -EOPNOTSUPP;
765 if (sk->sk_state != TCP_LISTEN) {
766 sk->sk_max_ack_backlog = backlog;
767 sk->sk_state = TCP_LISTEN;
769 return 0;
772 return -EOPNOTSUPP;
776 * Function irda_bind (sock, uaddr, addr_len)
778 * Used by servers to register their well known TSAP
781 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
783 struct sock *sk = sock->sk;
784 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
785 struct irda_sock *self = irda_sk(sk);
786 int err;
788 IRDA_ASSERT(self != NULL, return -1;);
790 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
792 if (addr_len != sizeof(struct sockaddr_irda))
793 return -EINVAL;
795 #ifdef CONFIG_IRDA_ULTRA
796 /* Special care for Ultra sockets */
797 if ((sk->sk_type == SOCK_DGRAM) &&
798 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
799 self->pid = addr->sir_lsap_sel;
800 if (self->pid & 0x80) {
801 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
802 return -EOPNOTSUPP;
804 err = irda_open_lsap(self, self->pid);
805 if (err < 0)
806 return err;
808 /* Pretend we are connected */
809 sock->state = SS_CONNECTED;
810 sk->sk_state = TCP_ESTABLISHED;
812 return 0;
814 #endif /* CONFIG_IRDA_ULTRA */
816 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
817 if (err < 0)
818 return err;
820 /* Register with LM-IAS */
821 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
822 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
823 self->stsap_sel, IAS_KERNEL_ATTR);
824 irias_insert_object(self->ias_obj);
826 return 0;
830 * Function irda_accept (sock, newsock, flags)
832 * Wait for incoming connection
835 static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
837 struct sock *sk = sock->sk;
838 struct irda_sock *new, *self = irda_sk(sk);
839 struct sock *newsk;
840 struct sk_buff *skb;
841 int err;
843 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
845 IRDA_ASSERT(self != NULL, return -1;);
847 err = irda_create(newsock, sk->sk_protocol);
848 if (err)
849 return err;
851 if (sock->state != SS_UNCONNECTED)
852 return -EINVAL;
854 if ((sk = sock->sk) == NULL)
855 return -EINVAL;
857 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
858 (sk->sk_type != SOCK_DGRAM))
859 return -EOPNOTSUPP;
861 if (sk->sk_state != TCP_LISTEN)
862 return -EINVAL;
865 * The read queue this time is holding sockets ready to use
866 * hooked into the SABM we saved
870 * We can perform the accept only if there is incoming data
871 * on the listening socket.
872 * So, we will block the caller until we receive any data.
873 * If the caller was waiting on select() or poll() before
874 * calling us, the data is waiting for us ;-)
875 * Jean II
877 skb = skb_dequeue(&sk->sk_receive_queue);
878 if (skb == NULL) {
879 int ret = 0;
880 DECLARE_WAITQUEUE(waitq, current);
882 /* Non blocking operation */
883 if (flags & O_NONBLOCK)
884 return -EWOULDBLOCK;
886 /* The following code is a cut'n'paste of the
887 * wait_event_interruptible() macro.
888 * We don't us the macro because the condition has
889 * side effects : we want to make sure that only one
890 * skb get dequeued - Jean II */
891 add_wait_queue(sk->sk_sleep, &waitq);
892 for (;;) {
893 set_current_state(TASK_INTERRUPTIBLE);
894 skb = skb_dequeue(&sk->sk_receive_queue);
895 if (skb != NULL)
896 break;
897 if (!signal_pending(current)) {
898 schedule();
899 continue;
901 ret = -ERESTARTSYS;
902 break;
904 current->state = TASK_RUNNING;
905 remove_wait_queue(sk->sk_sleep, &waitq);
906 if(ret)
907 return -ERESTARTSYS;
910 newsk = newsock->sk;
911 newsk->sk_state = TCP_ESTABLISHED;
913 new = irda_sk(newsk);
914 IRDA_ASSERT(new != NULL, return -1;);
916 /* Now attach up the new socket */
917 new->tsap = irttp_dup(self->tsap, new);
918 if (!new->tsap) {
919 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
920 kfree_skb(skb);
921 return -1;
924 new->stsap_sel = new->tsap->stsap_sel;
925 new->dtsap_sel = new->tsap->dtsap_sel;
926 new->saddr = irttp_get_saddr(new->tsap);
927 new->daddr = irttp_get_daddr(new->tsap);
929 new->max_sdu_size_tx = self->max_sdu_size_tx;
930 new->max_sdu_size_rx = self->max_sdu_size_rx;
931 new->max_data_size = self->max_data_size;
932 new->max_header_size = self->max_header_size;
934 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
936 /* Clean up the original one to keep it in listen state */
937 irttp_listen(self->tsap);
939 /* Wow ! What is that ? Jean II */
940 skb->sk = NULL;
941 skb->destructor = NULL;
942 kfree_skb(skb);
943 sk->sk_ack_backlog--;
945 newsock->state = SS_CONNECTED;
947 irda_connect_response(new);
949 return 0;
953 * Function irda_connect (sock, uaddr, addr_len, flags)
955 * Connect to a IrDA device
957 * The main difference with a "standard" connect is that with IrDA we need
958 * to resolve the service name into a TSAP selector (in TCP, port number
959 * doesn't have to be resolved).
960 * Because of this service name resoltion, we can offer "auto-connect",
961 * where we connect to a service without specifying a destination address.
963 * Note : by consulting "errno", the user space caller may learn the cause
964 * of the failure. Most of them are visible in the function, others may come
965 * from subroutines called and are listed here :
966 * o EBUSY : already processing a connect
967 * o EHOSTUNREACH : bad addr->sir_addr argument
968 * o EADDRNOTAVAIL : bad addr->sir_name argument
969 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
970 * o ENETUNREACH : no node found on the network (auto-connect)
972 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
973 int addr_len, int flags)
975 struct sock *sk = sock->sk;
976 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
977 struct irda_sock *self = irda_sk(sk);
978 int err;
980 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
982 /* Don't allow connect for Ultra sockets */
983 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
984 return -ESOCKTNOSUPPORT;
986 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
987 sock->state = SS_CONNECTED;
988 return 0; /* Connect completed during a ERESTARTSYS event */
991 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
992 sock->state = SS_UNCONNECTED;
993 return -ECONNREFUSED;
996 if (sk->sk_state == TCP_ESTABLISHED)
997 return -EISCONN; /* No reconnect on a seqpacket socket */
999 sk->sk_state = TCP_CLOSE;
1000 sock->state = SS_UNCONNECTED;
1002 if (addr_len != sizeof(struct sockaddr_irda))
1003 return -EINVAL;
1005 /* Check if user supplied any destination device address */
1006 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
1007 /* Try to find one suitable */
1008 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
1009 if (err) {
1010 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
1011 return err;
1013 } else {
1014 /* Use the one provided by the user */
1015 self->daddr = addr->sir_addr;
1016 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);
1018 /* If we don't have a valid service name, we assume the
1019 * user want to connect on a specific LSAP. Prevent
1020 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1021 if((addr->sir_name[0] != '\0') ||
1022 (addr->sir_lsap_sel >= 0x70)) {
1023 /* Query remote LM-IAS using service name */
1024 err = irda_find_lsap_sel(self, addr->sir_name);
1025 if (err) {
1026 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1027 return err;
1029 } else {
1030 /* Directly connect to the remote LSAP
1031 * specified by the sir_lsap field.
1032 * Please use with caution, in IrDA LSAPs are
1033 * dynamic and there is no "well-known" LSAP. */
1034 self->dtsap_sel = addr->sir_lsap_sel;
1038 /* Check if we have opened a local TSAP */
1039 if (!self->tsap)
1040 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1042 /* Move to connecting socket, start sending Connect Requests */
1043 sock->state = SS_CONNECTING;
1044 sk->sk_state = TCP_SYN_SENT;
1046 /* Connect to remote device */
1047 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1048 self->saddr, self->daddr, NULL,
1049 self->max_sdu_size_rx, NULL);
1050 if (err) {
1051 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1052 return err;
1055 /* Now the loop */
1056 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1057 return -EINPROGRESS;
1059 if (wait_event_interruptible(*(sk->sk_sleep),
1060 (sk->sk_state != TCP_SYN_SENT)))
1061 return -ERESTARTSYS;
1063 if (sk->sk_state != TCP_ESTABLISHED) {
1064 sock->state = SS_UNCONNECTED;
1065 return sock_error(sk); /* Always set at this point */
1068 sock->state = SS_CONNECTED;
1070 /* At this point, IrLMP has assigned our source address */
1071 self->saddr = irttp_get_saddr(self->tsap);
1073 return 0;
1076 static struct proto irda_proto = {
1077 .name = "IRDA",
1078 .owner = THIS_MODULE,
1079 .obj_size = sizeof(struct irda_sock),
1083 * Function irda_create (sock, protocol)
1085 * Create IrDA socket
1088 static int irda_create(struct socket *sock, int protocol)
1090 struct sock *sk;
1091 struct irda_sock *self;
1093 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1095 /* Check for valid socket type */
1096 switch (sock->type) {
1097 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1098 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1099 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1100 break;
1101 default:
1102 return -ESOCKTNOSUPPORT;
1105 /* Allocate networking socket */
1106 sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1);
1107 if (sk == NULL)
1108 return -ENOMEM;
1110 self = irda_sk(sk);
1111 IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);
1113 init_waitqueue_head(&self->query_wait);
1115 /* Initialise networking socket struct */
1116 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1117 sk->sk_family = PF_IRDA;
1118 sk->sk_protocol = protocol;
1120 switch (sock->type) {
1121 case SOCK_STREAM:
1122 sock->ops = &irda_stream_ops;
1123 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1124 break;
1125 case SOCK_SEQPACKET:
1126 sock->ops = &irda_seqpacket_ops;
1127 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1128 break;
1129 case SOCK_DGRAM:
1130 switch (protocol) {
1131 #ifdef CONFIG_IRDA_ULTRA
1132 case IRDAPROTO_ULTRA:
1133 sock->ops = &irda_ultra_ops;
1134 /* Initialise now, because we may send on unbound
1135 * sockets. Jean II */
1136 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1137 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1138 break;
1139 #endif /* CONFIG_IRDA_ULTRA */
1140 case IRDAPROTO_UNITDATA:
1141 sock->ops = &irda_dgram_ops;
1142 /* We let Unitdata conn. be like seqpack conn. */
1143 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1144 break;
1145 default:
1146 IRDA_ERROR("%s: protocol not supported!\n",
1147 __FUNCTION__);
1148 return -ESOCKTNOSUPPORT;
1150 break;
1151 default:
1152 return -ESOCKTNOSUPPORT;
1155 /* Register as a client with IrLMP */
1156 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1157 self->mask.word = 0xffff;
1158 self->rx_flow = self->tx_flow = FLOW_START;
1159 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1160 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1161 self->saddr = 0x0; /* so IrLMP assign us any link */
1162 return 0;
1166 * Function irda_destroy_socket (self)
1168 * Destroy socket
1171 static void irda_destroy_socket(struct irda_sock *self)
1173 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1175 IRDA_ASSERT(self != NULL, return;);
1177 /* Unregister with IrLMP */
1178 irlmp_unregister_client(self->ckey);
1179 irlmp_unregister_service(self->skey);
1181 /* Unregister with LM-IAS */
1182 if (self->ias_obj) {
1183 irias_delete_object(self->ias_obj);
1184 self->ias_obj = NULL;
1187 if (self->iriap) {
1188 iriap_close(self->iriap);
1189 self->iriap = NULL;
1192 if (self->tsap) {
1193 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1194 irttp_close_tsap(self->tsap);
1195 self->tsap = NULL;
1197 #ifdef CONFIG_IRDA_ULTRA
1198 if (self->lsap) {
1199 irlmp_close_lsap(self->lsap);
1200 self->lsap = NULL;
1202 #endif /* CONFIG_IRDA_ULTRA */
1206 * Function irda_release (sock)
1208 static int irda_release(struct socket *sock)
1210 struct sock *sk = sock->sk;
1212 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1214 if (sk == NULL)
1215 return 0;
1217 lock_sock(sk);
1218 sk->sk_state = TCP_CLOSE;
1219 sk->sk_shutdown |= SEND_SHUTDOWN;
1220 sk->sk_state_change(sk);
1222 /* Destroy IrDA socket */
1223 irda_destroy_socket(irda_sk(sk));
1225 sock_orphan(sk);
1226 sock->sk = NULL;
1227 release_sock(sk);
1229 /* Purge queues (see sock_init_data()) */
1230 skb_queue_purge(&sk->sk_receive_queue);
1232 /* Destroy networking socket if we are the last reference on it,
1233 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1234 sock_put(sk);
1236 /* Notes on socket locking and deallocation... - Jean II
1237 * In theory we should put pairs of sock_hold() / sock_put() to
1238 * prevent the socket to be destroyed whenever there is an
1239 * outstanding request or outstanding incoming packet or event.
1241 * 1) This may include IAS request, both in connect and getsockopt.
1242 * Unfortunately, the situation is a bit more messy than it looks,
1243 * because we close iriap and kfree(self) above.
1245 * 2) This may include selective discovery in getsockopt.
1246 * Same stuff as above, irlmp registration and self are gone.
1248 * Probably 1 and 2 may not matter, because it's all triggered
1249 * by a process and the socket layer already prevent the
1250 * socket to go away while a process is holding it, through
1251 * sockfd_put() and fput()...
1253 * 3) This may include deferred TSAP closure. In particular,
1254 * we may receive a late irda_disconnect_indication()
1255 * Fortunately, (tsap_cb *)->close_pend should protect us
1256 * from that.
1258 * I did some testing on SMP, and it looks solid. And the socket
1259 * memory leak is now gone... - Jean II
1262 return 0;
1266 * Function irda_sendmsg (iocb, sock, msg, len)
1268 * Send message down to TinyTP. This function is used for both STREAM and
1269 * SEQPACK services. This is possible since it forces the client to
1270 * fragment the message if necessary
1272 static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1273 struct msghdr *msg, size_t len)
1275 struct sock *sk = sock->sk;
1276 struct irda_sock *self;
1277 struct sk_buff *skb;
1278 unsigned char *asmptr;
1279 int err;
1281 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1283 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1284 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1285 return -EINVAL;
1287 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1288 send_sig(SIGPIPE, current, 0);
1289 return -EPIPE;
1292 if (sk->sk_state != TCP_ESTABLISHED)
1293 return -ENOTCONN;
1295 self = irda_sk(sk);
1296 IRDA_ASSERT(self != NULL, return -1;);
1298 /* Check if IrTTP is wants us to slow down */
1300 if (wait_event_interruptible(*(sk->sk_sleep),
1301 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED)))
1302 return -ERESTARTSYS;
1304 /* Check if we are still connected */
1305 if (sk->sk_state != TCP_ESTABLISHED)
1306 return -ENOTCONN;
1308 /* Check that we don't send out too big frames */
1309 if (len > self->max_data_size) {
1310 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1311 __FUNCTION__, len, self->max_data_size);
1312 len = self->max_data_size;
1315 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1316 msg->msg_flags & MSG_DONTWAIT, &err);
1317 if (!skb)
1318 return -ENOBUFS;
1320 skb_reserve(skb, self->max_header_size + 16);
1322 asmptr = skb->h.raw = skb_put(skb, len);
1323 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1324 if (err) {
1325 kfree_skb(skb);
1326 return err;
1330 * Just send the message to TinyTP, and let it deal with possible
1331 * errors. No need to duplicate all that here
1333 err = irttp_data_request(self->tsap, skb);
1334 if (err) {
1335 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1336 return err;
1338 /* Tell client how much data we actually sent */
1339 return len;
1343 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1345 * Try to receive message and copy it to user. The frame is discarded
1346 * after being read, regardless of how much the user actually read
1348 static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1349 struct msghdr *msg, size_t size, int flags)
1351 struct sock *sk = sock->sk;
1352 struct irda_sock *self = irda_sk(sk);
1353 struct sk_buff *skb;
1354 size_t copied;
1355 int err;
1357 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1359 IRDA_ASSERT(self != NULL, return -1;);
1360 IRDA_ASSERT(!sock_error(sk), return -1;);
1362 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1363 flags & MSG_DONTWAIT, &err);
1364 if (!skb)
1365 return err;
1367 skb->h.raw = skb->data;
1368 copied = skb->len;
1370 if (copied > size) {
1371 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1372 __FUNCTION__, copied, size);
1373 copied = size;
1374 msg->msg_flags |= MSG_TRUNC;
1376 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1378 skb_free_datagram(sk, skb);
1381 * Check if we have previously stopped IrTTP and we know
1382 * have more free space in our rx_queue. If so tell IrTTP
1383 * to start delivering frames again before our rx_queue gets
1384 * empty
1386 if (self->rx_flow == FLOW_STOP) {
1387 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1388 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1389 self->rx_flow = FLOW_START;
1390 irttp_flow_request(self->tsap, FLOW_START);
1394 return copied;
1398 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1400 static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1401 struct msghdr *msg, size_t size, int flags)
1403 struct sock *sk = sock->sk;
1404 struct irda_sock *self = irda_sk(sk);
1405 int noblock = flags & MSG_DONTWAIT;
1406 size_t copied = 0;
1407 int target = 1;
1408 DECLARE_WAITQUEUE(waitq, current);
1410 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
1412 IRDA_ASSERT(self != NULL, return -1;);
1413 IRDA_ASSERT(!sock_error(sk), return -1;);
1415 if (sock->flags & __SO_ACCEPTCON)
1416 return(-EINVAL);
1418 if (flags & MSG_OOB)
1419 return -EOPNOTSUPP;
1421 if (flags & MSG_WAITALL)
1422 target = size;
1424 msg->msg_namelen = 0;
1426 do {
1427 int chunk;
1428 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1430 if (skb==NULL) {
1431 int ret = 0;
1433 if (copied >= target)
1434 break;
1436 /* The following code is a cut'n'paste of the
1437 * wait_event_interruptible() macro.
1438 * We don't us the macro because the test condition
1439 * is messy. - Jean II */
1440 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1441 add_wait_queue(sk->sk_sleep, &waitq);
1442 set_current_state(TASK_INTERRUPTIBLE);
1445 * POSIX 1003.1g mandates this order.
1447 ret = sock_error(sk);
1448 if (ret)
1449 break;
1450 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1452 else if (noblock)
1453 ret = -EAGAIN;
1454 else if (signal_pending(current))
1455 ret = -ERESTARTSYS;
1456 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1457 /* Wait process until data arrives */
1458 schedule();
1460 current->state = TASK_RUNNING;
1461 remove_wait_queue(sk->sk_sleep, &waitq);
1462 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1464 if(ret)
1465 return(ret);
1466 if (sk->sk_shutdown & RCV_SHUTDOWN)
1467 break;
1469 continue;
1472 chunk = min_t(unsigned int, skb->len, size);
1473 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1474 skb_queue_head(&sk->sk_receive_queue, skb);
1475 if (copied == 0)
1476 copied = -EFAULT;
1477 break;
1479 copied += chunk;
1480 size -= chunk;
1482 /* Mark read part of skb as used */
1483 if (!(flags & MSG_PEEK)) {
1484 skb_pull(skb, chunk);
1486 /* put the skb back if we didn't use it up.. */
1487 if (skb->len) {
1488 IRDA_DEBUG(1, "%s(), back on q!\n",
1489 __FUNCTION__);
1490 skb_queue_head(&sk->sk_receive_queue, skb);
1491 break;
1494 kfree_skb(skb);
1495 } else {
1496 IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);
1498 /* put message back and return */
1499 skb_queue_head(&sk->sk_receive_queue, skb);
1500 break;
1502 } while (size);
1505 * Check if we have previously stopped IrTTP and we know
1506 * have more free space in our rx_queue. If so tell IrTTP
1507 * to start delivering frames again before our rx_queue gets
1508 * empty
1510 if (self->rx_flow == FLOW_STOP) {
1511 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1512 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1513 self->rx_flow = FLOW_START;
1514 irttp_flow_request(self->tsap, FLOW_START);
1518 return copied;
1522 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1524 * Send message down to TinyTP for the unreliable sequenced
1525 * packet service...
1528 static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1529 struct msghdr *msg, size_t len)
1531 struct sock *sk = sock->sk;
1532 struct irda_sock *self;
1533 struct sk_buff *skb;
1534 unsigned char *asmptr;
1535 int err;
1537 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1539 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1540 return -EINVAL;
1542 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1543 send_sig(SIGPIPE, current, 0);
1544 return -EPIPE;
1547 if (sk->sk_state != TCP_ESTABLISHED)
1548 return -ENOTCONN;
1550 self = irda_sk(sk);
1551 IRDA_ASSERT(self != NULL, return -1;);
1554 * Check that we don't send out too big frames. This is an unreliable
1555 * service, so we have no fragmentation and no coalescence
1557 if (len > self->max_data_size) {
1558 IRDA_DEBUG(0, "%s(), Warning to much data! "
1559 "Chopping frame from %zd to %d bytes!\n",
1560 __FUNCTION__, len, self->max_data_size);
1561 len = self->max_data_size;
1564 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1565 msg->msg_flags & MSG_DONTWAIT, &err);
1566 if (!skb)
1567 return -ENOBUFS;
1569 skb_reserve(skb, self->max_header_size);
1571 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1572 asmptr = skb->h.raw = skb_put(skb, len);
1573 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1574 if (err) {
1575 kfree_skb(skb);
1576 return err;
1580 * Just send the message to TinyTP, and let it deal with possible
1581 * errors. No need to duplicate all that here
1583 err = irttp_udata_request(self->tsap, skb);
1584 if (err) {
1585 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1586 return err;
1588 return len;
1592 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1594 * Send message down to IrLMP for the unreliable Ultra
1595 * packet service...
1597 #ifdef CONFIG_IRDA_ULTRA
1598 static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1599 struct msghdr *msg, size_t len)
1601 struct sock *sk = sock->sk;
1602 struct irda_sock *self;
1603 __u8 pid = 0;
1604 int bound = 0;
1605 struct sk_buff *skb;
1606 unsigned char *asmptr;
1607 int err;
1609 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1611 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1612 return -EINVAL;
1614 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1615 send_sig(SIGPIPE, current, 0);
1616 return -EPIPE;
1619 self = irda_sk(sk);
1620 IRDA_ASSERT(self != NULL, return -1;);
1622 /* Check if an address was specified with sendto. Jean II */
1623 if (msg->msg_name) {
1624 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1625 /* Check address, extract pid. Jean II */
1626 if (msg->msg_namelen < sizeof(*addr))
1627 return -EINVAL;
1628 if (addr->sir_family != AF_IRDA)
1629 return -EINVAL;
1631 pid = addr->sir_lsap_sel;
1632 if (pid & 0x80) {
1633 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
1634 return -EOPNOTSUPP;
1636 } else {
1637 /* Check that the socket is properly bound to an Ultra
1638 * port. Jean II */
1639 if ((self->lsap == NULL) ||
1640 (sk->sk_state != TCP_ESTABLISHED)) {
1641 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1642 __FUNCTION__);
1643 return -ENOTCONN;
1645 /* Use PID from socket */
1646 bound = 1;
1650 * Check that we don't send out too big frames. This is an unreliable
1651 * service, so we have no fragmentation and no coalescence
1653 if (len > self->max_data_size) {
1654 IRDA_DEBUG(0, "%s(), Warning to much data! "
1655 "Chopping frame from %zd to %d bytes!\n",
1656 __FUNCTION__, len, self->max_data_size);
1657 len = self->max_data_size;
1660 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1661 msg->msg_flags & MSG_DONTWAIT, &err);
1662 if (!skb)
1663 return -ENOBUFS;
1665 skb_reserve(skb, self->max_header_size);
1667 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1668 asmptr = skb->h.raw = skb_put(skb, len);
1669 err = memcpy_fromiovec(asmptr, msg->msg_iov, len);
1670 if (err) {
1671 kfree_skb(skb);
1672 return err;
1675 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1676 skb, pid);
1677 if (err) {
1678 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1679 return err;
1681 return len;
1683 #endif /* CONFIG_IRDA_ULTRA */
1686 * Function irda_shutdown (sk, how)
1688 static int irda_shutdown(struct socket *sock, int how)
1690 struct sock *sk = sock->sk;
1691 struct irda_sock *self = irda_sk(sk);
1693 IRDA_ASSERT(self != NULL, return -1;);
1695 IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);
1697 sk->sk_state = TCP_CLOSE;
1698 sk->sk_shutdown |= SEND_SHUTDOWN;
1699 sk->sk_state_change(sk);
1701 if (self->iriap) {
1702 iriap_close(self->iriap);
1703 self->iriap = NULL;
1706 if (self->tsap) {
1707 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1708 irttp_close_tsap(self->tsap);
1709 self->tsap = NULL;
1712 /* A few cleanup so the socket look as good as new... */
1713 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1714 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1715 self->saddr = 0x0; /* so IrLMP assign us any link */
1717 return 0;
1721 * Function irda_poll (file, sock, wait)
1723 static unsigned int irda_poll(struct file * file, struct socket *sock,
1724 poll_table *wait)
1726 struct sock *sk = sock->sk;
1727 struct irda_sock *self = irda_sk(sk);
1728 unsigned int mask;
1730 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1732 poll_wait(file, sk->sk_sleep, wait);
1733 mask = 0;
1735 /* Exceptional events? */
1736 if (sk->sk_err)
1737 mask |= POLLERR;
1738 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1739 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1740 mask |= POLLHUP;
1743 /* Readable? */
1744 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1745 IRDA_DEBUG(4, "Socket is readable\n");
1746 mask |= POLLIN | POLLRDNORM;
1749 /* Connection-based need to check for termination and startup */
1750 switch (sk->sk_type) {
1751 case SOCK_STREAM:
1752 if (sk->sk_state == TCP_CLOSE) {
1753 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1754 mask |= POLLHUP;
1757 if (sk->sk_state == TCP_ESTABLISHED) {
1758 if ((self->tx_flow == FLOW_START) &&
1759 sock_writeable(sk))
1761 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1764 break;
1765 case SOCK_SEQPACKET:
1766 if ((self->tx_flow == FLOW_START) &&
1767 sock_writeable(sk))
1769 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1771 break;
1772 case SOCK_DGRAM:
1773 if (sock_writeable(sk))
1774 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1775 break;
1776 default:
1777 break;
1779 return mask;
1783 * Function irda_ioctl (sock, cmd, arg)
1785 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1787 struct sock *sk = sock->sk;
1789 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);
1791 switch (cmd) {
1792 case TIOCOUTQ: {
1793 long amount;
1794 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1795 if (amount < 0)
1796 amount = 0;
1797 if (put_user(amount, (unsigned int __user *)arg))
1798 return -EFAULT;
1799 return 0;
1802 case TIOCINQ: {
1803 struct sk_buff *skb;
1804 long amount = 0L;
1805 /* These two are safe on a single CPU system as only user tasks fiddle here */
1806 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1807 amount = skb->len;
1808 if (put_user(amount, (unsigned int __user *)arg))
1809 return -EFAULT;
1810 return 0;
1813 case SIOCGSTAMP:
1814 if (sk != NULL)
1815 return sock_get_timestamp(sk, (struct timeval __user *)arg);
1816 return -EINVAL;
1818 case SIOCGIFADDR:
1819 case SIOCSIFADDR:
1820 case SIOCGIFDSTADDR:
1821 case SIOCSIFDSTADDR:
1822 case SIOCGIFBRDADDR:
1823 case SIOCSIFBRDADDR:
1824 case SIOCGIFNETMASK:
1825 case SIOCSIFNETMASK:
1826 case SIOCGIFMETRIC:
1827 case SIOCSIFMETRIC:
1828 return -EINVAL;
1829 default:
1830 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
1831 return -ENOIOCTLCMD;
1834 /*NOTREACHED*/
1835 return 0;
1838 #ifdef CONFIG_COMPAT
1840 * Function irda_ioctl (sock, cmd, arg)
1842 static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1845 * All IRDA's ioctl are standard ones.
1847 return -ENOIOCTLCMD;
1849 #endif
1852 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1854 * Set some options for the socket
1857 static int irda_setsockopt(struct socket *sock, int level, int optname,
1858 char __user *optval, int optlen)
1860 struct sock *sk = sock->sk;
1861 struct irda_sock *self = irda_sk(sk);
1862 struct irda_ias_set *ias_opt;
1863 struct ias_object *ias_obj;
1864 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1865 int opt;
1867 IRDA_ASSERT(self != NULL, return -1;);
1869 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1871 if (level != SOL_IRLMP)
1872 return -ENOPROTOOPT;
1874 switch (optname) {
1875 case IRLMP_IAS_SET:
1876 /* The user want to add an attribute to an existing IAS object
1877 * (in the IAS database) or to create a new object with this
1878 * attribute.
1879 * We first query IAS to know if the object exist, and then
1880 * create the right attribute...
1883 if (optlen != sizeof(struct irda_ias_set))
1884 return -EINVAL;
1886 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1887 if (ias_opt == NULL)
1888 return -ENOMEM;
1890 /* Copy query to the driver. */
1891 if (copy_from_user(ias_opt, optval, optlen)) {
1892 kfree(ias_opt);
1893 return -EFAULT;
1896 /* Find the object we target.
1897 * If the user gives us an empty string, we use the object
1898 * associated with this socket. This will workaround
1899 * duplicated class name - Jean II */
1900 if(ias_opt->irda_class_name[0] == '\0') {
1901 if(self->ias_obj == NULL) {
1902 kfree(ias_opt);
1903 return -EINVAL;
1905 ias_obj = self->ias_obj;
1906 } else
1907 ias_obj = irias_find_object(ias_opt->irda_class_name);
1909 /* Only ROOT can mess with the global IAS database.
1910 * Users can only add attributes to the object associated
1911 * with the socket they own - Jean II */
1912 if((!capable(CAP_NET_ADMIN)) &&
1913 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1914 kfree(ias_opt);
1915 return -EPERM;
1918 /* If the object doesn't exist, create it */
1919 if(ias_obj == (struct ias_object *) NULL) {
1920 /* Create a new object */
1921 ias_obj = irias_new_object(ias_opt->irda_class_name,
1922 jiffies);
1925 /* Do we have the attribute already ? */
1926 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1927 kfree(ias_opt);
1928 return -EINVAL;
1931 /* Look at the type */
1932 switch(ias_opt->irda_attrib_type) {
1933 case IAS_INTEGER:
1934 /* Add an integer attribute */
1935 irias_add_integer_attrib(
1936 ias_obj,
1937 ias_opt->irda_attrib_name,
1938 ias_opt->attribute.irda_attrib_int,
1939 IAS_USER_ATTR);
1940 break;
1941 case IAS_OCT_SEQ:
1942 /* Check length */
1943 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1944 IAS_MAX_OCTET_STRING) {
1945 kfree(ias_opt);
1946 return -EINVAL;
1948 /* Add an octet sequence attribute */
1949 irias_add_octseq_attrib(
1950 ias_obj,
1951 ias_opt->irda_attrib_name,
1952 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1953 ias_opt->attribute.irda_attrib_octet_seq.len,
1954 IAS_USER_ATTR);
1955 break;
1956 case IAS_STRING:
1957 /* Should check charset & co */
1958 /* Check length */
1959 /* The length is encoded in a __u8, and
1960 * IAS_MAX_STRING == 256, so there is no way
1961 * userspace can pass us a string too large.
1962 * Jean II */
1963 /* NULL terminate the string (avoid troubles) */
1964 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
1965 /* Add a string attribute */
1966 irias_add_string_attrib(
1967 ias_obj,
1968 ias_opt->irda_attrib_name,
1969 ias_opt->attribute.irda_attrib_string.string,
1970 IAS_USER_ATTR);
1971 break;
1972 default :
1973 kfree(ias_opt);
1974 return -EINVAL;
1976 irias_insert_object(ias_obj);
1977 kfree(ias_opt);
1978 break;
1979 case IRLMP_IAS_DEL:
1980 /* The user want to delete an object from our local IAS
1981 * database. We just need to query the IAS, check is the
1982 * object is not owned by the kernel and delete it.
1985 if (optlen != sizeof(struct irda_ias_set))
1986 return -EINVAL;
1988 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1989 if (ias_opt == NULL)
1990 return -ENOMEM;
1992 /* Copy query to the driver. */
1993 if (copy_from_user(ias_opt, optval, optlen)) {
1994 kfree(ias_opt);
1995 return -EFAULT;
1998 /* Find the object we target.
1999 * If the user gives us an empty string, we use the object
2000 * associated with this socket. This will workaround
2001 * duplicated class name - Jean II */
2002 if(ias_opt->irda_class_name[0] == '\0')
2003 ias_obj = self->ias_obj;
2004 else
2005 ias_obj = irias_find_object(ias_opt->irda_class_name);
2006 if(ias_obj == (struct ias_object *) NULL) {
2007 kfree(ias_opt);
2008 return -EINVAL;
2011 /* Only ROOT can mess with the global IAS database.
2012 * Users can only del attributes from the object associated
2013 * with the socket they own - Jean II */
2014 if((!capable(CAP_NET_ADMIN)) &&
2015 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2016 kfree(ias_opt);
2017 return -EPERM;
2020 /* Find the attribute (in the object) we target */
2021 ias_attr = irias_find_attrib(ias_obj,
2022 ias_opt->irda_attrib_name);
2023 if(ias_attr == (struct ias_attrib *) NULL) {
2024 kfree(ias_opt);
2025 return -EINVAL;
2028 /* Check is the user space own the object */
2029 if(ias_attr->value->owner != IAS_USER_ATTR) {
2030 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
2031 kfree(ias_opt);
2032 return -EPERM;
2035 /* Remove the attribute (and maybe the object) */
2036 irias_delete_attrib(ias_obj, ias_attr, 1);
2037 kfree(ias_opt);
2038 break;
2039 case IRLMP_MAX_SDU_SIZE:
2040 if (optlen < sizeof(int))
2041 return -EINVAL;
2043 if (get_user(opt, (int __user *)optval))
2044 return -EFAULT;
2046 /* Only possible for a seqpacket service (TTP with SAR) */
2047 if (sk->sk_type != SOCK_SEQPACKET) {
2048 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2049 __FUNCTION__, opt);
2050 self->max_sdu_size_rx = opt;
2051 } else {
2052 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2053 __FUNCTION__);
2054 return -ENOPROTOOPT;
2056 break;
2057 case IRLMP_HINTS_SET:
2058 if (optlen < sizeof(int))
2059 return -EINVAL;
2061 /* The input is really a (__u8 hints[2]), easier as an int */
2062 if (get_user(opt, (int __user *)optval))
2063 return -EFAULT;
2065 /* Unregister any old registration */
2066 if (self->skey)
2067 irlmp_unregister_service(self->skey);
2069 self->skey = irlmp_register_service((__u16) opt);
2070 break;
2071 case IRLMP_HINT_MASK_SET:
2072 /* As opposed to the previous case which set the hint bits
2073 * that we advertise, this one set the filter we use when
2074 * making a discovery (nodes which don't match any hint
2075 * bit in the mask are not reported).
2077 if (optlen < sizeof(int))
2078 return -EINVAL;
2080 /* The input is really a (__u8 hints[2]), easier as an int */
2081 if (get_user(opt, (int __user *)optval))
2082 return -EFAULT;
2084 /* Set the new hint mask */
2085 self->mask.word = (__u16) opt;
2086 /* Mask out extension bits */
2087 self->mask.word &= 0x7f7f;
2088 /* Check if no bits */
2089 if(!self->mask.word)
2090 self->mask.word = 0xFFFF;
2092 break;
2093 default:
2094 return -ENOPROTOOPT;
2096 return 0;
2100 * Function irda_extract_ias_value(ias_opt, ias_value)
2102 * Translate internal IAS value structure to the user space representation
2104 * The external representation of IAS values, as we exchange them with
2105 * user space program is quite different from the internal representation,
2106 * as stored in the IAS database (because we need a flat structure for
2107 * crossing kernel boundary).
2108 * This function transform the former in the latter. We also check
2109 * that the value type is valid.
2111 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2112 struct ias_value *ias_value)
2114 /* Look at the type */
2115 switch (ias_value->type) {
2116 case IAS_INTEGER:
2117 /* Copy the integer */
2118 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2119 break;
2120 case IAS_OCT_SEQ:
2121 /* Set length */
2122 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2123 /* Copy over */
2124 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2125 ias_value->t.oct_seq, ias_value->len);
2126 break;
2127 case IAS_STRING:
2128 /* Set length */
2129 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2130 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2131 /* Copy over */
2132 memcpy(ias_opt->attribute.irda_attrib_string.string,
2133 ias_value->t.string, ias_value->len);
2134 /* NULL terminate the string (avoid troubles) */
2135 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2136 break;
2137 case IAS_MISSING:
2138 default :
2139 return -EINVAL;
2142 /* Copy type over */
2143 ias_opt->irda_attrib_type = ias_value->type;
2145 return 0;
2149 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2151 static int irda_getsockopt(struct socket *sock, int level, int optname,
2152 char __user *optval, int __user *optlen)
2154 struct sock *sk = sock->sk;
2155 struct irda_sock *self = irda_sk(sk);
2156 struct irda_device_list list;
2157 struct irda_device_info *discoveries;
2158 struct irda_ias_set * ias_opt; /* IAS get/query params */
2159 struct ias_object * ias_obj; /* Object in IAS */
2160 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2161 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2162 int val = 0;
2163 int len = 0;
2164 int err;
2165 int offset, total;
2167 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
2169 if (level != SOL_IRLMP)
2170 return -ENOPROTOOPT;
2172 if (get_user(len, optlen))
2173 return -EFAULT;
2175 if(len < 0)
2176 return -EINVAL;
2178 switch (optname) {
2179 case IRLMP_ENUMDEVICES:
2180 /* Ask lmp for the current discovery log */
2181 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2182 self->nslots);
2183 /* Check if the we got some results */
2184 if (discoveries == NULL)
2185 return -EAGAIN; /* Didn't find any devices */
2186 err = 0;
2188 /* Write total list length back to client */
2189 if (copy_to_user(optval, &list,
2190 sizeof(struct irda_device_list) -
2191 sizeof(struct irda_device_info)))
2192 err = -EFAULT;
2194 /* Offset to first device entry */
2195 offset = sizeof(struct irda_device_list) -
2196 sizeof(struct irda_device_info);
2198 /* Copy the list itself - watch for overflow */
2199 if(list.len > 2048)
2201 err = -EINVAL;
2202 goto bed;
2204 total = offset + (list.len * sizeof(struct irda_device_info));
2205 if (total > len)
2206 total = len;
2207 if (copy_to_user(optval+offset, discoveries, total - offset))
2208 err = -EFAULT;
2210 /* Write total number of bytes used back to client */
2211 if (put_user(total, optlen))
2212 err = -EFAULT;
2213 bed:
2214 /* Free up our buffer */
2215 kfree(discoveries);
2216 if (err)
2217 return err;
2218 break;
2219 case IRLMP_MAX_SDU_SIZE:
2220 val = self->max_data_size;
2221 len = sizeof(int);
2222 if (put_user(len, optlen))
2223 return -EFAULT;
2225 if (copy_to_user(optval, &val, len))
2226 return -EFAULT;
2227 break;
2228 case IRLMP_IAS_GET:
2229 /* The user want an object from our local IAS database.
2230 * We just need to query the IAS and return the value
2231 * that we found */
2233 /* Check that the user has allocated the right space for us */
2234 if (len != sizeof(struct irda_ias_set))
2235 return -EINVAL;
2237 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2238 if (ias_opt == NULL)
2239 return -ENOMEM;
2241 /* Copy query to the driver. */
2242 if (copy_from_user(ias_opt, optval, len)) {
2243 kfree(ias_opt);
2244 return -EFAULT;
2247 /* Find the object we target.
2248 * If the user gives us an empty string, we use the object
2249 * associated with this socket. This will workaround
2250 * duplicated class name - Jean II */
2251 if(ias_opt->irda_class_name[0] == '\0')
2252 ias_obj = self->ias_obj;
2253 else
2254 ias_obj = irias_find_object(ias_opt->irda_class_name);
2255 if(ias_obj == (struct ias_object *) NULL) {
2256 kfree(ias_opt);
2257 return -EINVAL;
2260 /* Find the attribute (in the object) we target */
2261 ias_attr = irias_find_attrib(ias_obj,
2262 ias_opt->irda_attrib_name);
2263 if(ias_attr == (struct ias_attrib *) NULL) {
2264 kfree(ias_opt);
2265 return -EINVAL;
2268 /* Translate from internal to user structure */
2269 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2270 if(err) {
2271 kfree(ias_opt);
2272 return err;
2275 /* Copy reply to the user */
2276 if (copy_to_user(optval, ias_opt,
2277 sizeof(struct irda_ias_set))) {
2278 kfree(ias_opt);
2279 return -EFAULT;
2281 /* Note : don't need to put optlen, we checked it */
2282 kfree(ias_opt);
2283 break;
2284 case IRLMP_IAS_QUERY:
2285 /* The user want an object from a remote IAS database.
2286 * We need to use IAP to query the remote database and
2287 * then wait for the answer to come back. */
2289 /* Check that the user has allocated the right space for us */
2290 if (len != sizeof(struct irda_ias_set))
2291 return -EINVAL;
2293 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2294 if (ias_opt == NULL)
2295 return -ENOMEM;
2297 /* Copy query to the driver. */
2298 if (copy_from_user(ias_opt, optval, len)) {
2299 kfree(ias_opt);
2300 return -EFAULT;
2303 /* At this point, there are two cases...
2304 * 1) the socket is connected - that's the easy case, we
2305 * just query the device we are connected to...
2306 * 2) the socket is not connected - the user doesn't want
2307 * to connect and/or may not have a valid service name
2308 * (so can't create a fake connection). In this case,
2309 * we assume that the user pass us a valid destination
2310 * address in the requesting structure...
2312 if(self->daddr != DEV_ADDR_ANY) {
2313 /* We are connected - reuse known daddr */
2314 daddr = self->daddr;
2315 } else {
2316 /* We are not connected, we must specify a valid
2317 * destination address */
2318 daddr = ias_opt->daddr;
2319 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2320 kfree(ias_opt);
2321 return -EINVAL;
2325 /* Check that we can proceed with IAP */
2326 if (self->iriap) {
2327 IRDA_WARNING("%s: busy with a previous query\n",
2328 __FUNCTION__);
2329 kfree(ias_opt);
2330 return -EBUSY;
2333 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2334 irda_getvalue_confirm);
2336 if (self->iriap == NULL) {
2337 kfree(ias_opt);
2338 return -ENOMEM;
2341 /* Treat unexpected wakeup as disconnect */
2342 self->errno = -EHOSTUNREACH;
2344 /* Query remote LM-IAS */
2345 iriap_getvaluebyclass_request(self->iriap,
2346 self->saddr, daddr,
2347 ias_opt->irda_class_name,
2348 ias_opt->irda_attrib_name);
2350 /* Wait for answer, if not yet finished (or failed) */
2351 if (wait_event_interruptible(self->query_wait,
2352 (self->iriap == NULL))) {
2353 /* pending request uses copy of ias_opt-content
2354 * we can free it regardless! */
2355 kfree(ias_opt);
2356 /* Treat signals as disconnect */
2357 return -EHOSTUNREACH;
2360 /* Check what happened */
2361 if (self->errno)
2363 kfree(ias_opt);
2364 /* Requested object/attribute doesn't exist */
2365 if((self->errno == IAS_CLASS_UNKNOWN) ||
2366 (self->errno == IAS_ATTRIB_UNKNOWN))
2367 return (-EADDRNOTAVAIL);
2368 else
2369 return (-EHOSTUNREACH);
2372 /* Translate from internal to user structure */
2373 err = irda_extract_ias_value(ias_opt, self->ias_result);
2374 if (self->ias_result)
2375 irias_delete_value(self->ias_result);
2376 if (err) {
2377 kfree(ias_opt);
2378 return err;
2381 /* Copy reply to the user */
2382 if (copy_to_user(optval, ias_opt,
2383 sizeof(struct irda_ias_set))) {
2384 kfree(ias_opt);
2385 return -EFAULT;
2387 /* Note : don't need to put optlen, we checked it */
2388 kfree(ias_opt);
2389 break;
2390 case IRLMP_WAITDEVICE:
2391 /* This function is just another way of seeing life ;-)
2392 * IRLMP_ENUMDEVICES assumes that you have a static network,
2393 * and that you just want to pick one of the devices present.
2394 * On the other hand, in here we assume that no device is
2395 * present and that at some point in the future a device will
2396 * come into range. When this device arrive, we just wake
2397 * up the caller, so that he has time to connect to it before
2398 * the device goes away...
2399 * Note : once the node has been discovered for more than a
2400 * few second, it won't trigger this function, unless it
2401 * goes away and come back changes its hint bits (so we
2402 * might call it IRLMP_WAITNEWDEVICE).
2405 /* Check that the user is passing us an int */
2406 if (len != sizeof(int))
2407 return -EINVAL;
2408 /* Get timeout in ms (max time we block the caller) */
2409 if (get_user(val, (int __user *)optval))
2410 return -EFAULT;
2412 /* Tell IrLMP we want to be notified */
2413 irlmp_update_client(self->ckey, self->mask.word,
2414 irda_selective_discovery_indication,
2415 NULL, (void *) self);
2417 /* Do some discovery (and also return cached results) */
2418 irlmp_discovery_request(self->nslots);
2420 /* Wait until a node is discovered */
2421 if (!self->cachedaddr) {
2422 int ret = 0;
2424 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);
2426 /* Set watchdog timer to expire in <val> ms. */
2427 self->errno = 0;
2428 init_timer(&self->watchdog);
2429 self->watchdog.function = irda_discovery_timeout;
2430 self->watchdog.data = (unsigned long) self;
2431 self->watchdog.expires = jiffies + (val * HZ/1000);
2432 add_timer(&(self->watchdog));
2434 /* Wait for IR-LMP to call us back */
2435 __wait_event_interruptible(self->query_wait,
2436 (self->cachedaddr != 0 || self->errno == -ETIME),
2437 ret);
2439 /* If watchdog is still activated, kill it! */
2440 if(timer_pending(&(self->watchdog)))
2441 del_timer(&(self->watchdog));
2443 IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);
2445 if (ret != 0)
2446 return ret;
2448 else
2449 IRDA_DEBUG(1, "%s(), found immediately !\n",
2450 __FUNCTION__);
2452 /* Tell IrLMP that we have been notified */
2453 irlmp_update_client(self->ckey, self->mask.word,
2454 NULL, NULL, NULL);
2456 /* Check if the we got some results */
2457 if (!self->cachedaddr)
2458 return -EAGAIN; /* Didn't find any devices */
2459 daddr = self->cachedaddr;
2460 /* Cleanup */
2461 self->cachedaddr = 0;
2463 /* We return the daddr of the device that trigger the
2464 * wakeup. As irlmp pass us only the new devices, we
2465 * are sure that it's not an old device.
2466 * If the user want more details, he should query
2467 * the whole discovery log and pick one device...
2469 if (put_user(daddr, (int __user *)optval))
2470 return -EFAULT;
2472 break;
2473 default:
2474 return -ENOPROTOOPT;
2477 return 0;
2480 static struct net_proto_family irda_family_ops = {
2481 .family = PF_IRDA,
2482 .create = irda_create,
2483 .owner = THIS_MODULE,
2486 static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
2487 .family = PF_IRDA,
2488 .owner = THIS_MODULE,
2489 .release = irda_release,
2490 .bind = irda_bind,
2491 .connect = irda_connect,
2492 .socketpair = sock_no_socketpair,
2493 .accept = irda_accept,
2494 .getname = irda_getname,
2495 .poll = irda_poll,
2496 .ioctl = irda_ioctl,
2497 #ifdef CONFIG_COMPAT
2498 .compat_ioctl = irda_compat_ioctl,
2499 #endif
2500 .listen = irda_listen,
2501 .shutdown = irda_shutdown,
2502 .setsockopt = irda_setsockopt,
2503 .getsockopt = irda_getsockopt,
2504 .sendmsg = irda_sendmsg,
2505 .recvmsg = irda_recvmsg_stream,
2506 .mmap = sock_no_mmap,
2507 .sendpage = sock_no_sendpage,
2510 static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
2511 .family = PF_IRDA,
2512 .owner = THIS_MODULE,
2513 .release = irda_release,
2514 .bind = irda_bind,
2515 .connect = irda_connect,
2516 .socketpair = sock_no_socketpair,
2517 .accept = irda_accept,
2518 .getname = irda_getname,
2519 .poll = datagram_poll,
2520 .ioctl = irda_ioctl,
2521 #ifdef CONFIG_COMPAT
2522 .compat_ioctl = irda_compat_ioctl,
2523 #endif
2524 .listen = irda_listen,
2525 .shutdown = irda_shutdown,
2526 .setsockopt = irda_setsockopt,
2527 .getsockopt = irda_getsockopt,
2528 .sendmsg = irda_sendmsg,
2529 .recvmsg = irda_recvmsg_dgram,
2530 .mmap = sock_no_mmap,
2531 .sendpage = sock_no_sendpage,
2534 static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
2535 .family = PF_IRDA,
2536 .owner = THIS_MODULE,
2537 .release = irda_release,
2538 .bind = irda_bind,
2539 .connect = irda_connect,
2540 .socketpair = sock_no_socketpair,
2541 .accept = irda_accept,
2542 .getname = irda_getname,
2543 .poll = datagram_poll,
2544 .ioctl = irda_ioctl,
2545 #ifdef CONFIG_COMPAT
2546 .compat_ioctl = irda_compat_ioctl,
2547 #endif
2548 .listen = irda_listen,
2549 .shutdown = irda_shutdown,
2550 .setsockopt = irda_setsockopt,
2551 .getsockopt = irda_getsockopt,
2552 .sendmsg = irda_sendmsg_dgram,
2553 .recvmsg = irda_recvmsg_dgram,
2554 .mmap = sock_no_mmap,
2555 .sendpage = sock_no_sendpage,
2558 #ifdef CONFIG_IRDA_ULTRA
2559 static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
2560 .family = PF_IRDA,
2561 .owner = THIS_MODULE,
2562 .release = irda_release,
2563 .bind = irda_bind,
2564 .connect = sock_no_connect,
2565 .socketpair = sock_no_socketpair,
2566 .accept = sock_no_accept,
2567 .getname = irda_getname,
2568 .poll = datagram_poll,
2569 .ioctl = irda_ioctl,
2570 #ifdef CONFIG_COMPAT
2571 .compat_ioctl = irda_compat_ioctl,
2572 #endif
2573 .listen = sock_no_listen,
2574 .shutdown = irda_shutdown,
2575 .setsockopt = irda_setsockopt,
2576 .getsockopt = irda_getsockopt,
2577 .sendmsg = irda_sendmsg_ultra,
2578 .recvmsg = irda_recvmsg_dgram,
2579 .mmap = sock_no_mmap,
2580 .sendpage = sock_no_sendpage,
2582 #endif /* CONFIG_IRDA_ULTRA */
2584 #include <linux/smp_lock.h>
2585 SOCKOPS_WRAP(irda_stream, PF_IRDA);
2586 SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
2587 SOCKOPS_WRAP(irda_dgram, PF_IRDA);
2588 #ifdef CONFIG_IRDA_ULTRA
2589 SOCKOPS_WRAP(irda_ultra, PF_IRDA);
2590 #endif /* CONFIG_IRDA_ULTRA */
2593 * Function irsock_init (pro)
2595 * Initialize IrDA protocol
2598 int __init irsock_init(void)
2600 int rc = proto_register(&irda_proto, 0);
2602 if (rc == 0)
2603 rc = sock_register(&irda_family_ops);
2605 return rc;
2609 * Function irsock_cleanup (void)
2611 * Remove IrDA protocol
2614 void __exit irsock_cleanup(void)
2616 sock_unregister(PF_IRDA);
2617 proto_unregister(&irda_proto);