2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios
= { /* for the benefit of tty drivers */
113 .c_iflag
= ICRNL
| IXON
,
114 .c_oflag
= OPOST
| ONLCR
,
115 .c_cflag
= B38400
| CS8
| CREAD
| HUPCL
,
116 .c_lflag
= ISIG
| ICANON
| ECHO
| ECHOE
| ECHOK
|
117 ECHOCTL
| ECHOKE
| IEXTEN
,
123 EXPORT_SYMBOL(tty_std_termios
);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
129 LIST_HEAD(tty_drivers
); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex
);
134 EXPORT_SYMBOL(tty_mutex
);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver
*ptm_driver
; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit
; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys
);
140 static DECLARE_MUTEX(allocated_ptys_lock
);
141 static int ptmx_open(struct inode
*, struct file
*);
144 extern void disable_early_printk(void);
146 static void initialize_tty_struct(struct tty_struct
*tty
);
148 static ssize_t
tty_read(struct file
*, char __user
*, size_t, loff_t
*);
149 static ssize_t
tty_write(struct file
*, const char __user
*, size_t, loff_t
*);
150 ssize_t
redirected_tty_write(struct file
*, const char __user
*, size_t, loff_t
*);
151 static unsigned int tty_poll(struct file
*, poll_table
*);
152 static int tty_open(struct inode
*, struct file
*);
153 static int tty_release(struct inode
*, struct file
*);
154 int tty_ioctl(struct inode
* inode
, struct file
* file
,
155 unsigned int cmd
, unsigned long arg
);
156 static int tty_fasync(int fd
, struct file
* filp
, int on
);
157 static void release_tty(struct tty_struct
*tty
, int idx
);
158 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
);
161 * alloc_tty_struct - allocate a tty object
163 * Return a new empty tty structure. The data fields have not
164 * been initialized in any way but has been zeroed
169 static struct tty_struct
*alloc_tty_struct(void)
171 return kzalloc(sizeof(struct tty_struct
), GFP_KERNEL
);
174 static void tty_buffer_free_all(struct tty_struct
*);
177 * free_tty_struct - free a disused tty
178 * @tty: tty struct to free
180 * Free the write buffers, tty queue and tty memory itself.
182 * Locking: none. Must be called after tty is definitely unused
185 static inline void free_tty_struct(struct tty_struct
*tty
)
187 kfree(tty
->write_buf
);
188 tty_buffer_free_all(tty
);
192 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
195 * tty_name - return tty naming
196 * @tty: tty structure
197 * @buf: buffer for output
199 * Convert a tty structure into a name. The name reflects the kernel
200 * naming policy and if udev is in use may not reflect user space
205 char *tty_name(struct tty_struct
*tty
, char *buf
)
207 if (!tty
) /* Hmm. NULL pointer. That's fun. */
208 strcpy(buf
, "NULL tty");
210 strcpy(buf
, tty
->name
);
214 EXPORT_SYMBOL(tty_name
);
216 int tty_paranoia_check(struct tty_struct
*tty
, struct inode
*inode
,
219 #ifdef TTY_PARANOIA_CHECK
222 "null TTY for (%d:%d) in %s\n",
223 imajor(inode
), iminor(inode
), routine
);
226 if (tty
->magic
!= TTY_MAGIC
) {
228 "bad magic number for tty struct (%d:%d) in %s\n",
229 imajor(inode
), iminor(inode
), routine
);
236 static int check_tty_count(struct tty_struct
*tty
, const char *routine
)
238 #ifdef CHECK_TTY_COUNT
243 list_for_each(p
, &tty
->tty_files
) {
247 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
248 tty
->driver
->subtype
== PTY_TYPE_SLAVE
&&
249 tty
->link
&& tty
->link
->count
)
251 if (tty
->count
!= count
) {
252 printk(KERN_WARNING
"Warning: dev (%s) tty->count(%d) "
253 "!= #fd's(%d) in %s\n",
254 tty
->name
, tty
->count
, count
, routine
);
262 * Tty buffer allocation management
266 * tty_buffer_free_all - free buffers used by a tty
267 * @tty: tty to free from
269 * Remove all the buffers pending on a tty whether queued with data
270 * or in the free ring. Must be called when the tty is no longer in use
275 static void tty_buffer_free_all(struct tty_struct
*tty
)
277 struct tty_buffer
*thead
;
278 while((thead
= tty
->buf
.head
) != NULL
) {
279 tty
->buf
.head
= thead
->next
;
282 while((thead
= tty
->buf
.free
) != NULL
) {
283 tty
->buf
.free
= thead
->next
;
286 tty
->buf
.tail
= NULL
;
287 tty
->buf
.memory_used
= 0;
291 * tty_buffer_init - prepare a tty buffer structure
292 * @tty: tty to initialise
294 * Set up the initial state of the buffer management for a tty device.
295 * Must be called before the other tty buffer functions are used.
300 static void tty_buffer_init(struct tty_struct
*tty
)
302 spin_lock_init(&tty
->buf
.lock
);
303 tty
->buf
.head
= NULL
;
304 tty
->buf
.tail
= NULL
;
305 tty
->buf
.free
= NULL
;
306 tty
->buf
.memory_used
= 0;
310 * tty_buffer_alloc - allocate a tty buffer
312 * @size: desired size (characters)
314 * Allocate a new tty buffer to hold the desired number of characters.
315 * Return NULL if out of memory or the allocation would exceed the
318 * Locking: Caller must hold tty->buf.lock
321 static struct tty_buffer
*tty_buffer_alloc(struct tty_struct
*tty
, size_t size
)
323 struct tty_buffer
*p
;
325 if (tty
->buf
.memory_used
+ size
> 65536)
327 p
= kmalloc(sizeof(struct tty_buffer
) + 2 * size
, GFP_ATOMIC
);
335 p
->char_buf_ptr
= (char *)(p
->data
);
336 p
->flag_buf_ptr
= (unsigned char *)p
->char_buf_ptr
+ size
;
337 tty
->buf
.memory_used
+= size
;
342 * tty_buffer_free - free a tty buffer
343 * @tty: tty owning the buffer
344 * @b: the buffer to free
346 * Free a tty buffer, or add it to the free list according to our
349 * Locking: Caller must hold tty->buf.lock
352 static void tty_buffer_free(struct tty_struct
*tty
, struct tty_buffer
*b
)
354 /* Dumb strategy for now - should keep some stats */
355 tty
->buf
.memory_used
-= b
->size
;
356 WARN_ON(tty
->buf
.memory_used
< 0);
361 b
->next
= tty
->buf
.free
;
367 * tty_buffer_find - find a free tty buffer
368 * @tty: tty owning the buffer
369 * @size: characters wanted
371 * Locate an existing suitable tty buffer or if we are lacking one then
372 * allocate a new one. We round our buffers off in 256 character chunks
373 * to get better allocation behaviour.
375 * Locking: Caller must hold tty->buf.lock
378 static struct tty_buffer
*tty_buffer_find(struct tty_struct
*tty
, size_t size
)
380 struct tty_buffer
**tbh
= &tty
->buf
.free
;
381 while((*tbh
) != NULL
) {
382 struct tty_buffer
*t
= *tbh
;
383 if(t
->size
>= size
) {
389 tty
->buf
.memory_used
+= t
->size
;
392 tbh
= &((*tbh
)->next
);
394 /* Round the buffer size out */
395 size
= (size
+ 0xFF) & ~ 0xFF;
396 return tty_buffer_alloc(tty
, size
);
397 /* Should possibly check if this fails for the largest buffer we
398 have queued and recycle that ? */
402 * tty_buffer_request_room - grow tty buffer if needed
403 * @tty: tty structure
404 * @size: size desired
406 * Make at least size bytes of linear space available for the tty
407 * buffer. If we fail return the size we managed to find.
409 * Locking: Takes tty->buf.lock
411 int tty_buffer_request_room(struct tty_struct
*tty
, size_t size
)
413 struct tty_buffer
*b
, *n
;
417 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
419 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
420 remove this conditional if its worth it. This would be invisible
422 if ((b
= tty
->buf
.tail
) != NULL
)
423 left
= b
->size
- b
->used
;
428 /* This is the slow path - looking for new buffers to use */
429 if ((n
= tty_buffer_find(tty
, size
)) != NULL
) {
440 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
443 EXPORT_SYMBOL_GPL(tty_buffer_request_room
);
446 * tty_insert_flip_string - Add characters to the tty buffer
447 * @tty: tty structure
451 * Queue a series of bytes to the tty buffering. All the characters
452 * passed are marked as without error. Returns the number added.
454 * Locking: Called functions may take tty->buf.lock
457 int tty_insert_flip_string(struct tty_struct
*tty
, const unsigned char *chars
,
462 int space
= tty_buffer_request_room(tty
, size
- copied
);
463 struct tty_buffer
*tb
= tty
->buf
.tail
;
464 /* If there is no space then tb may be NULL */
465 if(unlikely(space
== 0))
467 memcpy(tb
->char_buf_ptr
+ tb
->used
, chars
, space
);
468 memset(tb
->flag_buf_ptr
+ tb
->used
, TTY_NORMAL
, space
);
472 /* There is a small chance that we need to split the data over
473 several buffers. If this is the case we must loop */
474 } while (unlikely(size
> copied
));
477 EXPORT_SYMBOL(tty_insert_flip_string
);
480 * tty_insert_flip_string_flags - Add characters to the tty buffer
481 * @tty: tty structure
486 * Queue a series of bytes to the tty buffering. For each character
487 * the flags array indicates the status of the character. Returns the
490 * Locking: Called functions may take tty->buf.lock
493 int tty_insert_flip_string_flags(struct tty_struct
*tty
,
494 const unsigned char *chars
, const char *flags
, size_t size
)
498 int space
= tty_buffer_request_room(tty
, size
- copied
);
499 struct tty_buffer
*tb
= tty
->buf
.tail
;
500 /* If there is no space then tb may be NULL */
501 if(unlikely(space
== 0))
503 memcpy(tb
->char_buf_ptr
+ tb
->used
, chars
, space
);
504 memcpy(tb
->flag_buf_ptr
+ tb
->used
, flags
, space
);
509 /* There is a small chance that we need to split the data over
510 several buffers. If this is the case we must loop */
511 } while (unlikely(size
> copied
));
514 EXPORT_SYMBOL(tty_insert_flip_string_flags
);
517 * tty_schedule_flip - push characters to ldisc
518 * @tty: tty to push from
520 * Takes any pending buffers and transfers their ownership to the
521 * ldisc side of the queue. It then schedules those characters for
522 * processing by the line discipline.
524 * Locking: Takes tty->buf.lock
527 void tty_schedule_flip(struct tty_struct
*tty
)
530 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
531 if (tty
->buf
.tail
!= NULL
)
532 tty
->buf
.tail
->commit
= tty
->buf
.tail
->used
;
533 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
534 schedule_delayed_work(&tty
->buf
.work
, 1);
536 EXPORT_SYMBOL(tty_schedule_flip
);
539 * tty_prepare_flip_string - make room for characters
541 * @chars: return pointer for character write area
542 * @size: desired size
544 * Prepare a block of space in the buffer for data. Returns the length
545 * available and buffer pointer to the space which is now allocated and
546 * accounted for as ready for normal characters. This is used for drivers
547 * that need their own block copy routines into the buffer. There is no
548 * guarantee the buffer is a DMA target!
550 * Locking: May call functions taking tty->buf.lock
553 int tty_prepare_flip_string(struct tty_struct
*tty
, unsigned char **chars
, size_t size
)
555 int space
= tty_buffer_request_room(tty
, size
);
557 struct tty_buffer
*tb
= tty
->buf
.tail
;
558 *chars
= tb
->char_buf_ptr
+ tb
->used
;
559 memset(tb
->flag_buf_ptr
+ tb
->used
, TTY_NORMAL
, space
);
565 EXPORT_SYMBOL_GPL(tty_prepare_flip_string
);
568 * tty_prepare_flip_string_flags - make room for characters
570 * @chars: return pointer for character write area
571 * @flags: return pointer for status flag write area
572 * @size: desired size
574 * Prepare a block of space in the buffer for data. Returns the length
575 * available and buffer pointer to the space which is now allocated and
576 * accounted for as ready for characters. This is used for drivers
577 * that need their own block copy routines into the buffer. There is no
578 * guarantee the buffer is a DMA target!
580 * Locking: May call functions taking tty->buf.lock
583 int tty_prepare_flip_string_flags(struct tty_struct
*tty
, unsigned char **chars
, char **flags
, size_t size
)
585 int space
= tty_buffer_request_room(tty
, size
);
587 struct tty_buffer
*tb
= tty
->buf
.tail
;
588 *chars
= tb
->char_buf_ptr
+ tb
->used
;
589 *flags
= tb
->flag_buf_ptr
+ tb
->used
;
595 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags
);
600 * tty_set_termios_ldisc - set ldisc field
601 * @tty: tty structure
602 * @num: line discipline number
604 * This is probably overkill for real world processors but
605 * they are not on hot paths so a little discipline won't do
608 * Locking: takes termios_mutex
611 static void tty_set_termios_ldisc(struct tty_struct
*tty
, int num
)
613 mutex_lock(&tty
->termios_mutex
);
614 tty
->termios
->c_line
= num
;
615 mutex_unlock(&tty
->termios_mutex
);
619 * This guards the refcounted line discipline lists. The lock
620 * must be taken with irqs off because there are hangup path
621 * callers who will do ldisc lookups and cannot sleep.
624 static DEFINE_SPINLOCK(tty_ldisc_lock
);
625 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait
);
626 static struct tty_ldisc tty_ldiscs
[NR_LDISCS
]; /* line disc dispatch table */
629 * tty_register_ldisc - install a line discipline
630 * @disc: ldisc number
631 * @new_ldisc: pointer to the ldisc object
633 * Installs a new line discipline into the kernel. The discipline
634 * is set up as unreferenced and then made available to the kernel
635 * from this point onwards.
638 * takes tty_ldisc_lock to guard against ldisc races
641 int tty_register_ldisc(int disc
, struct tty_ldisc
*new_ldisc
)
646 if (disc
< N_TTY
|| disc
>= NR_LDISCS
)
649 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
650 tty_ldiscs
[disc
] = *new_ldisc
;
651 tty_ldiscs
[disc
].num
= disc
;
652 tty_ldiscs
[disc
].flags
|= LDISC_FLAG_DEFINED
;
653 tty_ldiscs
[disc
].refcount
= 0;
654 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
658 EXPORT_SYMBOL(tty_register_ldisc
);
661 * tty_unregister_ldisc - unload a line discipline
662 * @disc: ldisc number
663 * @new_ldisc: pointer to the ldisc object
665 * Remove a line discipline from the kernel providing it is not
669 * takes tty_ldisc_lock to guard against ldisc races
672 int tty_unregister_ldisc(int disc
)
677 if (disc
< N_TTY
|| disc
>= NR_LDISCS
)
680 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
681 if (tty_ldiscs
[disc
].refcount
)
684 tty_ldiscs
[disc
].flags
&= ~LDISC_FLAG_DEFINED
;
685 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
689 EXPORT_SYMBOL(tty_unregister_ldisc
);
692 * tty_ldisc_get - take a reference to an ldisc
693 * @disc: ldisc number
695 * Takes a reference to a line discipline. Deals with refcounts and
696 * module locking counts. Returns NULL if the discipline is not available.
697 * Returns a pointer to the discipline and bumps the ref count if it is
701 * takes tty_ldisc_lock to guard against ldisc races
704 struct tty_ldisc
*tty_ldisc_get(int disc
)
707 struct tty_ldisc
*ld
;
709 if (disc
< N_TTY
|| disc
>= NR_LDISCS
)
712 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
714 ld
= &tty_ldiscs
[disc
];
715 /* Check the entry is defined */
716 if(ld
->flags
& LDISC_FLAG_DEFINED
)
718 /* If the module is being unloaded we can't use it */
719 if (!try_module_get(ld
->owner
))
726 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
730 EXPORT_SYMBOL_GPL(tty_ldisc_get
);
733 * tty_ldisc_put - drop ldisc reference
734 * @disc: ldisc number
736 * Drop a reference to a line discipline. Manage refcounts and
737 * module usage counts
740 * takes tty_ldisc_lock to guard against ldisc races
743 void tty_ldisc_put(int disc
)
745 struct tty_ldisc
*ld
;
748 BUG_ON(disc
< N_TTY
|| disc
>= NR_LDISCS
);
750 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
751 ld
= &tty_ldiscs
[disc
];
752 BUG_ON(ld
->refcount
== 0);
754 module_put(ld
->owner
);
755 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
758 EXPORT_SYMBOL_GPL(tty_ldisc_put
);
761 * tty_ldisc_assign - set ldisc on a tty
762 * @tty: tty to assign
763 * @ld: line discipline
765 * Install an instance of a line discipline into a tty structure. The
766 * ldisc must have a reference count above zero to ensure it remains/
767 * The tty instance refcount starts at zero.
770 * Caller must hold references
773 static void tty_ldisc_assign(struct tty_struct
*tty
, struct tty_ldisc
*ld
)
776 tty
->ldisc
.refcount
= 0;
780 * tty_ldisc_try - internal helper
783 * Make a single attempt to grab and bump the refcount on
784 * the tty ldisc. Return 0 on failure or 1 on success. This is
785 * used to implement both the waiting and non waiting versions
788 * Locking: takes tty_ldisc_lock
791 static int tty_ldisc_try(struct tty_struct
*tty
)
794 struct tty_ldisc
*ld
;
797 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
799 if(test_bit(TTY_LDISC
, &tty
->flags
))
804 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
809 * tty_ldisc_ref_wait - wait for the tty ldisc
812 * Dereference the line discipline for the terminal and take a
813 * reference to it. If the line discipline is in flux then
814 * wait patiently until it changes.
816 * Note: Must not be called from an IRQ/timer context. The caller
817 * must also be careful not to hold other locks that will deadlock
818 * against a discipline change, such as an existing ldisc reference
819 * (which we check for)
821 * Locking: call functions take tty_ldisc_lock
824 struct tty_ldisc
*tty_ldisc_ref_wait(struct tty_struct
*tty
)
826 /* wait_event is a macro */
827 wait_event(tty_ldisc_wait
, tty_ldisc_try(tty
));
828 if(tty
->ldisc
.refcount
== 0)
829 printk(KERN_ERR
"tty_ldisc_ref_wait\n");
833 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait
);
836 * tty_ldisc_ref - get the tty ldisc
839 * Dereference the line discipline for the terminal and take a
840 * reference to it. If the line discipline is in flux then
841 * return NULL. Can be called from IRQ and timer functions.
843 * Locking: called functions take tty_ldisc_lock
846 struct tty_ldisc
*tty_ldisc_ref(struct tty_struct
*tty
)
848 if(tty_ldisc_try(tty
))
853 EXPORT_SYMBOL_GPL(tty_ldisc_ref
);
856 * tty_ldisc_deref - free a tty ldisc reference
857 * @ld: reference to free up
859 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
860 * be called in IRQ context.
862 * Locking: takes tty_ldisc_lock
865 void tty_ldisc_deref(struct tty_ldisc
*ld
)
871 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
872 if(ld
->refcount
== 0)
873 printk(KERN_ERR
"tty_ldisc_deref: no references.\n");
876 if(ld
->refcount
== 0)
877 wake_up(&tty_ldisc_wait
);
878 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
881 EXPORT_SYMBOL_GPL(tty_ldisc_deref
);
884 * tty_ldisc_enable - allow ldisc use
885 * @tty: terminal to activate ldisc on
887 * Set the TTY_LDISC flag when the line discipline can be called
888 * again. Do neccessary wakeups for existing sleepers.
890 * Note: nobody should set this bit except via this function. Clearing
891 * directly is allowed.
894 static void tty_ldisc_enable(struct tty_struct
*tty
)
896 set_bit(TTY_LDISC
, &tty
->flags
);
897 wake_up(&tty_ldisc_wait
);
901 * tty_set_ldisc - set line discipline
902 * @tty: the terminal to set
903 * @ldisc: the line discipline
905 * Set the discipline of a tty line. Must be called from a process
908 * Locking: takes tty_ldisc_lock.
909 * called functions take termios_mutex
912 static int tty_set_ldisc(struct tty_struct
*tty
, int ldisc
)
915 struct tty_ldisc o_ldisc
;
919 struct tty_ldisc
*ld
;
920 struct tty_struct
*o_tty
;
922 if ((ldisc
< N_TTY
) || (ldisc
>= NR_LDISCS
))
927 ld
= tty_ldisc_get(ldisc
);
928 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
929 /* Cyrus Durgin <cider@speakeasy.org> */
931 request_module("tty-ldisc-%d", ldisc
);
932 ld
= tty_ldisc_get(ldisc
);
938 * No more input please, we are switching. The new ldisc
939 * will update this value in the ldisc open function
942 tty
->receive_room
= 0;
945 * Problem: What do we do if this blocks ?
948 tty_wait_until_sent(tty
, 0);
950 if (tty
->ldisc
.num
== ldisc
) {
951 tty_ldisc_put(ldisc
);
955 o_ldisc
= tty
->ldisc
;
959 * Make sure we don't change while someone holds a
960 * reference to the line discipline. The TTY_LDISC bit
961 * prevents anyone taking a reference once it is clear.
962 * We need the lock to avoid racing reference takers.
965 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
966 if (tty
->ldisc
.refcount
|| (o_tty
&& o_tty
->ldisc
.refcount
)) {
967 if(tty
->ldisc
.refcount
) {
968 /* Free the new ldisc we grabbed. Must drop the lock
970 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
971 tty_ldisc_put(ldisc
);
973 * There are several reasons we may be busy, including
974 * random momentary I/O traffic. We must therefore
975 * retry. We could distinguish between blocking ops
976 * and retries if we made tty_ldisc_wait() smarter. That
977 * is up for discussion.
979 if (wait_event_interruptible(tty_ldisc_wait
, tty
->ldisc
.refcount
== 0) < 0)
983 if(o_tty
&& o_tty
->ldisc
.refcount
) {
984 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
985 tty_ldisc_put(ldisc
);
986 if (wait_event_interruptible(tty_ldisc_wait
, o_tty
->ldisc
.refcount
== 0) < 0)
992 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
994 if (!test_bit(TTY_LDISC
, &tty
->flags
)) {
995 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
996 tty_ldisc_put(ldisc
);
997 ld
= tty_ldisc_ref_wait(tty
);
1002 clear_bit(TTY_LDISC
, &tty
->flags
);
1004 clear_bit(TTY_LDISC
, &o_tty
->flags
);
1005 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
1008 * From this point on we know nobody has an ldisc
1009 * usage reference, nor can they obtain one until
1010 * we say so later on.
1013 work
= cancel_delayed_work(&tty
->buf
.work
);
1015 * Wait for ->hangup_work and ->buf.work handlers to terminate
1018 flush_scheduled_work();
1019 /* Shutdown the current discipline. */
1020 if (tty
->ldisc
.close
)
1021 (tty
->ldisc
.close
)(tty
);
1023 /* Now set up the new line discipline. */
1024 tty_ldisc_assign(tty
, ld
);
1025 tty_set_termios_ldisc(tty
, ldisc
);
1026 if (tty
->ldisc
.open
)
1027 retval
= (tty
->ldisc
.open
)(tty
);
1029 tty_ldisc_put(ldisc
);
1030 /* There is an outstanding reference here so this is safe */
1031 tty_ldisc_assign(tty
, tty_ldisc_get(o_ldisc
.num
));
1032 tty_set_termios_ldisc(tty
, tty
->ldisc
.num
);
1033 if (tty
->ldisc
.open
&& (tty
->ldisc
.open(tty
) < 0)) {
1034 tty_ldisc_put(o_ldisc
.num
);
1035 /* This driver is always present */
1036 tty_ldisc_assign(tty
, tty_ldisc_get(N_TTY
));
1037 tty_set_termios_ldisc(tty
, N_TTY
);
1038 if (tty
->ldisc
.open
) {
1039 int r
= tty
->ldisc
.open(tty
);
1042 panic("Couldn't open N_TTY ldisc for "
1044 tty_name(tty
, buf
), r
);
1048 /* At this point we hold a reference to the new ldisc and a
1049 a reference to the old ldisc. If we ended up flipping back
1050 to the existing ldisc we have two references to it */
1052 if (tty
->ldisc
.num
!= o_ldisc
.num
&& tty
->driver
->set_ldisc
)
1053 tty
->driver
->set_ldisc(tty
);
1055 tty_ldisc_put(o_ldisc
.num
);
1058 * Allow ldisc referencing to occur as soon as the driver
1059 * ldisc callback completes.
1062 tty_ldisc_enable(tty
);
1064 tty_ldisc_enable(o_tty
);
1066 /* Restart it in case no characters kick it off. Safe if
1069 schedule_delayed_work(&tty
->buf
.work
, 1);
1074 * get_tty_driver - find device of a tty
1075 * @dev_t: device identifier
1076 * @index: returns the index of the tty
1078 * This routine returns a tty driver structure, given a device number
1079 * and also passes back the index number.
1081 * Locking: caller must hold tty_mutex
1084 static struct tty_driver
*get_tty_driver(dev_t device
, int *index
)
1086 struct tty_driver
*p
;
1088 list_for_each_entry(p
, &tty_drivers
, tty_drivers
) {
1089 dev_t base
= MKDEV(p
->major
, p
->minor_start
);
1090 if (device
< base
|| device
>= base
+ p
->num
)
1092 *index
= device
- base
;
1099 * tty_check_change - check for POSIX terminal changes
1100 * @tty: tty to check
1102 * If we try to write to, or set the state of, a terminal and we're
1103 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1104 * ignored, go ahead and perform the operation. (POSIX 7.2)
1109 int tty_check_change(struct tty_struct
* tty
)
1111 if (current
->signal
->tty
!= tty
)
1113 if (tty
->pgrp
<= 0) {
1114 printk(KERN_WARNING
"tty_check_change: tty->pgrp <= 0!\n");
1117 if (process_group(current
) == tty
->pgrp
)
1119 if (is_ignored(SIGTTOU
))
1121 if (is_orphaned_pgrp(process_group(current
)))
1123 (void) kill_pg(process_group(current
), SIGTTOU
, 1);
1124 return -ERESTARTSYS
;
1127 EXPORT_SYMBOL(tty_check_change
);
1129 static ssize_t
hung_up_tty_read(struct file
* file
, char __user
* buf
,
1130 size_t count
, loff_t
*ppos
)
1135 static ssize_t
hung_up_tty_write(struct file
* file
, const char __user
* buf
,
1136 size_t count
, loff_t
*ppos
)
1141 /* No kernel lock held - none needed ;) */
1142 static unsigned int hung_up_tty_poll(struct file
* filp
, poll_table
* wait
)
1144 return POLLIN
| POLLOUT
| POLLERR
| POLLHUP
| POLLRDNORM
| POLLWRNORM
;
1147 static int hung_up_tty_ioctl(struct inode
* inode
, struct file
* file
,
1148 unsigned int cmd
, unsigned long arg
)
1150 return cmd
== TIOCSPGRP
? -ENOTTY
: -EIO
;
1153 static const struct file_operations tty_fops
= {
1154 .llseek
= no_llseek
,
1160 .release
= tty_release
,
1161 .fasync
= tty_fasync
,
1164 #ifdef CONFIG_UNIX98_PTYS
1165 static const struct file_operations ptmx_fops
= {
1166 .llseek
= no_llseek
,
1172 .release
= tty_release
,
1173 .fasync
= tty_fasync
,
1177 static const struct file_operations console_fops
= {
1178 .llseek
= no_llseek
,
1180 .write
= redirected_tty_write
,
1184 .release
= tty_release
,
1185 .fasync
= tty_fasync
,
1188 static const struct file_operations hung_up_tty_fops
= {
1189 .llseek
= no_llseek
,
1190 .read
= hung_up_tty_read
,
1191 .write
= hung_up_tty_write
,
1192 .poll
= hung_up_tty_poll
,
1193 .ioctl
= hung_up_tty_ioctl
,
1194 .release
= tty_release
,
1197 static DEFINE_SPINLOCK(redirect_lock
);
1198 static struct file
*redirect
;
1201 * tty_wakeup - request more data
1204 * Internal and external helper for wakeups of tty. This function
1205 * informs the line discipline if present that the driver is ready
1206 * to receive more output data.
1209 void tty_wakeup(struct tty_struct
*tty
)
1211 struct tty_ldisc
*ld
;
1213 if (test_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
)) {
1214 ld
= tty_ldisc_ref(tty
);
1216 if(ld
->write_wakeup
)
1217 ld
->write_wakeup(tty
);
1218 tty_ldisc_deref(ld
);
1221 wake_up_interruptible(&tty
->write_wait
);
1224 EXPORT_SYMBOL_GPL(tty_wakeup
);
1227 * tty_ldisc_flush - flush line discipline queue
1230 * Flush the line discipline queue (if any) for this tty. If there
1231 * is no line discipline active this is a no-op.
1234 void tty_ldisc_flush(struct tty_struct
*tty
)
1236 struct tty_ldisc
*ld
= tty_ldisc_ref(tty
);
1238 if(ld
->flush_buffer
)
1239 ld
->flush_buffer(tty
);
1240 tty_ldisc_deref(ld
);
1244 EXPORT_SYMBOL_GPL(tty_ldisc_flush
);
1247 * tty_reset_termios - reset terminal state
1248 * @tty: tty to reset
1250 * Restore a terminal to the driver default state
1253 static void tty_reset_termios(struct tty_struct
*tty
)
1255 mutex_lock(&tty
->termios_mutex
);
1256 *tty
->termios
= tty
->driver
->init_termios
;
1257 tty
->termios
->c_ispeed
= tty_termios_input_baud_rate(tty
->termios
);
1258 tty
->termios
->c_ospeed
= tty_termios_baud_rate(tty
->termios
);
1259 mutex_unlock(&tty
->termios_mutex
);
1263 * do_tty_hangup - actual handler for hangup events
1266 * This can be called by the "eventd" kernel thread. That is process
1267 * synchronous but doesn't hold any locks, so we need to make sure we
1268 * have the appropriate locks for what we're doing.
1270 * The hangup event clears any pending redirections onto the hung up
1271 * device. It ensures future writes will error and it does the needed
1272 * line discipline hangup and signal delivery. The tty object itself
1277 * redirect lock for undoing redirection
1278 * file list lock for manipulating list of ttys
1279 * tty_ldisc_lock from called functions
1280 * termios_mutex resetting termios data
1281 * tasklist_lock to walk task list for hangup event
1282 * ->siglock to protect ->signal/->sighand
1284 static void do_tty_hangup(struct work_struct
*work
)
1286 struct tty_struct
*tty
=
1287 container_of(work
, struct tty_struct
, hangup_work
);
1288 struct file
* cons_filp
= NULL
;
1289 struct file
*filp
, *f
= NULL
;
1290 struct task_struct
*p
;
1291 struct tty_ldisc
*ld
;
1292 int closecount
= 0, n
;
1297 /* inuse_filps is protected by the single kernel lock */
1300 spin_lock(&redirect_lock
);
1301 if (redirect
&& redirect
->private_data
== tty
) {
1305 spin_unlock(&redirect_lock
);
1307 check_tty_count(tty
, "do_tty_hangup");
1309 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1310 list_for_each_entry(filp
, &tty
->tty_files
, f_u
.fu_list
) {
1311 if (filp
->f_op
->write
== redirected_tty_write
)
1313 if (filp
->f_op
->write
!= tty_write
)
1316 tty_fasync(-1, filp
, 0); /* can't block */
1317 filp
->f_op
= &hung_up_tty_fops
;
1321 /* FIXME! What are the locking issues here? This may me overdoing things..
1322 * this question is especially important now that we've removed the irqlock. */
1324 ld
= tty_ldisc_ref(tty
);
1325 if(ld
!= NULL
) /* We may have no line discipline at this point */
1327 if (ld
->flush_buffer
)
1328 ld
->flush_buffer(tty
);
1329 if (tty
->driver
->flush_buffer
)
1330 tty
->driver
->flush_buffer(tty
);
1331 if ((test_bit(TTY_DO_WRITE_WAKEUP
, &tty
->flags
)) &&
1333 ld
->write_wakeup(tty
);
1338 /* FIXME: Once we trust the LDISC code better we can wait here for
1339 ldisc completion and fix the driver call race */
1341 wake_up_interruptible(&tty
->write_wait
);
1342 wake_up_interruptible(&tty
->read_wait
);
1345 * Shutdown the current line discipline, and reset it to
1348 if (tty
->driver
->flags
& TTY_DRIVER_RESET_TERMIOS
)
1349 tty_reset_termios(tty
);
1351 /* Defer ldisc switch */
1352 /* tty_deferred_ldisc_switch(N_TTY);
1354 This should get done automatically when the port closes and
1355 tty_release is called */
1357 read_lock(&tasklist_lock
);
1358 if (tty
->session
> 0) {
1359 do_each_task_pid(tty
->session
, PIDTYPE_SID
, p
) {
1360 spin_lock_irq(&p
->sighand
->siglock
);
1361 if (p
->signal
->tty
== tty
)
1362 p
->signal
->tty
= NULL
;
1363 if (!p
->signal
->leader
) {
1364 spin_unlock_irq(&p
->sighand
->siglock
);
1367 __group_send_sig_info(SIGHUP
, SEND_SIG_PRIV
, p
);
1368 __group_send_sig_info(SIGCONT
, SEND_SIG_PRIV
, p
);
1370 p
->signal
->tty_old_pgrp
= tty
->pgrp
;
1371 spin_unlock_irq(&p
->sighand
->siglock
);
1372 } while_each_task_pid(tty
->session
, PIDTYPE_SID
, p
);
1374 read_unlock(&tasklist_lock
);
1379 tty
->ctrl_status
= 0;
1381 * If one of the devices matches a console pointer, we
1382 * cannot just call hangup() because that will cause
1383 * tty->count and state->count to go out of sync.
1384 * So we just call close() the right number of times.
1387 if (tty
->driver
->close
)
1388 for (n
= 0; n
< closecount
; n
++)
1389 tty
->driver
->close(tty
, cons_filp
);
1390 } else if (tty
->driver
->hangup
)
1391 (tty
->driver
->hangup
)(tty
);
1393 /* We don't want to have driver/ldisc interactions beyond
1394 the ones we did here. The driver layer expects no
1395 calls after ->hangup() from the ldisc side. However we
1396 can't yet guarantee all that */
1398 set_bit(TTY_HUPPED
, &tty
->flags
);
1400 tty_ldisc_enable(tty
);
1401 tty_ldisc_deref(ld
);
1409 * tty_hangup - trigger a hangup event
1410 * @tty: tty to hangup
1412 * A carrier loss (virtual or otherwise) has occurred on this like
1413 * schedule a hangup sequence to run after this event.
1416 void tty_hangup(struct tty_struct
* tty
)
1418 #ifdef TTY_DEBUG_HANGUP
1421 printk(KERN_DEBUG
"%s hangup...\n", tty_name(tty
, buf
));
1423 schedule_work(&tty
->hangup_work
);
1426 EXPORT_SYMBOL(tty_hangup
);
1429 * tty_vhangup - process vhangup
1430 * @tty: tty to hangup
1432 * The user has asked via system call for the terminal to be hung up.
1433 * We do this synchronously so that when the syscall returns the process
1434 * is complete. That guarantee is neccessary for security reasons.
1437 void tty_vhangup(struct tty_struct
* tty
)
1439 #ifdef TTY_DEBUG_HANGUP
1442 printk(KERN_DEBUG
"%s vhangup...\n", tty_name(tty
, buf
));
1444 do_tty_hangup(&tty
->hangup_work
);
1446 EXPORT_SYMBOL(tty_vhangup
);
1449 * tty_hung_up_p - was tty hung up
1450 * @filp: file pointer of tty
1452 * Return true if the tty has been subject to a vhangup or a carrier
1456 int tty_hung_up_p(struct file
* filp
)
1458 return (filp
->f_op
== &hung_up_tty_fops
);
1461 EXPORT_SYMBOL(tty_hung_up_p
);
1463 static void session_clear_tty(pid_t session
)
1465 struct task_struct
*p
;
1466 do_each_task_pid(session
, PIDTYPE_SID
, p
) {
1468 } while_each_task_pid(session
, PIDTYPE_SID
, p
);
1472 * disassociate_ctty - disconnect controlling tty
1473 * @on_exit: true if exiting so need to "hang up" the session
1475 * This function is typically called only by the session leader, when
1476 * it wants to disassociate itself from its controlling tty.
1478 * It performs the following functions:
1479 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1480 * (2) Clears the tty from being controlling the session
1481 * (3) Clears the controlling tty for all processes in the
1484 * The argument on_exit is set to 1 if called when a process is
1485 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1488 * BKL is taken for hysterical raisins
1489 * tty_mutex is taken to protect tty
1490 * ->siglock is taken to protect ->signal/->sighand
1491 * tasklist_lock is taken to walk process list for sessions
1492 * ->siglock is taken to protect ->signal/->sighand
1495 void disassociate_ctty(int on_exit
)
1497 struct tty_struct
*tty
;
1503 mutex_lock(&tty_mutex
);
1504 tty
= get_current_tty();
1506 tty_pgrp
= tty
->pgrp
;
1507 mutex_unlock(&tty_mutex
);
1508 /* XXX: here we race, there is nothing protecting tty */
1509 if (on_exit
&& tty
->driver
->type
!= TTY_DRIVER_TYPE_PTY
)
1512 pid_t old_pgrp
= current
->signal
->tty_old_pgrp
;
1514 kill_pg(old_pgrp
, SIGHUP
, on_exit
);
1515 kill_pg(old_pgrp
, SIGCONT
, on_exit
);
1517 mutex_unlock(&tty_mutex
);
1522 kill_pg(tty_pgrp
, SIGHUP
, on_exit
);
1524 kill_pg(tty_pgrp
, SIGCONT
, on_exit
);
1527 spin_lock_irq(¤t
->sighand
->siglock
);
1528 current
->signal
->tty_old_pgrp
= 0;
1529 session
= process_session(current
);
1530 spin_unlock_irq(¤t
->sighand
->siglock
);
1532 mutex_lock(&tty_mutex
);
1533 /* It is possible that do_tty_hangup has free'd this tty */
1534 tty
= get_current_tty();
1539 #ifdef TTY_DEBUG_HANGUP
1540 printk(KERN_DEBUG
"error attempted to write to tty [0x%p]"
1544 mutex_unlock(&tty_mutex
);
1546 /* Now clear signal->tty under the lock */
1547 read_lock(&tasklist_lock
);
1548 session_clear_tty(session
);
1549 read_unlock(&tasklist_lock
);
1555 * stop_tty - propogate flow control
1558 * Perform flow control to the driver. For PTY/TTY pairs we
1559 * must also propogate the TIOCKPKT status. May be called
1560 * on an already stopped device and will not re-call the driver
1563 * This functionality is used by both the line disciplines for
1564 * halting incoming flow and by the driver. It may therefore be
1565 * called from any context, may be under the tty atomic_write_lock
1569 * Broken. Relies on BKL which is unsafe here.
1572 void stop_tty(struct tty_struct
*tty
)
1577 if (tty
->link
&& tty
->link
->packet
) {
1578 tty
->ctrl_status
&= ~TIOCPKT_START
;
1579 tty
->ctrl_status
|= TIOCPKT_STOP
;
1580 wake_up_interruptible(&tty
->link
->read_wait
);
1582 if (tty
->driver
->stop
)
1583 (tty
->driver
->stop
)(tty
);
1586 EXPORT_SYMBOL(stop_tty
);
1589 * start_tty - propogate flow control
1590 * @tty: tty to start
1592 * Start a tty that has been stopped if at all possible. Perform
1593 * any neccessary wakeups and propogate the TIOCPKT status. If this
1594 * is the tty was previous stopped and is being started then the
1595 * driver start method is invoked and the line discipline woken.
1598 * Broken. Relies on BKL which is unsafe here.
1601 void start_tty(struct tty_struct
*tty
)
1603 if (!tty
->stopped
|| tty
->flow_stopped
)
1606 if (tty
->link
&& tty
->link
->packet
) {
1607 tty
->ctrl_status
&= ~TIOCPKT_STOP
;
1608 tty
->ctrl_status
|= TIOCPKT_START
;
1609 wake_up_interruptible(&tty
->link
->read_wait
);
1611 if (tty
->driver
->start
)
1612 (tty
->driver
->start
)(tty
);
1614 /* If we have a running line discipline it may need kicking */
1618 EXPORT_SYMBOL(start_tty
);
1621 * tty_read - read method for tty device files
1622 * @file: pointer to tty file
1624 * @count: size of user buffer
1627 * Perform the read system call function on this terminal device. Checks
1628 * for hung up devices before calling the line discipline method.
1631 * Locks the line discipline internally while needed
1632 * For historical reasons the line discipline read method is
1633 * invoked under the BKL. This will go away in time so do not rely on it
1634 * in new code. Multiple read calls may be outstanding in parallel.
1637 static ssize_t
tty_read(struct file
* file
, char __user
* buf
, size_t count
,
1641 struct tty_struct
* tty
;
1642 struct inode
*inode
;
1643 struct tty_ldisc
*ld
;
1645 tty
= (struct tty_struct
*)file
->private_data
;
1646 inode
= file
->f_path
.dentry
->d_inode
;
1647 if (tty_paranoia_check(tty
, inode
, "tty_read"))
1649 if (!tty
|| (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
1652 /* We want to wait for the line discipline to sort out in this
1654 ld
= tty_ldisc_ref_wait(tty
);
1657 i
= (ld
->read
)(tty
,file
,buf
,count
);
1660 tty_ldisc_deref(ld
);
1663 inode
->i_atime
= current_fs_time(inode
->i_sb
);
1668 * Split writes up in sane blocksizes to avoid
1669 * denial-of-service type attacks
1671 static inline ssize_t
do_tty_write(
1672 ssize_t (*write
)(struct tty_struct
*, struct file
*, const unsigned char *, size_t),
1673 struct tty_struct
*tty
,
1675 const char __user
*buf
,
1678 ssize_t ret
= 0, written
= 0;
1681 /* FIXME: O_NDELAY ... */
1682 if (mutex_lock_interruptible(&tty
->atomic_write_lock
)) {
1683 return -ERESTARTSYS
;
1687 * We chunk up writes into a temporary buffer. This
1688 * simplifies low-level drivers immensely, since they
1689 * don't have locking issues and user mode accesses.
1691 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1694 * The default chunk-size is 2kB, because the NTTY
1695 * layer has problems with bigger chunks. It will
1696 * claim to be able to handle more characters than
1699 * FIXME: This can probably go away now except that 64K chunks
1700 * are too likely to fail unless switched to vmalloc...
1703 if (test_bit(TTY_NO_WRITE_SPLIT
, &tty
->flags
))
1708 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1709 if (tty
->write_cnt
< chunk
) {
1715 buf
= kmalloc(chunk
, GFP_KERNEL
);
1717 mutex_unlock(&tty
->atomic_write_lock
);
1720 kfree(tty
->write_buf
);
1721 tty
->write_cnt
= chunk
;
1722 tty
->write_buf
= buf
;
1725 /* Do the write .. */
1727 size_t size
= count
;
1731 if (copy_from_user(tty
->write_buf
, buf
, size
))
1734 ret
= write(tty
, file
, tty
->write_buf
, size
);
1744 if (signal_pending(current
))
1749 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1750 inode
->i_mtime
= current_fs_time(inode
->i_sb
);
1753 mutex_unlock(&tty
->atomic_write_lock
);
1759 * tty_write - write method for tty device file
1760 * @file: tty file pointer
1761 * @buf: user data to write
1762 * @count: bytes to write
1765 * Write data to a tty device via the line discipline.
1768 * Locks the line discipline as required
1769 * Writes to the tty driver are serialized by the atomic_write_lock
1770 * and are then processed in chunks to the device. The line discipline
1771 * write method will not be involked in parallel for each device
1772 * The line discipline write method is called under the big
1773 * kernel lock for historical reasons. New code should not rely on this.
1776 static ssize_t
tty_write(struct file
* file
, const char __user
* buf
, size_t count
,
1779 struct tty_struct
* tty
;
1780 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1782 struct tty_ldisc
*ld
;
1784 tty
= (struct tty_struct
*)file
->private_data
;
1785 if (tty_paranoia_check(tty
, inode
, "tty_write"))
1787 if (!tty
|| !tty
->driver
->write
|| (test_bit(TTY_IO_ERROR
, &tty
->flags
)))
1790 ld
= tty_ldisc_ref_wait(tty
);
1794 ret
= do_tty_write(ld
->write
, tty
, file
, buf
, count
);
1795 tty_ldisc_deref(ld
);
1799 ssize_t
redirected_tty_write(struct file
* file
, const char __user
* buf
, size_t count
,
1802 struct file
*p
= NULL
;
1804 spin_lock(&redirect_lock
);
1809 spin_unlock(&redirect_lock
);
1813 res
= vfs_write(p
, buf
, count
, &p
->f_pos
);
1818 return tty_write(file
, buf
, count
, ppos
);
1821 static char ptychar
[] = "pqrstuvwxyzabcde";
1824 * pty_line_name - generate name for a pty
1825 * @driver: the tty driver in use
1826 * @index: the minor number
1827 * @p: output buffer of at least 6 bytes
1829 * Generate a name from a driver reference and write it to the output
1834 static void pty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1836 int i
= index
+ driver
->name_base
;
1837 /* ->name is initialized to "ttyp", but "tty" is expected */
1838 sprintf(p
, "%s%c%x",
1839 driver
->subtype
== PTY_TYPE_SLAVE
? "tty" : driver
->name
,
1840 ptychar
[i
>> 4 & 0xf], i
& 0xf);
1844 * pty_line_name - generate name for a tty
1845 * @driver: the tty driver in use
1846 * @index: the minor number
1847 * @p: output buffer of at least 7 bytes
1849 * Generate a name from a driver reference and write it to the output
1854 static void tty_line_name(struct tty_driver
*driver
, int index
, char *p
)
1856 sprintf(p
, "%s%d", driver
->name
, index
+ driver
->name_base
);
1860 * init_dev - initialise a tty device
1861 * @driver: tty driver we are opening a device on
1862 * @idx: device index
1863 * @tty: returned tty structure
1865 * Prepare a tty device. This may not be a "new" clean device but
1866 * could also be an active device. The pty drivers require special
1867 * handling because of this.
1870 * The function is called under the tty_mutex, which
1871 * protects us from the tty struct or driver itself going away.
1873 * On exit the tty device has the line discipline attached and
1874 * a reference count of 1. If a pair was created for pty/tty use
1875 * and the other was a pty master then it too has a reference count of 1.
1877 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1878 * failed open. The new code protects the open with a mutex, so it's
1879 * really quite straightforward. The mutex locking can probably be
1880 * relaxed for the (most common) case of reopening a tty.
1883 static int init_dev(struct tty_driver
*driver
, int idx
,
1884 struct tty_struct
**ret_tty
)
1886 struct tty_struct
*tty
, *o_tty
;
1887 struct ktermios
*tp
, **tp_loc
, *o_tp
, **o_tp_loc
;
1888 struct ktermios
*ltp
, **ltp_loc
, *o_ltp
, **o_ltp_loc
;
1891 /* check whether we're reopening an existing tty */
1892 if (driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) {
1893 tty
= devpts_get_tty(idx
);
1894 if (tty
&& driver
->subtype
== PTY_TYPE_MASTER
)
1897 tty
= driver
->ttys
[idx
];
1899 if (tty
) goto fast_track
;
1902 * First time open is complex, especially for PTY devices.
1903 * This code guarantees that either everything succeeds and the
1904 * TTY is ready for operation, or else the table slots are vacated
1905 * and the allocated memory released. (Except that the termios
1906 * and locked termios may be retained.)
1909 if (!try_module_get(driver
->owner
)) {
1918 tty
= alloc_tty_struct();
1921 initialize_tty_struct(tty
);
1922 tty
->driver
= driver
;
1924 tty_line_name(driver
, idx
, tty
->name
);
1926 if (driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) {
1927 tp_loc
= &tty
->termios
;
1928 ltp_loc
= &tty
->termios_locked
;
1930 tp_loc
= &driver
->termios
[idx
];
1931 ltp_loc
= &driver
->termios_locked
[idx
];
1935 tp
= (struct ktermios
*) kmalloc(sizeof(struct ktermios
),
1939 *tp
= driver
->init_termios
;
1943 ltp
= (struct ktermios
*) kmalloc(sizeof(struct ktermios
),
1947 memset(ltp
, 0, sizeof(struct ktermios
));
1950 if (driver
->type
== TTY_DRIVER_TYPE_PTY
) {
1951 o_tty
= alloc_tty_struct();
1954 initialize_tty_struct(o_tty
);
1955 o_tty
->driver
= driver
->other
;
1957 tty_line_name(driver
->other
, idx
, o_tty
->name
);
1959 if (driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) {
1960 o_tp_loc
= &o_tty
->termios
;
1961 o_ltp_loc
= &o_tty
->termios_locked
;
1963 o_tp_loc
= &driver
->other
->termios
[idx
];
1964 o_ltp_loc
= &driver
->other
->termios_locked
[idx
];
1968 o_tp
= (struct ktermios
*)
1969 kmalloc(sizeof(struct ktermios
), GFP_KERNEL
);
1972 *o_tp
= driver
->other
->init_termios
;
1976 o_ltp
= (struct ktermios
*)
1977 kmalloc(sizeof(struct ktermios
), GFP_KERNEL
);
1980 memset(o_ltp
, 0, sizeof(struct ktermios
));
1984 * Everything allocated ... set up the o_tty structure.
1986 if (!(driver
->other
->flags
& TTY_DRIVER_DEVPTS_MEM
)) {
1987 driver
->other
->ttys
[idx
] = o_tty
;
1993 o_tty
->termios
= *o_tp_loc
;
1994 o_tty
->termios_locked
= *o_ltp_loc
;
1995 driver
->other
->refcount
++;
1996 if (driver
->subtype
== PTY_TYPE_MASTER
)
1999 /* Establish the links in both directions */
2005 * All structures have been allocated, so now we install them.
2006 * Failures after this point use release_tty to clean up, so
2007 * there's no need to null out the local pointers.
2009 if (!(driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)) {
2010 driver
->ttys
[idx
] = tty
;
2017 tty
->termios
= *tp_loc
;
2018 tty
->termios_locked
= *ltp_loc
;
2019 /* Compatibility until drivers always set this */
2020 tty
->termios
->c_ispeed
= tty_termios_input_baud_rate(tty
->termios
);
2021 tty
->termios
->c_ospeed
= tty_termios_baud_rate(tty
->termios
);
2026 * Structures all installed ... call the ldisc open routines.
2027 * If we fail here just call release_tty to clean up. No need
2028 * to decrement the use counts, as release_tty doesn't care.
2031 if (tty
->ldisc
.open
) {
2032 retval
= (tty
->ldisc
.open
)(tty
);
2034 goto release_mem_out
;
2036 if (o_tty
&& o_tty
->ldisc
.open
) {
2037 retval
= (o_tty
->ldisc
.open
)(o_tty
);
2039 if (tty
->ldisc
.close
)
2040 (tty
->ldisc
.close
)(tty
);
2041 goto release_mem_out
;
2043 tty_ldisc_enable(o_tty
);
2045 tty_ldisc_enable(tty
);
2049 * This fast open can be used if the tty is already open.
2050 * No memory is allocated, and the only failures are from
2051 * attempting to open a closing tty or attempting multiple
2052 * opens on a pty master.
2055 if (test_bit(TTY_CLOSING
, &tty
->flags
)) {
2059 if (driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2060 driver
->subtype
== PTY_TYPE_MASTER
) {
2062 * special case for PTY masters: only one open permitted,
2063 * and the slave side open count is incremented as well.
2072 tty
->driver
= driver
; /* N.B. why do this every time?? */
2075 if(!test_bit(TTY_LDISC
, &tty
->flags
))
2076 printk(KERN_ERR
"init_dev but no ldisc\n");
2080 /* All paths come through here to release the mutex */
2084 /* Release locally allocated memory ... nothing placed in slots */
2088 free_tty_struct(o_tty
);
2091 free_tty_struct(tty
);
2094 module_put(driver
->owner
);
2098 /* call the tty release_tty routine to clean out this slot */
2100 if (printk_ratelimit())
2101 printk(KERN_INFO
"init_dev: ldisc open failed, "
2102 "clearing slot %d\n", idx
);
2103 release_tty(tty
, idx
);
2108 * release_one_tty - release tty structure memory
2110 * Releases memory associated with a tty structure, and clears out the
2111 * driver table slots. This function is called when a device is no longer
2112 * in use. It also gets called when setup of a device fails.
2115 * tty_mutex - sometimes only
2116 * takes the file list lock internally when working on the list
2117 * of ttys that the driver keeps.
2118 * FIXME: should we require tty_mutex is held here ??
2120 static void release_one_tty(struct tty_struct
*tty
, int idx
)
2122 int devpts
= tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
;
2123 struct ktermios
*tp
;
2126 tty
->driver
->ttys
[idx
] = NULL
;
2128 if (tty
->driver
->flags
& TTY_DRIVER_RESET_TERMIOS
) {
2131 tty
->driver
->termios
[idx
] = NULL
;
2134 tp
= tty
->termios_locked
;
2136 tty
->driver
->termios_locked
[idx
] = NULL
;
2142 tty
->driver
->refcount
--;
2145 list_del_init(&tty
->tty_files
);
2148 free_tty_struct(tty
);
2152 * release_tty - release tty structure memory
2154 * Release both @tty and a possible linked partner (think pty pair),
2155 * and decrement the refcount of the backing module.
2158 * tty_mutex - sometimes only
2159 * takes the file list lock internally when working on the list
2160 * of ttys that the driver keeps.
2161 * FIXME: should we require tty_mutex is held here ??
2163 static void release_tty(struct tty_struct
*tty
, int idx
)
2165 struct tty_driver
*driver
= tty
->driver
;
2168 release_one_tty(tty
->link
, idx
);
2169 release_one_tty(tty
, idx
);
2170 module_put(driver
->owner
);
2174 * Even releasing the tty structures is a tricky business.. We have
2175 * to be very careful that the structures are all released at the
2176 * same time, as interrupts might otherwise get the wrong pointers.
2178 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2179 * lead to double frees or releasing memory still in use.
2181 static void release_dev(struct file
* filp
)
2183 struct tty_struct
*tty
, *o_tty
;
2184 int pty_master
, tty_closing
, o_tty_closing
, do_sleep
;
2188 unsigned long flags
;
2190 tty
= (struct tty_struct
*)filp
->private_data
;
2191 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "release_dev"))
2194 check_tty_count(tty
, "release_dev");
2196 tty_fasync(-1, filp
, 0);
2199 pty_master
= (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2200 tty
->driver
->subtype
== PTY_TYPE_MASTER
);
2201 devpts
= (tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
) != 0;
2204 #ifdef TTY_PARANOIA_CHECK
2205 if (idx
< 0 || idx
>= tty
->driver
->num
) {
2206 printk(KERN_DEBUG
"release_dev: bad idx when trying to "
2207 "free (%s)\n", tty
->name
);
2210 if (!(tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)) {
2211 if (tty
!= tty
->driver
->ttys
[idx
]) {
2212 printk(KERN_DEBUG
"release_dev: driver.table[%d] not tty "
2213 "for (%s)\n", idx
, tty
->name
);
2216 if (tty
->termios
!= tty
->driver
->termios
[idx
]) {
2217 printk(KERN_DEBUG
"release_dev: driver.termios[%d] not termios "
2222 if (tty
->termios_locked
!= tty
->driver
->termios_locked
[idx
]) {
2223 printk(KERN_DEBUG
"release_dev: driver.termios_locked[%d] not "
2224 "termios_locked for (%s)\n",
2231 #ifdef TTY_DEBUG_HANGUP
2232 printk(KERN_DEBUG
"release_dev of %s (tty count=%d)...",
2233 tty_name(tty
, buf
), tty
->count
);
2236 #ifdef TTY_PARANOIA_CHECK
2237 if (tty
->driver
->other
&&
2238 !(tty
->driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)) {
2239 if (o_tty
!= tty
->driver
->other
->ttys
[idx
]) {
2240 printk(KERN_DEBUG
"release_dev: other->table[%d] "
2241 "not o_tty for (%s)\n",
2245 if (o_tty
->termios
!= tty
->driver
->other
->termios
[idx
]) {
2246 printk(KERN_DEBUG
"release_dev: other->termios[%d] "
2247 "not o_termios for (%s)\n",
2251 if (o_tty
->termios_locked
!=
2252 tty
->driver
->other
->termios_locked
[idx
]) {
2253 printk(KERN_DEBUG
"release_dev: other->termios_locked["
2254 "%d] not o_termios_locked for (%s)\n",
2258 if (o_tty
->link
!= tty
) {
2259 printk(KERN_DEBUG
"release_dev: bad pty pointers\n");
2264 if (tty
->driver
->close
)
2265 tty
->driver
->close(tty
, filp
);
2268 * Sanity check: if tty->count is going to zero, there shouldn't be
2269 * any waiters on tty->read_wait or tty->write_wait. We test the
2270 * wait queues and kick everyone out _before_ actually starting to
2271 * close. This ensures that we won't block while releasing the tty
2274 * The test for the o_tty closing is necessary, since the master and
2275 * slave sides may close in any order. If the slave side closes out
2276 * first, its count will be one, since the master side holds an open.
2277 * Thus this test wouldn't be triggered at the time the slave closes,
2280 * Note that it's possible for the tty to be opened again while we're
2281 * flushing out waiters. By recalculating the closing flags before
2282 * each iteration we avoid any problems.
2285 /* Guard against races with tty->count changes elsewhere and
2286 opens on /dev/tty */
2288 mutex_lock(&tty_mutex
);
2289 tty_closing
= tty
->count
<= 1;
2290 o_tty_closing
= o_tty
&&
2291 (o_tty
->count
<= (pty_master
? 1 : 0));
2295 if (waitqueue_active(&tty
->read_wait
)) {
2296 wake_up(&tty
->read_wait
);
2299 if (waitqueue_active(&tty
->write_wait
)) {
2300 wake_up(&tty
->write_wait
);
2304 if (o_tty_closing
) {
2305 if (waitqueue_active(&o_tty
->read_wait
)) {
2306 wake_up(&o_tty
->read_wait
);
2309 if (waitqueue_active(&o_tty
->write_wait
)) {
2310 wake_up(&o_tty
->write_wait
);
2317 printk(KERN_WARNING
"release_dev: %s: read/write wait queue "
2318 "active!\n", tty_name(tty
, buf
));
2319 mutex_unlock(&tty_mutex
);
2324 * The closing flags are now consistent with the open counts on
2325 * both sides, and we've completed the last operation that could
2326 * block, so it's safe to proceed with closing.
2329 if (--o_tty
->count
< 0) {
2330 printk(KERN_WARNING
"release_dev: bad pty slave count "
2332 o_tty
->count
, tty_name(o_tty
, buf
));
2336 if (--tty
->count
< 0) {
2337 printk(KERN_WARNING
"release_dev: bad tty->count (%d) for %s\n",
2338 tty
->count
, tty_name(tty
, buf
));
2343 * We've decremented tty->count, so we need to remove this file
2344 * descriptor off the tty->tty_files list; this serves two
2346 * - check_tty_count sees the correct number of file descriptors
2347 * associated with this tty.
2348 * - do_tty_hangup no longer sees this file descriptor as
2349 * something that needs to be handled for hangups.
2352 filp
->private_data
= NULL
;
2355 * Perform some housekeeping before deciding whether to return.
2357 * Set the TTY_CLOSING flag if this was the last open. In the
2358 * case of a pty we may have to wait around for the other side
2359 * to close, and TTY_CLOSING makes sure we can't be reopened.
2362 set_bit(TTY_CLOSING
, &tty
->flags
);
2364 set_bit(TTY_CLOSING
, &o_tty
->flags
);
2367 * If _either_ side is closing, make sure there aren't any
2368 * processes that still think tty or o_tty is their controlling
2371 if (tty_closing
|| o_tty_closing
) {
2372 read_lock(&tasklist_lock
);
2373 session_clear_tty(tty
->session
);
2375 session_clear_tty(o_tty
->session
);
2376 read_unlock(&tasklist_lock
);
2379 mutex_unlock(&tty_mutex
);
2381 /* check whether both sides are closing ... */
2382 if (!tty_closing
|| (o_tty
&& !o_tty_closing
))
2385 #ifdef TTY_DEBUG_HANGUP
2386 printk(KERN_DEBUG
"freeing tty structure...");
2389 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2390 * kill any delayed work. As this is the final close it does not
2391 * race with the set_ldisc code path.
2393 clear_bit(TTY_LDISC
, &tty
->flags
);
2394 cancel_delayed_work(&tty
->buf
.work
);
2397 * Wait for ->hangup_work and ->buf.work handlers to terminate
2400 flush_scheduled_work();
2403 * Wait for any short term users (we know they are just driver
2404 * side waiters as the file is closing so user count on the file
2407 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
2408 while(tty
->ldisc
.refcount
)
2410 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
2411 wait_event(tty_ldisc_wait
, tty
->ldisc
.refcount
== 0);
2412 spin_lock_irqsave(&tty_ldisc_lock
, flags
);
2414 spin_unlock_irqrestore(&tty_ldisc_lock
, flags
);
2416 * Shutdown the current line discipline, and reset it to N_TTY.
2417 * N.B. why reset ldisc when we're releasing the memory??
2419 * FIXME: this MUST get fixed for the new reflocking
2421 if (tty
->ldisc
.close
)
2422 (tty
->ldisc
.close
)(tty
);
2423 tty_ldisc_put(tty
->ldisc
.num
);
2426 * Switch the line discipline back
2428 tty_ldisc_assign(tty
, tty_ldisc_get(N_TTY
));
2429 tty_set_termios_ldisc(tty
,N_TTY
);
2431 /* FIXME: could o_tty be in setldisc here ? */
2432 clear_bit(TTY_LDISC
, &o_tty
->flags
);
2433 if (o_tty
->ldisc
.close
)
2434 (o_tty
->ldisc
.close
)(o_tty
);
2435 tty_ldisc_put(o_tty
->ldisc
.num
);
2436 tty_ldisc_assign(o_tty
, tty_ldisc_get(N_TTY
));
2437 tty_set_termios_ldisc(o_tty
,N_TTY
);
2440 * The release_tty function takes care of the details of clearing
2441 * the slots and preserving the termios structure.
2443 release_tty(tty
, idx
);
2445 #ifdef CONFIG_UNIX98_PTYS
2446 /* Make this pty number available for reallocation */
2448 down(&allocated_ptys_lock
);
2449 idr_remove(&allocated_ptys
, idx
);
2450 up(&allocated_ptys_lock
);
2457 * tty_open - open a tty device
2458 * @inode: inode of device file
2459 * @filp: file pointer to tty
2461 * tty_open and tty_release keep up the tty count that contains the
2462 * number of opens done on a tty. We cannot use the inode-count, as
2463 * different inodes might point to the same tty.
2465 * Open-counting is needed for pty masters, as well as for keeping
2466 * track of serial lines: DTR is dropped when the last close happens.
2467 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2469 * The termios state of a pty is reset on first open so that
2470 * settings don't persist across reuse.
2472 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2473 * tty->count should protect the rest.
2474 * ->siglock protects ->signal/->sighand
2477 static int tty_open(struct inode
* inode
, struct file
* filp
)
2479 struct tty_struct
*tty
;
2481 struct tty_driver
*driver
;
2483 dev_t device
= inode
->i_rdev
;
2484 unsigned short saved_flags
= filp
->f_flags
;
2486 nonseekable_open(inode
, filp
);
2489 noctty
= filp
->f_flags
& O_NOCTTY
;
2493 mutex_lock(&tty_mutex
);
2495 if (device
== MKDEV(TTYAUX_MAJOR
,0)) {
2496 tty
= get_current_tty();
2498 mutex_unlock(&tty_mutex
);
2501 driver
= tty
->driver
;
2503 filp
->f_flags
|= O_NONBLOCK
; /* Don't let /dev/tty block */
2508 if (device
== MKDEV(TTY_MAJOR
,0)) {
2509 extern struct tty_driver
*console_driver
;
2510 driver
= console_driver
;
2516 if (device
== MKDEV(TTYAUX_MAJOR
,1)) {
2517 driver
= console_device(&index
);
2519 /* Don't let /dev/console block */
2520 filp
->f_flags
|= O_NONBLOCK
;
2524 mutex_unlock(&tty_mutex
);
2528 driver
= get_tty_driver(device
, &index
);
2530 mutex_unlock(&tty_mutex
);
2534 retval
= init_dev(driver
, index
, &tty
);
2535 mutex_unlock(&tty_mutex
);
2539 filp
->private_data
= tty
;
2540 file_move(filp
, &tty
->tty_files
);
2541 check_tty_count(tty
, "tty_open");
2542 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
2543 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
2545 #ifdef TTY_DEBUG_HANGUP
2546 printk(KERN_DEBUG
"opening %s...", tty
->name
);
2549 if (tty
->driver
->open
)
2550 retval
= tty
->driver
->open(tty
, filp
);
2554 filp
->f_flags
= saved_flags
;
2556 if (!retval
&& test_bit(TTY_EXCLUSIVE
, &tty
->flags
) && !capable(CAP_SYS_ADMIN
))
2560 #ifdef TTY_DEBUG_HANGUP
2561 printk(KERN_DEBUG
"error %d in opening %s...", retval
,
2565 if (retval
!= -ERESTARTSYS
)
2567 if (signal_pending(current
))
2571 * Need to reset f_op in case a hangup happened.
2573 if (filp
->f_op
== &hung_up_tty_fops
)
2574 filp
->f_op
= &tty_fops
;
2578 mutex_lock(&tty_mutex
);
2579 spin_lock_irq(¤t
->sighand
->siglock
);
2581 current
->signal
->leader
&&
2582 !current
->signal
->tty
&&
2584 __proc_set_tty(current
, tty
);
2585 spin_unlock_irq(¤t
->sighand
->siglock
);
2586 mutex_unlock(&tty_mutex
);
2590 #ifdef CONFIG_UNIX98_PTYS
2592 * ptmx_open - open a unix 98 pty master
2593 * @inode: inode of device file
2594 * @filp: file pointer to tty
2596 * Allocate a unix98 pty master device from the ptmx driver.
2598 * Locking: tty_mutex protects theinit_dev work. tty->count should
2600 * allocated_ptys_lock handles the list of free pty numbers
2603 static int ptmx_open(struct inode
* inode
, struct file
* filp
)
2605 struct tty_struct
*tty
;
2610 nonseekable_open(inode
, filp
);
2612 /* find a device that is not in use. */
2613 down(&allocated_ptys_lock
);
2614 if (!idr_pre_get(&allocated_ptys
, GFP_KERNEL
)) {
2615 up(&allocated_ptys_lock
);
2618 idr_ret
= idr_get_new(&allocated_ptys
, NULL
, &index
);
2620 up(&allocated_ptys_lock
);
2621 if (idr_ret
== -EAGAIN
)
2625 if (index
>= pty_limit
) {
2626 idr_remove(&allocated_ptys
, index
);
2627 up(&allocated_ptys_lock
);
2630 up(&allocated_ptys_lock
);
2632 mutex_lock(&tty_mutex
);
2633 retval
= init_dev(ptm_driver
, index
, &tty
);
2634 mutex_unlock(&tty_mutex
);
2639 set_bit(TTY_PTY_LOCK
, &tty
->flags
); /* LOCK THE SLAVE */
2640 filp
->private_data
= tty
;
2641 file_move(filp
, &tty
->tty_files
);
2644 if (devpts_pty_new(tty
->link
))
2647 check_tty_count(tty
, "tty_open");
2648 retval
= ptm_driver
->open(tty
, filp
);
2655 down(&allocated_ptys_lock
);
2656 idr_remove(&allocated_ptys
, index
);
2657 up(&allocated_ptys_lock
);
2663 * tty_release - vfs callback for close
2664 * @inode: inode of tty
2665 * @filp: file pointer for handle to tty
2667 * Called the last time each file handle is closed that references
2668 * this tty. There may however be several such references.
2671 * Takes bkl. See release_dev
2674 static int tty_release(struct inode
* inode
, struct file
* filp
)
2683 * tty_poll - check tty status
2684 * @filp: file being polled
2685 * @wait: poll wait structures to update
2687 * Call the line discipline polling method to obtain the poll
2688 * status of the device.
2690 * Locking: locks called line discipline but ldisc poll method
2691 * may be re-entered freely by other callers.
2694 static unsigned int tty_poll(struct file
* filp
, poll_table
* wait
)
2696 struct tty_struct
* tty
;
2697 struct tty_ldisc
*ld
;
2700 tty
= (struct tty_struct
*)filp
->private_data
;
2701 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_poll"))
2704 ld
= tty_ldisc_ref_wait(tty
);
2706 ret
= (ld
->poll
)(tty
, filp
, wait
);
2707 tty_ldisc_deref(ld
);
2711 static int tty_fasync(int fd
, struct file
* filp
, int on
)
2713 struct tty_struct
* tty
;
2716 tty
= (struct tty_struct
*)filp
->private_data
;
2717 if (tty_paranoia_check(tty
, filp
->f_path
.dentry
->d_inode
, "tty_fasync"))
2720 retval
= fasync_helper(fd
, filp
, on
, &tty
->fasync
);
2725 if (!waitqueue_active(&tty
->read_wait
))
2726 tty
->minimum_to_wake
= 1;
2727 retval
= f_setown(filp
, (-tty
->pgrp
) ? : current
->pid
, 0);
2731 if (!tty
->fasync
&& !waitqueue_active(&tty
->read_wait
))
2732 tty
->minimum_to_wake
= N_TTY_BUF_SIZE
;
2738 * tiocsti - fake input character
2739 * @tty: tty to fake input into
2740 * @p: pointer to character
2742 * Fake input to a tty device. Does the neccessary locking and
2745 * FIXME: does not honour flow control ??
2748 * Called functions take tty_ldisc_lock
2749 * current->signal->tty check is safe without locks
2751 * FIXME: may race normal receive processing
2754 static int tiocsti(struct tty_struct
*tty
, char __user
*p
)
2757 struct tty_ldisc
*ld
;
2759 if ((current
->signal
->tty
!= tty
) && !capable(CAP_SYS_ADMIN
))
2761 if (get_user(ch
, p
))
2763 ld
= tty_ldisc_ref_wait(tty
);
2764 ld
->receive_buf(tty
, &ch
, &mbz
, 1);
2765 tty_ldisc_deref(ld
);
2770 * tiocgwinsz - implement window query ioctl
2772 * @arg: user buffer for result
2774 * Copies the kernel idea of the window size into the user buffer.
2776 * Locking: tty->termios_mutex is taken to ensure the winsize data
2780 static int tiocgwinsz(struct tty_struct
*tty
, struct winsize __user
* arg
)
2784 mutex_lock(&tty
->termios_mutex
);
2785 err
= copy_to_user(arg
, &tty
->winsize
, sizeof(*arg
));
2786 mutex_unlock(&tty
->termios_mutex
);
2788 return err
? -EFAULT
: 0;
2792 * tiocswinsz - implement window size set ioctl
2794 * @arg: user buffer for result
2796 * Copies the user idea of the window size to the kernel. Traditionally
2797 * this is just advisory information but for the Linux console it
2798 * actually has driver level meaning and triggers a VC resize.
2801 * Called function use the console_sem is used to ensure we do
2802 * not try and resize the console twice at once.
2803 * The tty->termios_mutex is used to ensure we don't double
2804 * resize and get confused. Lock order - tty->termios_mutex before
2808 static int tiocswinsz(struct tty_struct
*tty
, struct tty_struct
*real_tty
,
2809 struct winsize __user
* arg
)
2811 struct winsize tmp_ws
;
2813 if (copy_from_user(&tmp_ws
, arg
, sizeof(*arg
)))
2816 mutex_lock(&tty
->termios_mutex
);
2817 if (!memcmp(&tmp_ws
, &tty
->winsize
, sizeof(*arg
)))
2821 if (tty
->driver
->type
== TTY_DRIVER_TYPE_CONSOLE
) {
2822 if (vc_lock_resize(tty
->driver_data
, tmp_ws
.ws_col
,
2824 mutex_unlock(&tty
->termios_mutex
);
2830 kill_pg(tty
->pgrp
, SIGWINCH
, 1);
2831 if ((real_tty
->pgrp
!= tty
->pgrp
) && (real_tty
->pgrp
> 0))
2832 kill_pg(real_tty
->pgrp
, SIGWINCH
, 1);
2833 tty
->winsize
= tmp_ws
;
2834 real_tty
->winsize
= tmp_ws
;
2836 mutex_unlock(&tty
->termios_mutex
);
2841 * tioccons - allow admin to move logical console
2842 * @file: the file to become console
2844 * Allow the adminstrator to move the redirected console device
2846 * Locking: uses redirect_lock to guard the redirect information
2849 static int tioccons(struct file
*file
)
2851 if (!capable(CAP_SYS_ADMIN
))
2853 if (file
->f_op
->write
== redirected_tty_write
) {
2855 spin_lock(&redirect_lock
);
2858 spin_unlock(&redirect_lock
);
2863 spin_lock(&redirect_lock
);
2865 spin_unlock(&redirect_lock
);
2870 spin_unlock(&redirect_lock
);
2875 * fionbio - non blocking ioctl
2876 * @file: file to set blocking value
2877 * @p: user parameter
2879 * Historical tty interfaces had a blocking control ioctl before
2880 * the generic functionality existed. This piece of history is preserved
2881 * in the expected tty API of posix OS's.
2883 * Locking: none, the open fle handle ensures it won't go away.
2886 static int fionbio(struct file
*file
, int __user
*p
)
2890 if (get_user(nonblock
, p
))
2894 file
->f_flags
|= O_NONBLOCK
;
2896 file
->f_flags
&= ~O_NONBLOCK
;
2901 * tiocsctty - set controlling tty
2902 * @tty: tty structure
2903 * @arg: user argument
2905 * This ioctl is used to manage job control. It permits a session
2906 * leader to set this tty as the controlling tty for the session.
2909 * Takes tty_mutex() to protect tty instance
2910 * Takes tasklist_lock internally to walk sessions
2911 * Takes ->siglock() when updating signal->tty
2914 static int tiocsctty(struct tty_struct
*tty
, int arg
)
2917 if (current
->signal
->leader
&&
2918 (process_session(current
) == tty
->session
))
2921 mutex_lock(&tty_mutex
);
2923 * The process must be a session leader and
2924 * not have a controlling tty already.
2926 if (!current
->signal
->leader
|| current
->signal
->tty
) {
2931 if (tty
->session
> 0) {
2933 * This tty is already the controlling
2934 * tty for another session group!
2936 if ((arg
== 1) && capable(CAP_SYS_ADMIN
)) {
2940 read_lock(&tasklist_lock
);
2941 session_clear_tty(tty
->session
);
2942 read_unlock(&tasklist_lock
);
2948 proc_set_tty(current
, tty
);
2950 mutex_unlock(&tty_mutex
);
2955 * tiocgpgrp - get process group
2956 * @tty: tty passed by user
2957 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2960 * Obtain the process group of the tty. If there is no process group
2963 * Locking: none. Reference to current->signal->tty is safe.
2966 static int tiocgpgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2969 * (tty == real_tty) is a cheap way of
2970 * testing if the tty is NOT a master pty.
2972 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
2974 return put_user(real_tty
->pgrp
, p
);
2978 * tiocspgrp - attempt to set process group
2979 * @tty: tty passed by user
2980 * @real_tty: tty side device matching tty passed by user
2983 * Set the process group of the tty to the session passed. Only
2984 * permitted where the tty session is our session.
2989 static int tiocspgrp(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
2992 int retval
= tty_check_change(real_tty
);
2998 if (!current
->signal
->tty
||
2999 (current
->signal
->tty
!= real_tty
) ||
3000 (real_tty
->session
!= process_session(current
)))
3002 if (get_user(pgrp
, p
))
3006 if (session_of_pgrp(pgrp
) != process_session(current
))
3008 real_tty
->pgrp
= pgrp
;
3013 * tiocgsid - get session id
3014 * @tty: tty passed by user
3015 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3016 * @p: pointer to returned session id
3018 * Obtain the session id of the tty. If there is no session
3021 * Locking: none. Reference to current->signal->tty is safe.
3024 static int tiocgsid(struct tty_struct
*tty
, struct tty_struct
*real_tty
, pid_t __user
*p
)
3027 * (tty == real_tty) is a cheap way of
3028 * testing if the tty is NOT a master pty.
3030 if (tty
== real_tty
&& current
->signal
->tty
!= real_tty
)
3032 if (real_tty
->session
<= 0)
3034 return put_user(real_tty
->session
, p
);
3038 * tiocsetd - set line discipline
3040 * @p: pointer to user data
3042 * Set the line discipline according to user request.
3044 * Locking: see tty_set_ldisc, this function is just a helper
3047 static int tiocsetd(struct tty_struct
*tty
, int __user
*p
)
3051 if (get_user(ldisc
, p
))
3053 return tty_set_ldisc(tty
, ldisc
);
3057 * send_break - performed time break
3058 * @tty: device to break on
3059 * @duration: timeout in mS
3061 * Perform a timed break on hardware that lacks its own driver level
3062 * timed break functionality.
3065 * atomic_write_lock serializes
3069 static int send_break(struct tty_struct
*tty
, unsigned int duration
)
3071 if (mutex_lock_interruptible(&tty
->atomic_write_lock
))
3073 tty
->driver
->break_ctl(tty
, -1);
3074 if (!signal_pending(current
)) {
3075 msleep_interruptible(duration
);
3077 tty
->driver
->break_ctl(tty
, 0);
3078 mutex_unlock(&tty
->atomic_write_lock
);
3079 if (signal_pending(current
))
3085 * tiocmget - get modem status
3087 * @file: user file pointer
3088 * @p: pointer to result
3090 * Obtain the modem status bits from the tty driver if the feature
3091 * is supported. Return -EINVAL if it is not available.
3093 * Locking: none (up to the driver)
3096 static int tty_tiocmget(struct tty_struct
*tty
, struct file
*file
, int __user
*p
)
3098 int retval
= -EINVAL
;
3100 if (tty
->driver
->tiocmget
) {
3101 retval
= tty
->driver
->tiocmget(tty
, file
);
3104 retval
= put_user(retval
, p
);
3110 * tiocmset - set modem status
3112 * @file: user file pointer
3113 * @cmd: command - clear bits, set bits or set all
3114 * @p: pointer to desired bits
3116 * Set the modem status bits from the tty driver if the feature
3117 * is supported. Return -EINVAL if it is not available.
3119 * Locking: none (up to the driver)
3122 static int tty_tiocmset(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
,
3125 int retval
= -EINVAL
;
3127 if (tty
->driver
->tiocmset
) {
3128 unsigned int set
, clear
, val
;
3130 retval
= get_user(val
, p
);
3148 set
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
3149 clear
&= TIOCM_DTR
|TIOCM_RTS
|TIOCM_OUT1
|TIOCM_OUT2
|TIOCM_LOOP
;
3151 retval
= tty
->driver
->tiocmset(tty
, file
, set
, clear
);
3157 * Split this up, as gcc can choke on it otherwise..
3159 int tty_ioctl(struct inode
* inode
, struct file
* file
,
3160 unsigned int cmd
, unsigned long arg
)
3162 struct tty_struct
*tty
, *real_tty
;
3163 void __user
*p
= (void __user
*)arg
;
3165 struct tty_ldisc
*ld
;
3167 tty
= (struct tty_struct
*)file
->private_data
;
3168 if (tty_paranoia_check(tty
, inode
, "tty_ioctl"))
3171 /* CHECKME: is this safe as one end closes ? */
3174 if (tty
->driver
->type
== TTY_DRIVER_TYPE_PTY
&&
3175 tty
->driver
->subtype
== PTY_TYPE_MASTER
)
3176 real_tty
= tty
->link
;
3179 * Break handling by driver
3181 if (!tty
->driver
->break_ctl
) {
3185 if (tty
->driver
->ioctl
)
3186 return tty
->driver
->ioctl(tty
, file
, cmd
, arg
);
3189 /* These two ioctl's always return success; even if */
3190 /* the driver doesn't support them. */
3193 if (!tty
->driver
->ioctl
)
3195 retval
= tty
->driver
->ioctl(tty
, file
, cmd
, arg
);
3196 if (retval
== -ENOIOCTLCMD
)
3203 * Factor out some common prep work
3211 retval
= tty_check_change(tty
);
3214 if (cmd
!= TIOCCBRK
) {
3215 tty_wait_until_sent(tty
, 0);
3216 if (signal_pending(current
))
3224 return tiocsti(tty
, p
);
3226 return tiocgwinsz(tty
, p
);
3228 return tiocswinsz(tty
, real_tty
, p
);
3230 return real_tty
!=tty
? -EINVAL
: tioccons(file
);
3232 return fionbio(file
, p
);
3234 set_bit(TTY_EXCLUSIVE
, &tty
->flags
);
3237 clear_bit(TTY_EXCLUSIVE
, &tty
->flags
);
3240 if (current
->signal
->tty
!= tty
)
3242 if (current
->signal
->leader
)
3243 disassociate_ctty(0);
3244 proc_clear_tty(current
);
3247 return tiocsctty(tty
, arg
);
3249 return tiocgpgrp(tty
, real_tty
, p
);
3251 return tiocspgrp(tty
, real_tty
, p
);
3253 return tiocgsid(tty
, real_tty
, p
);
3255 /* FIXME: check this is ok */
3256 return put_user(tty
->ldisc
.num
, (int __user
*)p
);
3258 return tiocsetd(tty
, p
);
3261 return tioclinux(tty
, arg
);
3266 case TIOCSBRK
: /* Turn break on, unconditionally */
3267 tty
->driver
->break_ctl(tty
, -1);
3270 case TIOCCBRK
: /* Turn break off, unconditionally */
3271 tty
->driver
->break_ctl(tty
, 0);
3273 case TCSBRK
: /* SVID version: non-zero arg --> no break */
3274 /* non-zero arg means wait for all output data
3275 * to be sent (performed above) but don't send break.
3276 * This is used by the tcdrain() termios function.
3279 return send_break(tty
, 250);
3281 case TCSBRKP
: /* support for POSIX tcsendbreak() */
3282 return send_break(tty
, arg
? arg
*100 : 250);
3285 return tty_tiocmget(tty
, file
, p
);
3290 return tty_tiocmset(tty
, file
, cmd
, p
);
3292 if (tty
->driver
->ioctl
) {
3293 retval
= (tty
->driver
->ioctl
)(tty
, file
, cmd
, arg
);
3294 if (retval
!= -ENOIOCTLCMD
)
3297 ld
= tty_ldisc_ref_wait(tty
);
3300 retval
= ld
->ioctl(tty
, file
, cmd
, arg
);
3301 if (retval
== -ENOIOCTLCMD
)
3304 tty_ldisc_deref(ld
);
3310 * This implements the "Secure Attention Key" --- the idea is to
3311 * prevent trojan horses by killing all processes associated with this
3312 * tty when the user hits the "Secure Attention Key". Required for
3313 * super-paranoid applications --- see the Orange Book for more details.
3315 * This code could be nicer; ideally it should send a HUP, wait a few
3316 * seconds, then send a INT, and then a KILL signal. But you then
3317 * have to coordinate with the init process, since all processes associated
3318 * with the current tty must be dead before the new getty is allowed
3321 * Now, if it would be correct ;-/ The current code has a nasty hole -
3322 * it doesn't catch files in flight. We may send the descriptor to ourselves
3323 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3325 * Nasty bug: do_SAK is being called in interrupt context. This can
3326 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3328 void __do_SAK(struct tty_struct
*tty
)
3333 struct task_struct
*g
, *p
;
3337 struct fdtable
*fdt
;
3341 session
= tty
->session
;
3343 tty_ldisc_flush(tty
);
3345 if (tty
->driver
->flush_buffer
)
3346 tty
->driver
->flush_buffer(tty
);
3348 read_lock(&tasklist_lock
);
3349 /* Kill the entire session */
3350 do_each_task_pid(session
, PIDTYPE_SID
, p
) {
3351 printk(KERN_NOTICE
"SAK: killed process %d"
3352 " (%s): process_session(p)==tty->session\n",
3354 send_sig(SIGKILL
, p
, 1);
3355 } while_each_task_pid(session
, PIDTYPE_SID
, p
);
3356 /* Now kill any processes that happen to have the
3359 do_each_thread(g
, p
) {
3360 if (p
->signal
->tty
== tty
) {
3361 printk(KERN_NOTICE
"SAK: killed process %d"
3362 " (%s): process_session(p)==tty->session\n",
3364 send_sig(SIGKILL
, p
, 1);
3370 * We don't take a ref to the file, so we must
3371 * hold ->file_lock instead.
3373 spin_lock(&p
->files
->file_lock
);
3374 fdt
= files_fdtable(p
->files
);
3375 for (i
=0; i
< fdt
->max_fds
; i
++) {
3376 filp
= fcheck_files(p
->files
, i
);
3379 if (filp
->f_op
->read
== tty_read
&&
3380 filp
->private_data
== tty
) {
3381 printk(KERN_NOTICE
"SAK: killed process %d"
3382 " (%s): fd#%d opened to the tty\n",
3383 p
->pid
, p
->comm
, i
);
3384 force_sig(SIGKILL
, p
);
3388 spin_unlock(&p
->files
->file_lock
);
3391 } while_each_thread(g
, p
);
3392 read_unlock(&tasklist_lock
);
3396 static void do_SAK_work(struct work_struct
*work
)
3398 struct tty_struct
*tty
=
3399 container_of(work
, struct tty_struct
, SAK_work
);
3404 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3405 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3406 * the values which we write to it will be identical to the values which it
3407 * already has. --akpm
3409 void do_SAK(struct tty_struct
*tty
)
3413 PREPARE_WORK(&tty
->SAK_work
, do_SAK_work
);
3414 schedule_work(&tty
->SAK_work
);
3417 EXPORT_SYMBOL(do_SAK
);
3421 * @work: tty structure passed from work queue.
3423 * This routine is called out of the software interrupt to flush data
3424 * from the buffer chain to the line discipline.
3426 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3427 * while invoking the line discipline receive_buf method. The
3428 * receive_buf method is single threaded for each tty instance.
3431 static void flush_to_ldisc(struct work_struct
*work
)
3433 struct tty_struct
*tty
=
3434 container_of(work
, struct tty_struct
, buf
.work
.work
);
3435 unsigned long flags
;
3436 struct tty_ldisc
*disc
;
3437 struct tty_buffer
*tbuf
, *head
;
3439 unsigned char *flag_buf
;
3441 disc
= tty_ldisc_ref(tty
);
3442 if (disc
== NULL
) /* !TTY_LDISC */
3445 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
3446 head
= tty
->buf
.head
;
3448 tty
->buf
.head
= NULL
;
3450 int count
= head
->commit
- head
->read
;
3452 if (head
->next
== NULL
)
3456 tty_buffer_free(tty
, tbuf
);
3459 if (!tty
->receive_room
) {
3460 schedule_delayed_work(&tty
->buf
.work
, 1);
3463 if (count
> tty
->receive_room
)
3464 count
= tty
->receive_room
;
3465 char_buf
= head
->char_buf_ptr
+ head
->read
;
3466 flag_buf
= head
->flag_buf_ptr
+ head
->read
;
3467 head
->read
+= count
;
3468 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
3469 disc
->receive_buf(tty
, char_buf
, flag_buf
, count
);
3470 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
3472 tty
->buf
.head
= head
;
3474 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
3476 tty_ldisc_deref(disc
);
3480 * tty_flip_buffer_push - terminal
3483 * Queue a push of the terminal flip buffers to the line discipline. This
3484 * function must not be called from IRQ context if tty->low_latency is set.
3486 * In the event of the queue being busy for flipping the work will be
3487 * held off and retried later.
3489 * Locking: tty buffer lock. Driver locks in low latency mode.
3492 void tty_flip_buffer_push(struct tty_struct
*tty
)
3494 unsigned long flags
;
3495 spin_lock_irqsave(&tty
->buf
.lock
, flags
);
3496 if (tty
->buf
.tail
!= NULL
)
3497 tty
->buf
.tail
->commit
= tty
->buf
.tail
->used
;
3498 spin_unlock_irqrestore(&tty
->buf
.lock
, flags
);
3500 if (tty
->low_latency
)
3501 flush_to_ldisc(&tty
->buf
.work
.work
);
3503 schedule_delayed_work(&tty
->buf
.work
, 1);
3506 EXPORT_SYMBOL(tty_flip_buffer_push
);
3510 * initialize_tty_struct
3511 * @tty: tty to initialize
3513 * This subroutine initializes a tty structure that has been newly
3516 * Locking: none - tty in question must not be exposed at this point
3519 static void initialize_tty_struct(struct tty_struct
*tty
)
3521 memset(tty
, 0, sizeof(struct tty_struct
));
3522 tty
->magic
= TTY_MAGIC
;
3523 tty_ldisc_assign(tty
, tty_ldisc_get(N_TTY
));
3525 tty
->overrun_time
= jiffies
;
3526 tty
->buf
.head
= tty
->buf
.tail
= NULL
;
3527 tty_buffer_init(tty
);
3528 INIT_DELAYED_WORK(&tty
->buf
.work
, flush_to_ldisc
);
3529 init_MUTEX(&tty
->buf
.pty_sem
);
3530 mutex_init(&tty
->termios_mutex
);
3531 init_waitqueue_head(&tty
->write_wait
);
3532 init_waitqueue_head(&tty
->read_wait
);
3533 INIT_WORK(&tty
->hangup_work
, do_tty_hangup
);
3534 mutex_init(&tty
->atomic_read_lock
);
3535 mutex_init(&tty
->atomic_write_lock
);
3536 spin_lock_init(&tty
->read_lock
);
3537 INIT_LIST_HEAD(&tty
->tty_files
);
3538 INIT_WORK(&tty
->SAK_work
, NULL
);
3542 * The default put_char routine if the driver did not define one.
3545 static void tty_default_put_char(struct tty_struct
*tty
, unsigned char ch
)
3547 tty
->driver
->write(tty
, &ch
, 1);
3550 static struct class *tty_class
;
3553 * tty_register_device - register a tty device
3554 * @driver: the tty driver that describes the tty device
3555 * @index: the index in the tty driver for this tty device
3556 * @device: a struct device that is associated with this tty device.
3557 * This field is optional, if there is no known struct device
3558 * for this tty device it can be set to NULL safely.
3560 * Returns a pointer to the struct device for this tty device
3561 * (or ERR_PTR(-EFOO) on error).
3563 * This call is required to be made to register an individual tty device
3564 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3565 * that bit is not set, this function should not be called by a tty
3571 struct device
*tty_register_device(struct tty_driver
*driver
, unsigned index
,
3572 struct device
*device
)
3575 dev_t dev
= MKDEV(driver
->major
, driver
->minor_start
) + index
;
3577 if (index
>= driver
->num
) {
3578 printk(KERN_ERR
"Attempt to register invalid tty line number "
3580 return ERR_PTR(-EINVAL
);
3583 if (driver
->type
== TTY_DRIVER_TYPE_PTY
)
3584 pty_line_name(driver
, index
, name
);
3586 tty_line_name(driver
, index
, name
);
3588 return device_create(tty_class
, device
, dev
, name
);
3592 * tty_unregister_device - unregister a tty device
3593 * @driver: the tty driver that describes the tty device
3594 * @index: the index in the tty driver for this tty device
3596 * If a tty device is registered with a call to tty_register_device() then
3597 * this function must be called when the tty device is gone.
3602 void tty_unregister_device(struct tty_driver
*driver
, unsigned index
)
3604 device_destroy(tty_class
, MKDEV(driver
->major
, driver
->minor_start
) + index
);
3607 EXPORT_SYMBOL(tty_register_device
);
3608 EXPORT_SYMBOL(tty_unregister_device
);
3610 struct tty_driver
*alloc_tty_driver(int lines
)
3612 struct tty_driver
*driver
;
3614 driver
= kmalloc(sizeof(struct tty_driver
), GFP_KERNEL
);
3616 memset(driver
, 0, sizeof(struct tty_driver
));
3617 driver
->magic
= TTY_DRIVER_MAGIC
;
3618 driver
->num
= lines
;
3619 /* later we'll move allocation of tables here */
3624 void put_tty_driver(struct tty_driver
*driver
)
3629 void tty_set_operations(struct tty_driver
*driver
,
3630 const struct tty_operations
*op
)
3632 driver
->open
= op
->open
;
3633 driver
->close
= op
->close
;
3634 driver
->write
= op
->write
;
3635 driver
->put_char
= op
->put_char
;
3636 driver
->flush_chars
= op
->flush_chars
;
3637 driver
->write_room
= op
->write_room
;
3638 driver
->chars_in_buffer
= op
->chars_in_buffer
;
3639 driver
->ioctl
= op
->ioctl
;
3640 driver
->set_termios
= op
->set_termios
;
3641 driver
->throttle
= op
->throttle
;
3642 driver
->unthrottle
= op
->unthrottle
;
3643 driver
->stop
= op
->stop
;
3644 driver
->start
= op
->start
;
3645 driver
->hangup
= op
->hangup
;
3646 driver
->break_ctl
= op
->break_ctl
;
3647 driver
->flush_buffer
= op
->flush_buffer
;
3648 driver
->set_ldisc
= op
->set_ldisc
;
3649 driver
->wait_until_sent
= op
->wait_until_sent
;
3650 driver
->send_xchar
= op
->send_xchar
;
3651 driver
->read_proc
= op
->read_proc
;
3652 driver
->write_proc
= op
->write_proc
;
3653 driver
->tiocmget
= op
->tiocmget
;
3654 driver
->tiocmset
= op
->tiocmset
;
3658 EXPORT_SYMBOL(alloc_tty_driver
);
3659 EXPORT_SYMBOL(put_tty_driver
);
3660 EXPORT_SYMBOL(tty_set_operations
);
3663 * Called by a tty driver to register itself.
3665 int tty_register_driver(struct tty_driver
*driver
)
3672 if (driver
->flags
& TTY_DRIVER_INSTALLED
)
3675 if (!(driver
->flags
& TTY_DRIVER_DEVPTS_MEM
)) {
3676 p
= kmalloc(driver
->num
* 3 * sizeof(void *), GFP_KERNEL
);
3679 memset(p
, 0, driver
->num
* 3 * sizeof(void *));
3682 if (!driver
->major
) {
3683 error
= alloc_chrdev_region(&dev
, driver
->minor_start
, driver
->num
,
3684 (char*)driver
->name
);
3686 driver
->major
= MAJOR(dev
);
3687 driver
->minor_start
= MINOR(dev
);
3690 dev
= MKDEV(driver
->major
, driver
->minor_start
);
3691 error
= register_chrdev_region(dev
, driver
->num
,
3692 (char*)driver
->name
);
3700 driver
->ttys
= (struct tty_struct
**)p
;
3701 driver
->termios
= (struct ktermios
**)(p
+ driver
->num
);
3702 driver
->termios_locked
= (struct ktermios
**)(p
+ driver
->num
* 2);
3704 driver
->ttys
= NULL
;
3705 driver
->termios
= NULL
;
3706 driver
->termios_locked
= NULL
;
3709 cdev_init(&driver
->cdev
, &tty_fops
);
3710 driver
->cdev
.owner
= driver
->owner
;
3711 error
= cdev_add(&driver
->cdev
, dev
, driver
->num
);
3713 unregister_chrdev_region(dev
, driver
->num
);
3714 driver
->ttys
= NULL
;
3715 driver
->termios
= driver
->termios_locked
= NULL
;
3720 if (!driver
->put_char
)
3721 driver
->put_char
= tty_default_put_char
;
3723 list_add(&driver
->tty_drivers
, &tty_drivers
);
3725 if ( !(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
) ) {
3726 for(i
= 0; i
< driver
->num
; i
++)
3727 tty_register_device(driver
, i
, NULL
);
3729 proc_tty_register_driver(driver
);
3733 EXPORT_SYMBOL(tty_register_driver
);
3736 * Called by a tty driver to unregister itself.
3738 int tty_unregister_driver(struct tty_driver
*driver
)
3741 struct ktermios
*tp
;
3744 if (driver
->refcount
)
3747 unregister_chrdev_region(MKDEV(driver
->major
, driver
->minor_start
),
3750 list_del(&driver
->tty_drivers
);
3753 * Free the termios and termios_locked structures because
3754 * we don't want to get memory leaks when modular tty
3755 * drivers are removed from the kernel.
3757 for (i
= 0; i
< driver
->num
; i
++) {
3758 tp
= driver
->termios
[i
];
3760 driver
->termios
[i
] = NULL
;
3763 tp
= driver
->termios_locked
[i
];
3765 driver
->termios_locked
[i
] = NULL
;
3768 if (!(driver
->flags
& TTY_DRIVER_DYNAMIC_DEV
))
3769 tty_unregister_device(driver
, i
);
3772 proc_tty_unregister_driver(driver
);
3773 driver
->ttys
= NULL
;
3774 driver
->termios
= driver
->termios_locked
= NULL
;
3776 cdev_del(&driver
->cdev
);
3779 EXPORT_SYMBOL(tty_unregister_driver
);
3781 dev_t
tty_devnum(struct tty_struct
*tty
)
3783 return MKDEV(tty
->driver
->major
, tty
->driver
->minor_start
) + tty
->index
;
3785 EXPORT_SYMBOL(tty_devnum
);
3787 void proc_clear_tty(struct task_struct
*p
)
3789 spin_lock_irq(&p
->sighand
->siglock
);
3790 p
->signal
->tty
= NULL
;
3791 spin_unlock_irq(&p
->sighand
->siglock
);
3793 EXPORT_SYMBOL(proc_clear_tty
);
3795 static void __proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3798 tty
->session
= process_session(tsk
);
3799 tty
->pgrp
= process_group(tsk
);
3801 tsk
->signal
->tty
= tty
;
3802 tsk
->signal
->tty_old_pgrp
= 0;
3805 void proc_set_tty(struct task_struct
*tsk
, struct tty_struct
*tty
)
3807 spin_lock_irq(&tsk
->sighand
->siglock
);
3808 __proc_set_tty(tsk
, tty
);
3809 spin_unlock_irq(&tsk
->sighand
->siglock
);
3812 struct tty_struct
*get_current_tty(void)
3814 struct tty_struct
*tty
;
3815 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex
));
3816 tty
= current
->signal
->tty
;
3818 * session->tty can be changed/cleared from under us, make sure we
3819 * issue the load. The obtained pointer, when not NULL, is valid as
3820 * long as we hold tty_mutex.
3825 EXPORT_SYMBOL_GPL(get_current_tty
);
3828 * Initialize the console device. This is called *early*, so
3829 * we can't necessarily depend on lots of kernel help here.
3830 * Just do some early initializations, and do the complex setup
3833 void __init
console_init(void)
3837 /* Setup the default TTY line discipline. */
3838 (void) tty_register_ldisc(N_TTY
, &tty_ldisc_N_TTY
);
3841 * set up the console device so that later boot sequences can
3842 * inform about problems etc..
3844 #ifdef CONFIG_EARLY_PRINTK
3845 disable_early_printk();
3847 call
= __con_initcall_start
;
3848 while (call
< __con_initcall_end
) {
3855 extern int vty_init(void);
3858 static int __init
tty_class_init(void)
3860 tty_class
= class_create(THIS_MODULE
, "tty");
3861 if (IS_ERR(tty_class
))
3862 return PTR_ERR(tty_class
);
3866 postcore_initcall(tty_class_init
);
3868 /* 3/2004 jmc: why do these devices exist? */
3870 static struct cdev tty_cdev
, console_cdev
;
3871 #ifdef CONFIG_UNIX98_PTYS
3872 static struct cdev ptmx_cdev
;
3875 static struct cdev vc0_cdev
;
3879 * Ok, now we can initialize the rest of the tty devices and can count
3880 * on memory allocations, interrupts etc..
3882 static int __init
tty_init(void)
3884 cdev_init(&tty_cdev
, &tty_fops
);
3885 if (cdev_add(&tty_cdev
, MKDEV(TTYAUX_MAJOR
, 0), 1) ||
3886 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 0), 1, "/dev/tty") < 0)
3887 panic("Couldn't register /dev/tty driver\n");
3888 device_create(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 0), "tty");
3890 cdev_init(&console_cdev
, &console_fops
);
3891 if (cdev_add(&console_cdev
, MKDEV(TTYAUX_MAJOR
, 1), 1) ||
3892 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 1), 1, "/dev/console") < 0)
3893 panic("Couldn't register /dev/console driver\n");
3894 device_create(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 1), "console");
3896 #ifdef CONFIG_UNIX98_PTYS
3897 cdev_init(&ptmx_cdev
, &ptmx_fops
);
3898 if (cdev_add(&ptmx_cdev
, MKDEV(TTYAUX_MAJOR
, 2), 1) ||
3899 register_chrdev_region(MKDEV(TTYAUX_MAJOR
, 2), 1, "/dev/ptmx") < 0)
3900 panic("Couldn't register /dev/ptmx driver\n");
3901 device_create(tty_class
, NULL
, MKDEV(TTYAUX_MAJOR
, 2), "ptmx");
3905 cdev_init(&vc0_cdev
, &console_fops
);
3906 if (cdev_add(&vc0_cdev
, MKDEV(TTY_MAJOR
, 0), 1) ||
3907 register_chrdev_region(MKDEV(TTY_MAJOR
, 0), 1, "/dev/vc/0") < 0)
3908 panic("Couldn't register /dev/tty0 driver\n");
3909 device_create(tty_class
, NULL
, MKDEV(TTY_MAJOR
, 0), "tty0");
3915 module_init(tty_init
);