2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
53 kmem_zone_t
*xfs_ifork_zone
;
54 kmem_zone_t
*xfs_inode_zone
;
55 kmem_zone_t
*xfs_chashlist_zone
;
58 * Used in xfs_itruncate(). This is the maximum number of extents
59 * freed from a file in a single transaction.
61 #define XFS_ITRUNC_MAX_EXTENTS 2
63 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
64 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
65 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
66 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
71 * Make sure that the extents in the given memory buffer
86 for (i
= 0; i
< nrecs
; i
++) {
87 ep
= xfs_iext_get_ext(ifp
, i
);
88 rec
.l0
= get_unaligned((__uint64_t
*)&ep
->l0
);
89 rec
.l1
= get_unaligned((__uint64_t
*)&ep
->l1
);
91 xfs_bmbt_disk_get_all(&rec
, &irec
);
93 xfs_bmbt_get_all(&rec
, &irec
);
94 if (fmt
== XFS_EXTFMT_NOSTATE
)
95 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
99 #define xfs_validate_extents(ifp, nrecs, disk, fmt)
103 * Check that none of the inode's in the buffer have a next
104 * unlinked field of 0.
116 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
118 for (i
= 0; i
< j
; i
++) {
119 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
120 i
* mp
->m_sb
.sb_inodesize
);
121 if (!dip
->di_next_unlinked
) {
122 xfs_fs_cmn_err(CE_ALERT
, mp
,
123 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
125 ASSERT(dip
->di_next_unlinked
);
132 * This routine is called to map an inode number within a file
133 * system to the buffer containing the on-disk version of the
134 * inode. It returns a pointer to the buffer containing the
135 * on-disk inode in the bpp parameter, and in the dip parameter
136 * it returns a pointer to the on-disk inode within that buffer.
138 * If a non-zero error is returned, then the contents of bpp and
139 * dipp are undefined.
141 * Use xfs_imap() to determine the size and location of the
142 * buffer to read from disk.
160 * Call the space management code to find the location of the
164 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
167 "xfs_inotobp: xfs_imap() returned an "
168 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
173 * If the inode number maps to a block outside the bounds of the
174 * file system then return NULL rather than calling read_buf
175 * and panicing when we get an error from the driver.
177 if ((imap
.im_blkno
+ imap
.im_len
) >
178 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
180 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
181 "of the file system %s. Returning EINVAL.",
182 (unsigned long long)imap
.im_blkno
,
183 imap
.im_len
, mp
->m_fsname
);
184 return XFS_ERROR(EINVAL
);
188 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
189 * default to just a read_buf() call.
191 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
192 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
196 "xfs_inotobp: xfs_trans_read_buf() returned an "
197 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
200 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
202 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
203 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
204 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
205 XFS_RANDOM_ITOBP_INOTOBP
))) {
206 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
207 xfs_trans_brelse(tp
, bp
);
209 "xfs_inotobp: XFS_TEST_ERROR() returned an "
210 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
211 return XFS_ERROR(EFSCORRUPTED
);
214 xfs_inobp_check(mp
, bp
);
217 * Set *dipp to point to the on-disk inode in the buffer.
219 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
221 *offset
= imap
.im_boffset
;
227 * This routine is called to map an inode to the buffer containing
228 * the on-disk version of the inode. It returns a pointer to the
229 * buffer containing the on-disk inode in the bpp parameter, and in
230 * the dip parameter it returns a pointer to the on-disk inode within
233 * If a non-zero error is returned, then the contents of bpp and
234 * dipp are undefined.
236 * If the inode is new and has not yet been initialized, use xfs_imap()
237 * to determine the size and location of the buffer to read from disk.
238 * If the inode has already been mapped to its buffer and read in once,
239 * then use the mapping information stored in the inode rather than
240 * calling xfs_imap(). This allows us to avoid the overhead of looking
241 * at the inode btree for small block file systems (see xfs_dilocate()).
242 * We can tell whether the inode has been mapped in before by comparing
243 * its disk block address to 0. Only uninitialized inodes will have
244 * 0 for the disk block address.
262 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
264 * Call the space management code to find the location of the
268 if ((error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
269 XFS_IMAP_LOOKUP
| imap_flags
)))
273 * If the inode number maps to a block outside the bounds
274 * of the file system then return NULL rather than calling
275 * read_buf and panicing when we get an error from the
278 if ((imap
.im_blkno
+ imap
.im_len
) >
279 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
281 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
282 "(imap.im_blkno (0x%llx) "
283 "+ imap.im_len (0x%llx)) > "
284 " XFS_FSB_TO_BB(mp, "
285 "mp->m_sb.sb_dblocks) (0x%llx)",
286 (unsigned long long) imap
.im_blkno
,
287 (unsigned long long) imap
.im_len
,
288 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
290 return XFS_ERROR(EINVAL
);
294 * Fill in the fields in the inode that will be used to
295 * map the inode to its buffer from now on.
297 ip
->i_blkno
= imap
.im_blkno
;
298 ip
->i_len
= imap
.im_len
;
299 ip
->i_boffset
= imap
.im_boffset
;
302 * We've already mapped the inode once, so just use the
303 * mapping that we saved the first time.
305 imap
.im_blkno
= ip
->i_blkno
;
306 imap
.im_len
= ip
->i_len
;
307 imap
.im_boffset
= ip
->i_boffset
;
309 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
312 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
313 * default to just a read_buf() call.
315 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
316 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
319 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
320 "xfs_trans_read_buf() returned error %d, "
321 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
322 error
, (unsigned long long) imap
.im_blkno
,
323 (unsigned long long) imap
.im_len
);
329 * Validate the magic number and version of every inode in the buffer
330 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
331 * No validation is done here in userspace (xfs_repair).
333 #if !defined(__KERNEL__)
336 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
337 #else /* usual case */
341 for (i
= 0; i
< ni
; i
++) {
345 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
346 (i
<< mp
->m_sb
.sb_inodelog
));
347 di_ok
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) == XFS_DINODE_MAGIC
&&
348 XFS_DINODE_GOOD_VERSION(INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
));
349 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
350 XFS_ERRTAG_ITOBP_INOTOBP
,
351 XFS_RANDOM_ITOBP_INOTOBP
))) {
352 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
353 xfs_trans_brelse(tp
, bp
);
354 return XFS_ERROR(EINVAL
);
358 "Device %s - bad inode magic/vsn "
359 "daddr %lld #%d (magic=%x)",
360 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
361 (unsigned long long)imap
.im_blkno
, i
,
362 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
));
364 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
366 xfs_trans_brelse(tp
, bp
);
367 return XFS_ERROR(EFSCORRUPTED
);
371 xfs_inobp_check(mp
, bp
);
374 * Mark the buffer as an inode buffer now that it looks good
376 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
379 * Set *dipp to point to the on-disk inode in the buffer.
381 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
387 * Move inode type and inode format specific information from the
388 * on-disk inode to the in-core inode. For fifos, devs, and sockets
389 * this means set if_rdev to the proper value. For files, directories,
390 * and symlinks this means to bring in the in-line data or extent
391 * pointers. For a file in B-tree format, only the root is immediately
392 * brought in-core. The rest will be in-lined in if_extents when it
393 * is first referenced (see xfs_iread_extents()).
400 xfs_attr_shortform_t
*atp
;
404 ip
->i_df
.if_ext_max
=
405 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
409 INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
) +
410 INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
) >
411 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
))) {
412 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
413 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
414 (unsigned long long)ip
->i_ino
,
415 (int)(INT_GET(dip
->di_core
.di_nextents
, ARCH_CONVERT
)
416 + INT_GET(dip
->di_core
.di_anextents
, ARCH_CONVERT
)),
418 INT_GET(dip
->di_core
.di_nblocks
, ARCH_CONVERT
));
419 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
421 return XFS_ERROR(EFSCORRUPTED
);
424 if (unlikely(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
) > ip
->i_mount
->m_sb
.sb_inodesize
)) {
425 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
426 "corrupt dinode %Lu, forkoff = 0x%x.",
427 (unsigned long long)ip
->i_ino
,
428 (int)(INT_GET(dip
->di_core
.di_forkoff
, ARCH_CONVERT
)));
429 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
431 return XFS_ERROR(EFSCORRUPTED
);
434 switch (ip
->i_d
.di_mode
& S_IFMT
) {
439 if (unlikely(INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
) != XFS_DINODE_FMT_DEV
)) {
440 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
442 return XFS_ERROR(EFSCORRUPTED
);
445 ip
->i_df
.if_u2
.if_rdev
= INT_GET(dip
->di_u
.di_dev
, ARCH_CONVERT
);
451 switch (INT_GET(dip
->di_core
.di_format
, ARCH_CONVERT
)) {
452 case XFS_DINODE_FMT_LOCAL
:
454 * no local regular files yet
456 if (unlikely((INT_GET(dip
->di_core
.di_mode
, ARCH_CONVERT
) & S_IFMT
) == S_IFREG
)) {
457 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
459 "(local format for regular file).",
460 (unsigned long long) ip
->i_ino
);
461 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
464 return XFS_ERROR(EFSCORRUPTED
);
467 di_size
= INT_GET(dip
->di_core
.di_size
, ARCH_CONVERT
);
468 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
469 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
471 "(bad size %Ld for local inode).",
472 (unsigned long long) ip
->i_ino
,
473 (long long) di_size
);
474 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
477 return XFS_ERROR(EFSCORRUPTED
);
481 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
483 case XFS_DINODE_FMT_EXTENTS
:
484 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
486 case XFS_DINODE_FMT_BTREE
:
487 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
490 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
492 return XFS_ERROR(EFSCORRUPTED
);
497 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
498 return XFS_ERROR(EFSCORRUPTED
);
503 if (!XFS_DFORK_Q(dip
))
505 ASSERT(ip
->i_afp
== NULL
);
506 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
507 ip
->i_afp
->if_ext_max
=
508 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
509 switch (INT_GET(dip
->di_core
.di_aformat
, ARCH_CONVERT
)) {
510 case XFS_DINODE_FMT_LOCAL
:
511 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
512 size
= be16_to_cpu(atp
->hdr
.totsize
);
513 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
515 case XFS_DINODE_FMT_EXTENTS
:
516 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
518 case XFS_DINODE_FMT_BTREE
:
519 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
522 error
= XFS_ERROR(EFSCORRUPTED
);
526 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
528 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
534 * The file is in-lined in the on-disk inode.
535 * If it fits into if_inline_data, then copy
536 * it there, otherwise allocate a buffer for it
537 * and copy the data there. Either way, set
538 * if_data to point at the data.
539 * If we allocate a buffer for the data, make
540 * sure that its size is a multiple of 4 and
541 * record the real size in i_real_bytes.
554 * If the size is unreasonable, then something
555 * is wrong and we just bail out rather than crash in
556 * kmem_alloc() or memcpy() below.
558 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
559 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
561 "(bad size %d for local fork, size = %d).",
562 (unsigned long long) ip
->i_ino
, size
,
563 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
564 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
566 return XFS_ERROR(EFSCORRUPTED
);
568 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
571 ifp
->if_u1
.if_data
= NULL
;
572 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
573 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
575 real_size
= roundup(size
, 4);
576 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
578 ifp
->if_bytes
= size
;
579 ifp
->if_real_bytes
= real_size
;
581 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
582 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
583 ifp
->if_flags
|= XFS_IFINLINE
;
588 * The file consists of a set of extents all
589 * of which fit into the on-disk inode.
590 * If there are few enough extents to fit into
591 * the if_inline_ext, then copy them there.
592 * Otherwise allocate a buffer for them and copy
593 * them into it. Either way, set if_extents
594 * to point at the extents.
602 xfs_bmbt_rec_t
*ep
, *dp
;
608 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
609 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
610 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
613 * If the number of extents is unreasonable, then something
614 * is wrong and we just bail out rather than crash in
615 * kmem_alloc() or memcpy() below.
617 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
618 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
619 "corrupt inode %Lu ((a)extents = %d).",
620 (unsigned long long) ip
->i_ino
, nex
);
621 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
623 return XFS_ERROR(EFSCORRUPTED
);
626 ifp
->if_real_bytes
= 0;
628 ifp
->if_u1
.if_extents
= NULL
;
629 else if (nex
<= XFS_INLINE_EXTS
)
630 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
632 xfs_iext_add(ifp
, 0, nex
);
634 ifp
->if_bytes
= size
;
636 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
637 xfs_validate_extents(ifp
, nex
, 1, XFS_EXTFMT_INODE(ip
));
638 for (i
= 0; i
< nex
; i
++, dp
++) {
639 ep
= xfs_iext_get_ext(ifp
, i
);
640 ep
->l0
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l0
),
642 ep
->l1
= INT_GET(get_unaligned((__uint64_t
*)&dp
->l1
),
645 xfs_bmap_trace_exlist("xfs_iformat_extents", ip
, nex
,
647 if (whichfork
!= XFS_DATA_FORK
||
648 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
649 if (unlikely(xfs_check_nostate_extents(
651 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
654 return XFS_ERROR(EFSCORRUPTED
);
657 ifp
->if_flags
|= XFS_IFEXTENTS
;
662 * The file has too many extents to fit into
663 * the inode, so they are in B-tree format.
664 * Allocate a buffer for the root of the B-tree
665 * and copy the root into it. The i_extents
666 * field will remain NULL until all of the
667 * extents are read in (when they are needed).
675 xfs_bmdr_block_t
*dfp
;
681 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
682 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
683 size
= XFS_BMAP_BROOT_SPACE(dfp
);
684 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
687 * blow out if -- fork has less extents than can fit in
688 * fork (fork shouldn't be a btree format), root btree
689 * block has more records than can fit into the fork,
690 * or the number of extents is greater than the number of
693 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
694 || XFS_BMDR_SPACE_CALC(nrecs
) >
695 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
696 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
697 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
698 "corrupt inode %Lu (btree).",
699 (unsigned long long) ip
->i_ino
);
700 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
702 return XFS_ERROR(EFSCORRUPTED
);
705 ifp
->if_broot_bytes
= size
;
706 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
707 ASSERT(ifp
->if_broot
!= NULL
);
709 * Copy and convert from the on-disk structure
710 * to the in-memory structure.
712 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
713 ifp
->if_broot
, size
);
714 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
715 ifp
->if_flags
|= XFS_IFBROOT
;
721 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
724 * buf = on-disk representation
725 * dip = native representation
726 * dir = direction - +ve -> disk to native
727 * -ve -> native to disk
730 xfs_xlate_dinode_core(
732 xfs_dinode_core_t
*dip
,
735 xfs_dinode_core_t
*buf_core
= (xfs_dinode_core_t
*)buf
;
736 xfs_dinode_core_t
*mem_core
= (xfs_dinode_core_t
*)dip
;
737 xfs_arch_t arch
= ARCH_CONVERT
;
741 INT_XLATE(buf_core
->di_magic
, mem_core
->di_magic
, dir
, arch
);
742 INT_XLATE(buf_core
->di_mode
, mem_core
->di_mode
, dir
, arch
);
743 INT_XLATE(buf_core
->di_version
, mem_core
->di_version
, dir
, arch
);
744 INT_XLATE(buf_core
->di_format
, mem_core
->di_format
, dir
, arch
);
745 INT_XLATE(buf_core
->di_onlink
, mem_core
->di_onlink
, dir
, arch
);
746 INT_XLATE(buf_core
->di_uid
, mem_core
->di_uid
, dir
, arch
);
747 INT_XLATE(buf_core
->di_gid
, mem_core
->di_gid
, dir
, arch
);
748 INT_XLATE(buf_core
->di_nlink
, mem_core
->di_nlink
, dir
, arch
);
749 INT_XLATE(buf_core
->di_projid
, mem_core
->di_projid
, dir
, arch
);
752 memcpy(mem_core
->di_pad
, buf_core
->di_pad
,
753 sizeof(buf_core
->di_pad
));
755 memcpy(buf_core
->di_pad
, mem_core
->di_pad
,
756 sizeof(buf_core
->di_pad
));
759 INT_XLATE(buf_core
->di_flushiter
, mem_core
->di_flushiter
, dir
, arch
);
761 INT_XLATE(buf_core
->di_atime
.t_sec
, mem_core
->di_atime
.t_sec
,
763 INT_XLATE(buf_core
->di_atime
.t_nsec
, mem_core
->di_atime
.t_nsec
,
765 INT_XLATE(buf_core
->di_mtime
.t_sec
, mem_core
->di_mtime
.t_sec
,
767 INT_XLATE(buf_core
->di_mtime
.t_nsec
, mem_core
->di_mtime
.t_nsec
,
769 INT_XLATE(buf_core
->di_ctime
.t_sec
, mem_core
->di_ctime
.t_sec
,
771 INT_XLATE(buf_core
->di_ctime
.t_nsec
, mem_core
->di_ctime
.t_nsec
,
773 INT_XLATE(buf_core
->di_size
, mem_core
->di_size
, dir
, arch
);
774 INT_XLATE(buf_core
->di_nblocks
, mem_core
->di_nblocks
, dir
, arch
);
775 INT_XLATE(buf_core
->di_extsize
, mem_core
->di_extsize
, dir
, arch
);
776 INT_XLATE(buf_core
->di_nextents
, mem_core
->di_nextents
, dir
, arch
);
777 INT_XLATE(buf_core
->di_anextents
, mem_core
->di_anextents
, dir
, arch
);
778 INT_XLATE(buf_core
->di_forkoff
, mem_core
->di_forkoff
, dir
, arch
);
779 INT_XLATE(buf_core
->di_aformat
, mem_core
->di_aformat
, dir
, arch
);
780 INT_XLATE(buf_core
->di_dmevmask
, mem_core
->di_dmevmask
, dir
, arch
);
781 INT_XLATE(buf_core
->di_dmstate
, mem_core
->di_dmstate
, dir
, arch
);
782 INT_XLATE(buf_core
->di_flags
, mem_core
->di_flags
, dir
, arch
);
783 INT_XLATE(buf_core
->di_gen
, mem_core
->di_gen
, dir
, arch
);
792 if (di_flags
& XFS_DIFLAG_ANY
) {
793 if (di_flags
& XFS_DIFLAG_REALTIME
)
794 flags
|= XFS_XFLAG_REALTIME
;
795 if (di_flags
& XFS_DIFLAG_PREALLOC
)
796 flags
|= XFS_XFLAG_PREALLOC
;
797 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
798 flags
|= XFS_XFLAG_IMMUTABLE
;
799 if (di_flags
& XFS_DIFLAG_APPEND
)
800 flags
|= XFS_XFLAG_APPEND
;
801 if (di_flags
& XFS_DIFLAG_SYNC
)
802 flags
|= XFS_XFLAG_SYNC
;
803 if (di_flags
& XFS_DIFLAG_NOATIME
)
804 flags
|= XFS_XFLAG_NOATIME
;
805 if (di_flags
& XFS_DIFLAG_NODUMP
)
806 flags
|= XFS_XFLAG_NODUMP
;
807 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
808 flags
|= XFS_XFLAG_RTINHERIT
;
809 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
810 flags
|= XFS_XFLAG_PROJINHERIT
;
811 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
812 flags
|= XFS_XFLAG_NOSYMLINKS
;
813 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
814 flags
|= XFS_XFLAG_EXTSIZE
;
815 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
816 flags
|= XFS_XFLAG_EXTSZINHERIT
;
817 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
818 flags
|= XFS_XFLAG_NODEFRAG
;
828 xfs_dinode_core_t
*dic
= &ip
->i_d
;
830 return _xfs_dic2xflags(dic
->di_flags
) |
831 (XFS_CFORK_Q(dic
) ? XFS_XFLAG_HASATTR
: 0);
836 xfs_dinode_core_t
*dic
)
838 return _xfs_dic2xflags(INT_GET(dic
->di_flags
, ARCH_CONVERT
)) |
839 (XFS_CFORK_Q_DISK(dic
) ? XFS_XFLAG_HASATTR
: 0);
843 * Given a mount structure and an inode number, return a pointer
844 * to a newly allocated in-core inode corresponding to the given
847 * Initialize the inode's attributes and extent pointers if it
848 * already has them (it will not if the inode has no links).
864 ASSERT(xfs_inode_zone
!= NULL
);
866 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
869 spin_lock_init(&ip
->i_flags_lock
);
872 * Get pointer's to the on-disk inode and the buffer containing it.
873 * If the inode number refers to a block outside the file system
874 * then xfs_itobp() will return NULL. In this case we should
875 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
876 * know that this is a new incore inode.
878 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, imap_flags
);
880 kmem_zone_free(xfs_inode_zone
, ip
);
885 * Initialize inode's trace buffers.
886 * Do this before xfs_iformat in case it adds entries.
888 #ifdef XFS_BMAP_TRACE
889 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
891 #ifdef XFS_BMBT_TRACE
892 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
895 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
897 #ifdef XFS_ILOCK_TRACE
898 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
900 #ifdef XFS_DIR2_TRACE
901 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
905 * If we got something that isn't an inode it means someone
906 * (nfs or dmi) has a stale handle.
908 if (INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
) != XFS_DINODE_MAGIC
) {
909 kmem_zone_free(xfs_inode_zone
, ip
);
910 xfs_trans_brelse(tp
, bp
);
912 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
913 "dip->di_core.di_magic (0x%x) != "
914 "XFS_DINODE_MAGIC (0x%x)",
915 INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
),
918 return XFS_ERROR(EINVAL
);
922 * If the on-disk inode is already linked to a directory
923 * entry, copy all of the inode into the in-core inode.
924 * xfs_iformat() handles copying in the inode format
925 * specific information.
926 * Otherwise, just get the truly permanent information.
928 if (dip
->di_core
.di_mode
) {
929 xfs_xlate_dinode_core((xfs_caddr_t
)&dip
->di_core
,
931 error
= xfs_iformat(ip
, dip
);
933 kmem_zone_free(xfs_inode_zone
, ip
);
934 xfs_trans_brelse(tp
, bp
);
936 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
937 "xfs_iformat() returned error %d",
943 ip
->i_d
.di_magic
= INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
);
944 ip
->i_d
.di_version
= INT_GET(dip
->di_core
.di_version
, ARCH_CONVERT
);
945 ip
->i_d
.di_gen
= INT_GET(dip
->di_core
.di_gen
, ARCH_CONVERT
);
946 ip
->i_d
.di_flushiter
= INT_GET(dip
->di_core
.di_flushiter
, ARCH_CONVERT
);
948 * Make sure to pull in the mode here as well in
949 * case the inode is released without being used.
950 * This ensures that xfs_inactive() will see that
951 * the inode is already free and not try to mess
952 * with the uninitialized part of it.
956 * Initialize the per-fork minima and maxima for a new
957 * inode here. xfs_iformat will do it for old inodes.
959 ip
->i_df
.if_ext_max
=
960 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
963 INIT_LIST_HEAD(&ip
->i_reclaim
);
966 * The inode format changed when we moved the link count and
967 * made it 32 bits long. If this is an old format inode,
968 * convert it in memory to look like a new one. If it gets
969 * flushed to disk we will convert back before flushing or
970 * logging it. We zero out the new projid field and the old link
971 * count field. We'll handle clearing the pad field (the remains
972 * of the old uuid field) when we actually convert the inode to
973 * the new format. We don't change the version number so that we
974 * can distinguish this from a real new format inode.
976 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
977 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
978 ip
->i_d
.di_onlink
= 0;
979 ip
->i_d
.di_projid
= 0;
982 ip
->i_delayed_blks
= 0;
985 * Mark the buffer containing the inode as something to keep
986 * around for a while. This helps to keep recently accessed
987 * meta-data in-core longer.
989 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
992 * Use xfs_trans_brelse() to release the buffer containing the
993 * on-disk inode, because it was acquired with xfs_trans_read_buf()
994 * in xfs_itobp() above. If tp is NULL, this is just a normal
995 * brelse(). If we're within a transaction, then xfs_trans_brelse()
996 * will only release the buffer if it is not dirty within the
997 * transaction. It will be OK to release the buffer in this case,
998 * because inodes on disk are never destroyed and we will be
999 * locking the new in-core inode before putting it in the hash
1000 * table where other processes can find it. Thus we don't have
1001 * to worry about the inode being changed just because we released
1004 xfs_trans_brelse(tp
, bp
);
1010 * Read in extents from a btree-format inode.
1011 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1021 xfs_extnum_t nextents
;
1024 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1025 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1027 return XFS_ERROR(EFSCORRUPTED
);
1029 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
1030 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
1031 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1034 * We know that the size is valid (it's checked in iformat_btree)
1036 ifp
->if_lastex
= NULLEXTNUM
;
1037 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1038 ifp
->if_flags
|= XFS_IFEXTENTS
;
1039 xfs_iext_add(ifp
, 0, nextents
);
1040 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1042 xfs_iext_destroy(ifp
);
1043 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1046 xfs_validate_extents(ifp
, nextents
, 0, XFS_EXTFMT_INODE(ip
));
1051 * Allocate an inode on disk and return a copy of its in-core version.
1052 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1053 * appropriately within the inode. The uid and gid for the inode are
1054 * set according to the contents of the given cred structure.
1056 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1057 * has a free inode available, call xfs_iget()
1058 * to obtain the in-core version of the allocated inode. Finally,
1059 * fill in the inode and log its initial contents. In this case,
1060 * ialloc_context would be set to NULL and call_again set to false.
1062 * If xfs_dialloc() does not have an available inode,
1063 * it will replenish its supply by doing an allocation. Since we can
1064 * only do one allocation within a transaction without deadlocks, we
1065 * must commit the current transaction before returning the inode itself.
1066 * In this case, therefore, we will set call_again to true and return.
1067 * The caller should then commit the current transaction, start a new
1068 * transaction, and call xfs_ialloc() again to actually get the inode.
1070 * To ensure that some other process does not grab the inode that
1071 * was allocated during the first call to xfs_ialloc(), this routine
1072 * also returns the [locked] bp pointing to the head of the freelist
1073 * as ialloc_context. The caller should hold this buffer across
1074 * the commit and pass it back into this routine on the second call.
1086 xfs_buf_t
**ialloc_context
,
1087 boolean_t
*call_again
,
1097 * Call the space management code to pick
1098 * the on-disk inode to be allocated.
1100 error
= xfs_dialloc(tp
, pip
->i_ino
, mode
, okalloc
,
1101 ialloc_context
, call_again
, &ino
);
1105 if (*call_again
|| ino
== NULLFSINO
) {
1109 ASSERT(*ialloc_context
== NULL
);
1112 * Get the in-core inode with the lock held exclusively.
1113 * This is because we're setting fields here we need
1114 * to prevent others from looking at until we're done.
1116 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1117 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1124 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1125 ip
->i_d
.di_onlink
= 0;
1126 ip
->i_d
.di_nlink
= nlink
;
1127 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1128 ip
->i_d
.di_uid
= current_fsuid(cr
);
1129 ip
->i_d
.di_gid
= current_fsgid(cr
);
1130 ip
->i_d
.di_projid
= prid
;
1131 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1134 * If the superblock version is up to where we support new format
1135 * inodes and this is currently an old format inode, then change
1136 * the inode version number now. This way we only do the conversion
1137 * here rather than here and in the flush/logging code.
1139 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1140 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1141 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1143 * We've already zeroed the old link count, the projid field,
1144 * and the pad field.
1149 * Project ids won't be stored on disk if we are using a version 1 inode.
1151 if ( (prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1152 xfs_bump_ino_vers2(tp
, ip
);
1154 if (XFS_INHERIT_GID(pip
, vp
->v_vfsp
)) {
1155 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1156 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1157 ip
->i_d
.di_mode
|= S_ISGID
;
1162 * If the group ID of the new file does not match the effective group
1163 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1164 * (and only if the irix_sgid_inherit compatibility variable is set).
1166 if ((irix_sgid_inherit
) &&
1167 (ip
->i_d
.di_mode
& S_ISGID
) &&
1168 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1169 ip
->i_d
.di_mode
&= ~S_ISGID
;
1172 ip
->i_d
.di_size
= 0;
1173 ip
->i_d
.di_nextents
= 0;
1174 ASSERT(ip
->i_d
.di_nblocks
== 0);
1175 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1177 * di_gen will have been taken care of in xfs_iread.
1179 ip
->i_d
.di_extsize
= 0;
1180 ip
->i_d
.di_dmevmask
= 0;
1181 ip
->i_d
.di_dmstate
= 0;
1182 ip
->i_d
.di_flags
= 0;
1183 flags
= XFS_ILOG_CORE
;
1184 switch (mode
& S_IFMT
) {
1189 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1190 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1191 ip
->i_df
.if_flags
= 0;
1192 flags
|= XFS_ILOG_DEV
;
1196 if (unlikely(pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1199 if ((mode
& S_IFMT
) == S_IFDIR
) {
1200 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1201 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1202 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1203 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1204 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1206 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1207 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
) {
1208 di_flags
|= XFS_DIFLAG_REALTIME
;
1209 ip
->i_iocore
.io_flags
|= XFS_IOCORE_RT
;
1211 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1212 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1213 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1216 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1217 xfs_inherit_noatime
)
1218 di_flags
|= XFS_DIFLAG_NOATIME
;
1219 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1221 di_flags
|= XFS_DIFLAG_NODUMP
;
1222 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1224 di_flags
|= XFS_DIFLAG_SYNC
;
1225 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1226 xfs_inherit_nosymlinks
)
1227 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1228 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1229 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1230 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1231 xfs_inherit_nodefrag
)
1232 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1233 ip
->i_d
.di_flags
|= di_flags
;
1237 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1238 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1239 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1240 ip
->i_df
.if_u1
.if_extents
= NULL
;
1246 * Attribute fork settings for new inode.
1248 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1249 ip
->i_d
.di_anextents
= 0;
1252 * Log the new values stuffed into the inode.
1254 xfs_trans_log_inode(tp
, ip
, flags
);
1256 /* now that we have an i_mode we can setup inode ops and unlock */
1257 bhv_vfs_init_vnode(XFS_MTOVFS(tp
->t_mountp
), vp
, XFS_ITOBHV(ip
), 1);
1264 * Check to make sure that there are no blocks allocated to the
1265 * file beyond the size of the file. We don't check this for
1266 * files with fixed size extents or real time extents, but we
1267 * at least do it for regular files.
1276 xfs_fileoff_t map_first
;
1278 xfs_bmbt_irec_t imaps
[2];
1280 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1283 if (ip
->i_d
.di_flags
& (XFS_DIFLAG_REALTIME
| XFS_DIFLAG_EXTSIZE
))
1287 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1289 * The filesystem could be shutting down, so bmapi may return
1292 if (xfs_bmapi(NULL
, ip
, map_first
,
1294 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1296 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1299 ASSERT(nimaps
== 1);
1300 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1305 * Calculate the last possible buffered byte in a file. This must
1306 * include data that was buffered beyond the EOF by the write code.
1307 * This also needs to deal with overflowing the xfs_fsize_t type
1308 * which can happen for sizes near the limit.
1310 * We also need to take into account any blocks beyond the EOF. It
1311 * may be the case that they were buffered by a write which failed.
1312 * In that case the pages will still be in memory, but the inode size
1313 * will never have been updated.
1320 xfs_fsize_t last_byte
;
1321 xfs_fileoff_t last_block
;
1322 xfs_fileoff_t size_last_block
;
1325 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1329 * Only check for blocks beyond the EOF if the extents have
1330 * been read in. This eliminates the need for the inode lock,
1331 * and it also saves us from looking when it really isn't
1334 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1335 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1343 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_d
.di_size
);
1344 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1346 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1347 if (last_byte
< 0) {
1348 return XFS_MAXIOFFSET(mp
);
1350 last_byte
+= (1 << mp
->m_writeio_log
);
1351 if (last_byte
< 0) {
1352 return XFS_MAXIOFFSET(mp
);
1357 #if defined(XFS_RW_TRACE)
1363 xfs_fsize_t new_size
,
1364 xfs_off_t toss_start
,
1365 xfs_off_t toss_finish
)
1367 if (ip
->i_rwtrace
== NULL
) {
1371 ktrace_enter(ip
->i_rwtrace
,
1374 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1375 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1376 (void*)((long)flag
),
1377 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1378 (void*)(unsigned long)(new_size
& 0xffffffff),
1379 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1380 (void*)(unsigned long)(toss_start
& 0xffffffff),
1381 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1382 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1383 (void*)(unsigned long)current_cpu(),
1384 (void*)(unsigned long)current_pid(),
1390 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1394 * Start the truncation of the file to new_size. The new size
1395 * must be smaller than the current size. This routine will
1396 * clear the buffer and page caches of file data in the removed
1397 * range, and xfs_itruncate_finish() will remove the underlying
1400 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1401 * must NOT have the inode lock held at all. This is because we're
1402 * calling into the buffer/page cache code and we can't hold the
1403 * inode lock when we do so.
1405 * We need to wait for any direct I/Os in flight to complete before we
1406 * proceed with the truncate. This is needed to prevent the extents
1407 * being read or written by the direct I/Os from being removed while the
1408 * I/O is in flight as there is no other method of synchronising
1409 * direct I/O with the truncate operation. Also, because we hold
1410 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1411 * started until the truncate completes and drops the lock. Essentially,
1412 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1413 * between direct I/Os and the truncate operation.
1415 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1416 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1417 * in the case that the caller is locking things out of order and
1418 * may not be able to call xfs_itruncate_finish() with the inode lock
1419 * held without dropping the I/O lock. If the caller must drop the
1420 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1421 * must be called again with all the same restrictions as the initial
1425 xfs_itruncate_start(
1428 xfs_fsize_t new_size
)
1430 xfs_fsize_t last_byte
;
1431 xfs_off_t toss_start
;
1435 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1436 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1437 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1438 (flags
== XFS_ITRUNC_MAYBE
));
1443 vn_iowait(vp
); /* wait for the completion of any pending DIOs */
1446 * Call toss_pages or flushinval_pages to get rid of pages
1447 * overlapping the region being removed. We have to use
1448 * the less efficient flushinval_pages in the case that the
1449 * caller may not be able to finish the truncate without
1450 * dropping the inode's I/O lock. Make sure
1451 * to catch any pages brought in by buffers overlapping
1452 * the EOF by searching out beyond the isize by our
1453 * block size. We round new_size up to a block boundary
1454 * so that we don't toss things on the same block as
1455 * new_size but before it.
1457 * Before calling toss_page or flushinval_pages, make sure to
1458 * call remapf() over the same region if the file is mapped.
1459 * This frees up mapped file references to the pages in the
1460 * given range and for the flushinval_pages case it ensures
1461 * that we get the latest mapped changes flushed out.
1463 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1464 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1465 if (toss_start
< 0) {
1467 * The place to start tossing is beyond our maximum
1468 * file size, so there is no way that the data extended
1473 last_byte
= xfs_file_last_byte(ip
);
1474 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1476 if (last_byte
> toss_start
) {
1477 if (flags
& XFS_ITRUNC_DEFINITE
) {
1478 bhv_vop_toss_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1480 bhv_vop_flushinval_pages(vp
, toss_start
, -1, FI_REMAPF_LOCKED
);
1485 if (new_size
== 0) {
1486 ASSERT(VN_CACHED(vp
) == 0);
1492 * Shrink the file to the given new_size. The new
1493 * size must be smaller than the current size.
1494 * This will free up the underlying blocks
1495 * in the removed range after a call to xfs_itruncate_start()
1496 * or xfs_atruncate_start().
1498 * The transaction passed to this routine must have made
1499 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1500 * This routine may commit the given transaction and
1501 * start new ones, so make sure everything involved in
1502 * the transaction is tidy before calling here.
1503 * Some transaction will be returned to the caller to be
1504 * committed. The incoming transaction must already include
1505 * the inode, and both inode locks must be held exclusively.
1506 * The inode must also be "held" within the transaction. On
1507 * return the inode will be "held" within the returned transaction.
1508 * This routine does NOT require any disk space to be reserved
1509 * for it within the transaction.
1511 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1512 * and it indicates the fork which is to be truncated. For the
1513 * attribute fork we only support truncation to size 0.
1515 * We use the sync parameter to indicate whether or not the first
1516 * transaction we perform might have to be synchronous. For the attr fork,
1517 * it needs to be so if the unlink of the inode is not yet known to be
1518 * permanent in the log. This keeps us from freeing and reusing the
1519 * blocks of the attribute fork before the unlink of the inode becomes
1522 * For the data fork, we normally have to run synchronously if we're
1523 * being called out of the inactive path or we're being called
1524 * out of the create path where we're truncating an existing file.
1525 * Either way, the truncate needs to be sync so blocks don't reappear
1526 * in the file with altered data in case of a crash. wsync filesystems
1527 * can run the first case async because anything that shrinks the inode
1528 * has to run sync so by the time we're called here from inactive, the
1529 * inode size is permanently set to 0.
1531 * Calls from the truncate path always need to be sync unless we're
1532 * in a wsync filesystem and the file has already been unlinked.
1534 * The caller is responsible for correctly setting the sync parameter.
1535 * It gets too hard for us to guess here which path we're being called
1536 * out of just based on inode state.
1539 xfs_itruncate_finish(
1542 xfs_fsize_t new_size
,
1546 xfs_fsblock_t first_block
;
1547 xfs_fileoff_t first_unmap_block
;
1548 xfs_fileoff_t last_block
;
1549 xfs_filblks_t unmap_len
=0;
1554 xfs_bmap_free_t free_list
;
1557 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1558 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1559 ASSERT((new_size
== 0) || (new_size
<= ip
->i_d
.di_size
));
1560 ASSERT(*tp
!= NULL
);
1561 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1562 ASSERT(ip
->i_transp
== *tp
);
1563 ASSERT(ip
->i_itemp
!= NULL
);
1564 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1568 mp
= (ntp
)->t_mountp
;
1569 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1572 * We only support truncating the entire attribute fork.
1574 if (fork
== XFS_ATTR_FORK
) {
1577 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1578 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1580 * The first thing we do is set the size to new_size permanently
1581 * on disk. This way we don't have to worry about anyone ever
1582 * being able to look at the data being freed even in the face
1583 * of a crash. What we're getting around here is the case where
1584 * we free a block, it is allocated to another file, it is written
1585 * to, and then we crash. If the new data gets written to the
1586 * file but the log buffers containing the free and reallocation
1587 * don't, then we'd end up with garbage in the blocks being freed.
1588 * As long as we make the new_size permanent before actually
1589 * freeing any blocks it doesn't matter if they get writtten to.
1591 * The callers must signal into us whether or not the size
1592 * setting here must be synchronous. There are a few cases
1593 * where it doesn't have to be synchronous. Those cases
1594 * occur if the file is unlinked and we know the unlink is
1595 * permanent or if the blocks being truncated are guaranteed
1596 * to be beyond the inode eof (regardless of the link count)
1597 * and the eof value is permanent. Both of these cases occur
1598 * only on wsync-mounted filesystems. In those cases, we're
1599 * guaranteed that no user will ever see the data in the blocks
1600 * that are being truncated so the truncate can run async.
1601 * In the free beyond eof case, the file may wind up with
1602 * more blocks allocated to it than it needs if we crash
1603 * and that won't get fixed until the next time the file
1604 * is re-opened and closed but that's ok as that shouldn't
1605 * be too many blocks.
1607 * However, we can't just make all wsync xactions run async
1608 * because there's one call out of the create path that needs
1609 * to run sync where it's truncating an existing file to size
1610 * 0 whose size is > 0.
1612 * It's probably possible to come up with a test in this
1613 * routine that would correctly distinguish all the above
1614 * cases from the values of the function parameters and the
1615 * inode state but for sanity's sake, I've decided to let the
1616 * layers above just tell us. It's simpler to correctly figure
1617 * out in the layer above exactly under what conditions we
1618 * can run async and I think it's easier for others read and
1619 * follow the logic in case something has to be changed.
1620 * cscope is your friend -- rcc.
1622 * The attribute fork is much simpler.
1624 * For the attribute fork we allow the caller to tell us whether
1625 * the unlink of the inode that led to this call is yet permanent
1626 * in the on disk log. If it is not and we will be freeing extents
1627 * in this inode then we make the first transaction synchronous
1628 * to make sure that the unlink is permanent by the time we free
1631 if (fork
== XFS_DATA_FORK
) {
1632 if (ip
->i_d
.di_nextents
> 0) {
1633 ip
->i_d
.di_size
= new_size
;
1634 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1637 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1638 if (ip
->i_d
.di_anextents
> 0)
1639 xfs_trans_set_sync(ntp
);
1641 ASSERT(fork
== XFS_DATA_FORK
||
1642 (fork
== XFS_ATTR_FORK
&&
1643 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1644 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1647 * Since it is possible for space to become allocated beyond
1648 * the end of the file (in a crash where the space is allocated
1649 * but the inode size is not yet updated), simply remove any
1650 * blocks which show up between the new EOF and the maximum
1651 * possible file size. If the first block to be removed is
1652 * beyond the maximum file size (ie it is the same as last_block),
1653 * then there is nothing to do.
1655 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1656 ASSERT(first_unmap_block
<= last_block
);
1658 if (last_block
== first_unmap_block
) {
1661 unmap_len
= last_block
- first_unmap_block
+ 1;
1665 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1666 * will tell us whether it freed the entire range or
1667 * not. If this is a synchronous mount (wsync),
1668 * then we can tell bunmapi to keep all the
1669 * transactions asynchronous since the unlink
1670 * transaction that made this inode inactive has
1671 * already hit the disk. There's no danger of
1672 * the freed blocks being reused, there being a
1673 * crash, and the reused blocks suddenly reappearing
1674 * in this file with garbage in them once recovery
1677 XFS_BMAP_INIT(&free_list
, &first_block
);
1678 error
= XFS_BUNMAPI(mp
, ntp
, &ip
->i_iocore
,
1679 first_unmap_block
, unmap_len
,
1680 XFS_BMAPI_AFLAG(fork
) |
1681 (sync
? 0 : XFS_BMAPI_ASYNC
),
1682 XFS_ITRUNC_MAX_EXTENTS
,
1683 &first_block
, &free_list
,
1687 * If the bunmapi call encounters an error,
1688 * return to the caller where the transaction
1689 * can be properly aborted. We just need to
1690 * make sure we're not holding any resources
1691 * that we were not when we came in.
1693 xfs_bmap_cancel(&free_list
);
1698 * Duplicate the transaction that has the permanent
1699 * reservation and commit the old transaction.
1701 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1705 * If the bmap finish call encounters an error,
1706 * return to the caller where the transaction
1707 * can be properly aborted. We just need to
1708 * make sure we're not holding any resources
1709 * that we were not when we came in.
1711 * Aborting from this point might lose some
1712 * blocks in the file system, but oh well.
1714 xfs_bmap_cancel(&free_list
);
1717 * If the passed in transaction committed
1718 * in xfs_bmap_finish(), then we want to
1719 * add the inode to this one before returning.
1720 * This keeps things simple for the higher
1721 * level code, because it always knows that
1722 * the inode is locked and held in the
1723 * transaction that returns to it whether
1724 * errors occur or not. We don't mark the
1725 * inode dirty so that this transaction can
1726 * be easily aborted if possible.
1728 xfs_trans_ijoin(ntp
, ip
,
1729 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1730 xfs_trans_ihold(ntp
, ip
);
1737 * The first xact was committed,
1738 * so add the inode to the new one.
1739 * Mark it dirty so it will be logged
1740 * and moved forward in the log as
1741 * part of every commit.
1743 xfs_trans_ijoin(ntp
, ip
,
1744 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1745 xfs_trans_ihold(ntp
, ip
);
1746 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1748 ntp
= xfs_trans_dup(ntp
);
1749 (void) xfs_trans_commit(*tp
, 0, NULL
);
1751 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1752 XFS_TRANS_PERM_LOG_RES
,
1753 XFS_ITRUNCATE_LOG_COUNT
);
1755 * Add the inode being truncated to the next chained
1758 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1759 xfs_trans_ihold(ntp
, ip
);
1764 * Only update the size in the case of the data fork, but
1765 * always re-log the inode so that our permanent transaction
1766 * can keep on rolling it forward in the log.
1768 if (fork
== XFS_DATA_FORK
) {
1769 xfs_isize_check(mp
, ip
, new_size
);
1770 ip
->i_d
.di_size
= new_size
;
1772 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1773 ASSERT((new_size
!= 0) ||
1774 (fork
== XFS_ATTR_FORK
) ||
1775 (ip
->i_delayed_blks
== 0));
1776 ASSERT((new_size
!= 0) ||
1777 (fork
== XFS_ATTR_FORK
) ||
1778 (ip
->i_d
.di_nextents
== 0));
1779 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1787 * Do the first part of growing a file: zero any data in the last
1788 * block that is beyond the old EOF. We need to do this before
1789 * the inode is joined to the transaction to modify the i_size.
1790 * That way we can drop the inode lock and call into the buffer
1791 * cache to get the buffer mapping the EOF.
1796 xfs_fsize_t new_size
,
1801 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1802 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1803 ASSERT(new_size
> ip
->i_d
.di_size
);
1806 * Zero any pages that may have been created by
1807 * xfs_write_file() beyond the end of the file
1808 * and any blocks between the old and new file sizes.
1810 error
= xfs_zero_eof(XFS_ITOV(ip
), &ip
->i_iocore
, new_size
,
1818 * This routine is called to extend the size of a file.
1819 * The inode must have both the iolock and the ilock locked
1820 * for update and it must be a part of the current transaction.
1821 * The xfs_igrow_start() function must have been called previously.
1822 * If the change_flag is not zero, the inode change timestamp will
1829 xfs_fsize_t new_size
,
1832 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1833 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1834 ASSERT(ip
->i_transp
== tp
);
1835 ASSERT(new_size
> ip
->i_d
.di_size
);
1838 * Update the file size. Update the inode change timestamp
1839 * if change_flag set.
1841 ip
->i_d
.di_size
= new_size
;
1843 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1844 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1850 * This is called when the inode's link count goes to 0.
1851 * We place the on-disk inode on a list in the AGI. It
1852 * will be pulled from this list when the inode is freed.
1864 xfs_agnumber_t agno
;
1865 xfs_daddr_t agdaddr
;
1872 ASSERT(ip
->i_d
.di_nlink
== 0);
1873 ASSERT(ip
->i_d
.di_mode
!= 0);
1874 ASSERT(ip
->i_transp
== tp
);
1878 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1879 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1882 * Get the agi buffer first. It ensures lock ordering
1885 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1886 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1891 * Validate the magic number of the agi block.
1893 agi
= XFS_BUF_TO_AGI(agibp
);
1895 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1896 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1897 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1898 XFS_RANDOM_IUNLINK
))) {
1899 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1900 xfs_trans_brelse(tp
, agibp
);
1901 return XFS_ERROR(EFSCORRUPTED
);
1904 * Get the index into the agi hash table for the
1905 * list this inode will go on.
1907 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1909 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1910 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1911 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1913 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1915 * There is already another inode in the bucket we need
1916 * to add ourselves to. Add us at the front of the list.
1917 * Here we put the head pointer into our next pointer,
1918 * and then we fall through to point the head at us.
1920 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
1924 ASSERT(INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
) == NULLAGINO
);
1925 ASSERT(dip
->di_next_unlinked
);
1926 /* both on-disk, don't endian flip twice */
1927 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1928 offset
= ip
->i_boffset
+
1929 offsetof(xfs_dinode_t
, di_next_unlinked
);
1930 xfs_trans_inode_buf(tp
, ibp
);
1931 xfs_trans_log_buf(tp
, ibp
, offset
,
1932 (offset
+ sizeof(xfs_agino_t
) - 1));
1933 xfs_inobp_check(mp
, ibp
);
1937 * Point the bucket head pointer at the inode being inserted.
1940 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1941 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1942 (sizeof(xfs_agino_t
) * bucket_index
);
1943 xfs_trans_log_buf(tp
, agibp
, offset
,
1944 (offset
+ sizeof(xfs_agino_t
) - 1));
1949 * Pull the on-disk inode from the AGI unlinked list.
1962 xfs_agnumber_t agno
;
1963 xfs_daddr_t agdaddr
;
1965 xfs_agino_t next_agino
;
1966 xfs_buf_t
*last_ibp
;
1967 xfs_dinode_t
*last_dip
= NULL
;
1969 int offset
, last_offset
= 0;
1974 * First pull the on-disk inode from the AGI unlinked list.
1978 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1979 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1982 * Get the agi buffer first. It ensures lock ordering
1985 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1986 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1989 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1990 error
, mp
->m_fsname
);
1994 * Validate the magic number of the agi block.
1996 agi
= XFS_BUF_TO_AGI(agibp
);
1998 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1999 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
2000 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
2001 XFS_RANDOM_IUNLINK_REMOVE
))) {
2002 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
2004 xfs_trans_brelse(tp
, agibp
);
2006 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2008 return XFS_ERROR(EFSCORRUPTED
);
2011 * Get the index into the agi hash table for the
2012 * list this inode will go on.
2014 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2016 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2017 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
2018 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2020 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2022 * We're at the head of the list. Get the inode's
2023 * on-disk buffer to see if there is anyone after us
2024 * on the list. Only modify our next pointer if it
2025 * is not already NULLAGINO. This saves us the overhead
2026 * of dealing with the buffer when there is no need to
2029 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2032 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2033 error
, mp
->m_fsname
);
2036 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2037 ASSERT(next_agino
!= 0);
2038 if (next_agino
!= NULLAGINO
) {
2039 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2040 offset
= ip
->i_boffset
+
2041 offsetof(xfs_dinode_t
, di_next_unlinked
);
2042 xfs_trans_inode_buf(tp
, ibp
);
2043 xfs_trans_log_buf(tp
, ibp
, offset
,
2044 (offset
+ sizeof(xfs_agino_t
) - 1));
2045 xfs_inobp_check(mp
, ibp
);
2047 xfs_trans_brelse(tp
, ibp
);
2050 * Point the bucket head pointer at the next inode.
2052 ASSERT(next_agino
!= 0);
2053 ASSERT(next_agino
!= agino
);
2054 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2055 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2056 (sizeof(xfs_agino_t
) * bucket_index
);
2057 xfs_trans_log_buf(tp
, agibp
, offset
,
2058 (offset
+ sizeof(xfs_agino_t
) - 1));
2061 * We need to search the list for the inode being freed.
2063 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2065 while (next_agino
!= agino
) {
2067 * If the last inode wasn't the one pointing to
2068 * us, then release its buffer since we're not
2069 * going to do anything with it.
2071 if (last_ibp
!= NULL
) {
2072 xfs_trans_brelse(tp
, last_ibp
);
2074 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2075 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2076 &last_ibp
, &last_offset
);
2079 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2080 error
, mp
->m_fsname
);
2083 next_agino
= INT_GET(last_dip
->di_next_unlinked
, ARCH_CONVERT
);
2084 ASSERT(next_agino
!= NULLAGINO
);
2085 ASSERT(next_agino
!= 0);
2088 * Now last_ibp points to the buffer previous to us on
2089 * the unlinked list. Pull us from the list.
2091 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2094 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2095 error
, mp
->m_fsname
);
2098 next_agino
= INT_GET(dip
->di_next_unlinked
, ARCH_CONVERT
);
2099 ASSERT(next_agino
!= 0);
2100 ASSERT(next_agino
!= agino
);
2101 if (next_agino
!= NULLAGINO
) {
2102 INT_SET(dip
->di_next_unlinked
, ARCH_CONVERT
, NULLAGINO
);
2103 offset
= ip
->i_boffset
+
2104 offsetof(xfs_dinode_t
, di_next_unlinked
);
2105 xfs_trans_inode_buf(tp
, ibp
);
2106 xfs_trans_log_buf(tp
, ibp
, offset
,
2107 (offset
+ sizeof(xfs_agino_t
) - 1));
2108 xfs_inobp_check(mp
, ibp
);
2110 xfs_trans_brelse(tp
, ibp
);
2113 * Point the previous inode on the list to the next inode.
2115 INT_SET(last_dip
->di_next_unlinked
, ARCH_CONVERT
, next_agino
);
2116 ASSERT(next_agino
!= 0);
2117 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2118 xfs_trans_inode_buf(tp
, last_ibp
);
2119 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2120 (offset
+ sizeof(xfs_agino_t
) - 1));
2121 xfs_inobp_check(mp
, last_ibp
);
2126 STATIC_INLINE
int xfs_inode_clean(xfs_inode_t
*ip
)
2128 return (((ip
->i_itemp
== NULL
) ||
2129 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2130 (ip
->i_update_core
== 0));
2135 xfs_inode_t
*free_ip
,
2139 xfs_mount_t
*mp
= free_ip
->i_mount
;
2140 int blks_per_cluster
;
2143 int i
, j
, found
, pre_flushed
;
2147 xfs_inode_t
*ip
, **ip_found
;
2148 xfs_inode_log_item_t
*iip
;
2149 xfs_log_item_t
*lip
;
2152 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2153 blks_per_cluster
= 1;
2154 ninodes
= mp
->m_sb
.sb_inopblock
;
2155 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2157 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2158 mp
->m_sb
.sb_blocksize
;
2159 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2160 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2163 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2165 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2166 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2167 XFS_INO_TO_AGBNO(mp
, inum
));
2171 * Look for each inode in memory and attempt to lock it,
2172 * we can be racing with flush and tail pushing here.
2173 * any inode we get the locks on, add to an array of
2174 * inode items to process later.
2176 * The get the buffer lock, we could beat a flush
2177 * or tail pushing thread to the lock here, in which
2178 * case they will go looking for the inode buffer
2179 * and fail, we need some other form of interlock
2183 for (i
= 0; i
< ninodes
; i
++) {
2184 ih
= XFS_IHASH(mp
, inum
+ i
);
2185 read_lock(&ih
->ih_lock
);
2186 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
2187 if (ip
->i_ino
== inum
+ i
)
2191 /* Inode not in memory or we found it already,
2194 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2195 read_unlock(&ih
->ih_lock
);
2199 if (xfs_inode_clean(ip
)) {
2200 read_unlock(&ih
->ih_lock
);
2204 /* If we can get the locks then add it to the
2205 * list, otherwise by the time we get the bp lock
2206 * below it will already be attached to the
2210 /* This inode will already be locked - by us, lets
2214 if (ip
== free_ip
) {
2215 if (xfs_iflock_nowait(ip
)) {
2216 xfs_iflags_set(ip
, XFS_ISTALE
);
2217 if (xfs_inode_clean(ip
)) {
2220 ip_found
[found
++] = ip
;
2223 read_unlock(&ih
->ih_lock
);
2227 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2228 if (xfs_iflock_nowait(ip
)) {
2229 xfs_iflags_set(ip
, XFS_ISTALE
);
2231 if (xfs_inode_clean(ip
)) {
2233 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2235 ip_found
[found
++] = ip
;
2238 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2242 read_unlock(&ih
->ih_lock
);
2245 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2246 mp
->m_bsize
* blks_per_cluster
,
2250 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2252 if (lip
->li_type
== XFS_LI_INODE
) {
2253 iip
= (xfs_inode_log_item_t
*)lip
;
2254 ASSERT(iip
->ili_logged
== 1);
2255 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2257 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2259 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2262 lip
= lip
->li_bio_list
;
2265 for (i
= 0; i
< found
; i
++) {
2270 ip
->i_update_core
= 0;
2272 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2276 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2277 iip
->ili_format
.ilf_fields
= 0;
2278 iip
->ili_logged
= 1;
2280 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2283 xfs_buf_attach_iodone(bp
,
2284 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2285 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2286 if (ip
!= free_ip
) {
2287 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2291 if (found
|| pre_flushed
)
2292 xfs_trans_stale_inode_buf(tp
, bp
);
2293 xfs_trans_binval(tp
, bp
);
2296 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2300 * This is called to return an inode to the inode free list.
2301 * The inode should already be truncated to 0 length and have
2302 * no pages associated with it. This routine also assumes that
2303 * the inode is already a part of the transaction.
2305 * The on-disk copy of the inode will have been added to the list
2306 * of unlinked inodes in the AGI. We need to remove the inode from
2307 * that list atomically with respect to freeing it here.
2313 xfs_bmap_free_t
*flist
)
2317 xfs_ino_t first_ino
;
2319 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2320 ASSERT(ip
->i_transp
== tp
);
2321 ASSERT(ip
->i_d
.di_nlink
== 0);
2322 ASSERT(ip
->i_d
.di_nextents
== 0);
2323 ASSERT(ip
->i_d
.di_anextents
== 0);
2324 ASSERT((ip
->i_d
.di_size
== 0) ||
2325 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2326 ASSERT(ip
->i_d
.di_nblocks
== 0);
2329 * Pull the on-disk inode from the AGI unlinked list.
2331 error
= xfs_iunlink_remove(tp
, ip
);
2336 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2340 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2341 ip
->i_d
.di_flags
= 0;
2342 ip
->i_d
.di_dmevmask
= 0;
2343 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2344 ip
->i_df
.if_ext_max
=
2345 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2346 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2347 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2349 * Bump the generation count so no one will be confused
2350 * by reincarnations of this inode.
2353 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2356 xfs_ifree_cluster(ip
, tp
, first_ino
);
2363 * Reallocate the space for if_broot based on the number of records
2364 * being added or deleted as indicated in rec_diff. Move the records
2365 * and pointers in if_broot to fit the new size. When shrinking this
2366 * will eliminate holes between the records and pointers created by
2367 * the caller. When growing this will create holes to be filled in
2370 * The caller must not request to add more records than would fit in
2371 * the on-disk inode root. If the if_broot is currently NULL, then
2372 * if we adding records one will be allocated. The caller must also
2373 * not request that the number of records go below zero, although
2374 * it can go to zero.
2376 * ip -- the inode whose if_broot area is changing
2377 * ext_diff -- the change in the number of records, positive or negative,
2378 * requested for the if_broot array.
2388 xfs_bmbt_block_t
*new_broot
;
2395 * Handle the degenerate case quietly.
2397 if (rec_diff
== 0) {
2401 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2404 * If there wasn't any memory allocated before, just
2405 * allocate it now and get out.
2407 if (ifp
->if_broot_bytes
== 0) {
2408 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2409 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2411 ifp
->if_broot_bytes
= (int)new_size
;
2416 * If there is already an existing if_broot, then we need
2417 * to realloc() it and shift the pointers to their new
2418 * location. The records don't change location because
2419 * they are kept butted up against the btree block header.
2421 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2422 new_max
= cur_max
+ rec_diff
;
2423 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2424 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2425 kmem_realloc(ifp
->if_broot
,
2427 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2429 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2430 ifp
->if_broot_bytes
);
2431 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2433 ifp
->if_broot_bytes
= (int)new_size
;
2434 ASSERT(ifp
->if_broot_bytes
<=
2435 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2436 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2441 * rec_diff is less than 0. In this case, we are shrinking the
2442 * if_broot buffer. It must already exist. If we go to zero
2443 * records, just get rid of the root and clear the status bit.
2445 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2446 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2447 new_max
= cur_max
+ rec_diff
;
2448 ASSERT(new_max
>= 0);
2450 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2454 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2456 * First copy over the btree block header.
2458 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2461 ifp
->if_flags
&= ~XFS_IFBROOT
;
2465 * Only copy the records and pointers if there are any.
2469 * First copy the records.
2471 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2472 ifp
->if_broot_bytes
);
2473 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2475 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2478 * Then copy the pointers.
2480 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2481 ifp
->if_broot_bytes
);
2482 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2484 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2486 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2487 ifp
->if_broot
= new_broot
;
2488 ifp
->if_broot_bytes
= (int)new_size
;
2489 ASSERT(ifp
->if_broot_bytes
<=
2490 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2496 * This is called when the amount of space needed for if_data
2497 * is increased or decreased. The change in size is indicated by
2498 * the number of bytes that need to be added or deleted in the
2499 * byte_diff parameter.
2501 * If the amount of space needed has decreased below the size of the
2502 * inline buffer, then switch to using the inline buffer. Otherwise,
2503 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2504 * to what is needed.
2506 * ip -- the inode whose if_data area is changing
2507 * byte_diff -- the change in the number of bytes, positive or negative,
2508 * requested for the if_data array.
2520 if (byte_diff
== 0) {
2524 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2525 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2526 ASSERT(new_size
>= 0);
2528 if (new_size
== 0) {
2529 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2530 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2532 ifp
->if_u1
.if_data
= NULL
;
2534 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2536 * If the valid extents/data can fit in if_inline_ext/data,
2537 * copy them from the malloc'd vector and free it.
2539 if (ifp
->if_u1
.if_data
== NULL
) {
2540 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2541 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2542 ASSERT(ifp
->if_real_bytes
!= 0);
2543 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2545 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2546 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2551 * Stuck with malloc/realloc.
2552 * For inline data, the underlying buffer must be
2553 * a multiple of 4 bytes in size so that it can be
2554 * logged and stay on word boundaries. We enforce
2557 real_size
= roundup(new_size
, 4);
2558 if (ifp
->if_u1
.if_data
== NULL
) {
2559 ASSERT(ifp
->if_real_bytes
== 0);
2560 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2561 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2563 * Only do the realloc if the underlying size
2564 * is really changing.
2566 if (ifp
->if_real_bytes
!= real_size
) {
2567 ifp
->if_u1
.if_data
=
2568 kmem_realloc(ifp
->if_u1
.if_data
,
2574 ASSERT(ifp
->if_real_bytes
== 0);
2575 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2576 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2580 ifp
->if_real_bytes
= real_size
;
2581 ifp
->if_bytes
= new_size
;
2582 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2589 * Map inode to disk block and offset.
2591 * mp -- the mount point structure for the current file system
2592 * tp -- the current transaction
2593 * ino -- the inode number of the inode to be located
2594 * imap -- this structure is filled in with the information necessary
2595 * to retrieve the given inode from disk
2596 * flags -- flags to pass to xfs_dilocate indicating whether or not
2597 * lookups in the inode btree were OK or not
2607 xfs_fsblock_t fsbno
;
2612 fsbno
= imap
->im_blkno
?
2613 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2614 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2618 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2619 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2620 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2621 imap
->im_ioffset
= (ushort
)off
;
2622 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2633 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2634 if (ifp
->if_broot
!= NULL
) {
2635 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2636 ifp
->if_broot
= NULL
;
2640 * If the format is local, then we can't have an extents
2641 * array so just look for an inline data array. If we're
2642 * not local then we may or may not have an extents list,
2643 * so check and free it up if we do.
2645 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2646 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2647 (ifp
->if_u1
.if_data
!= NULL
)) {
2648 ASSERT(ifp
->if_real_bytes
!= 0);
2649 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2650 ifp
->if_u1
.if_data
= NULL
;
2651 ifp
->if_real_bytes
= 0;
2653 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2654 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2655 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2656 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2657 ASSERT(ifp
->if_real_bytes
!= 0);
2658 xfs_iext_destroy(ifp
);
2660 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2661 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2662 ASSERT(ifp
->if_real_bytes
== 0);
2663 if (whichfork
== XFS_ATTR_FORK
) {
2664 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2670 * This is called free all the memory associated with an inode.
2671 * It must free the inode itself and any buffers allocated for
2672 * if_extents/if_data and if_broot. It must also free the lock
2673 * associated with the inode.
2680 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2684 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2688 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2689 mrfree(&ip
->i_lock
);
2690 mrfree(&ip
->i_iolock
);
2691 freesema(&ip
->i_flock
);
2692 #ifdef XFS_BMAP_TRACE
2693 ktrace_free(ip
->i_xtrace
);
2695 #ifdef XFS_BMBT_TRACE
2696 ktrace_free(ip
->i_btrace
);
2699 ktrace_free(ip
->i_rwtrace
);
2701 #ifdef XFS_ILOCK_TRACE
2702 ktrace_free(ip
->i_lock_trace
);
2704 #ifdef XFS_DIR2_TRACE
2705 ktrace_free(ip
->i_dir_trace
);
2709 * Only if we are shutting down the fs will we see an
2710 * inode still in the AIL. If it is there, we should remove
2711 * it to prevent a use-after-free from occurring.
2713 xfs_mount_t
*mp
= ip
->i_mount
;
2714 xfs_log_item_t
*lip
= &ip
->i_itemp
->ili_item
;
2717 ASSERT(((lip
->li_flags
& XFS_LI_IN_AIL
) == 0) ||
2718 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2719 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
2721 if (lip
->li_flags
& XFS_LI_IN_AIL
)
2722 xfs_trans_delete_ail(mp
, lip
, s
);
2726 xfs_inode_item_destroy(ip
);
2728 kmem_zone_free(xfs_inode_zone
, ip
);
2733 * Increment the pin count of the given buffer.
2734 * This value is protected by ipinlock spinlock in the mount structure.
2740 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2742 atomic_inc(&ip
->i_pincount
);
2746 * Decrement the pin count of the given inode, and wake up
2747 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2748 * inode must have been previously pinned with a call to xfs_ipin().
2754 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2756 if (atomic_dec_and_lock(&ip
->i_pincount
, &ip
->i_flags_lock
)) {
2759 * If the inode is currently being reclaimed, the link between
2760 * the bhv_vnode and the xfs_inode will be broken after the
2761 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2762 * set, then we can move forward and mark the linux inode dirty
2763 * knowing that it is still valid as it won't freed until after
2764 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2765 * i_flags_lock is used to synchronise the setting of the
2766 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2767 * can execute atomically w.r.t to reclaim by holding this lock
2770 * However, we still need to issue the unpin wakeup call as the
2771 * inode reclaim may be blocked waiting for the inode to become
2775 if (!__xfs_iflags_test(ip
, XFS_IRECLAIM
|XFS_IRECLAIMABLE
)) {
2776 bhv_vnode_t
*vp
= XFS_ITOV_NULL(ip
);
2777 struct inode
*inode
= NULL
;
2780 inode
= vn_to_inode(vp
);
2781 BUG_ON(inode
->i_state
& I_CLEAR
);
2783 /* make sync come back and flush this inode */
2784 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
2785 mark_inode_dirty_sync(inode
);
2787 spin_unlock(&ip
->i_flags_lock
);
2788 wake_up(&ip
->i_ipin_wait
);
2793 * This is called to wait for the given inode to be unpinned.
2794 * It will sleep until this happens. The caller must have the
2795 * inode locked in at least shared mode so that the buffer cannot
2796 * be subsequently pinned once someone is waiting for it to be
2803 xfs_inode_log_item_t
*iip
;
2806 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2808 if (atomic_read(&ip
->i_pincount
) == 0) {
2813 if (iip
&& iip
->ili_last_lsn
) {
2814 lsn
= iip
->ili_last_lsn
;
2820 * Give the log a push so we don't wait here too long.
2822 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2824 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2829 * xfs_iextents_copy()
2831 * This is called to copy the REAL extents (as opposed to the delayed
2832 * allocation extents) from the inode into the given buffer. It
2833 * returns the number of bytes copied into the buffer.
2835 * If there are no delayed allocation extents, then we can just
2836 * memcpy() the extents into the buffer. Otherwise, we need to
2837 * examine each extent in turn and skip those which are delayed.
2842 xfs_bmbt_rec_t
*buffer
,
2846 xfs_bmbt_rec_t
*dest_ep
;
2848 #ifdef XFS_BMAP_TRACE
2849 static char fname
[] = "xfs_iextents_copy";
2854 xfs_fsblock_t start_block
;
2856 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2857 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2858 ASSERT(ifp
->if_bytes
> 0);
2860 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2861 xfs_bmap_trace_exlist(fname
, ip
, nrecs
, whichfork
);
2865 * There are some delayed allocation extents in the
2866 * inode, so copy the extents one at a time and skip
2867 * the delayed ones. There must be at least one
2868 * non-delayed extent.
2872 for (i
= 0; i
< nrecs
; i
++) {
2873 ep
= xfs_iext_get_ext(ifp
, i
);
2874 start_block
= xfs_bmbt_get_startblock(ep
);
2875 if (ISNULLSTARTBLOCK(start_block
)) {
2877 * It's a delayed allocation extent, so skip it.
2882 /* Translate to on disk format */
2883 put_unaligned(INT_GET(ep
->l0
, ARCH_CONVERT
),
2884 (__uint64_t
*)&dest_ep
->l0
);
2885 put_unaligned(INT_GET(ep
->l1
, ARCH_CONVERT
),
2886 (__uint64_t
*)&dest_ep
->l1
);
2890 ASSERT(copied
!= 0);
2891 xfs_validate_extents(ifp
, copied
, 1, XFS_EXTFMT_INODE(ip
));
2893 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2897 * Each of the following cases stores data into the same region
2898 * of the on-disk inode, so only one of them can be valid at
2899 * any given time. While it is possible to have conflicting formats
2900 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2901 * in EXTENTS format, this can only happen when the fork has
2902 * changed formats after being modified but before being flushed.
2903 * In these cases, the format always takes precedence, because the
2904 * format indicates the current state of the fork.
2911 xfs_inode_log_item_t
*iip
,
2918 #ifdef XFS_TRANS_DEBUG
2921 static const short brootflag
[2] =
2922 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2923 static const short dataflag
[2] =
2924 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2925 static const short extflag
[2] =
2926 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2930 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2932 * This can happen if we gave up in iformat in an error path,
2933 * for the attribute fork.
2936 ASSERT(whichfork
== XFS_ATTR_FORK
);
2939 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2941 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2942 case XFS_DINODE_FMT_LOCAL
:
2943 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2944 (ifp
->if_bytes
> 0)) {
2945 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2946 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2947 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2951 case XFS_DINODE_FMT_EXTENTS
:
2952 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2953 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2954 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2955 (ifp
->if_bytes
== 0));
2956 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2957 (ifp
->if_bytes
> 0));
2958 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2959 (ifp
->if_bytes
> 0)) {
2960 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2961 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2966 case XFS_DINODE_FMT_BTREE
:
2967 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2968 (ifp
->if_broot_bytes
> 0)) {
2969 ASSERT(ifp
->if_broot
!= NULL
);
2970 ASSERT(ifp
->if_broot_bytes
<=
2971 (XFS_IFORK_SIZE(ip
, whichfork
) +
2972 XFS_BROOT_SIZE_ADJ
));
2973 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
2974 (xfs_bmdr_block_t
*)cp
,
2975 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2979 case XFS_DINODE_FMT_DEV
:
2980 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2981 ASSERT(whichfork
== XFS_DATA_FORK
);
2982 INT_SET(dip
->di_u
.di_dev
, ARCH_CONVERT
, ip
->i_df
.if_u2
.if_rdev
);
2986 case XFS_DINODE_FMT_UUID
:
2987 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2988 ASSERT(whichfork
== XFS_DATA_FORK
);
2989 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
3003 * xfs_iflush() will write a modified inode's changes out to the
3004 * inode's on disk home. The caller must have the inode lock held
3005 * in at least shared mode and the inode flush semaphore must be
3006 * held as well. The inode lock will still be held upon return from
3007 * the call and the caller is free to unlock it.
3008 * The inode flush lock will be unlocked when the inode reaches the disk.
3009 * The flags indicate how the inode's buffer should be written out.
3016 xfs_inode_log_item_t
*iip
;
3024 int clcount
; /* count of inodes clustered */
3026 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3029 XFS_STATS_INC(xs_iflush_count
);
3031 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3032 ASSERT(issemalocked(&(ip
->i_flock
)));
3033 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3034 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3040 * If the inode isn't dirty, then just release the inode
3041 * flush lock and do nothing.
3043 if ((ip
->i_update_core
== 0) &&
3044 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3045 ASSERT((iip
!= NULL
) ?
3046 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3052 * We can't flush the inode until it is unpinned, so
3053 * wait for it. We know noone new can pin it, because
3054 * we are holding the inode lock shared and you need
3055 * to hold it exclusively to pin the inode.
3057 xfs_iunpin_wait(ip
);
3060 * This may have been unpinned because the filesystem is shutting
3061 * down forcibly. If that's the case we must not write this inode
3062 * to disk, because the log record didn't make it to disk!
3064 if (XFS_FORCED_SHUTDOWN(mp
)) {
3065 ip
->i_update_core
= 0;
3067 iip
->ili_format
.ilf_fields
= 0;
3069 return XFS_ERROR(EIO
);
3073 * Get the buffer containing the on-disk inode.
3075 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0);
3082 * Decide how buffer will be flushed out. This is done before
3083 * the call to xfs_iflush_int because this field is zeroed by it.
3085 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3087 * Flush out the inode buffer according to the directions
3088 * of the caller. In the cases where the caller has given
3089 * us a choice choose the non-delwri case. This is because
3090 * the inode is in the AIL and we need to get it out soon.
3093 case XFS_IFLUSH_SYNC
:
3094 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3097 case XFS_IFLUSH_ASYNC
:
3098 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3101 case XFS_IFLUSH_DELWRI
:
3111 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3112 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3113 case XFS_IFLUSH_DELWRI
:
3116 case XFS_IFLUSH_ASYNC
:
3119 case XFS_IFLUSH_SYNC
:
3130 * First flush out the inode that xfs_iflush was called with.
3132 error
= xfs_iflush_int(ip
, bp
);
3139 * see if other inodes can be gathered into this write
3142 ip
->i_chash
->chl_buf
= bp
;
3144 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
3145 s
= mutex_spinlock(&ch
->ch_lock
);
3148 for (iq
= ip
->i_cnext
; iq
!= ip
; iq
= iq
->i_cnext
) {
3150 * Do an un-protected check to see if the inode is dirty and
3151 * is a candidate for flushing. These checks will be repeated
3152 * later after the appropriate locks are acquired.
3155 if ((iq
->i_update_core
== 0) &&
3157 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3158 xfs_ipincount(iq
) == 0) {
3163 * Try to get locks. If any are unavailable,
3164 * then this inode cannot be flushed and is skipped.
3167 /* get inode locks (just i_lock) */
3168 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3169 /* get inode flush lock */
3170 if (xfs_iflock_nowait(iq
)) {
3171 /* check if pinned */
3172 if (xfs_ipincount(iq
) == 0) {
3173 /* arriving here means that
3174 * this inode can be flushed.
3175 * first re-check that it's
3179 if ((iq
->i_update_core
!= 0)||
3181 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3183 error
= xfs_iflush_int(iq
, bp
);
3187 goto cluster_corrupt_out
;
3196 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3199 mutex_spinunlock(&ch
->ch_lock
, s
);
3202 XFS_STATS_INC(xs_icluster_flushcnt
);
3203 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3207 * If the buffer is pinned then push on the log so we won't
3208 * get stuck waiting in the write for too long.
3210 if (XFS_BUF_ISPINNED(bp
)){
3211 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3214 if (flags
& INT_DELWRI
) {
3215 xfs_bdwrite(mp
, bp
);
3216 } else if (flags
& INT_ASYNC
) {
3217 xfs_bawrite(mp
, bp
);
3219 error
= xfs_bwrite(mp
, bp
);
3225 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3226 xfs_iflush_abort(ip
);
3228 * Unlocks the flush lock
3230 return XFS_ERROR(EFSCORRUPTED
);
3232 cluster_corrupt_out
:
3233 /* Corruption detected in the clustering loop. Invalidate the
3234 * inode buffer and shut down the filesystem.
3236 mutex_spinunlock(&ch
->ch_lock
, s
);
3239 * Clean up the buffer. If it was B_DELWRI, just release it --
3240 * brelse can handle it with no problems. If not, shut down the
3241 * filesystem before releasing the buffer.
3243 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3247 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3251 * Just like incore_relse: if we have b_iodone functions,
3252 * mark the buffer as an error and call them. Otherwise
3253 * mark it as stale and brelse.
3255 if (XFS_BUF_IODONE_FUNC(bp
)) {
3256 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3260 XFS_BUF_ERROR(bp
,EIO
);
3268 xfs_iflush_abort(iq
);
3270 * Unlocks the flush lock
3272 return XFS_ERROR(EFSCORRUPTED
);
3281 xfs_inode_log_item_t
*iip
;
3284 #ifdef XFS_TRANS_DEBUG
3289 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3290 ASSERT(issemalocked(&(ip
->i_flock
)));
3291 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3292 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3299 * If the inode isn't dirty, then just release the inode
3300 * flush lock and do nothing.
3302 if ((ip
->i_update_core
== 0) &&
3303 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3308 /* set *dip = inode's place in the buffer */
3309 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3312 * Clear i_update_core before copying out the data.
3313 * This is for coordination with our timestamp updates
3314 * that don't hold the inode lock. They will always
3315 * update the timestamps BEFORE setting i_update_core,
3316 * so if we clear i_update_core after they set it we
3317 * are guaranteed to see their updates to the timestamps.
3318 * I believe that this depends on strongly ordered memory
3319 * semantics, but we have that. We use the SYNCHRONIZE
3320 * macro to make sure that the compiler does not reorder
3321 * the i_update_core access below the data copy below.
3323 ip
->i_update_core
= 0;
3327 * Make sure to get the latest atime from the Linux inode.
3329 xfs_synchronize_atime(ip
);
3331 if (XFS_TEST_ERROR(INT_GET(dip
->di_core
.di_magic
,ARCH_CONVERT
) != XFS_DINODE_MAGIC
,
3332 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3333 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3334 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3335 ip
->i_ino
, (int) INT_GET(dip
->di_core
.di_magic
, ARCH_CONVERT
), dip
);
3338 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3339 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3340 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3341 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3342 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3345 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3347 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3348 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3349 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3350 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3351 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3355 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3357 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3358 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3359 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3360 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3361 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3362 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3367 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3368 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3369 XFS_RANDOM_IFLUSH_5
)) {
3370 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3371 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3373 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3378 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3379 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3381 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3382 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3386 * bump the flush iteration count, used to detect flushes which
3387 * postdate a log record during recovery.
3390 ip
->i_d
.di_flushiter
++;
3393 * Copy the dirty parts of the inode into the on-disk
3394 * inode. We always copy out the core of the inode,
3395 * because if the inode is dirty at all the core must
3398 xfs_xlate_dinode_core((xfs_caddr_t
)&(dip
->di_core
), &(ip
->i_d
), -1);
3400 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3401 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3402 ip
->i_d
.di_flushiter
= 0;
3405 * If this is really an old format inode and the superblock version
3406 * has not been updated to support only new format inodes, then
3407 * convert back to the old inode format. If the superblock version
3408 * has been updated, then make the conversion permanent.
3410 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3411 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3412 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3413 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3417 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3418 INT_SET(dip
->di_core
.di_onlink
, ARCH_CONVERT
, ip
->i_d
.di_nlink
);
3421 * The superblock version has already been bumped,
3422 * so just make the conversion to the new inode
3425 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3426 INT_SET(dip
->di_core
.di_version
, ARCH_CONVERT
, XFS_DINODE_VERSION_2
);
3427 ip
->i_d
.di_onlink
= 0;
3428 dip
->di_core
.di_onlink
= 0;
3429 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3430 memset(&(dip
->di_core
.di_pad
[0]), 0,
3431 sizeof(dip
->di_core
.di_pad
));
3432 ASSERT(ip
->i_d
.di_projid
== 0);
3436 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3440 if (XFS_IFORK_Q(ip
)) {
3442 * The only error from xfs_iflush_fork is on the data fork.
3444 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3446 xfs_inobp_check(mp
, bp
);
3449 * We've recorded everything logged in the inode, so we'd
3450 * like to clear the ilf_fields bits so we don't log and
3451 * flush things unnecessarily. However, we can't stop
3452 * logging all this information until the data we've copied
3453 * into the disk buffer is written to disk. If we did we might
3454 * overwrite the copy of the inode in the log with all the
3455 * data after re-logging only part of it, and in the face of
3456 * a crash we wouldn't have all the data we need to recover.
3458 * What we do is move the bits to the ili_last_fields field.
3459 * When logging the inode, these bits are moved back to the
3460 * ilf_fields field. In the xfs_iflush_done() routine we
3461 * clear ili_last_fields, since we know that the information
3462 * those bits represent is permanently on disk. As long as
3463 * the flush completes before the inode is logged again, then
3464 * both ilf_fields and ili_last_fields will be cleared.
3466 * We can play with the ilf_fields bits here, because the inode
3467 * lock must be held exclusively in order to set bits there
3468 * and the flush lock protects the ili_last_fields bits.
3469 * Set ili_logged so the flush done
3470 * routine can tell whether or not to look in the AIL.
3471 * Also, store the current LSN of the inode so that we can tell
3472 * whether the item has moved in the AIL from xfs_iflush_done().
3473 * In order to read the lsn we need the AIL lock, because
3474 * it is a 64 bit value that cannot be read atomically.
3476 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3477 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3478 iip
->ili_format
.ilf_fields
= 0;
3479 iip
->ili_logged
= 1;
3481 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3483 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3487 * Attach the function xfs_iflush_done to the inode's
3488 * buffer. This will remove the inode from the AIL
3489 * and unlock the inode's flush lock when the inode is
3490 * completely written to disk.
3492 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3493 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3495 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3496 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3499 * We're flushing an inode which is not in the AIL and has
3500 * not been logged but has i_update_core set. For this
3501 * case we can use a B_DELWRI flush and immediately drop
3502 * the inode flush lock because we can avoid the whole
3503 * AIL state thing. It's OK to drop the flush lock now,
3504 * because we've already locked the buffer and to do anything
3505 * you really need both.
3508 ASSERT(iip
->ili_logged
== 0);
3509 ASSERT(iip
->ili_last_fields
== 0);
3510 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3518 return XFS_ERROR(EFSCORRUPTED
);
3523 * Flush all inactive inodes in mp.
3533 XFS_MOUNT_ILOCK(mp
);
3539 /* Make sure we skip markers inserted by sync */
3540 if (ip
->i_mount
== NULL
) {
3545 vp
= XFS_ITOV_NULL(ip
);
3547 XFS_MOUNT_IUNLOCK(mp
);
3548 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3552 ASSERT(vn_count(vp
) == 0);
3555 } while (ip
!= mp
->m_inodes
);
3557 XFS_MOUNT_IUNLOCK(mp
);
3561 * xfs_iaccess: check accessibility of inode for mode.
3570 mode_t orgmode
= mode
;
3571 struct inode
*inode
= vn_to_inode(XFS_ITOV(ip
));
3573 if (mode
& S_IWUSR
) {
3574 umode_t imode
= inode
->i_mode
;
3576 if (IS_RDONLY(inode
) &&
3577 (S_ISREG(imode
) || S_ISDIR(imode
) || S_ISLNK(imode
)))
3578 return XFS_ERROR(EROFS
);
3580 if (IS_IMMUTABLE(inode
))
3581 return XFS_ERROR(EACCES
);
3585 * If there's an Access Control List it's used instead of
3588 if ((error
= _ACL_XFS_IACCESS(ip
, mode
, cr
)) != -1)
3589 return error
? XFS_ERROR(error
) : 0;
3591 if (current_fsuid(cr
) != ip
->i_d
.di_uid
) {
3593 if (!in_group_p((gid_t
)ip
->i_d
.di_gid
))
3598 * If the DACs are ok we don't need any capability check.
3600 if ((ip
->i_d
.di_mode
& mode
) == mode
)
3603 * Read/write DACs are always overridable.
3604 * Executable DACs are overridable if at least one exec bit is set.
3606 if (!(orgmode
& S_IXUSR
) ||
3607 (inode
->i_mode
& S_IXUGO
) || S_ISDIR(inode
->i_mode
))
3608 if (capable_cred(cr
, CAP_DAC_OVERRIDE
))
3611 if ((orgmode
== S_IRUSR
) ||
3612 (S_ISDIR(inode
->i_mode
) && (!(orgmode
& S_IWUSR
)))) {
3613 if (capable_cred(cr
, CAP_DAC_READ_SEARCH
))
3616 cmn_err(CE_NOTE
, "Ick: mode=%o, orgmode=%o", mode
, orgmode
);
3618 return XFS_ERROR(EACCES
);
3620 return XFS_ERROR(EACCES
);
3624 * xfs_iroundup: round up argument to next power of two
3633 if ((v
& (v
- 1)) == 0)
3635 ASSERT((v
& 0x80000000) == 0);
3636 if ((v
& (v
+ 1)) == 0)
3638 for (i
= 0, m
= 1; i
< 31; i
++, m
<<= 1) {
3642 if ((v
& (v
+ 1)) == 0)
3649 #ifdef XFS_ILOCK_TRACE
3650 ktrace_t
*xfs_ilock_trace_buf
;
3653 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3655 ktrace_enter(ip
->i_lock_trace
,
3657 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3658 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3659 (void *)ra
, /* caller of ilock */
3660 (void *)(unsigned long)current_cpu(),
3661 (void *)(unsigned long)current_pid(),
3662 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3667 * Return a pointer to the extent record at file index idx.
3671 xfs_ifork_t
*ifp
, /* inode fork pointer */
3672 xfs_extnum_t idx
) /* index of target extent */
3675 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3676 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3677 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3678 xfs_ext_irec_t
*erp
; /* irec pointer */
3679 int erp_idx
= 0; /* irec index */
3680 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3682 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3683 return &erp
->er_extbuf
[page_idx
];
3684 } else if (ifp
->if_bytes
) {
3685 return &ifp
->if_u1
.if_extents
[idx
];
3692 * Insert new item(s) into the extent records for incore inode
3693 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3697 xfs_ifork_t
*ifp
, /* inode fork pointer */
3698 xfs_extnum_t idx
, /* starting index of new items */
3699 xfs_extnum_t count
, /* number of inserted items */
3700 xfs_bmbt_irec_t
*new) /* items to insert */
3702 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
3703 xfs_extnum_t i
; /* extent record index */
3705 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3706 xfs_iext_add(ifp
, idx
, count
);
3707 for (i
= idx
; i
< idx
+ count
; i
++, new++) {
3708 ep
= xfs_iext_get_ext(ifp
, i
);
3709 xfs_bmbt_set_all(ep
, new);
3714 * This is called when the amount of space required for incore file
3715 * extents needs to be increased. The ext_diff parameter stores the
3716 * number of new extents being added and the idx parameter contains
3717 * the extent index where the new extents will be added. If the new
3718 * extents are being appended, then we just need to (re)allocate and
3719 * initialize the space. Otherwise, if the new extents are being
3720 * inserted into the middle of the existing entries, a bit more work
3721 * is required to make room for the new extents to be inserted. The
3722 * caller is responsible for filling in the new extent entries upon
3727 xfs_ifork_t
*ifp
, /* inode fork pointer */
3728 xfs_extnum_t idx
, /* index to begin adding exts */
3729 int ext_diff
) /* number of extents to add */
3731 int byte_diff
; /* new bytes being added */
3732 int new_size
; /* size of extents after adding */
3733 xfs_extnum_t nextents
; /* number of extents in file */
3735 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3736 ASSERT((idx
>= 0) && (idx
<= nextents
));
3737 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3738 new_size
= ifp
->if_bytes
+ byte_diff
;
3740 * If the new number of extents (nextents + ext_diff)
3741 * fits inside the inode, then continue to use the inline
3744 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3745 if (idx
< nextents
) {
3746 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3747 &ifp
->if_u2
.if_inline_ext
[idx
],
3748 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3749 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3751 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3752 ifp
->if_real_bytes
= 0;
3753 ifp
->if_lastex
= nextents
+ ext_diff
;
3756 * Otherwise use a linear (direct) extent list.
3757 * If the extents are currently inside the inode,
3758 * xfs_iext_realloc_direct will switch us from
3759 * inline to direct extent allocation mode.
3761 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3762 xfs_iext_realloc_direct(ifp
, new_size
);
3763 if (idx
< nextents
) {
3764 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3765 &ifp
->if_u1
.if_extents
[idx
],
3766 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3767 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3770 /* Indirection array */
3772 xfs_ext_irec_t
*erp
;
3776 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3777 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3778 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3780 xfs_iext_irec_init(ifp
);
3781 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3782 erp
= ifp
->if_u1
.if_ext_irec
;
3784 /* Extents fit in target extent page */
3785 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3786 if (page_idx
< erp
->er_extcount
) {
3787 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3788 &erp
->er_extbuf
[page_idx
],
3789 (erp
->er_extcount
- page_idx
) *
3790 sizeof(xfs_bmbt_rec_t
));
3791 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3793 erp
->er_extcount
+= ext_diff
;
3794 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3796 /* Insert a new extent page */
3798 xfs_iext_add_indirect_multi(ifp
,
3799 erp_idx
, page_idx
, ext_diff
);
3802 * If extent(s) are being appended to the last page in
3803 * the indirection array and the new extent(s) don't fit
3804 * in the page, then erp is NULL and erp_idx is set to
3805 * the next index needed in the indirection array.
3808 int count
= ext_diff
;
3811 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3812 erp
->er_extcount
= count
;
3813 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3820 ifp
->if_bytes
= new_size
;
3824 * This is called when incore extents are being added to the indirection
3825 * array and the new extents do not fit in the target extent list. The
3826 * erp_idx parameter contains the irec index for the target extent list
3827 * in the indirection array, and the idx parameter contains the extent
3828 * index within the list. The number of extents being added is stored
3829 * in the count parameter.
3831 * |-------| |-------|
3832 * | | | | idx - number of extents before idx
3834 * | | | | count - number of extents being inserted at idx
3835 * |-------| |-------|
3836 * | count | | nex2 | nex2 - number of extents after idx + count
3837 * |-------| |-------|
3840 xfs_iext_add_indirect_multi(
3841 xfs_ifork_t
*ifp
, /* inode fork pointer */
3842 int erp_idx
, /* target extent irec index */
3843 xfs_extnum_t idx
, /* index within target list */
3844 int count
) /* new extents being added */
3846 int byte_diff
; /* new bytes being added */
3847 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3848 xfs_extnum_t ext_diff
; /* number of extents to add */
3849 xfs_extnum_t ext_cnt
; /* new extents still needed */
3850 xfs_extnum_t nex2
; /* extents after idx + count */
3851 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3852 int nlists
; /* number of irec's (lists) */
3854 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3855 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3856 nex2
= erp
->er_extcount
- idx
;
3857 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3860 * Save second part of target extent list
3861 * (all extents past */
3863 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3864 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_SLEEP
);
3865 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3866 erp
->er_extcount
-= nex2
;
3867 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3868 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3872 * Add the new extents to the end of the target
3873 * list, then allocate new irec record(s) and
3874 * extent buffer(s) as needed to store the rest
3875 * of the new extents.
3878 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3880 erp
->er_extcount
+= ext_diff
;
3881 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3882 ext_cnt
-= ext_diff
;
3886 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3887 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3888 erp
->er_extcount
= ext_diff
;
3889 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3890 ext_cnt
-= ext_diff
;
3893 /* Add nex2 extents back to indirection array */
3895 xfs_extnum_t ext_avail
;
3898 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3899 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3902 * If nex2 extents fit in the current page, append
3903 * nex2_ep after the new extents.
3905 if (nex2
<= ext_avail
) {
3906 i
= erp
->er_extcount
;
3909 * Otherwise, check if space is available in the
3912 else if ((erp_idx
< nlists
- 1) &&
3913 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3914 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3917 /* Create a hole for nex2 extents */
3918 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3919 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3922 * Final choice, create a new extent page for
3927 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3929 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3930 kmem_free(nex2_ep
, byte_diff
);
3931 erp
->er_extcount
+= nex2
;
3932 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3937 * This is called when the amount of space required for incore file
3938 * extents needs to be decreased. The ext_diff parameter stores the
3939 * number of extents to be removed and the idx parameter contains
3940 * the extent index where the extents will be removed from.
3942 * If the amount of space needed has decreased below the linear
3943 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3944 * extent array. Otherwise, use kmem_realloc() to adjust the
3945 * size to what is needed.
3949 xfs_ifork_t
*ifp
, /* inode fork pointer */
3950 xfs_extnum_t idx
, /* index to begin removing exts */
3951 int ext_diff
) /* number of extents to remove */
3953 xfs_extnum_t nextents
; /* number of extents in file */
3954 int new_size
; /* size of extents after removal */
3956 ASSERT(ext_diff
> 0);
3957 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3958 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3960 if (new_size
== 0) {
3961 xfs_iext_destroy(ifp
);
3962 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3963 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3964 } else if (ifp
->if_real_bytes
) {
3965 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3967 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3969 ifp
->if_bytes
= new_size
;
3973 * This removes ext_diff extents from the inline buffer, beginning
3974 * at extent index idx.
3977 xfs_iext_remove_inline(
3978 xfs_ifork_t
*ifp
, /* inode fork pointer */
3979 xfs_extnum_t idx
, /* index to begin removing exts */
3980 int ext_diff
) /* number of extents to remove */
3982 int nextents
; /* number of extents in file */
3984 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3985 ASSERT(idx
< XFS_INLINE_EXTS
);
3986 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3987 ASSERT(((nextents
- ext_diff
) > 0) &&
3988 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3990 if (idx
+ ext_diff
< nextents
) {
3991 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3992 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3993 (nextents
- (idx
+ ext_diff
)) *
3994 sizeof(xfs_bmbt_rec_t
));
3995 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3996 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3998 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3999 ext_diff
* sizeof(xfs_bmbt_rec_t
));
4004 * This removes ext_diff extents from a linear (direct) extent list,
4005 * beginning at extent index idx. If the extents are being removed
4006 * from the end of the list (ie. truncate) then we just need to re-
4007 * allocate the list to remove the extra space. Otherwise, if the
4008 * extents are being removed from the middle of the existing extent
4009 * entries, then we first need to move the extent records beginning
4010 * at idx + ext_diff up in the list to overwrite the records being
4011 * removed, then remove the extra space via kmem_realloc.
4014 xfs_iext_remove_direct(
4015 xfs_ifork_t
*ifp
, /* inode fork pointer */
4016 xfs_extnum_t idx
, /* index to begin removing exts */
4017 int ext_diff
) /* number of extents to remove */
4019 xfs_extnum_t nextents
; /* number of extents in file */
4020 int new_size
; /* size of extents after removal */
4022 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4023 new_size
= ifp
->if_bytes
-
4024 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
4025 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4027 if (new_size
== 0) {
4028 xfs_iext_destroy(ifp
);
4031 /* Move extents up in the list (if needed) */
4032 if (idx
+ ext_diff
< nextents
) {
4033 memmove(&ifp
->if_u1
.if_extents
[idx
],
4034 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
4035 (nextents
- (idx
+ ext_diff
)) *
4036 sizeof(xfs_bmbt_rec_t
));
4038 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
4039 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4041 * Reallocate the direct extent list. If the extents
4042 * will fit inside the inode then xfs_iext_realloc_direct
4043 * will switch from direct to inline extent allocation
4046 xfs_iext_realloc_direct(ifp
, new_size
);
4047 ifp
->if_bytes
= new_size
;
4051 * This is called when incore extents are being removed from the
4052 * indirection array and the extents being removed span multiple extent
4053 * buffers. The idx parameter contains the file extent index where we
4054 * want to begin removing extents, and the count parameter contains
4055 * how many extents need to be removed.
4057 * |-------| |-------|
4058 * | nex1 | | | nex1 - number of extents before idx
4059 * |-------| | count |
4060 * | | | | count - number of extents being removed at idx
4061 * | count | |-------|
4062 * | | | nex2 | nex2 - number of extents after idx + count
4063 * |-------| |-------|
4066 xfs_iext_remove_indirect(
4067 xfs_ifork_t
*ifp
, /* inode fork pointer */
4068 xfs_extnum_t idx
, /* index to begin removing extents */
4069 int count
) /* number of extents to remove */
4071 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4072 int erp_idx
= 0; /* indirection array index */
4073 xfs_extnum_t ext_cnt
; /* extents left to remove */
4074 xfs_extnum_t ext_diff
; /* extents to remove in current list */
4075 xfs_extnum_t nex1
; /* number of extents before idx */
4076 xfs_extnum_t nex2
; /* extents after idx + count */
4077 int nlists
; /* entries in indirection array */
4078 int page_idx
= idx
; /* index in target extent list */
4080 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4081 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
4082 ASSERT(erp
!= NULL
);
4083 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4087 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
4088 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
4090 * Check for deletion of entire list;
4091 * xfs_iext_irec_remove() updates extent offsets.
4093 if (ext_diff
== erp
->er_extcount
) {
4094 xfs_iext_irec_remove(ifp
, erp_idx
);
4095 ext_cnt
-= ext_diff
;
4098 ASSERT(erp_idx
< ifp
->if_real_bytes
/
4100 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4107 /* Move extents up (if needed) */
4109 memmove(&erp
->er_extbuf
[nex1
],
4110 &erp
->er_extbuf
[nex1
+ ext_diff
],
4111 nex2
* sizeof(xfs_bmbt_rec_t
));
4113 /* Zero out rest of page */
4114 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
4115 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
4116 /* Update remaining counters */
4117 erp
->er_extcount
-= ext_diff
;
4118 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
4119 ext_cnt
-= ext_diff
;
4124 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
4125 xfs_iext_irec_compact(ifp
);
4129 * Create, destroy, or resize a linear (direct) block of extents.
4132 xfs_iext_realloc_direct(
4133 xfs_ifork_t
*ifp
, /* inode fork pointer */
4134 int new_size
) /* new size of extents */
4136 int rnew_size
; /* real new size of extents */
4138 rnew_size
= new_size
;
4140 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
4141 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
4142 (new_size
!= ifp
->if_real_bytes
)));
4144 /* Free extent records */
4145 if (new_size
== 0) {
4146 xfs_iext_destroy(ifp
);
4148 /* Resize direct extent list and zero any new bytes */
4149 else if (ifp
->if_real_bytes
) {
4150 /* Check if extents will fit inside the inode */
4151 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
4152 xfs_iext_direct_to_inline(ifp
, new_size
/
4153 (uint
)sizeof(xfs_bmbt_rec_t
));
4154 ifp
->if_bytes
= new_size
;
4157 if ((new_size
& (new_size
- 1)) != 0) {
4158 rnew_size
= xfs_iroundup(new_size
);
4160 if (rnew_size
!= ifp
->if_real_bytes
) {
4161 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4162 kmem_realloc(ifp
->if_u1
.if_extents
,
4167 if (rnew_size
> ifp
->if_real_bytes
) {
4168 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4169 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4170 rnew_size
- ifp
->if_real_bytes
);
4174 * Switch from the inline extent buffer to a direct
4175 * extent list. Be sure to include the inline extent
4176 * bytes in new_size.
4179 new_size
+= ifp
->if_bytes
;
4180 if ((new_size
& (new_size
- 1)) != 0) {
4181 rnew_size
= xfs_iroundup(new_size
);
4183 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4185 ifp
->if_real_bytes
= rnew_size
;
4186 ifp
->if_bytes
= new_size
;
4190 * Switch from linear (direct) extent records to inline buffer.
4193 xfs_iext_direct_to_inline(
4194 xfs_ifork_t
*ifp
, /* inode fork pointer */
4195 xfs_extnum_t nextents
) /* number of extents in file */
4197 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4198 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4200 * The inline buffer was zeroed when we switched
4201 * from inline to direct extent allocation mode,
4202 * so we don't need to clear it here.
4204 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4205 nextents
* sizeof(xfs_bmbt_rec_t
));
4206 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4207 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4208 ifp
->if_real_bytes
= 0;
4212 * Switch from inline buffer to linear (direct) extent records.
4213 * new_size should already be rounded up to the next power of 2
4214 * by the caller (when appropriate), so use new_size as it is.
4215 * However, since new_size may be rounded up, we can't update
4216 * if_bytes here. It is the caller's responsibility to update
4217 * if_bytes upon return.
4220 xfs_iext_inline_to_direct(
4221 xfs_ifork_t
*ifp
, /* inode fork pointer */
4222 int new_size
) /* number of extents in file */
4224 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4225 kmem_alloc(new_size
, KM_SLEEP
);
4226 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4227 if (ifp
->if_bytes
) {
4228 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4230 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4231 sizeof(xfs_bmbt_rec_t
));
4233 ifp
->if_real_bytes
= new_size
;
4237 * Resize an extent indirection array to new_size bytes.
4240 xfs_iext_realloc_indirect(
4241 xfs_ifork_t
*ifp
, /* inode fork pointer */
4242 int new_size
) /* new indirection array size */
4244 int nlists
; /* number of irec's (ex lists) */
4245 int size
; /* current indirection array size */
4247 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4248 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4249 size
= nlists
* sizeof(xfs_ext_irec_t
);
4250 ASSERT(ifp
->if_real_bytes
);
4251 ASSERT((new_size
>= 0) && (new_size
!= size
));
4252 if (new_size
== 0) {
4253 xfs_iext_destroy(ifp
);
4255 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4256 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4257 new_size
, size
, KM_SLEEP
);
4262 * Switch from indirection array to linear (direct) extent allocations.
4265 xfs_iext_indirect_to_direct(
4266 xfs_ifork_t
*ifp
) /* inode fork pointer */
4268 xfs_bmbt_rec_t
*ep
; /* extent record pointer */
4269 xfs_extnum_t nextents
; /* number of extents in file */
4270 int size
; /* size of file extents */
4272 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4273 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4274 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4275 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4277 xfs_iext_irec_compact_full(ifp
);
4278 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4280 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4281 kmem_free(ifp
->if_u1
.if_ext_irec
, sizeof(xfs_ext_irec_t
));
4282 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4283 ifp
->if_u1
.if_extents
= ep
;
4284 ifp
->if_bytes
= size
;
4285 if (nextents
< XFS_LINEAR_EXTS
) {
4286 xfs_iext_realloc_direct(ifp
, size
);
4291 * Free incore file extents.
4295 xfs_ifork_t
*ifp
) /* inode fork pointer */
4297 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4301 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4302 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4303 xfs_iext_irec_remove(ifp
, erp_idx
);
4305 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4306 } else if (ifp
->if_real_bytes
) {
4307 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4308 } else if (ifp
->if_bytes
) {
4309 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4310 sizeof(xfs_bmbt_rec_t
));
4312 ifp
->if_u1
.if_extents
= NULL
;
4313 ifp
->if_real_bytes
= 0;
4318 * Return a pointer to the extent record for file system block bno.
4320 xfs_bmbt_rec_t
* /* pointer to found extent record */
4321 xfs_iext_bno_to_ext(
4322 xfs_ifork_t
*ifp
, /* inode fork pointer */
4323 xfs_fileoff_t bno
, /* block number to search for */
4324 xfs_extnum_t
*idxp
) /* index of target extent */
4326 xfs_bmbt_rec_t
*base
; /* pointer to first extent */
4327 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4328 xfs_bmbt_rec_t
*ep
= NULL
; /* pointer to target extent */
4329 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4330 int high
; /* upper boundary in search */
4331 xfs_extnum_t idx
= 0; /* index of target extent */
4332 int low
; /* lower boundary in search */
4333 xfs_extnum_t nextents
; /* number of file extents */
4334 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4336 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4337 if (nextents
== 0) {
4342 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4343 /* Find target extent list */
4345 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4346 base
= erp
->er_extbuf
;
4347 high
= erp
->er_extcount
- 1;
4349 base
= ifp
->if_u1
.if_extents
;
4350 high
= nextents
- 1;
4352 /* Binary search extent records */
4353 while (low
<= high
) {
4354 idx
= (low
+ high
) >> 1;
4356 startoff
= xfs_bmbt_get_startoff(ep
);
4357 blockcount
= xfs_bmbt_get_blockcount(ep
);
4358 if (bno
< startoff
) {
4360 } else if (bno
>= startoff
+ blockcount
) {
4363 /* Convert back to file-based extent index */
4364 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4365 idx
+= erp
->er_extoff
;
4371 /* Convert back to file-based extent index */
4372 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4373 idx
+= erp
->er_extoff
;
4375 if (bno
>= startoff
+ blockcount
) {
4376 if (++idx
== nextents
) {
4379 ep
= xfs_iext_get_ext(ifp
, idx
);
4387 * Return a pointer to the indirection array entry containing the
4388 * extent record for filesystem block bno. Store the index of the
4389 * target irec in *erp_idxp.
4391 xfs_ext_irec_t
* /* pointer to found extent record */
4392 xfs_iext_bno_to_irec(
4393 xfs_ifork_t
*ifp
, /* inode fork pointer */
4394 xfs_fileoff_t bno
, /* block number to search for */
4395 int *erp_idxp
) /* irec index of target ext list */
4397 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4398 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4399 int erp_idx
; /* indirection array index */
4400 int nlists
; /* number of extent irec's (lists) */
4401 int high
; /* binary search upper limit */
4402 int low
; /* binary search lower limit */
4404 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4405 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4409 while (low
<= high
) {
4410 erp_idx
= (low
+ high
) >> 1;
4411 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4412 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4413 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4415 } else if (erp_next
&& bno
>=
4416 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4422 *erp_idxp
= erp_idx
;
4427 * Return a pointer to the indirection array entry containing the
4428 * extent record at file extent index *idxp. Store the index of the
4429 * target irec in *erp_idxp and store the page index of the target
4430 * extent record in *idxp.
4433 xfs_iext_idx_to_irec(
4434 xfs_ifork_t
*ifp
, /* inode fork pointer */
4435 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4436 int *erp_idxp
, /* pointer to target irec */
4437 int realloc
) /* new bytes were just added */
4439 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4440 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4441 int erp_idx
; /* indirection array index */
4442 int nlists
; /* number of irec's (ex lists) */
4443 int high
; /* binary search upper limit */
4444 int low
; /* binary search lower limit */
4445 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4447 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4448 ASSERT(page_idx
>= 0 && page_idx
<=
4449 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4450 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4455 /* Binary search extent irec's */
4456 while (low
<= high
) {
4457 erp_idx
= (low
+ high
) >> 1;
4458 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4459 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4460 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4461 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4463 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4464 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4467 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4468 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4472 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4475 page_idx
-= erp
->er_extoff
;
4480 *erp_idxp
= erp_idx
;
4485 * Allocate and initialize an indirection array once the space needed
4486 * for incore extents increases above XFS_IEXT_BUFSZ.
4490 xfs_ifork_t
*ifp
) /* inode fork pointer */
4492 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4493 xfs_extnum_t nextents
; /* number of extents in file */
4495 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4496 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4497 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4499 erp
= (xfs_ext_irec_t
*)
4500 kmem_alloc(sizeof(xfs_ext_irec_t
), KM_SLEEP
);
4502 if (nextents
== 0) {
4503 ifp
->if_u1
.if_extents
= (xfs_bmbt_rec_t
*)
4504 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4505 } else if (!ifp
->if_real_bytes
) {
4506 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4507 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4508 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4510 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4511 erp
->er_extcount
= nextents
;
4514 ifp
->if_flags
|= XFS_IFEXTIREC
;
4515 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4516 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4517 ifp
->if_u1
.if_ext_irec
= erp
;
4523 * Allocate and initialize a new entry in the indirection array.
4527 xfs_ifork_t
*ifp
, /* inode fork pointer */
4528 int erp_idx
) /* index for new irec */
4530 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4531 int i
; /* loop counter */
4532 int nlists
; /* number of irec's (ex lists) */
4534 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4535 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4537 /* Resize indirection array */
4538 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4539 sizeof(xfs_ext_irec_t
));
4541 * Move records down in the array so the
4542 * new page can use erp_idx.
4544 erp
= ifp
->if_u1
.if_ext_irec
;
4545 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4546 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4548 ASSERT(i
== erp_idx
);
4550 /* Initialize new extent record */
4551 erp
= ifp
->if_u1
.if_ext_irec
;
4552 erp
[erp_idx
].er_extbuf
= (xfs_bmbt_rec_t
*)
4553 kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4554 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4555 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4556 erp
[erp_idx
].er_extcount
= 0;
4557 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4558 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4559 return (&erp
[erp_idx
]);
4563 * Remove a record from the indirection array.
4566 xfs_iext_irec_remove(
4567 xfs_ifork_t
*ifp
, /* inode fork pointer */
4568 int erp_idx
) /* irec index to remove */
4570 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4571 int i
; /* loop counter */
4572 int nlists
; /* number of irec's (ex lists) */
4574 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4575 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4576 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4577 if (erp
->er_extbuf
) {
4578 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4580 kmem_free(erp
->er_extbuf
, XFS_IEXT_BUFSZ
);
4582 /* Compact extent records */
4583 erp
= ifp
->if_u1
.if_ext_irec
;
4584 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4585 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4588 * Manually free the last extent record from the indirection
4589 * array. A call to xfs_iext_realloc_indirect() with a size
4590 * of zero would result in a call to xfs_iext_destroy() which
4591 * would in turn call this function again, creating a nasty
4595 xfs_iext_realloc_indirect(ifp
,
4596 nlists
* sizeof(xfs_ext_irec_t
));
4598 kmem_free(ifp
->if_u1
.if_ext_irec
,
4599 sizeof(xfs_ext_irec_t
));
4601 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4605 * This is called to clean up large amounts of unused memory allocated
4606 * by the indirection array. Before compacting anything though, verify
4607 * that the indirection array is still needed and switch back to the
4608 * linear extent list (or even the inline buffer) if possible. The
4609 * compaction policy is as follows:
4611 * Full Compaction: Extents fit into a single page (or inline buffer)
4612 * Full Compaction: Extents occupy less than 10% of allocated space
4613 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4614 * No Compaction: Extents occupy at least 50% of allocated space
4617 xfs_iext_irec_compact(
4618 xfs_ifork_t
*ifp
) /* inode fork pointer */
4620 xfs_extnum_t nextents
; /* number of extents in file */
4621 int nlists
; /* number of irec's (ex lists) */
4623 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4624 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4625 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4627 if (nextents
== 0) {
4628 xfs_iext_destroy(ifp
);
4629 } else if (nextents
<= XFS_INLINE_EXTS
) {
4630 xfs_iext_indirect_to_direct(ifp
);
4631 xfs_iext_direct_to_inline(ifp
, nextents
);
4632 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4633 xfs_iext_indirect_to_direct(ifp
);
4634 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 3) {
4635 xfs_iext_irec_compact_full(ifp
);
4636 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4637 xfs_iext_irec_compact_pages(ifp
);
4642 * Combine extents from neighboring extent pages.
4645 xfs_iext_irec_compact_pages(
4646 xfs_ifork_t
*ifp
) /* inode fork pointer */
4648 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4649 int erp_idx
= 0; /* indirection array index */
4650 int nlists
; /* number of irec's (ex lists) */
4652 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4653 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4654 while (erp_idx
< nlists
- 1) {
4655 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4657 if (erp_next
->er_extcount
<=
4658 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4659 memmove(&erp
->er_extbuf
[erp
->er_extcount
],
4660 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4661 sizeof(xfs_bmbt_rec_t
));
4662 erp
->er_extcount
+= erp_next
->er_extcount
;
4664 * Free page before removing extent record
4665 * so er_extoffs don't get modified in
4666 * xfs_iext_irec_remove.
4668 kmem_free(erp_next
->er_extbuf
, XFS_IEXT_BUFSZ
);
4669 erp_next
->er_extbuf
= NULL
;
4670 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4671 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4679 * Fully compact the extent records managed by the indirection array.
4682 xfs_iext_irec_compact_full(
4683 xfs_ifork_t
*ifp
) /* inode fork pointer */
4685 xfs_bmbt_rec_t
*ep
, *ep_next
; /* extent record pointers */
4686 xfs_ext_irec_t
*erp
, *erp_next
; /* extent irec pointers */
4687 int erp_idx
= 0; /* extent irec index */
4688 int ext_avail
; /* empty entries in ex list */
4689 int ext_diff
; /* number of exts to add */
4690 int nlists
; /* number of irec's (ex lists) */
4692 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4693 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4694 erp
= ifp
->if_u1
.if_ext_irec
;
4695 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4697 ep_next
= erp_next
->er_extbuf
;
4698 while (erp_idx
< nlists
- 1) {
4699 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
4700 ext_diff
= MIN(ext_avail
, erp_next
->er_extcount
);
4701 memcpy(ep
, ep_next
, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4702 erp
->er_extcount
+= ext_diff
;
4703 erp_next
->er_extcount
-= ext_diff
;
4704 /* Remove next page */
4705 if (erp_next
->er_extcount
== 0) {
4707 * Free page before removing extent record
4708 * so er_extoffs don't get modified in
4709 * xfs_iext_irec_remove.
4711 kmem_free(erp_next
->er_extbuf
,
4712 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4713 erp_next
->er_extbuf
= NULL
;
4714 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4715 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4716 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4717 /* Update next page */
4719 /* Move rest of page up to become next new page */
4720 memmove(erp_next
->er_extbuf
, ep_next
,
4721 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4722 ep_next
= erp_next
->er_extbuf
;
4723 memset(&ep_next
[erp_next
->er_extcount
], 0,
4724 (XFS_LINEAR_EXTS
- erp_next
->er_extcount
) *
4725 sizeof(xfs_bmbt_rec_t
));
4727 if (erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4729 if (erp_idx
< nlists
)
4730 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4734 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4736 ep_next
= erp_next
->er_extbuf
;
4741 * This is called to update the er_extoff field in the indirection
4742 * array when extents have been added or removed from one of the
4743 * extent lists. erp_idx contains the irec index to begin updating
4744 * at and ext_diff contains the number of extents that were added
4748 xfs_iext_irec_update_extoffs(
4749 xfs_ifork_t
*ifp
, /* inode fork pointer */
4750 int erp_idx
, /* irec index to update */
4751 int ext_diff
) /* number of new extents */
4753 int i
; /* loop counter */
4754 int nlists
; /* number of irec's (ex lists */
4756 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4757 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4758 for (i
= erp_idx
; i
< nlists
; i
++) {
4759 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;