[PATCH] Print physical address in tulip_init_one
[linux-2.6.22.y-op.git] / drivers / net / tulip / tulip_core.c
blobb333bea403d1fc01aeaedf2a6b34254474886580
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
3 /*
4 Maintained by Valerie Henson <val_henson@linux.intel.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
18 #define DRV_NAME "tulip"
19 #ifdef CONFIG_TULIP_NAPI
20 #define DRV_VERSION "1.1.13-NAPI" /* Keep at least for test */
21 #else
22 #define DRV_VERSION "1.1.13"
23 #endif
24 #define DRV_RELDATE "May 11, 2002"
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include "tulip.h"
30 #include <linux/init.h>
31 #include <linux/etherdevice.h>
32 #include <linux/delay.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
39 #ifdef __sparc__
40 #include <asm/pbm.h>
41 #endif
43 static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
47 /* A few user-configurable values. */
49 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50 static unsigned int max_interrupt_work = 25;
52 #define MAX_UNITS 8
53 /* Used to pass the full-duplex flag, etc. */
54 static int full_duplex[MAX_UNITS];
55 static int options[MAX_UNITS];
56 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
58 /* The possible media types that can be set in options[] are: */
59 const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(__sparc_) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
73 #else
74 static int rx_copybreak = 100;
75 #endif
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
90 #if defined(__alpha__) || defined(__ia64__)
91 static int csr0 = 0x01A00000 | 0xE000;
92 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93 static int csr0 = 0x01A00000 | 0x8000;
94 #elif defined(__sparc__) || defined(__hppa__)
95 /* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
97 * any more than that.
99 static int csr0 = 0x01A00000 | 0x9000;
100 #elif defined(__arm__) || defined(__sh__)
101 static int csr0 = 0x01A00000 | 0x4800;
102 #elif defined(__mips__)
103 static int csr0 = 0x00200000 | 0x4000;
104 #else
105 #warning Processor architecture undefined!
106 static int csr0 = 0x00A00000 | 0x4800;
107 #endif
109 /* Operational parameters that usually are not changed. */
110 /* Time in jiffies before concluding the transmitter is hung. */
111 #define TX_TIMEOUT (4*HZ)
114 MODULE_AUTHOR("The Linux Kernel Team");
115 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116 MODULE_LICENSE("GPL");
117 MODULE_VERSION(DRV_VERSION);
118 module_param(tulip_debug, int, 0);
119 module_param(max_interrupt_work, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param(csr0, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
125 #define PFX DRV_NAME ": "
127 #ifdef TULIP_DEBUG
128 int tulip_debug = TULIP_DEBUG;
129 #else
130 int tulip_debug = 1;
131 #endif
136 * This table use during operation for capabilities and media timer.
138 * It is indexed via the values in 'enum chips'
141 struct tulip_chip_table tulip_tbl[] = {
142 { }, /* placeholder for array, slot unused currently */
143 { }, /* placeholder for array, slot unused currently */
145 /* DC21140 */
146 { "Digital DS21140 Tulip", 128, 0x0001ebef,
147 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer },
149 /* DC21142, DC21143 */
150 { "Digital DS21143 Tulip", 128, 0x0801fbff,
151 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
152 | HAS_INTR_MITIGATION | HAS_PCI_MWI, t21142_timer },
154 /* LC82C168 */
155 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
156 HAS_MII | HAS_PNICNWAY, pnic_timer },
158 /* MX98713 */
159 { "Macronix 98713 PMAC", 128, 0x0001ebef,
160 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
162 /* MX98715 */
163 { "Macronix 98715 PMAC", 256, 0x0001ebef,
164 HAS_MEDIA_TABLE, mxic_timer },
166 /* MX98725 */
167 { "Macronix 98725 PMAC", 256, 0x0001ebef,
168 HAS_MEDIA_TABLE, mxic_timer },
170 /* AX88140 */
171 { "ASIX AX88140", 128, 0x0001fbff,
172 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
173 | IS_ASIX, tulip_timer },
175 /* PNIC2 */
176 { "Lite-On PNIC-II", 256, 0x0801fbff,
177 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer },
179 /* COMET */
180 { "ADMtek Comet", 256, 0x0001abef,
181 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer },
183 /* COMPEX9881 */
184 { "Compex 9881 PMAC", 128, 0x0001ebef,
185 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
187 /* I21145 */
188 { "Intel DS21145 Tulip", 128, 0x0801fbff,
189 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
190 | HAS_NWAY | HAS_PCI_MWI, t21142_timer },
192 /* DM910X */
193 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
194 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
195 tulip_timer },
197 /* RS7112 */
198 { "Conexant LANfinity", 256, 0x0001ebef,
199 HAS_MII | HAS_ACPI, tulip_timer },
204 static struct pci_device_id tulip_pci_tbl[] = {
205 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
206 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
207 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
208 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
209 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
210 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
211 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
212 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
213 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
214 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
215 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
216 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
217 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
218 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
219 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
224 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
225 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
226 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
227 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
229 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
232 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
233 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
234 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
235 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
239 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
240 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { } /* terminate list */
243 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
246 /* A full-duplex map for media types. */
247 const char tulip_media_cap[32] =
248 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
250 static void tulip_tx_timeout(struct net_device *dev);
251 static void tulip_init_ring(struct net_device *dev);
252 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
253 static int tulip_open(struct net_device *dev);
254 static int tulip_close(struct net_device *dev);
255 static void tulip_up(struct net_device *dev);
256 static void tulip_down(struct net_device *dev);
257 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
258 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
259 static void set_rx_mode(struct net_device *dev);
260 #ifdef CONFIG_NET_POLL_CONTROLLER
261 static void poll_tulip(struct net_device *dev);
262 #endif
264 static void tulip_set_power_state (struct tulip_private *tp,
265 int sleep, int snooze)
267 if (tp->flags & HAS_ACPI) {
268 u32 tmp, newtmp;
269 pci_read_config_dword (tp->pdev, CFDD, &tmp);
270 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
271 if (sleep)
272 newtmp |= CFDD_Sleep;
273 else if (snooze)
274 newtmp |= CFDD_Snooze;
275 if (tmp != newtmp)
276 pci_write_config_dword (tp->pdev, CFDD, newtmp);
282 static void tulip_up(struct net_device *dev)
284 struct tulip_private *tp = netdev_priv(dev);
285 void __iomem *ioaddr = tp->base_addr;
286 int next_tick = 3*HZ;
287 int i;
289 /* Wake the chip from sleep/snooze mode. */
290 tulip_set_power_state (tp, 0, 0);
292 /* On some chip revs we must set the MII/SYM port before the reset!? */
293 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
294 iowrite32(0x00040000, ioaddr + CSR6);
296 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
297 iowrite32(0x00000001, ioaddr + CSR0);
298 udelay(100);
300 /* Deassert reset.
301 Wait the specified 50 PCI cycles after a reset by initializing
302 Tx and Rx queues and the address filter list. */
303 iowrite32(tp->csr0, ioaddr + CSR0);
304 udelay(100);
306 if (tulip_debug > 1)
307 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
309 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
310 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
311 tp->cur_rx = tp->cur_tx = 0;
312 tp->dirty_rx = tp->dirty_tx = 0;
314 if (tp->flags & MC_HASH_ONLY) {
315 u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr));
316 u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4)));
317 if (tp->chip_id == AX88140) {
318 iowrite32(0, ioaddr + CSR13);
319 iowrite32(addr_low, ioaddr + CSR14);
320 iowrite32(1, ioaddr + CSR13);
321 iowrite32(addr_high, ioaddr + CSR14);
322 } else if (tp->flags & COMET_MAC_ADDR) {
323 iowrite32(addr_low, ioaddr + 0xA4);
324 iowrite32(addr_high, ioaddr + 0xA8);
325 iowrite32(0, ioaddr + 0xAC);
326 iowrite32(0, ioaddr + 0xB0);
328 } else {
329 /* This is set_rx_mode(), but without starting the transmitter. */
330 u16 *eaddrs = (u16 *)dev->dev_addr;
331 u16 *setup_frm = &tp->setup_frame[15*6];
332 dma_addr_t mapping;
334 /* 21140 bug: you must add the broadcast address. */
335 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
336 /* Fill the final entry of the table with our physical address. */
337 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
338 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
339 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
341 mapping = pci_map_single(tp->pdev, tp->setup_frame,
342 sizeof(tp->setup_frame),
343 PCI_DMA_TODEVICE);
344 tp->tx_buffers[tp->cur_tx].skb = NULL;
345 tp->tx_buffers[tp->cur_tx].mapping = mapping;
347 /* Put the setup frame on the Tx list. */
348 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
349 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
350 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
352 tp->cur_tx++;
355 tp->saved_if_port = dev->if_port;
356 if (dev->if_port == 0)
357 dev->if_port = tp->default_port;
359 /* Allow selecting a default media. */
360 i = 0;
361 if (tp->mtable == NULL)
362 goto media_picked;
363 if (dev->if_port) {
364 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
365 (dev->if_port == 12 ? 0 : dev->if_port);
366 for (i = 0; i < tp->mtable->leafcount; i++)
367 if (tp->mtable->mleaf[i].media == looking_for) {
368 printk(KERN_INFO "%s: Using user-specified media %s.\n",
369 dev->name, medianame[dev->if_port]);
370 goto media_picked;
373 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
374 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
375 for (i = 0; i < tp->mtable->leafcount; i++)
376 if (tp->mtable->mleaf[i].media == looking_for) {
377 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
378 dev->name, medianame[looking_for]);
379 goto media_picked;
382 /* Start sensing first non-full-duplex media. */
383 for (i = tp->mtable->leafcount - 1;
384 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
386 media_picked:
388 tp->csr6 = 0;
389 tp->cur_index = i;
390 tp->nwayset = 0;
392 if (dev->if_port) {
393 if (tp->chip_id == DC21143 &&
394 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
395 /* We must reset the media CSRs when we force-select MII mode. */
396 iowrite32(0x0000, ioaddr + CSR13);
397 iowrite32(0x0000, ioaddr + CSR14);
398 iowrite32(0x0008, ioaddr + CSR15);
400 tulip_select_media(dev, 1);
401 } else if (tp->chip_id == DC21142) {
402 if (tp->mii_cnt) {
403 tulip_select_media(dev, 1);
404 if (tulip_debug > 1)
405 printk(KERN_INFO "%s: Using MII transceiver %d, status "
406 "%4.4x.\n",
407 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
408 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
409 tp->csr6 = csr6_mask_hdcap;
410 dev->if_port = 11;
411 iowrite32(0x0000, ioaddr + CSR13);
412 iowrite32(0x0000, ioaddr + CSR14);
413 } else
414 t21142_start_nway(dev);
415 } else if (tp->chip_id == PNIC2) {
416 /* for initial startup advertise 10/100 Full and Half */
417 tp->sym_advertise = 0x01E0;
418 /* enable autonegotiate end interrupt */
419 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
420 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
421 pnic2_start_nway(dev);
422 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
423 if (tp->mii_cnt) {
424 dev->if_port = 11;
425 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
426 iowrite32(0x0001, ioaddr + CSR15);
427 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
428 pnic_do_nway(dev);
429 else {
430 /* Start with 10mbps to do autonegotiation. */
431 iowrite32(0x32, ioaddr + CSR12);
432 tp->csr6 = 0x00420000;
433 iowrite32(0x0001B078, ioaddr + 0xB8);
434 iowrite32(0x0201B078, ioaddr + 0xB8);
435 next_tick = 1*HZ;
437 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
438 && ! tp->medialock) {
439 dev->if_port = 0;
440 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
441 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
442 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
443 /* Provided by BOLO, Macronix - 12/10/1998. */
444 dev->if_port = 0;
445 tp->csr6 = 0x01a80200;
446 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
447 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
448 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
449 /* Enable automatic Tx underrun recovery. */
450 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
451 dev->if_port = tp->mii_cnt ? 11 : 0;
452 tp->csr6 = 0x00040000;
453 } else if (tp->chip_id == AX88140) {
454 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
455 } else
456 tulip_select_media(dev, 1);
458 /* Start the chip's Tx to process setup frame. */
459 tulip_stop_rxtx(tp);
460 barrier();
461 udelay(5);
462 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
464 /* Enable interrupts by setting the interrupt mask. */
465 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
466 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
467 tulip_start_rxtx(tp);
468 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
470 if (tulip_debug > 2) {
471 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
472 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
473 ioread32(ioaddr + CSR6));
476 /* Set the timer to switch to check for link beat and perhaps switch
477 to an alternate media type. */
478 tp->timer.expires = RUN_AT(next_tick);
479 add_timer(&tp->timer);
480 #ifdef CONFIG_TULIP_NAPI
481 init_timer(&tp->oom_timer);
482 tp->oom_timer.data = (unsigned long)dev;
483 tp->oom_timer.function = oom_timer;
484 #endif
487 static int
488 tulip_open(struct net_device *dev)
490 int retval;
492 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
493 return retval;
495 tulip_init_ring (dev);
497 tulip_up (dev);
499 netif_start_queue (dev);
501 return 0;
505 static void tulip_tx_timeout(struct net_device *dev)
507 struct tulip_private *tp = netdev_priv(dev);
508 void __iomem *ioaddr = tp->base_addr;
509 unsigned long flags;
511 spin_lock_irqsave (&tp->lock, flags);
513 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
514 /* Do nothing -- the media monitor should handle this. */
515 if (tulip_debug > 1)
516 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
517 dev->name);
518 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
519 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
520 || tp->chip_id == DM910X) {
521 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
522 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
523 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
524 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
525 if ( ! tp->medialock && tp->mtable) {
527 --tp->cur_index;
528 while (tp->cur_index >= 0
529 && (tulip_media_cap[tp->mtable->mleaf[tp->cur_index].media]
530 & MediaIsFD));
531 if (--tp->cur_index < 0) {
532 /* We start again, but should instead look for default. */
533 tp->cur_index = tp->mtable->leafcount - 1;
535 tulip_select_media(dev, 0);
536 printk(KERN_WARNING "%s: transmit timed out, switching to %s "
537 "media.\n", dev->name, medianame[dev->if_port]);
539 } else if (tp->chip_id == PNIC2) {
540 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
541 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
542 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
543 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
544 } else {
545 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
546 "%8.8x, resetting...\n",
547 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
548 dev->if_port = 0;
551 #if defined(way_too_many_messages)
552 if (tulip_debug > 3) {
553 int i;
554 for (i = 0; i < RX_RING_SIZE; i++) {
555 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
556 int j;
557 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
558 "%2.2x %2.2x %2.2x.\n",
559 i, (unsigned int)tp->rx_ring[i].status,
560 (unsigned int)tp->rx_ring[i].length,
561 (unsigned int)tp->rx_ring[i].buffer1,
562 (unsigned int)tp->rx_ring[i].buffer2,
563 buf[0], buf[1], buf[2]);
564 for (j = 0; buf[j] != 0xee && j < 1600; j++)
565 if (j < 100) printk(" %2.2x", buf[j]);
566 printk(" j=%d.\n", j);
568 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
569 for (i = 0; i < RX_RING_SIZE; i++)
570 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
571 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
572 for (i = 0; i < TX_RING_SIZE; i++)
573 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
574 printk("\n");
576 #endif
578 /* Stop and restart the chip's Tx processes . */
580 tulip_restart_rxtx(tp);
581 /* Trigger an immediate transmit demand. */
582 iowrite32(0, ioaddr + CSR1);
584 tp->stats.tx_errors++;
586 spin_unlock_irqrestore (&tp->lock, flags);
587 dev->trans_start = jiffies;
588 netif_wake_queue (dev);
592 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
593 static void tulip_init_ring(struct net_device *dev)
595 struct tulip_private *tp = netdev_priv(dev);
596 int i;
598 tp->susp_rx = 0;
599 tp->ttimer = 0;
600 tp->nir = 0;
602 for (i = 0; i < RX_RING_SIZE; i++) {
603 tp->rx_ring[i].status = 0x00000000;
604 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
605 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
606 tp->rx_buffers[i].skb = NULL;
607 tp->rx_buffers[i].mapping = 0;
609 /* Mark the last entry as wrapping the ring. */
610 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
611 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
613 for (i = 0; i < RX_RING_SIZE; i++) {
614 dma_addr_t mapping;
616 /* Note the receive buffer must be longword aligned.
617 dev_alloc_skb() provides 16 byte alignment. But do *not*
618 use skb_reserve() to align the IP header! */
619 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
620 tp->rx_buffers[i].skb = skb;
621 if (skb == NULL)
622 break;
623 mapping = pci_map_single(tp->pdev, skb->data,
624 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
625 tp->rx_buffers[i].mapping = mapping;
626 skb->dev = dev; /* Mark as being used by this device. */
627 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
628 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
630 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
632 /* The Tx buffer descriptor is filled in as needed, but we
633 do need to clear the ownership bit. */
634 for (i = 0; i < TX_RING_SIZE; i++) {
635 tp->tx_buffers[i].skb = NULL;
636 tp->tx_buffers[i].mapping = 0;
637 tp->tx_ring[i].status = 0x00000000;
638 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
640 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
643 static int
644 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
646 struct tulip_private *tp = netdev_priv(dev);
647 int entry;
648 u32 flag;
649 dma_addr_t mapping;
651 spin_lock_irq(&tp->lock);
653 /* Calculate the next Tx descriptor entry. */
654 entry = tp->cur_tx % TX_RING_SIZE;
656 tp->tx_buffers[entry].skb = skb;
657 mapping = pci_map_single(tp->pdev, skb->data,
658 skb->len, PCI_DMA_TODEVICE);
659 tp->tx_buffers[entry].mapping = mapping;
660 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
662 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
663 flag = 0x60000000; /* No interrupt */
664 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
665 flag = 0xe0000000; /* Tx-done intr. */
666 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
667 flag = 0x60000000; /* No Tx-done intr. */
668 } else { /* Leave room for set_rx_mode() to fill entries. */
669 flag = 0xe0000000; /* Tx-done intr. */
670 netif_stop_queue(dev);
672 if (entry == TX_RING_SIZE-1)
673 flag = 0xe0000000 | DESC_RING_WRAP;
675 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
676 /* if we were using Transmit Automatic Polling, we would need a
677 * wmb() here. */
678 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
679 wmb();
681 tp->cur_tx++;
683 /* Trigger an immediate transmit demand. */
684 iowrite32(0, tp->base_addr + CSR1);
686 spin_unlock_irq(&tp->lock);
688 dev->trans_start = jiffies;
690 return 0;
693 static void tulip_clean_tx_ring(struct tulip_private *tp)
695 unsigned int dirty_tx;
697 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
698 dirty_tx++) {
699 int entry = dirty_tx % TX_RING_SIZE;
700 int status = le32_to_cpu(tp->tx_ring[entry].status);
702 if (status < 0) {
703 tp->stats.tx_errors++; /* It wasn't Txed */
704 tp->tx_ring[entry].status = 0;
707 /* Check for Tx filter setup frames. */
708 if (tp->tx_buffers[entry].skb == NULL) {
709 /* test because dummy frames not mapped */
710 if (tp->tx_buffers[entry].mapping)
711 pci_unmap_single(tp->pdev,
712 tp->tx_buffers[entry].mapping,
713 sizeof(tp->setup_frame),
714 PCI_DMA_TODEVICE);
715 continue;
718 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
719 tp->tx_buffers[entry].skb->len,
720 PCI_DMA_TODEVICE);
722 /* Free the original skb. */
723 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
724 tp->tx_buffers[entry].skb = NULL;
725 tp->tx_buffers[entry].mapping = 0;
729 static void tulip_down (struct net_device *dev)
731 struct tulip_private *tp = netdev_priv(dev);
732 void __iomem *ioaddr = tp->base_addr;
733 unsigned long flags;
735 del_timer_sync (&tp->timer);
736 #ifdef CONFIG_TULIP_NAPI
737 del_timer_sync (&tp->oom_timer);
738 #endif
739 spin_lock_irqsave (&tp->lock, flags);
741 /* Disable interrupts by clearing the interrupt mask. */
742 iowrite32 (0x00000000, ioaddr + CSR7);
744 /* Stop the Tx and Rx processes. */
745 tulip_stop_rxtx(tp);
747 /* prepare receive buffers */
748 tulip_refill_rx(dev);
750 /* release any unconsumed transmit buffers */
751 tulip_clean_tx_ring(tp);
753 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
754 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
756 spin_unlock_irqrestore (&tp->lock, flags);
758 init_timer(&tp->timer);
759 tp->timer.data = (unsigned long)dev;
760 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
762 dev->if_port = tp->saved_if_port;
764 /* Leave the driver in snooze, not sleep, mode. */
765 tulip_set_power_state (tp, 0, 1);
769 static int tulip_close (struct net_device *dev)
771 struct tulip_private *tp = netdev_priv(dev);
772 void __iomem *ioaddr = tp->base_addr;
773 int i;
775 netif_stop_queue (dev);
777 tulip_down (dev);
779 if (tulip_debug > 1)
780 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
781 dev->name, ioread32 (ioaddr + CSR5));
783 free_irq (dev->irq, dev);
785 /* Free all the skbuffs in the Rx queue. */
786 for (i = 0; i < RX_RING_SIZE; i++) {
787 struct sk_buff *skb = tp->rx_buffers[i].skb;
788 dma_addr_t mapping = tp->rx_buffers[i].mapping;
790 tp->rx_buffers[i].skb = NULL;
791 tp->rx_buffers[i].mapping = 0;
793 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
794 tp->rx_ring[i].length = 0;
795 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
796 if (skb) {
797 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
798 PCI_DMA_FROMDEVICE);
799 dev_kfree_skb (skb);
802 for (i = 0; i < TX_RING_SIZE; i++) {
803 struct sk_buff *skb = tp->tx_buffers[i].skb;
805 if (skb != NULL) {
806 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
807 skb->len, PCI_DMA_TODEVICE);
808 dev_kfree_skb (skb);
810 tp->tx_buffers[i].skb = NULL;
811 tp->tx_buffers[i].mapping = 0;
814 return 0;
817 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
819 struct tulip_private *tp = netdev_priv(dev);
820 void __iomem *ioaddr = tp->base_addr;
822 if (netif_running(dev)) {
823 unsigned long flags;
825 spin_lock_irqsave (&tp->lock, flags);
827 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
829 spin_unlock_irqrestore(&tp->lock, flags);
832 return &tp->stats;
836 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
838 struct tulip_private *np = netdev_priv(dev);
839 strcpy(info->driver, DRV_NAME);
840 strcpy(info->version, DRV_VERSION);
841 strcpy(info->bus_info, pci_name(np->pdev));
844 static struct ethtool_ops ops = {
845 .get_drvinfo = tulip_get_drvinfo
848 /* Provide ioctl() calls to examine the MII xcvr state. */
849 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
851 struct tulip_private *tp = netdev_priv(dev);
852 void __iomem *ioaddr = tp->base_addr;
853 struct mii_ioctl_data *data = if_mii(rq);
854 const unsigned int phy_idx = 0;
855 int phy = tp->phys[phy_idx] & 0x1f;
856 unsigned int regnum = data->reg_num;
858 switch (cmd) {
859 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
860 if (tp->mii_cnt)
861 data->phy_id = phy;
862 else if (tp->flags & HAS_NWAY)
863 data->phy_id = 32;
864 else if (tp->chip_id == COMET)
865 data->phy_id = 1;
866 else
867 return -ENODEV;
869 case SIOCGMIIREG: /* Read MII PHY register. */
870 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
871 int csr12 = ioread32 (ioaddr + CSR12);
872 int csr14 = ioread32 (ioaddr + CSR14);
873 switch (regnum) {
874 case 0:
875 if (((csr14<<5) & 0x1000) ||
876 (dev->if_port == 5 && tp->nwayset))
877 data->val_out = 0x1000;
878 else
879 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
880 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
881 break;
882 case 1:
883 data->val_out =
884 0x1848 +
885 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
886 ((csr12&0x06) == 6 ? 0 : 4);
887 data->val_out |= 0x6048;
888 break;
889 case 4:
890 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
891 data->val_out =
892 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
893 ((csr14 >> 1) & 0x20) + 1;
894 data->val_out |= ((csr14 >> 9) & 0x03C0);
895 break;
896 case 5: data->val_out = tp->lpar; break;
897 default: data->val_out = 0; break;
899 } else {
900 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
902 return 0;
904 case SIOCSMIIREG: /* Write MII PHY register. */
905 if (!capable (CAP_NET_ADMIN))
906 return -EPERM;
907 if (regnum & ~0x1f)
908 return -EINVAL;
909 if (data->phy_id == phy) {
910 u16 value = data->val_in;
911 switch (regnum) {
912 case 0: /* Check for autonegotiation on or reset. */
913 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
914 if (tp->full_duplex_lock)
915 tp->full_duplex = (value & 0x0100) ? 1 : 0;
916 break;
917 case 4:
918 tp->advertising[phy_idx] =
919 tp->mii_advertise = data->val_in;
920 break;
923 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
924 u16 value = data->val_in;
925 if (regnum == 0) {
926 if ((value & 0x1200) == 0x1200) {
927 if (tp->chip_id == PNIC2) {
928 pnic2_start_nway (dev);
929 } else {
930 t21142_start_nway (dev);
933 } else if (regnum == 4)
934 tp->sym_advertise = value;
935 } else {
936 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
938 return 0;
939 default:
940 return -EOPNOTSUPP;
943 return -EOPNOTSUPP;
947 /* Set or clear the multicast filter for this adaptor.
948 Note that we only use exclusion around actually queueing the
949 new frame, not around filling tp->setup_frame. This is non-deterministic
950 when re-entered but still correct. */
952 #undef set_bit_le
953 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
955 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
957 struct tulip_private *tp = netdev_priv(dev);
958 u16 hash_table[32];
959 struct dev_mc_list *mclist;
960 int i;
961 u16 *eaddrs;
963 memset(hash_table, 0, sizeof(hash_table));
964 set_bit_le(255, hash_table); /* Broadcast entry */
965 /* This should work on big-endian machines as well. */
966 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
967 i++, mclist = mclist->next) {
968 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
970 set_bit_le(index, hash_table);
973 for (i = 0; i < 32; i++) {
974 *setup_frm++ = hash_table[i];
975 *setup_frm++ = hash_table[i];
977 setup_frm = &tp->setup_frame[13*6];
979 /* Fill the final entry with our physical address. */
980 eaddrs = (u16 *)dev->dev_addr;
981 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
982 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
983 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
986 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
988 struct tulip_private *tp = netdev_priv(dev);
989 struct dev_mc_list *mclist;
990 int i;
991 u16 *eaddrs;
993 /* We have <= 14 addresses so we can use the wonderful
994 16 address perfect filtering of the Tulip. */
995 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
996 i++, mclist = mclist->next) {
997 eaddrs = (u16 *)mclist->dmi_addr;
998 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
999 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1000 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1002 /* Fill the unused entries with the broadcast address. */
1003 memset(setup_frm, 0xff, (15-i)*12);
1004 setup_frm = &tp->setup_frame[15*6];
1006 /* Fill the final entry with our physical address. */
1007 eaddrs = (u16 *)dev->dev_addr;
1008 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1009 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1010 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1014 static void set_rx_mode(struct net_device *dev)
1016 struct tulip_private *tp = netdev_priv(dev);
1017 void __iomem *ioaddr = tp->base_addr;
1018 int csr6;
1020 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1022 tp->csr6 &= ~0x00D5;
1023 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1024 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1025 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1026 /* Unconditionally log net taps. */
1027 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1028 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1029 /* Too many to filter well -- accept all multicasts. */
1030 tp->csr6 |= AcceptAllMulticast;
1031 csr6 |= AcceptAllMulticast;
1032 } else if (tp->flags & MC_HASH_ONLY) {
1033 /* Some work-alikes have only a 64-entry hash filter table. */
1034 /* Should verify correctness on big-endian/__powerpc__ */
1035 struct dev_mc_list *mclist;
1036 int i;
1037 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1038 tp->csr6 |= AcceptAllMulticast;
1039 csr6 |= AcceptAllMulticast;
1040 } else {
1041 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1042 int filterbit;
1043 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1044 i++, mclist = mclist->next) {
1045 if (tp->flags & COMET_MAC_ADDR)
1046 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1047 else
1048 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1049 filterbit &= 0x3f;
1050 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1051 if (tulip_debug > 2) {
1052 printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
1053 "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
1054 mclist->dmi_addr[0], mclist->dmi_addr[1],
1055 mclist->dmi_addr[2], mclist->dmi_addr[3],
1056 mclist->dmi_addr[4], mclist->dmi_addr[5],
1057 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1060 if (mc_filter[0] == tp->mc_filter[0] &&
1061 mc_filter[1] == tp->mc_filter[1])
1062 ; /* No change. */
1063 else if (tp->flags & IS_ASIX) {
1064 iowrite32(2, ioaddr + CSR13);
1065 iowrite32(mc_filter[0], ioaddr + CSR14);
1066 iowrite32(3, ioaddr + CSR13);
1067 iowrite32(mc_filter[1], ioaddr + CSR14);
1068 } else if (tp->flags & COMET_MAC_ADDR) {
1069 iowrite32(mc_filter[0], ioaddr + 0xAC);
1070 iowrite32(mc_filter[1], ioaddr + 0xB0);
1072 tp->mc_filter[0] = mc_filter[0];
1073 tp->mc_filter[1] = mc_filter[1];
1075 } else {
1076 unsigned long flags;
1077 u32 tx_flags = 0x08000000 | 192;
1079 /* Note that only the low-address shortword of setup_frame is valid!
1080 The values are doubled for big-endian architectures. */
1081 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1082 build_setup_frame_hash(tp->setup_frame, dev);
1083 tx_flags = 0x08400000 | 192;
1084 } else {
1085 build_setup_frame_perfect(tp->setup_frame, dev);
1088 spin_lock_irqsave(&tp->lock, flags);
1090 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1091 /* Same setup recently queued, we need not add it. */
1092 } else {
1093 unsigned int entry;
1094 int dummy = -1;
1096 /* Now add this frame to the Tx list. */
1098 entry = tp->cur_tx++ % TX_RING_SIZE;
1100 if (entry != 0) {
1101 /* Avoid a chip errata by prefixing a dummy entry. */
1102 tp->tx_buffers[entry].skb = NULL;
1103 tp->tx_buffers[entry].mapping = 0;
1104 tp->tx_ring[entry].length =
1105 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1106 tp->tx_ring[entry].buffer1 = 0;
1107 /* Must set DescOwned later to avoid race with chip */
1108 dummy = entry;
1109 entry = tp->cur_tx++ % TX_RING_SIZE;
1113 tp->tx_buffers[entry].skb = NULL;
1114 tp->tx_buffers[entry].mapping =
1115 pci_map_single(tp->pdev, tp->setup_frame,
1116 sizeof(tp->setup_frame),
1117 PCI_DMA_TODEVICE);
1118 /* Put the setup frame on the Tx list. */
1119 if (entry == TX_RING_SIZE-1)
1120 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1121 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1122 tp->tx_ring[entry].buffer1 =
1123 cpu_to_le32(tp->tx_buffers[entry].mapping);
1124 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1125 if (dummy >= 0)
1126 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1127 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1128 netif_stop_queue(dev);
1130 /* Trigger an immediate transmit demand. */
1131 iowrite32(0, ioaddr + CSR1);
1134 spin_unlock_irqrestore(&tp->lock, flags);
1137 iowrite32(csr6, ioaddr + CSR6);
1140 #ifdef CONFIG_TULIP_MWI
1141 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1142 struct net_device *dev)
1144 struct tulip_private *tp = netdev_priv(dev);
1145 u8 cache;
1146 u16 pci_command;
1147 u32 csr0;
1149 if (tulip_debug > 3)
1150 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1152 tp->csr0 = csr0 = 0;
1154 /* if we have any cache line size at all, we can do MRM */
1155 csr0 |= MRM;
1157 /* ...and barring hardware bugs, MWI */
1158 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1159 csr0 |= MWI;
1161 /* set or disable MWI in the standard PCI command bit.
1162 * Check for the case where mwi is desired but not available
1164 if (csr0 & MWI) pci_set_mwi(pdev);
1165 else pci_clear_mwi(pdev);
1167 /* read result from hardware (in case bit refused to enable) */
1168 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1169 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1170 csr0 &= ~MWI;
1172 /* if cache line size hardwired to zero, no MWI */
1173 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1174 if ((csr0 & MWI) && (cache == 0)) {
1175 csr0 &= ~MWI;
1176 pci_clear_mwi(pdev);
1179 /* assign per-cacheline-size cache alignment and
1180 * burst length values
1182 switch (cache) {
1183 case 8:
1184 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1185 break;
1186 case 16:
1187 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1188 break;
1189 case 32:
1190 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1191 break;
1192 default:
1193 cache = 0;
1194 break;
1197 /* if we have a good cache line size, we by now have a good
1198 * csr0, so save it and exit
1200 if (cache)
1201 goto out;
1203 /* we don't have a good csr0 or cache line size, disable MWI */
1204 if (csr0 & MWI) {
1205 pci_clear_mwi(pdev);
1206 csr0 &= ~MWI;
1209 /* sane defaults for burst length and cache alignment
1210 * originally from de4x5 driver
1212 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1214 out:
1215 tp->csr0 = csr0;
1216 if (tulip_debug > 2)
1217 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1218 pci_name(pdev), cache, csr0);
1220 #endif
1223 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1224 * is the DM910X and the on chip ULi devices
1227 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1229 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1230 return 1;
1231 return 0;
1234 static int __devinit tulip_init_one (struct pci_dev *pdev,
1235 const struct pci_device_id *ent)
1237 struct tulip_private *tp;
1238 /* See note below on the multiport cards. */
1239 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1240 static struct pci_device_id early_486_chipsets[] = {
1241 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1242 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1243 { },
1245 static int last_irq;
1246 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1247 u8 chip_rev;
1248 int i, irq;
1249 unsigned short sum;
1250 unsigned char *ee_data;
1251 struct net_device *dev;
1252 void __iomem *ioaddr;
1253 static int board_idx = -1;
1254 int chip_idx = ent->driver_data;
1255 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1256 unsigned int eeprom_missing = 0;
1257 unsigned int force_csr0 = 0;
1259 #ifndef MODULE
1260 static int did_version; /* Already printed version info. */
1261 if (tulip_debug > 0 && did_version++ == 0)
1262 printk (KERN_INFO "%s", version);
1263 #endif
1265 board_idx++;
1268 * Lan media wire a tulip chip to a wan interface. Needs a very
1269 * different driver (lmc driver)
1272 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1273 printk (KERN_ERR PFX "skipping LMC card.\n");
1274 return -ENODEV;
1278 * Early DM9100's need software CRC and the DMFE driver
1281 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1283 u32 dev_rev;
1284 /* Read Chip revision */
1285 pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev);
1286 if(dev_rev < 0x02000030)
1288 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1289 return -ENODEV;
1294 * Looks for early PCI chipsets where people report hangs
1295 * without the workarounds being on.
1298 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1299 aligned. Aries might need this too. The Saturn errata are not
1300 pretty reading but thankfully it's an old 486 chipset.
1302 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1303 Saturn.
1306 if (pci_dev_present(early_486_chipsets)) {
1307 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1308 force_csr0 = 1;
1311 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1312 if (chip_idx == AX88140) {
1313 if ((csr0 & 0x3f00) == 0)
1314 csr0 |= 0x2000;
1317 /* PNIC doesn't have MWI/MRL/MRM... */
1318 if (chip_idx == LC82C168)
1319 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1321 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1322 if (tulip_uli_dm_quirk(pdev)) {
1323 csr0 &= ~0x01f100ff;
1324 #if defined(__sparc__)
1325 csr0 = (csr0 & ~0xff00) | 0xe000;
1326 #endif
1329 * And back to business
1332 i = pci_enable_device(pdev);
1333 if (i) {
1334 printk (KERN_ERR PFX
1335 "Cannot enable tulip board #%d, aborting\n",
1336 board_idx);
1337 return i;
1340 irq = pdev->irq;
1342 /* alloc_etherdev ensures aligned and zeroed private structures */
1343 dev = alloc_etherdev (sizeof (*tp));
1344 if (!dev) {
1345 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1346 return -ENOMEM;
1349 SET_MODULE_OWNER(dev);
1350 SET_NETDEV_DEV(dev, &pdev->dev);
1351 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1352 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1353 "aborting\n", pci_name(pdev),
1354 (unsigned long long)pci_resource_len (pdev, 0),
1355 (unsigned long long)pci_resource_start (pdev, 0));
1356 goto err_out_free_netdev;
1359 /* grab all resources from both PIO and MMIO regions, as we
1360 * don't want anyone else messing around with our hardware */
1361 if (pci_request_regions (pdev, "tulip"))
1362 goto err_out_free_netdev;
1364 #ifndef USE_IO_OPS
1365 ioaddr = pci_iomap(pdev, 1, tulip_tbl[chip_idx].io_size);
1366 #else
1367 ioaddr = pci_iomap(pdev, 0, tulip_tbl[chip_idx].io_size);
1368 #endif
1369 if (!ioaddr)
1370 goto err_out_free_res;
1372 pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev);
1375 * initialize private data structure 'tp'
1376 * it is zeroed and aligned in alloc_etherdev
1378 tp = netdev_priv(dev);
1380 tp->rx_ring = pci_alloc_consistent(pdev,
1381 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1382 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1383 &tp->rx_ring_dma);
1384 if (!tp->rx_ring)
1385 goto err_out_mtable;
1386 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1387 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1389 tp->chip_id = chip_idx;
1390 tp->flags = tulip_tbl[chip_idx].flags;
1391 tp->pdev = pdev;
1392 tp->base_addr = ioaddr;
1393 tp->revision = chip_rev;
1394 tp->csr0 = csr0;
1395 spin_lock_init(&tp->lock);
1396 spin_lock_init(&tp->mii_lock);
1397 init_timer(&tp->timer);
1398 tp->timer.data = (unsigned long)dev;
1399 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1401 dev->base_addr = (unsigned long)ioaddr;
1403 #ifdef CONFIG_TULIP_MWI
1404 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1405 tulip_mwi_config (pdev, dev);
1406 #else
1407 /* MWI is broken for DC21143 rev 65... */
1408 if (chip_idx == DC21143 && chip_rev == 65)
1409 tp->csr0 &= ~MWI;
1410 #endif
1412 /* Stop the chip's Tx and Rx processes. */
1413 tulip_stop_rxtx(tp);
1415 pci_set_master(pdev);
1417 #ifdef CONFIG_GSC
1418 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1419 switch (pdev->subsystem_device) {
1420 default:
1421 break;
1422 case 0x1061:
1423 case 0x1062:
1424 case 0x1063:
1425 case 0x1098:
1426 case 0x1099:
1427 case 0x10EE:
1428 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1429 chip_name = "GSC DS21140 Tulip";
1432 #endif
1434 /* Clear the missed-packet counter. */
1435 ioread32(ioaddr + CSR8);
1437 /* The station address ROM is read byte serially. The register must
1438 be polled, waiting for the value to be read bit serially from the
1439 EEPROM.
1441 ee_data = tp->eeprom;
1442 sum = 0;
1443 if (chip_idx == LC82C168) {
1444 for (i = 0; i < 3; i++) {
1445 int value, boguscnt = 100000;
1446 iowrite32(0x600 | i, ioaddr + 0x98);
1448 value = ioread32(ioaddr + CSR9);
1449 while (value < 0 && --boguscnt > 0);
1450 put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
1451 sum += value & 0xffff;
1453 } else if (chip_idx == COMET) {
1454 /* No need to read the EEPROM. */
1455 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
1456 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4));
1457 for (i = 0; i < 6; i ++)
1458 sum += dev->dev_addr[i];
1459 } else {
1460 /* A serial EEPROM interface, we read now and sort it out later. */
1461 int sa_offset = 0;
1462 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1464 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1465 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1466 ee_data[i] = data & 0xff;
1467 ee_data[i + 1] = data >> 8;
1470 /* DEC now has a specification (see Notes) but early board makers
1471 just put the address in the first EEPROM locations. */
1472 /* This does memcmp(ee_data, ee_data+16, 8) */
1473 for (i = 0; i < 8; i ++)
1474 if (ee_data[i] != ee_data[16+i])
1475 sa_offset = 20;
1476 if (chip_idx == CONEXANT) {
1477 /* Check that the tuple type and length is correct. */
1478 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1479 sa_offset = 0x19A;
1480 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1481 ee_data[2] == 0) {
1482 sa_offset = 2; /* Grrr, damn Matrox boards. */
1483 multiport_cnt = 4;
1485 #ifdef CONFIG_DDB5477
1486 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
1487 /* DDB5477 MAC address in first EEPROM locations. */
1488 sa_offset = 0;
1489 /* No media table either */
1490 tp->flags &= ~HAS_MEDIA_TABLE;
1492 #endif
1493 #ifdef CONFIG_MIPS_COBALT
1494 if ((pdev->bus->number == 0) &&
1495 ((PCI_SLOT(pdev->devfn) == 7) ||
1496 (PCI_SLOT(pdev->devfn) == 12))) {
1497 /* Cobalt MAC address in first EEPROM locations. */
1498 sa_offset = 0;
1499 /* Ensure our media table fixup get's applied */
1500 memcpy(ee_data + 16, ee_data, 8);
1502 #endif
1503 #ifdef CONFIG_GSC
1504 /* Check to see if we have a broken srom */
1505 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1506 /* pci_vendor_id and subsystem_id are swapped */
1507 ee_data[0] = ee_data[2];
1508 ee_data[1] = ee_data[3];
1509 ee_data[2] = 0x61;
1510 ee_data[3] = 0x10;
1512 /* HSC-PCI boards need to be byte-swaped and shifted
1513 * up 1 word. This shift needs to happen at the end
1514 * of the MAC first because of the 2 byte overlap.
1516 for (i = 4; i >= 0; i -= 2) {
1517 ee_data[17 + i + 3] = ee_data[17 + i];
1518 ee_data[16 + i + 5] = ee_data[16 + i];
1521 #endif
1523 for (i = 0; i < 6; i ++) {
1524 dev->dev_addr[i] = ee_data[i + sa_offset];
1525 sum += ee_data[i + sa_offset];
1528 /* Lite-On boards have the address byte-swapped. */
1529 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1530 && dev->dev_addr[1] == 0x00)
1531 for (i = 0; i < 6; i+=2) {
1532 char tmp = dev->dev_addr[i];
1533 dev->dev_addr[i] = dev->dev_addr[i+1];
1534 dev->dev_addr[i+1] = tmp;
1536 /* On the Zynx 315 Etherarray and other multiport boards only the
1537 first Tulip has an EEPROM.
1538 On Sparc systems the mac address is held in the OBP property
1539 "local-mac-address".
1540 The addresses of the subsequent ports are derived from the first.
1541 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1542 that here as well. */
1543 if (sum == 0 || sum == 6*0xff) {
1544 #if defined(__sparc__)
1545 struct pcidev_cookie *pcp = pdev->sysdata;
1546 #endif
1547 eeprom_missing = 1;
1548 for (i = 0; i < 5; i++)
1549 dev->dev_addr[i] = last_phys_addr[i];
1550 dev->dev_addr[i] = last_phys_addr[i] + 1;
1551 #if defined(__sparc__)
1552 if (pcp) {
1553 unsigned char *addr;
1554 int len;
1556 addr = of_get_property(pcp->prom_node,
1557 "local-mac-address", &len);
1558 if (addr && len == 6)
1559 memcpy(dev->dev_addr, addr, 6);
1561 #endif
1562 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1563 if (last_irq)
1564 irq = last_irq;
1565 #endif
1568 for (i = 0; i < 6; i++)
1569 last_phys_addr[i] = dev->dev_addr[i];
1570 last_irq = irq;
1571 dev->irq = irq;
1573 /* The lower four bits are the media type. */
1574 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1575 if (options[board_idx] & MEDIA_MASK)
1576 tp->default_port = options[board_idx] & MEDIA_MASK;
1577 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1578 tp->full_duplex = 1;
1579 if (mtu[board_idx] > 0)
1580 dev->mtu = mtu[board_idx];
1582 if (dev->mem_start & MEDIA_MASK)
1583 tp->default_port = dev->mem_start & MEDIA_MASK;
1584 if (tp->default_port) {
1585 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1586 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1587 tp->medialock = 1;
1588 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1589 tp->full_duplex = 1;
1591 if (tp->full_duplex)
1592 tp->full_duplex_lock = 1;
1594 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1595 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1596 tp->mii_advertise = media2advert[tp->default_port - 9];
1597 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1600 if (tp->flags & HAS_MEDIA_TABLE) {
1601 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1602 tulip_parse_eeprom(dev);
1603 strcpy(dev->name, "eth%d"); /* un-hack */
1606 if ((tp->flags & ALWAYS_CHECK_MII) ||
1607 (tp->mtable && tp->mtable->has_mii) ||
1608 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1609 if (tp->mtable && tp->mtable->has_mii) {
1610 for (i = 0; i < tp->mtable->leafcount; i++)
1611 if (tp->mtable->mleaf[i].media == 11) {
1612 tp->cur_index = i;
1613 tp->saved_if_port = dev->if_port;
1614 tulip_select_media(dev, 2);
1615 dev->if_port = tp->saved_if_port;
1616 break;
1620 /* Find the connected MII xcvrs.
1621 Doing this in open() would allow detecting external xcvrs
1622 later, but takes much time. */
1623 tulip_find_mii (dev, board_idx);
1626 /* The Tulip-specific entries in the device structure. */
1627 dev->open = tulip_open;
1628 dev->hard_start_xmit = tulip_start_xmit;
1629 dev->tx_timeout = tulip_tx_timeout;
1630 dev->watchdog_timeo = TX_TIMEOUT;
1631 #ifdef CONFIG_TULIP_NAPI
1632 dev->poll = tulip_poll;
1633 dev->weight = 16;
1634 #endif
1635 dev->stop = tulip_close;
1636 dev->get_stats = tulip_get_stats;
1637 dev->do_ioctl = private_ioctl;
1638 dev->set_multicast_list = set_rx_mode;
1639 #ifdef CONFIG_NET_POLL_CONTROLLER
1640 dev->poll_controller = &poll_tulip;
1641 #endif
1642 SET_ETHTOOL_OPS(dev, &ops);
1644 if (register_netdev(dev))
1645 goto err_out_free_ring;
1647 printk(KERN_INFO "%s: %s rev %d at "
1648 #ifdef CONFIG_TULIP_MMIO
1649 "MMIO"
1650 #else
1651 "Port"
1652 #endif
1653 " %#llx,", dev->name, chip_name, chip_rev,
1654 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1655 pci_set_drvdata(pdev, dev);
1657 if (eeprom_missing)
1658 printk(" EEPROM not present,");
1659 for (i = 0; i < 6; i++)
1660 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
1661 printk(", IRQ %d.\n", irq);
1663 if (tp->chip_id == PNIC2)
1664 tp->link_change = pnic2_lnk_change;
1665 else if (tp->flags & HAS_NWAY)
1666 tp->link_change = t21142_lnk_change;
1667 else if (tp->flags & HAS_PNICNWAY)
1668 tp->link_change = pnic_lnk_change;
1670 /* Reset the xcvr interface and turn on heartbeat. */
1671 switch (chip_idx) {
1672 case DC21140:
1673 case DM910X:
1674 default:
1675 if (tp->mtable)
1676 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1677 break;
1678 case DC21142:
1679 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1680 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1681 iowrite32(0x0000, ioaddr + CSR13);
1682 iowrite32(0x0000, ioaddr + CSR14);
1683 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1684 } else
1685 t21142_start_nway(dev);
1686 break;
1687 case PNIC2:
1688 /* just do a reset for sanity sake */
1689 iowrite32(0x0000, ioaddr + CSR13);
1690 iowrite32(0x0000, ioaddr + CSR14);
1691 break;
1692 case LC82C168:
1693 if ( ! tp->mii_cnt) {
1694 tp->nway = 1;
1695 tp->nwayset = 0;
1696 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1697 iowrite32(0x30, ioaddr + CSR12);
1698 iowrite32(0x0001F078, ioaddr + CSR6);
1699 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1701 break;
1702 case MX98713:
1703 case COMPEX9881:
1704 iowrite32(0x00000000, ioaddr + CSR6);
1705 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1706 iowrite32(0x00000001, ioaddr + CSR13);
1707 break;
1708 case MX98715:
1709 case MX98725:
1710 iowrite32(0x01a80000, ioaddr + CSR6);
1711 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1712 iowrite32(0x00001000, ioaddr + CSR12);
1713 break;
1714 case COMET:
1715 /* No initialization necessary. */
1716 break;
1719 /* put the chip in snooze mode until opened */
1720 tulip_set_power_state (tp, 0, 1);
1722 return 0;
1724 err_out_free_ring:
1725 pci_free_consistent (pdev,
1726 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1727 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1728 tp->rx_ring, tp->rx_ring_dma);
1730 err_out_mtable:
1731 kfree (tp->mtable);
1732 pci_iounmap(pdev, ioaddr);
1734 err_out_free_res:
1735 pci_release_regions (pdev);
1737 err_out_free_netdev:
1738 free_netdev (dev);
1739 return -ENODEV;
1743 #ifdef CONFIG_PM
1745 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1747 struct net_device *dev = pci_get_drvdata(pdev);
1749 if (!dev)
1750 return -EINVAL;
1752 if (netif_running(dev))
1753 tulip_down(dev);
1755 netif_device_detach(dev);
1756 free_irq(dev->irq, dev);
1758 pci_save_state(pdev);
1759 pci_disable_device(pdev);
1760 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1762 return 0;
1766 static int tulip_resume(struct pci_dev *pdev)
1768 struct net_device *dev = pci_get_drvdata(pdev);
1769 int retval;
1771 if (!dev)
1772 return -EINVAL;
1774 pci_set_power_state(pdev, PCI_D0);
1775 pci_restore_state(pdev);
1777 pci_enable_device(pdev);
1779 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1780 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1781 return retval;
1784 netif_device_attach(dev);
1786 if (netif_running(dev))
1787 tulip_up(dev);
1789 return 0;
1792 #endif /* CONFIG_PM */
1795 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1797 struct net_device *dev = pci_get_drvdata (pdev);
1798 struct tulip_private *tp;
1800 if (!dev)
1801 return;
1803 tp = netdev_priv(dev);
1804 unregister_netdev(dev);
1805 pci_free_consistent (pdev,
1806 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1807 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1808 tp->rx_ring, tp->rx_ring_dma);
1809 kfree (tp->mtable);
1810 pci_iounmap(pdev, tp->base_addr);
1811 free_netdev (dev);
1812 pci_release_regions (pdev);
1813 pci_set_drvdata (pdev, NULL);
1815 /* pci_power_off (pdev, -1); */
1818 #ifdef CONFIG_NET_POLL_CONTROLLER
1820 * Polling 'interrupt' - used by things like netconsole to send skbs
1821 * without having to re-enable interrupts. It's not called while
1822 * the interrupt routine is executing.
1825 static void poll_tulip (struct net_device *dev)
1827 /* disable_irq here is not very nice, but with the lockless
1828 interrupt handler we have no other choice. */
1829 disable_irq(dev->irq);
1830 tulip_interrupt (dev->irq, dev, NULL);
1831 enable_irq(dev->irq);
1833 #endif
1835 static struct pci_driver tulip_driver = {
1836 .name = DRV_NAME,
1837 .id_table = tulip_pci_tbl,
1838 .probe = tulip_init_one,
1839 .remove = __devexit_p(tulip_remove_one),
1840 #ifdef CONFIG_PM
1841 .suspend = tulip_suspend,
1842 .resume = tulip_resume,
1843 #endif /* CONFIG_PM */
1847 static int __init tulip_init (void)
1849 #ifdef MODULE
1850 printk (KERN_INFO "%s", version);
1851 #endif
1853 /* copy module parms into globals */
1854 tulip_rx_copybreak = rx_copybreak;
1855 tulip_max_interrupt_work = max_interrupt_work;
1857 /* probe for and init boards */
1858 return pci_register_driver(&tulip_driver);
1862 static void __exit tulip_cleanup (void)
1864 pci_unregister_driver (&tulip_driver);
1868 module_init(tulip_init);
1869 module_exit(tulip_cleanup);