[POWERPC] spufs: Load isolation kernel from spu_run
[linux-2.6.22.y-op.git] / arch / powerpc / platforms / cell / spufs / file.c
blob50e0afc46ad25c691f11691a480401f352227404
1 /*
2 * SPU file system -- file contents
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #undef DEBUG
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
32 #include <asm/io.h>
33 #include <asm/semaphore.h>
34 #include <asm/spu.h>
35 #include <asm/spu_info.h>
36 #include <asm/uaccess.h>
38 #include "spufs.h"
40 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43 static int
44 spufs_mem_open(struct inode *inode, struct file *file)
46 struct spufs_inode_info *i = SPUFS_I(inode);
47 struct spu_context *ctx = i->i_ctx;
48 file->private_data = ctx;
49 file->f_mapping = inode->i_mapping;
50 ctx->local_store = inode->i_mapping;
51 return 0;
54 static ssize_t
55 spufs_mem_read(struct file *file, char __user *buffer,
56 size_t size, loff_t *pos)
58 struct spu_context *ctx = file->private_data;
59 char *local_store;
60 int ret;
62 spu_acquire(ctx);
64 local_store = ctx->ops->get_ls(ctx);
65 ret = simple_read_from_buffer(buffer, size, pos, local_store, LS_SIZE);
67 spu_release(ctx);
68 return ret;
71 static ssize_t
72 spufs_mem_write(struct file *file, const char __user *buffer,
73 size_t size, loff_t *pos)
75 struct spu_context *ctx = file->private_data;
76 char *local_store;
77 int ret;
79 size = min_t(ssize_t, LS_SIZE - *pos, size);
80 if (size <= 0)
81 return -EFBIG;
82 *pos += size;
84 spu_acquire(ctx);
86 local_store = ctx->ops->get_ls(ctx);
87 ret = copy_from_user(local_store + *pos - size,
88 buffer, size) ? -EFAULT : size;
90 spu_release(ctx);
91 return ret;
94 static struct page *
95 spufs_mem_mmap_nopage(struct vm_area_struct *vma,
96 unsigned long address, int *type)
98 struct page *page = NOPAGE_SIGBUS;
100 struct spu_context *ctx = vma->vm_file->private_data;
101 unsigned long offset = address - vma->vm_start;
102 offset += vma->vm_pgoff << PAGE_SHIFT;
104 spu_acquire(ctx);
106 if (ctx->state == SPU_STATE_SAVED) {
107 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
108 & ~_PAGE_NO_CACHE);
109 page = vmalloc_to_page(ctx->csa.lscsa->ls + offset);
110 } else {
111 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
112 | _PAGE_NO_CACHE);
113 page = pfn_to_page((ctx->spu->local_store_phys + offset)
114 >> PAGE_SHIFT);
116 spu_release(ctx);
118 if (type)
119 *type = VM_FAULT_MINOR;
121 page_cache_get(page);
122 return page;
125 static struct vm_operations_struct spufs_mem_mmap_vmops = {
126 .nopage = spufs_mem_mmap_nopage,
129 static int
130 spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
132 if (!(vma->vm_flags & VM_SHARED))
133 return -EINVAL;
135 vma->vm_flags |= VM_IO;
136 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
137 | _PAGE_NO_CACHE);
139 vma->vm_ops = &spufs_mem_mmap_vmops;
140 return 0;
143 static struct file_operations spufs_mem_fops = {
144 .open = spufs_mem_open,
145 .read = spufs_mem_read,
146 .write = spufs_mem_write,
147 .llseek = generic_file_llseek,
148 .mmap = spufs_mem_mmap,
151 static struct page *spufs_ps_nopage(struct vm_area_struct *vma,
152 unsigned long address,
153 int *type, unsigned long ps_offs,
154 unsigned long ps_size)
156 struct page *page = NOPAGE_SIGBUS;
157 int fault_type = VM_FAULT_SIGBUS;
158 struct spu_context *ctx = vma->vm_file->private_data;
159 unsigned long offset = address - vma->vm_start;
160 unsigned long area;
161 int ret;
163 offset += vma->vm_pgoff << PAGE_SHIFT;
164 if (offset >= ps_size)
165 goto out;
167 ret = spu_acquire_runnable(ctx);
168 if (ret)
169 goto out;
171 area = ctx->spu->problem_phys + ps_offs;
172 page = pfn_to_page((area + offset) >> PAGE_SHIFT);
173 fault_type = VM_FAULT_MINOR;
174 page_cache_get(page);
176 spu_release(ctx);
178 out:
179 if (type)
180 *type = fault_type;
182 return page;
185 #if SPUFS_MMAP_4K
186 static struct page *spufs_cntl_mmap_nopage(struct vm_area_struct *vma,
187 unsigned long address, int *type)
189 return spufs_ps_nopage(vma, address, type, 0x4000, 0x1000);
192 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
193 .nopage = spufs_cntl_mmap_nopage,
197 * mmap support for problem state control area [0x4000 - 0x4fff].
199 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
201 if (!(vma->vm_flags & VM_SHARED))
202 return -EINVAL;
204 vma->vm_flags |= VM_IO;
205 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
206 | _PAGE_NO_CACHE | _PAGE_GUARDED);
208 vma->vm_ops = &spufs_cntl_mmap_vmops;
209 return 0;
211 #else /* SPUFS_MMAP_4K */
212 #define spufs_cntl_mmap NULL
213 #endif /* !SPUFS_MMAP_4K */
215 static u64 spufs_cntl_get(void *data)
217 struct spu_context *ctx = data;
218 u64 val;
220 spu_acquire(ctx);
221 val = ctx->ops->status_read(ctx);
222 spu_release(ctx);
224 return val;
227 static void spufs_cntl_set(void *data, u64 val)
229 struct spu_context *ctx = data;
231 spu_acquire(ctx);
232 ctx->ops->runcntl_write(ctx, val);
233 spu_release(ctx);
236 static int spufs_cntl_open(struct inode *inode, struct file *file)
238 struct spufs_inode_info *i = SPUFS_I(inode);
239 struct spu_context *ctx = i->i_ctx;
241 file->private_data = ctx;
242 file->f_mapping = inode->i_mapping;
243 ctx->cntl = inode->i_mapping;
244 return simple_attr_open(inode, file, spufs_cntl_get,
245 spufs_cntl_set, "0x%08lx");
248 static struct file_operations spufs_cntl_fops = {
249 .open = spufs_cntl_open,
250 .release = simple_attr_close,
251 .read = simple_attr_read,
252 .write = simple_attr_write,
253 .mmap = spufs_cntl_mmap,
256 static int
257 spufs_regs_open(struct inode *inode, struct file *file)
259 struct spufs_inode_info *i = SPUFS_I(inode);
260 file->private_data = i->i_ctx;
261 return 0;
264 static ssize_t
265 spufs_regs_read(struct file *file, char __user *buffer,
266 size_t size, loff_t *pos)
268 struct spu_context *ctx = file->private_data;
269 struct spu_lscsa *lscsa = ctx->csa.lscsa;
270 int ret;
272 spu_acquire_saved(ctx);
274 ret = simple_read_from_buffer(buffer, size, pos,
275 lscsa->gprs, sizeof lscsa->gprs);
277 spu_release(ctx);
278 return ret;
281 static ssize_t
282 spufs_regs_write(struct file *file, const char __user *buffer,
283 size_t size, loff_t *pos)
285 struct spu_context *ctx = file->private_data;
286 struct spu_lscsa *lscsa = ctx->csa.lscsa;
287 int ret;
289 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
290 if (size <= 0)
291 return -EFBIG;
292 *pos += size;
294 spu_acquire_saved(ctx);
296 ret = copy_from_user(lscsa->gprs + *pos - size,
297 buffer, size) ? -EFAULT : size;
299 spu_release(ctx);
300 return ret;
303 static struct file_operations spufs_regs_fops = {
304 .open = spufs_regs_open,
305 .read = spufs_regs_read,
306 .write = spufs_regs_write,
307 .llseek = generic_file_llseek,
310 static ssize_t
311 spufs_fpcr_read(struct file *file, char __user * buffer,
312 size_t size, loff_t * pos)
314 struct spu_context *ctx = file->private_data;
315 struct spu_lscsa *lscsa = ctx->csa.lscsa;
316 int ret;
318 spu_acquire_saved(ctx);
320 ret = simple_read_from_buffer(buffer, size, pos,
321 &lscsa->fpcr, sizeof(lscsa->fpcr));
323 spu_release(ctx);
324 return ret;
327 static ssize_t
328 spufs_fpcr_write(struct file *file, const char __user * buffer,
329 size_t size, loff_t * pos)
331 struct spu_context *ctx = file->private_data;
332 struct spu_lscsa *lscsa = ctx->csa.lscsa;
333 int ret;
335 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
336 if (size <= 0)
337 return -EFBIG;
338 *pos += size;
340 spu_acquire_saved(ctx);
342 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
343 buffer, size) ? -EFAULT : size;
345 spu_release(ctx);
346 return ret;
349 static struct file_operations spufs_fpcr_fops = {
350 .open = spufs_regs_open,
351 .read = spufs_fpcr_read,
352 .write = spufs_fpcr_write,
353 .llseek = generic_file_llseek,
356 /* generic open function for all pipe-like files */
357 static int spufs_pipe_open(struct inode *inode, struct file *file)
359 struct spufs_inode_info *i = SPUFS_I(inode);
360 file->private_data = i->i_ctx;
362 return nonseekable_open(inode, file);
366 * Read as many bytes from the mailbox as possible, until
367 * one of the conditions becomes true:
369 * - no more data available in the mailbox
370 * - end of the user provided buffer
371 * - end of the mapped area
373 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
374 size_t len, loff_t *pos)
376 struct spu_context *ctx = file->private_data;
377 u32 mbox_data, __user *udata;
378 ssize_t count;
380 if (len < 4)
381 return -EINVAL;
383 if (!access_ok(VERIFY_WRITE, buf, len))
384 return -EFAULT;
386 udata = (void __user *)buf;
388 spu_acquire(ctx);
389 for (count = 0; (count + 4) <= len; count += 4, udata++) {
390 int ret;
391 ret = ctx->ops->mbox_read(ctx, &mbox_data);
392 if (ret == 0)
393 break;
396 * at the end of the mapped area, we can fault
397 * but still need to return the data we have
398 * read successfully so far.
400 ret = __put_user(mbox_data, udata);
401 if (ret) {
402 if (!count)
403 count = -EFAULT;
404 break;
407 spu_release(ctx);
409 if (!count)
410 count = -EAGAIN;
412 return count;
415 static struct file_operations spufs_mbox_fops = {
416 .open = spufs_pipe_open,
417 .read = spufs_mbox_read,
420 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
421 size_t len, loff_t *pos)
423 struct spu_context *ctx = file->private_data;
424 u32 mbox_stat;
426 if (len < 4)
427 return -EINVAL;
429 spu_acquire(ctx);
431 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
433 spu_release(ctx);
435 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
436 return -EFAULT;
438 return 4;
441 static struct file_operations spufs_mbox_stat_fops = {
442 .open = spufs_pipe_open,
443 .read = spufs_mbox_stat_read,
446 /* low-level ibox access function */
447 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
449 return ctx->ops->ibox_read(ctx, data);
452 static int spufs_ibox_fasync(int fd, struct file *file, int on)
454 struct spu_context *ctx = file->private_data;
456 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
459 /* interrupt-level ibox callback function. */
460 void spufs_ibox_callback(struct spu *spu)
462 struct spu_context *ctx = spu->ctx;
464 wake_up_all(&ctx->ibox_wq);
465 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
469 * Read as many bytes from the interrupt mailbox as possible, until
470 * one of the conditions becomes true:
472 * - no more data available in the mailbox
473 * - end of the user provided buffer
474 * - end of the mapped area
476 * If the file is opened without O_NONBLOCK, we wait here until
477 * any data is available, but return when we have been able to
478 * read something.
480 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
481 size_t len, loff_t *pos)
483 struct spu_context *ctx = file->private_data;
484 u32 ibox_data, __user *udata;
485 ssize_t count;
487 if (len < 4)
488 return -EINVAL;
490 if (!access_ok(VERIFY_WRITE, buf, len))
491 return -EFAULT;
493 udata = (void __user *)buf;
495 spu_acquire(ctx);
497 /* wait only for the first element */
498 count = 0;
499 if (file->f_flags & O_NONBLOCK) {
500 if (!spu_ibox_read(ctx, &ibox_data))
501 count = -EAGAIN;
502 } else {
503 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
505 if (count)
506 goto out;
508 /* if we can't write at all, return -EFAULT */
509 count = __put_user(ibox_data, udata);
510 if (count)
511 goto out;
513 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
514 int ret;
515 ret = ctx->ops->ibox_read(ctx, &ibox_data);
516 if (ret == 0)
517 break;
519 * at the end of the mapped area, we can fault
520 * but still need to return the data we have
521 * read successfully so far.
523 ret = __put_user(ibox_data, udata);
524 if (ret)
525 break;
528 out:
529 spu_release(ctx);
531 return count;
534 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
536 struct spu_context *ctx = file->private_data;
537 unsigned int mask;
539 poll_wait(file, &ctx->ibox_wq, wait);
541 spu_acquire(ctx);
542 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
543 spu_release(ctx);
545 return mask;
548 static struct file_operations spufs_ibox_fops = {
549 .open = spufs_pipe_open,
550 .read = spufs_ibox_read,
551 .poll = spufs_ibox_poll,
552 .fasync = spufs_ibox_fasync,
555 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
556 size_t len, loff_t *pos)
558 struct spu_context *ctx = file->private_data;
559 u32 ibox_stat;
561 if (len < 4)
562 return -EINVAL;
564 spu_acquire(ctx);
565 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
566 spu_release(ctx);
568 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
569 return -EFAULT;
571 return 4;
574 static struct file_operations spufs_ibox_stat_fops = {
575 .open = spufs_pipe_open,
576 .read = spufs_ibox_stat_read,
579 /* low-level mailbox write */
580 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
582 return ctx->ops->wbox_write(ctx, data);
585 static int spufs_wbox_fasync(int fd, struct file *file, int on)
587 struct spu_context *ctx = file->private_data;
588 int ret;
590 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
592 return ret;
595 /* interrupt-level wbox callback function. */
596 void spufs_wbox_callback(struct spu *spu)
598 struct spu_context *ctx = spu->ctx;
600 wake_up_all(&ctx->wbox_wq);
601 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
605 * Write as many bytes to the interrupt mailbox as possible, until
606 * one of the conditions becomes true:
608 * - the mailbox is full
609 * - end of the user provided buffer
610 * - end of the mapped area
612 * If the file is opened without O_NONBLOCK, we wait here until
613 * space is availabyl, but return when we have been able to
614 * write something.
616 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
617 size_t len, loff_t *pos)
619 struct spu_context *ctx = file->private_data;
620 u32 wbox_data, __user *udata;
621 ssize_t count;
623 if (len < 4)
624 return -EINVAL;
626 udata = (void __user *)buf;
627 if (!access_ok(VERIFY_READ, buf, len))
628 return -EFAULT;
630 if (__get_user(wbox_data, udata))
631 return -EFAULT;
633 spu_acquire(ctx);
636 * make sure we can at least write one element, by waiting
637 * in case of !O_NONBLOCK
639 count = 0;
640 if (file->f_flags & O_NONBLOCK) {
641 if (!spu_wbox_write(ctx, wbox_data))
642 count = -EAGAIN;
643 } else {
644 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
647 if (count)
648 goto out;
650 /* write aѕ much as possible */
651 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
652 int ret;
653 ret = __get_user(wbox_data, udata);
654 if (ret)
655 break;
657 ret = spu_wbox_write(ctx, wbox_data);
658 if (ret == 0)
659 break;
662 out:
663 spu_release(ctx);
664 return count;
667 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
669 struct spu_context *ctx = file->private_data;
670 unsigned int mask;
672 poll_wait(file, &ctx->wbox_wq, wait);
674 spu_acquire(ctx);
675 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
676 spu_release(ctx);
678 return mask;
681 static struct file_operations spufs_wbox_fops = {
682 .open = spufs_pipe_open,
683 .write = spufs_wbox_write,
684 .poll = spufs_wbox_poll,
685 .fasync = spufs_wbox_fasync,
688 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
689 size_t len, loff_t *pos)
691 struct spu_context *ctx = file->private_data;
692 u32 wbox_stat;
694 if (len < 4)
695 return -EINVAL;
697 spu_acquire(ctx);
698 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
699 spu_release(ctx);
701 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
702 return -EFAULT;
704 return 4;
707 static struct file_operations spufs_wbox_stat_fops = {
708 .open = spufs_pipe_open,
709 .read = spufs_wbox_stat_read,
712 static int spufs_signal1_open(struct inode *inode, struct file *file)
714 struct spufs_inode_info *i = SPUFS_I(inode);
715 struct spu_context *ctx = i->i_ctx;
716 file->private_data = ctx;
717 file->f_mapping = inode->i_mapping;
718 ctx->signal1 = inode->i_mapping;
719 return nonseekable_open(inode, file);
722 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
723 size_t len, loff_t *pos)
725 struct spu_context *ctx = file->private_data;
726 int ret = 0;
727 u32 data;
729 if (len < 4)
730 return -EINVAL;
732 spu_acquire_saved(ctx);
733 if (ctx->csa.spu_chnlcnt_RW[3]) {
734 data = ctx->csa.spu_chnldata_RW[3];
735 ret = 4;
737 spu_release(ctx);
739 if (!ret)
740 goto out;
742 if (copy_to_user(buf, &data, 4))
743 return -EFAULT;
745 out:
746 return ret;
749 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
750 size_t len, loff_t *pos)
752 struct spu_context *ctx;
753 u32 data;
755 ctx = file->private_data;
757 if (len < 4)
758 return -EINVAL;
760 if (copy_from_user(&data, buf, 4))
761 return -EFAULT;
763 spu_acquire(ctx);
764 ctx->ops->signal1_write(ctx, data);
765 spu_release(ctx);
767 return 4;
770 static struct page *spufs_signal1_mmap_nopage(struct vm_area_struct *vma,
771 unsigned long address, int *type)
773 #if PAGE_SIZE == 0x1000
774 return spufs_ps_nopage(vma, address, type, 0x14000, 0x1000);
775 #elif PAGE_SIZE == 0x10000
776 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
777 * signal 1 and 2 area
779 return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
780 #else
781 #error unsupported page size
782 #endif
785 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
786 .nopage = spufs_signal1_mmap_nopage,
789 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
791 if (!(vma->vm_flags & VM_SHARED))
792 return -EINVAL;
794 vma->vm_flags |= VM_IO;
795 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
796 | _PAGE_NO_CACHE | _PAGE_GUARDED);
798 vma->vm_ops = &spufs_signal1_mmap_vmops;
799 return 0;
802 static struct file_operations spufs_signal1_fops = {
803 .open = spufs_signal1_open,
804 .read = spufs_signal1_read,
805 .write = spufs_signal1_write,
806 .mmap = spufs_signal1_mmap,
809 static int spufs_signal2_open(struct inode *inode, struct file *file)
811 struct spufs_inode_info *i = SPUFS_I(inode);
812 struct spu_context *ctx = i->i_ctx;
813 file->private_data = ctx;
814 file->f_mapping = inode->i_mapping;
815 ctx->signal2 = inode->i_mapping;
816 return nonseekable_open(inode, file);
819 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
820 size_t len, loff_t *pos)
822 struct spu_context *ctx = file->private_data;
823 int ret = 0;
824 u32 data;
826 if (len < 4)
827 return -EINVAL;
829 spu_acquire_saved(ctx);
830 if (ctx->csa.spu_chnlcnt_RW[4]) {
831 data = ctx->csa.spu_chnldata_RW[4];
832 ret = 4;
834 spu_release(ctx);
836 if (!ret)
837 goto out;
839 if (copy_to_user(buf, &data, 4))
840 return -EFAULT;
842 out:
843 return 4;
846 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
847 size_t len, loff_t *pos)
849 struct spu_context *ctx;
850 u32 data;
852 ctx = file->private_data;
854 if (len < 4)
855 return -EINVAL;
857 if (copy_from_user(&data, buf, 4))
858 return -EFAULT;
860 spu_acquire(ctx);
861 ctx->ops->signal2_write(ctx, data);
862 spu_release(ctx);
864 return 4;
867 #if SPUFS_MMAP_4K
868 static struct page *spufs_signal2_mmap_nopage(struct vm_area_struct *vma,
869 unsigned long address, int *type)
871 #if PAGE_SIZE == 0x1000
872 return spufs_ps_nopage(vma, address, type, 0x1c000, 0x1000);
873 #elif PAGE_SIZE == 0x10000
874 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
875 * signal 1 and 2 area
877 return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
878 #else
879 #error unsupported page size
880 #endif
883 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
884 .nopage = spufs_signal2_mmap_nopage,
887 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
889 if (!(vma->vm_flags & VM_SHARED))
890 return -EINVAL;
892 vma->vm_flags |= VM_IO;
893 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
894 | _PAGE_NO_CACHE | _PAGE_GUARDED);
896 vma->vm_ops = &spufs_signal2_mmap_vmops;
897 return 0;
899 #else /* SPUFS_MMAP_4K */
900 #define spufs_signal2_mmap NULL
901 #endif /* !SPUFS_MMAP_4K */
903 static struct file_operations spufs_signal2_fops = {
904 .open = spufs_signal2_open,
905 .read = spufs_signal2_read,
906 .write = spufs_signal2_write,
907 .mmap = spufs_signal2_mmap,
910 static void spufs_signal1_type_set(void *data, u64 val)
912 struct spu_context *ctx = data;
914 spu_acquire(ctx);
915 ctx->ops->signal1_type_set(ctx, val);
916 spu_release(ctx);
919 static u64 spufs_signal1_type_get(void *data)
921 struct spu_context *ctx = data;
922 u64 ret;
924 spu_acquire(ctx);
925 ret = ctx->ops->signal1_type_get(ctx);
926 spu_release(ctx);
928 return ret;
930 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
931 spufs_signal1_type_set, "%llu");
933 static void spufs_signal2_type_set(void *data, u64 val)
935 struct spu_context *ctx = data;
937 spu_acquire(ctx);
938 ctx->ops->signal2_type_set(ctx, val);
939 spu_release(ctx);
942 static u64 spufs_signal2_type_get(void *data)
944 struct spu_context *ctx = data;
945 u64 ret;
947 spu_acquire(ctx);
948 ret = ctx->ops->signal2_type_get(ctx);
949 spu_release(ctx);
951 return ret;
953 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
954 spufs_signal2_type_set, "%llu");
956 #if SPUFS_MMAP_4K
957 static struct page *spufs_mss_mmap_nopage(struct vm_area_struct *vma,
958 unsigned long address, int *type)
960 return spufs_ps_nopage(vma, address, type, 0x0000, 0x1000);
963 static struct vm_operations_struct spufs_mss_mmap_vmops = {
964 .nopage = spufs_mss_mmap_nopage,
968 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
970 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
972 if (!(vma->vm_flags & VM_SHARED))
973 return -EINVAL;
975 vma->vm_flags |= VM_IO;
976 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
977 | _PAGE_NO_CACHE | _PAGE_GUARDED);
979 vma->vm_ops = &spufs_mss_mmap_vmops;
980 return 0;
982 #else /* SPUFS_MMAP_4K */
983 #define spufs_mss_mmap NULL
984 #endif /* !SPUFS_MMAP_4K */
986 static int spufs_mss_open(struct inode *inode, struct file *file)
988 struct spufs_inode_info *i = SPUFS_I(inode);
990 file->private_data = i->i_ctx;
991 return nonseekable_open(inode, file);
994 static struct file_operations spufs_mss_fops = {
995 .open = spufs_mss_open,
996 .mmap = spufs_mss_mmap,
999 static struct page *spufs_psmap_mmap_nopage(struct vm_area_struct *vma,
1000 unsigned long address, int *type)
1002 return spufs_ps_nopage(vma, address, type, 0x0000, 0x20000);
1005 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1006 .nopage = spufs_psmap_mmap_nopage,
1010 * mmap support for full problem state area [0x00000 - 0x1ffff].
1012 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1014 if (!(vma->vm_flags & VM_SHARED))
1015 return -EINVAL;
1017 vma->vm_flags |= VM_IO;
1018 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1019 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1021 vma->vm_ops = &spufs_psmap_mmap_vmops;
1022 return 0;
1025 static int spufs_psmap_open(struct inode *inode, struct file *file)
1027 struct spufs_inode_info *i = SPUFS_I(inode);
1029 file->private_data = i->i_ctx;
1030 return nonseekable_open(inode, file);
1033 static struct file_operations spufs_psmap_fops = {
1034 .open = spufs_psmap_open,
1035 .mmap = spufs_psmap_mmap,
1039 #if SPUFS_MMAP_4K
1040 static struct page *spufs_mfc_mmap_nopage(struct vm_area_struct *vma,
1041 unsigned long address, int *type)
1043 return spufs_ps_nopage(vma, address, type, 0x3000, 0x1000);
1046 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1047 .nopage = spufs_mfc_mmap_nopage,
1051 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1053 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1055 if (!(vma->vm_flags & VM_SHARED))
1056 return -EINVAL;
1058 vma->vm_flags |= VM_IO;
1059 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1060 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1062 vma->vm_ops = &spufs_mfc_mmap_vmops;
1063 return 0;
1065 #else /* SPUFS_MMAP_4K */
1066 #define spufs_mfc_mmap NULL
1067 #endif /* !SPUFS_MMAP_4K */
1069 static int spufs_mfc_open(struct inode *inode, struct file *file)
1071 struct spufs_inode_info *i = SPUFS_I(inode);
1072 struct spu_context *ctx = i->i_ctx;
1074 /* we don't want to deal with DMA into other processes */
1075 if (ctx->owner != current->mm)
1076 return -EINVAL;
1078 if (atomic_read(&inode->i_count) != 1)
1079 return -EBUSY;
1081 file->private_data = ctx;
1082 return nonseekable_open(inode, file);
1085 /* interrupt-level mfc callback function. */
1086 void spufs_mfc_callback(struct spu *spu)
1088 struct spu_context *ctx = spu->ctx;
1090 wake_up_all(&ctx->mfc_wq);
1092 pr_debug("%s %s\n", __FUNCTION__, spu->name);
1093 if (ctx->mfc_fasync) {
1094 u32 free_elements, tagstatus;
1095 unsigned int mask;
1097 /* no need for spu_acquire in interrupt context */
1098 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1099 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1101 mask = 0;
1102 if (free_elements & 0xffff)
1103 mask |= POLLOUT;
1104 if (tagstatus & ctx->tagwait)
1105 mask |= POLLIN;
1107 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1111 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1113 /* See if there is one tag group is complete */
1114 /* FIXME we need locking around tagwait */
1115 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1116 ctx->tagwait &= ~*status;
1117 if (*status)
1118 return 1;
1120 /* enable interrupt waiting for any tag group,
1121 may silently fail if interrupts are already enabled */
1122 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1123 return 0;
1126 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1127 size_t size, loff_t *pos)
1129 struct spu_context *ctx = file->private_data;
1130 int ret = -EINVAL;
1131 u32 status;
1133 if (size != 4)
1134 goto out;
1136 spu_acquire(ctx);
1137 if (file->f_flags & O_NONBLOCK) {
1138 status = ctx->ops->read_mfc_tagstatus(ctx);
1139 if (!(status & ctx->tagwait))
1140 ret = -EAGAIN;
1141 else
1142 ctx->tagwait &= ~status;
1143 } else {
1144 ret = spufs_wait(ctx->mfc_wq,
1145 spufs_read_mfc_tagstatus(ctx, &status));
1147 spu_release(ctx);
1149 if (ret)
1150 goto out;
1152 ret = 4;
1153 if (copy_to_user(buffer, &status, 4))
1154 ret = -EFAULT;
1156 out:
1157 return ret;
1160 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1162 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1163 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1165 switch (cmd->cmd) {
1166 case MFC_PUT_CMD:
1167 case MFC_PUTF_CMD:
1168 case MFC_PUTB_CMD:
1169 case MFC_GET_CMD:
1170 case MFC_GETF_CMD:
1171 case MFC_GETB_CMD:
1172 break;
1173 default:
1174 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1175 return -EIO;
1178 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1179 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1180 cmd->ea, cmd->lsa);
1181 return -EIO;
1184 switch (cmd->size & 0xf) {
1185 case 1:
1186 break;
1187 case 2:
1188 if (cmd->lsa & 1)
1189 goto error;
1190 break;
1191 case 4:
1192 if (cmd->lsa & 3)
1193 goto error;
1194 break;
1195 case 8:
1196 if (cmd->lsa & 7)
1197 goto error;
1198 break;
1199 case 0:
1200 if (cmd->lsa & 15)
1201 goto error;
1202 break;
1203 error:
1204 default:
1205 pr_debug("invalid DMA alignment %x for size %x\n",
1206 cmd->lsa & 0xf, cmd->size);
1207 return -EIO;
1210 if (cmd->size > 16 * 1024) {
1211 pr_debug("invalid DMA size %x\n", cmd->size);
1212 return -EIO;
1215 if (cmd->tag & 0xfff0) {
1216 /* we reserve the higher tag numbers for kernel use */
1217 pr_debug("invalid DMA tag\n");
1218 return -EIO;
1221 if (cmd->class) {
1222 /* not supported in this version */
1223 pr_debug("invalid DMA class\n");
1224 return -EIO;
1227 return 0;
1230 static int spu_send_mfc_command(struct spu_context *ctx,
1231 struct mfc_dma_command cmd,
1232 int *error)
1234 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1235 if (*error == -EAGAIN) {
1236 /* wait for any tag group to complete
1237 so we have space for the new command */
1238 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1239 /* try again, because the queue might be
1240 empty again */
1241 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1242 if (*error == -EAGAIN)
1243 return 0;
1245 return 1;
1248 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1249 size_t size, loff_t *pos)
1251 struct spu_context *ctx = file->private_data;
1252 struct mfc_dma_command cmd;
1253 int ret = -EINVAL;
1255 if (size != sizeof cmd)
1256 goto out;
1258 ret = -EFAULT;
1259 if (copy_from_user(&cmd, buffer, sizeof cmd))
1260 goto out;
1262 ret = spufs_check_valid_dma(&cmd);
1263 if (ret)
1264 goto out;
1266 spu_acquire_runnable(ctx);
1267 if (file->f_flags & O_NONBLOCK) {
1268 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1269 } else {
1270 int status;
1271 ret = spufs_wait(ctx->mfc_wq,
1272 spu_send_mfc_command(ctx, cmd, &status));
1273 if (status)
1274 ret = status;
1276 spu_release(ctx);
1278 if (ret)
1279 goto out;
1281 ctx->tagwait |= 1 << cmd.tag;
1282 ret = size;
1284 out:
1285 return ret;
1288 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1290 struct spu_context *ctx = file->private_data;
1291 u32 free_elements, tagstatus;
1292 unsigned int mask;
1294 spu_acquire(ctx);
1295 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1296 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1297 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1298 spu_release(ctx);
1300 poll_wait(file, &ctx->mfc_wq, wait);
1302 mask = 0;
1303 if (free_elements & 0xffff)
1304 mask |= POLLOUT | POLLWRNORM;
1305 if (tagstatus & ctx->tagwait)
1306 mask |= POLLIN | POLLRDNORM;
1308 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1309 free_elements, tagstatus, ctx->tagwait);
1311 return mask;
1314 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1316 struct spu_context *ctx = file->private_data;
1317 int ret;
1319 spu_acquire(ctx);
1320 #if 0
1321 /* this currently hangs */
1322 ret = spufs_wait(ctx->mfc_wq,
1323 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1324 if (ret)
1325 goto out;
1326 ret = spufs_wait(ctx->mfc_wq,
1327 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1328 out:
1329 #else
1330 ret = 0;
1331 #endif
1332 spu_release(ctx);
1334 return ret;
1337 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1338 int datasync)
1340 return spufs_mfc_flush(file, NULL);
1343 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1345 struct spu_context *ctx = file->private_data;
1347 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1350 static struct file_operations spufs_mfc_fops = {
1351 .open = spufs_mfc_open,
1352 .read = spufs_mfc_read,
1353 .write = spufs_mfc_write,
1354 .poll = spufs_mfc_poll,
1355 .flush = spufs_mfc_flush,
1356 .fsync = spufs_mfc_fsync,
1357 .fasync = spufs_mfc_fasync,
1358 .mmap = spufs_mfc_mmap,
1361 static void spufs_npc_set(void *data, u64 val)
1363 struct spu_context *ctx = data;
1364 spu_acquire(ctx);
1365 ctx->ops->npc_write(ctx, val);
1366 spu_release(ctx);
1369 static u64 spufs_npc_get(void *data)
1371 struct spu_context *ctx = data;
1372 u64 ret;
1373 spu_acquire(ctx);
1374 ret = ctx->ops->npc_read(ctx);
1375 spu_release(ctx);
1376 return ret;
1378 DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1379 "0x%llx\n")
1381 static void spufs_decr_set(void *data, u64 val)
1383 struct spu_context *ctx = data;
1384 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1385 spu_acquire_saved(ctx);
1386 lscsa->decr.slot[0] = (u32) val;
1387 spu_release(ctx);
1390 static u64 spufs_decr_get(void *data)
1392 struct spu_context *ctx = data;
1393 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1394 u64 ret;
1395 spu_acquire_saved(ctx);
1396 ret = lscsa->decr.slot[0];
1397 spu_release(ctx);
1398 return ret;
1400 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1401 "0x%llx\n")
1403 static void spufs_decr_status_set(void *data, u64 val)
1405 struct spu_context *ctx = data;
1406 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1407 spu_acquire_saved(ctx);
1408 lscsa->decr_status.slot[0] = (u32) val;
1409 spu_release(ctx);
1412 static u64 spufs_decr_status_get(void *data)
1414 struct spu_context *ctx = data;
1415 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1416 u64 ret;
1417 spu_acquire_saved(ctx);
1418 ret = lscsa->decr_status.slot[0];
1419 spu_release(ctx);
1420 return ret;
1422 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1423 spufs_decr_status_set, "0x%llx\n")
1425 static void spufs_event_mask_set(void *data, u64 val)
1427 struct spu_context *ctx = data;
1428 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1429 spu_acquire_saved(ctx);
1430 lscsa->event_mask.slot[0] = (u32) val;
1431 spu_release(ctx);
1434 static u64 spufs_event_mask_get(void *data)
1436 struct spu_context *ctx = data;
1437 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1438 u64 ret;
1439 spu_acquire_saved(ctx);
1440 ret = lscsa->event_mask.slot[0];
1441 spu_release(ctx);
1442 return ret;
1444 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1445 spufs_event_mask_set, "0x%llx\n")
1447 static u64 spufs_event_status_get(void *data)
1449 struct spu_context *ctx = data;
1450 struct spu_state *state = &ctx->csa;
1451 u64 ret = 0;
1452 u64 stat;
1454 spu_acquire_saved(ctx);
1455 stat = state->spu_chnlcnt_RW[0];
1456 if (stat)
1457 ret = state->spu_chnldata_RW[0];
1458 spu_release(ctx);
1459 return ret;
1461 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1462 NULL, "0x%llx\n")
1464 static void spufs_srr0_set(void *data, u64 val)
1466 struct spu_context *ctx = data;
1467 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1468 spu_acquire_saved(ctx);
1469 lscsa->srr0.slot[0] = (u32) val;
1470 spu_release(ctx);
1473 static u64 spufs_srr0_get(void *data)
1475 struct spu_context *ctx = data;
1476 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1477 u64 ret;
1478 spu_acquire_saved(ctx);
1479 ret = lscsa->srr0.slot[0];
1480 spu_release(ctx);
1481 return ret;
1483 DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1484 "0x%llx\n")
1486 static u64 spufs_id_get(void *data)
1488 struct spu_context *ctx = data;
1489 u64 num;
1491 spu_acquire(ctx);
1492 if (ctx->state == SPU_STATE_RUNNABLE)
1493 num = ctx->spu->number;
1494 else
1495 num = (unsigned int)-1;
1496 spu_release(ctx);
1498 return num;
1500 DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1502 static u64 spufs_object_id_get(void *data)
1504 struct spu_context *ctx = data;
1505 return ctx->object_id;
1508 static void spufs_object_id_set(void *data, u64 id)
1510 struct spu_context *ctx = data;
1511 ctx->object_id = id;
1514 DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1515 spufs_object_id_set, "0x%llx\n");
1517 static u64 spufs_lslr_get(void *data)
1519 struct spu_context *ctx = data;
1520 u64 ret;
1522 spu_acquire_saved(ctx);
1523 ret = ctx->csa.priv2.spu_lslr_RW;
1524 spu_release(ctx);
1526 return ret;
1528 DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")
1530 static int spufs_info_open(struct inode *inode, struct file *file)
1532 struct spufs_inode_info *i = SPUFS_I(inode);
1533 struct spu_context *ctx = i->i_ctx;
1534 file->private_data = ctx;
1535 return 0;
1538 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1539 size_t len, loff_t *pos)
1541 struct spu_context *ctx = file->private_data;
1542 u32 mbox_stat;
1543 u32 data;
1545 if (!access_ok(VERIFY_WRITE, buf, len))
1546 return -EFAULT;
1548 spu_acquire_saved(ctx);
1549 spin_lock(&ctx->csa.register_lock);
1550 mbox_stat = ctx->csa.prob.mb_stat_R;
1551 if (mbox_stat & 0x0000ff) {
1552 data = ctx->csa.prob.pu_mb_R;
1554 spin_unlock(&ctx->csa.register_lock);
1555 spu_release(ctx);
1557 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1560 static struct file_operations spufs_mbox_info_fops = {
1561 .open = spufs_info_open,
1562 .read = spufs_mbox_info_read,
1563 .llseek = generic_file_llseek,
1566 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1567 size_t len, loff_t *pos)
1569 struct spu_context *ctx = file->private_data;
1570 u32 ibox_stat;
1571 u32 data;
1573 if (!access_ok(VERIFY_WRITE, buf, len))
1574 return -EFAULT;
1576 spu_acquire_saved(ctx);
1577 spin_lock(&ctx->csa.register_lock);
1578 ibox_stat = ctx->csa.prob.mb_stat_R;
1579 if (ibox_stat & 0xff0000) {
1580 data = ctx->csa.priv2.puint_mb_R;
1582 spin_unlock(&ctx->csa.register_lock);
1583 spu_release(ctx);
1585 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1588 static struct file_operations spufs_ibox_info_fops = {
1589 .open = spufs_info_open,
1590 .read = spufs_ibox_info_read,
1591 .llseek = generic_file_llseek,
1594 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
1595 size_t len, loff_t *pos)
1597 struct spu_context *ctx = file->private_data;
1598 int i, cnt;
1599 u32 data[4];
1600 u32 wbox_stat;
1602 if (!access_ok(VERIFY_WRITE, buf, len))
1603 return -EFAULT;
1605 spu_acquire_saved(ctx);
1606 spin_lock(&ctx->csa.register_lock);
1607 wbox_stat = ctx->csa.prob.mb_stat_R;
1608 cnt = (wbox_stat & 0x00ff00) >> 8;
1609 for (i = 0; i < cnt; i++) {
1610 data[i] = ctx->csa.spu_mailbox_data[i];
1612 spin_unlock(&ctx->csa.register_lock);
1613 spu_release(ctx);
1615 return simple_read_from_buffer(buf, len, pos, &data,
1616 cnt * sizeof(u32));
1619 static struct file_operations spufs_wbox_info_fops = {
1620 .open = spufs_info_open,
1621 .read = spufs_wbox_info_read,
1622 .llseek = generic_file_llseek,
1625 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
1626 size_t len, loff_t *pos)
1628 struct spu_context *ctx = file->private_data;
1629 struct spu_dma_info info;
1630 struct mfc_cq_sr *qp, *spuqp;
1631 int i;
1633 if (!access_ok(VERIFY_WRITE, buf, len))
1634 return -EFAULT;
1636 spu_acquire_saved(ctx);
1637 spin_lock(&ctx->csa.register_lock);
1638 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
1639 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
1640 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
1641 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
1642 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
1643 for (i = 0; i < 16; i++) {
1644 qp = &info.dma_info_command_data[i];
1645 spuqp = &ctx->csa.priv2.spuq[i];
1647 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
1648 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
1649 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
1650 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
1652 spin_unlock(&ctx->csa.register_lock);
1653 spu_release(ctx);
1655 return simple_read_from_buffer(buf, len, pos, &info,
1656 sizeof info);
1659 static struct file_operations spufs_dma_info_fops = {
1660 .open = spufs_info_open,
1661 .read = spufs_dma_info_read,
1664 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
1665 size_t len, loff_t *pos)
1667 struct spu_context *ctx = file->private_data;
1668 struct spu_proxydma_info info;
1669 int ret = sizeof info;
1670 struct mfc_cq_sr *qp, *puqp;
1671 int i;
1673 if (len < ret)
1674 return -EINVAL;
1676 if (!access_ok(VERIFY_WRITE, buf, len))
1677 return -EFAULT;
1679 spu_acquire_saved(ctx);
1680 spin_lock(&ctx->csa.register_lock);
1681 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
1682 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
1683 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
1684 for (i = 0; i < 8; i++) {
1685 qp = &info.proxydma_info_command_data[i];
1686 puqp = &ctx->csa.priv2.puq[i];
1688 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
1689 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
1690 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
1691 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
1693 spin_unlock(&ctx->csa.register_lock);
1694 spu_release(ctx);
1696 if (copy_to_user(buf, &info, sizeof info))
1697 ret = -EFAULT;
1699 return ret;
1702 static struct file_operations spufs_proxydma_info_fops = {
1703 .open = spufs_info_open,
1704 .read = spufs_proxydma_info_read,
1707 struct tree_descr spufs_dir_contents[] = {
1708 { "mem", &spufs_mem_fops, 0666, },
1709 { "regs", &spufs_regs_fops, 0666, },
1710 { "mbox", &spufs_mbox_fops, 0444, },
1711 { "ibox", &spufs_ibox_fops, 0444, },
1712 { "wbox", &spufs_wbox_fops, 0222, },
1713 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
1714 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
1715 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
1716 { "signal1", &spufs_signal1_fops, 0666, },
1717 { "signal2", &spufs_signal2_fops, 0666, },
1718 { "signal1_type", &spufs_signal1_type, 0666, },
1719 { "signal2_type", &spufs_signal2_type, 0666, },
1720 { "cntl", &spufs_cntl_fops, 0666, },
1721 { "fpcr", &spufs_fpcr_fops, 0666, },
1722 { "lslr", &spufs_lslr_ops, 0444, },
1723 { "mfc", &spufs_mfc_fops, 0666, },
1724 { "mss", &spufs_mss_fops, 0666, },
1725 { "npc", &spufs_npc_ops, 0666, },
1726 { "srr0", &spufs_srr0_ops, 0666, },
1727 { "decr", &spufs_decr_ops, 0666, },
1728 { "decr_status", &spufs_decr_status_ops, 0666, },
1729 { "event_mask", &spufs_event_mask_ops, 0666, },
1730 { "event_status", &spufs_event_status_ops, 0444, },
1731 { "psmap", &spufs_psmap_fops, 0666, },
1732 { "phys-id", &spufs_id_ops, 0666, },
1733 { "object-id", &spufs_object_id_ops, 0666, },
1734 { "mbox_info", &spufs_mbox_info_fops, 0444, },
1735 { "ibox_info", &spufs_ibox_info_fops, 0444, },
1736 { "wbox_info", &spufs_wbox_info_fops, 0444, },
1737 { "dma_info", &spufs_dma_info_fops, 0444, },
1738 { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
1742 struct tree_descr spufs_dir_nosched_contents[] = {
1743 { "mem", &spufs_mem_fops, 0666, },
1744 { "mbox", &spufs_mbox_fops, 0444, },
1745 { "ibox", &spufs_ibox_fops, 0444, },
1746 { "wbox", &spufs_wbox_fops, 0222, },
1747 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
1748 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
1749 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
1750 { "signal1", &spufs_signal1_fops, 0666, },
1751 { "signal2", &spufs_signal2_fops, 0666, },
1752 { "signal1_type", &spufs_signal1_type, 0666, },
1753 { "signal2_type", &spufs_signal2_type, 0666, },
1754 { "mss", &spufs_mss_fops, 0666, },
1755 { "mfc", &spufs_mfc_fops, 0666, },
1756 { "cntl", &spufs_cntl_fops, 0666, },
1757 { "npc", &spufs_npc_ops, 0666, },
1758 { "psmap", &spufs_psmap_fops, 0666, },
1759 { "phys-id", &spufs_id_ops, 0666, },
1760 { "object-id", &spufs_object_id_ops, 0666, },