2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
20 * enough at me, Linus for the original (flawed) idea, Matthew
21 * Kirkwood for proof-of-concept implementation.
23 * "The futexes are also cursed."
24 * "But they come in a choice of three flavours!"
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
40 #include <linux/slab.h>
41 #include <linux/poll.h>
43 #include <linux/file.h>
44 #include <linux/jhash.h>
45 #include <linux/init.h>
46 #include <linux/futex.h>
47 #include <linux/mount.h>
48 #include <linux/pagemap.h>
49 #include <linux/syscalls.h>
50 #include <linux/signal.h>
51 #include <asm/futex.h>
53 #include "rtmutex_common.h"
55 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
58 * Futexes are matched on equal values of this key.
59 * The key type depends on whether it's a shared or private mapping.
60 * Don't rearrange members without looking at hash_futex().
62 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
63 * We set bit 0 to indicate if it's an inode-based key.
72 unsigned long address
;
84 * Priority Inheritance state:
86 struct futex_pi_state
{
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list
;
96 struct rt_mutex pi_mutex
;
98 struct task_struct
*owner
;
105 * We use this hashed waitqueue instead of a normal wait_queue_t, so
106 * we can wake only the relevant ones (hashed queues may be shared).
108 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
109 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
110 * The order of wakup is always to make the first condition true, then
111 * wake up q->waiters, then make the second condition true.
114 struct list_head list
;
115 wait_queue_head_t waiters
;
117 /* Which hash list lock to use: */
118 spinlock_t
*lock_ptr
;
120 /* Key which the futex is hashed on: */
123 /* For fd, sigio sent using these: */
127 /* Optional priority inheritance state: */
128 struct futex_pi_state
*pi_state
;
129 struct task_struct
*task
;
133 * Split the global futex_lock into every hash list lock.
135 struct futex_hash_bucket
{
137 struct list_head chain
;
140 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
142 /* Futex-fs vfsmount entry: */
143 static struct vfsmount
*futex_mnt
;
146 * We hash on the keys returned from get_futex_key (see below).
148 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
150 u32 hash
= jhash2((u32
*)&key
->both
.word
,
151 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
153 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
157 * Return 1 if two futex_keys are equal, 0 otherwise.
159 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
161 return (key1
->both
.word
== key2
->both
.word
162 && key1
->both
.ptr
== key2
->both
.ptr
163 && key1
->both
.offset
== key2
->both
.offset
);
167 * Get parameters which are the keys for a futex.
169 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
170 * offset_within_page). For private mappings, it's (uaddr, current->mm).
171 * We can usually work out the index without swapping in the page.
173 * Returns: 0, or negative error code.
174 * The key words are stored in *key on success.
176 * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks.
178 static int get_futex_key(u32 __user
*uaddr
, union futex_key
*key
)
180 unsigned long address
= (unsigned long)uaddr
;
181 struct mm_struct
*mm
= current
->mm
;
182 struct vm_area_struct
*vma
;
187 * The futex address must be "naturally" aligned.
189 key
->both
.offset
= address
% PAGE_SIZE
;
190 if (unlikely((key
->both
.offset
% sizeof(u32
)) != 0))
192 address
-= key
->both
.offset
;
195 * The futex is hashed differently depending on whether
196 * it's in a shared or private mapping. So check vma first.
198 vma
= find_extend_vma(mm
, address
);
205 if (unlikely((vma
->vm_flags
& (VM_IO
|VM_READ
)) != VM_READ
))
206 return (vma
->vm_flags
& VM_IO
) ? -EPERM
: -EACCES
;
209 * Private mappings are handled in a simple way.
211 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
212 * it's a read-only handle, it's expected that futexes attach to
213 * the object not the particular process. Therefore we use
214 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
215 * mappings of _writable_ handles.
217 if (likely(!(vma
->vm_flags
& VM_MAYSHARE
))) {
218 key
->private.mm
= mm
;
219 key
->private.address
= address
;
224 * Linear file mappings are also simple.
226 key
->shared
.inode
= vma
->vm_file
->f_dentry
->d_inode
;
227 key
->both
.offset
++; /* Bit 0 of offset indicates inode-based key. */
228 if (likely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
229 key
->shared
.pgoff
= (((address
- vma
->vm_start
) >> PAGE_SHIFT
)
235 * We could walk the page table to read the non-linear
236 * pte, and get the page index without fetching the page
237 * from swap. But that's a lot of code to duplicate here
238 * for a rare case, so we simply fetch the page.
240 err
= get_user_pages(current
, mm
, address
, 1, 0, 0, &page
, NULL
);
243 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
251 * Take a reference to the resource addressed by a key.
252 * Can be called while holding spinlocks.
254 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
255 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
257 static inline void get_key_refs(union futex_key
*key
)
259 if (key
->both
.ptr
!= 0) {
260 if (key
->both
.offset
& 1)
261 atomic_inc(&key
->shared
.inode
->i_count
);
263 atomic_inc(&key
->private.mm
->mm_count
);
268 * Drop a reference to the resource addressed by a key.
269 * The hash bucket spinlock must not be held.
271 static void drop_key_refs(union futex_key
*key
)
273 if (key
->both
.ptr
!= 0) {
274 if (key
->both
.offset
& 1)
275 iput(key
->shared
.inode
);
277 mmdrop(key
->private.mm
);
281 static inline int get_futex_value_locked(u32
*dest
, u32 __user
*from
)
286 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(u32
));
289 return ret
? -EFAULT
: 0;
293 * Fault handling. Called with current->mm->mmap_sem held.
295 static int futex_handle_fault(unsigned long address
, int attempt
)
297 struct vm_area_struct
* vma
;
298 struct mm_struct
*mm
= current
->mm
;
300 if (attempt
> 2 || !(vma
= find_vma(mm
, address
)) ||
301 vma
->vm_start
> address
|| !(vma
->vm_flags
& VM_WRITE
))
304 switch (handle_mm_fault(mm
, vma
, address
, 1)) {
320 static int refill_pi_state_cache(void)
322 struct futex_pi_state
*pi_state
;
324 if (likely(current
->pi_state_cache
))
327 pi_state
= kzalloc(sizeof(*pi_state
), GFP_KERNEL
);
332 INIT_LIST_HEAD(&pi_state
->list
);
333 /* pi_mutex gets initialized later */
334 pi_state
->owner
= NULL
;
335 atomic_set(&pi_state
->refcount
, 1);
337 current
->pi_state_cache
= pi_state
;
342 static struct futex_pi_state
* alloc_pi_state(void)
344 struct futex_pi_state
*pi_state
= current
->pi_state_cache
;
347 current
->pi_state_cache
= NULL
;
352 static void free_pi_state(struct futex_pi_state
*pi_state
)
354 if (!atomic_dec_and_test(&pi_state
->refcount
))
358 * If pi_state->owner is NULL, the owner is most probably dying
359 * and has cleaned up the pi_state already
361 if (pi_state
->owner
) {
362 spin_lock_irq(&pi_state
->owner
->pi_lock
);
363 list_del_init(&pi_state
->list
);
364 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
366 rt_mutex_proxy_unlock(&pi_state
->pi_mutex
, pi_state
->owner
);
369 if (current
->pi_state_cache
)
373 * pi_state->list is already empty.
374 * clear pi_state->owner.
375 * refcount is at 0 - put it back to 1.
377 pi_state
->owner
= NULL
;
378 atomic_set(&pi_state
->refcount
, 1);
379 current
->pi_state_cache
= pi_state
;
384 * Look up the task based on what TID userspace gave us.
387 static struct task_struct
* futex_find_get_task(pid_t pid
)
389 struct task_struct
*p
;
392 p
= find_task_by_pid(pid
);
395 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
)) {
399 if (p
->exit_state
!= 0) {
411 * This task is holding PI mutexes at exit time => bad.
412 * Kernel cleans up PI-state, but userspace is likely hosed.
413 * (Robust-futex cleanup is separate and might save the day for userspace.)
415 void exit_pi_state_list(struct task_struct
*curr
)
417 struct list_head
*next
, *head
= &curr
->pi_state_list
;
418 struct futex_pi_state
*pi_state
;
419 struct futex_hash_bucket
*hb
;
423 * We are a ZOMBIE and nobody can enqueue itself on
424 * pi_state_list anymore, but we have to be careful
425 * versus waiters unqueueing themselves:
427 spin_lock_irq(&curr
->pi_lock
);
428 while (!list_empty(head
)) {
431 pi_state
= list_entry(next
, struct futex_pi_state
, list
);
433 hb
= hash_futex(&key
);
434 spin_unlock_irq(&curr
->pi_lock
);
436 spin_lock(&hb
->lock
);
438 spin_lock_irq(&curr
->pi_lock
);
440 * We dropped the pi-lock, so re-check whether this
441 * task still owns the PI-state:
443 if (head
->next
!= next
) {
444 spin_unlock(&hb
->lock
);
448 WARN_ON(pi_state
->owner
!= curr
);
449 WARN_ON(list_empty(&pi_state
->list
));
450 list_del_init(&pi_state
->list
);
451 pi_state
->owner
= NULL
;
452 spin_unlock_irq(&curr
->pi_lock
);
454 rt_mutex_unlock(&pi_state
->pi_mutex
);
456 spin_unlock(&hb
->lock
);
458 spin_lock_irq(&curr
->pi_lock
);
460 spin_unlock_irq(&curr
->pi_lock
);
464 lookup_pi_state(u32 uval
, struct futex_hash_bucket
*hb
, struct futex_q
*me
)
466 struct futex_pi_state
*pi_state
= NULL
;
467 struct futex_q
*this, *next
;
468 struct list_head
*head
;
469 struct task_struct
*p
;
474 list_for_each_entry_safe(this, next
, head
, list
) {
475 if (match_futex(&this->key
, &me
->key
)) {
477 * Another waiter already exists - bump up
478 * the refcount and return its pi_state:
480 pi_state
= this->pi_state
;
482 * Userspace might have messed up non PI and PI futexes
484 if (unlikely(!pi_state
))
487 WARN_ON(!atomic_read(&pi_state
->refcount
));
489 atomic_inc(&pi_state
->refcount
);
490 me
->pi_state
= pi_state
;
497 * We are the first waiter - try to look up the real owner and attach
498 * the new pi_state to it, but bail out when the owner died bit is set
501 pid
= uval
& FUTEX_TID_MASK
;
502 if (!pid
&& (uval
& FUTEX_OWNER_DIED
))
504 p
= futex_find_get_task(pid
);
508 pi_state
= alloc_pi_state();
511 * Initialize the pi_mutex in locked state and make 'p'
514 rt_mutex_init_proxy_locked(&pi_state
->pi_mutex
, p
);
516 /* Store the key for possible exit cleanups: */
517 pi_state
->key
= me
->key
;
519 spin_lock_irq(&p
->pi_lock
);
520 WARN_ON(!list_empty(&pi_state
->list
));
521 list_add(&pi_state
->list
, &p
->pi_state_list
);
523 spin_unlock_irq(&p
->pi_lock
);
527 me
->pi_state
= pi_state
;
533 * The hash bucket lock must be held when this is called.
534 * Afterwards, the futex_q must not be accessed.
536 static void wake_futex(struct futex_q
*q
)
538 list_del_init(&q
->list
);
540 send_sigio(&q
->filp
->f_owner
, q
->fd
, POLL_IN
);
542 * The lock in wake_up_all() is a crucial memory barrier after the
543 * list_del_init() and also before assigning to q->lock_ptr.
545 wake_up_all(&q
->waiters
);
547 * The waiting task can free the futex_q as soon as this is written,
548 * without taking any locks. This must come last.
550 * A memory barrier is required here to prevent the following store
551 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
552 * at the end of wake_up_all() does not prevent this store from
559 static int wake_futex_pi(u32 __user
*uaddr
, u32 uval
, struct futex_q
*this)
561 struct task_struct
*new_owner
;
562 struct futex_pi_state
*pi_state
= this->pi_state
;
568 new_owner
= rt_mutex_next_owner(&pi_state
->pi_mutex
);
571 * This happens when we have stolen the lock and the original
572 * pending owner did not enqueue itself back on the rt_mutex.
573 * Thats not a tragedy. We know that way, that a lock waiter
574 * is on the fly. We make the futex_q waiter the pending owner.
577 new_owner
= this->task
;
580 * We pass it to the next owner. (The WAITERS bit is always
581 * kept enabled while there is PI state around. We must also
582 * preserve the owner died bit.)
584 if (!(uval
& FUTEX_OWNER_DIED
)) {
585 newval
= FUTEX_WAITERS
| new_owner
->pid
;
588 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
590 if (curval
== -EFAULT
)
596 spin_lock_irq(&pi_state
->owner
->pi_lock
);
597 WARN_ON(list_empty(&pi_state
->list
));
598 list_del_init(&pi_state
->list
);
599 spin_unlock_irq(&pi_state
->owner
->pi_lock
);
601 spin_lock_irq(&new_owner
->pi_lock
);
602 WARN_ON(!list_empty(&pi_state
->list
));
603 list_add(&pi_state
->list
, &new_owner
->pi_state_list
);
604 pi_state
->owner
= new_owner
;
605 spin_unlock_irq(&new_owner
->pi_lock
);
607 rt_mutex_unlock(&pi_state
->pi_mutex
);
612 static int unlock_futex_pi(u32 __user
*uaddr
, u32 uval
)
617 * There is no waiter, so we unlock the futex. The owner died
618 * bit has not to be preserved here. We are the owner:
621 oldval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, 0);
624 if (oldval
== -EFAULT
)
633 * Express the locking dependencies for lockdep:
636 double_lock_hb(struct futex_hash_bucket
*hb1
, struct futex_hash_bucket
*hb2
)
639 spin_lock(&hb1
->lock
);
641 spin_lock_nested(&hb2
->lock
, SINGLE_DEPTH_NESTING
);
642 } else { /* hb1 > hb2 */
643 spin_lock(&hb2
->lock
);
644 spin_lock_nested(&hb1
->lock
, SINGLE_DEPTH_NESTING
);
649 * Wake up all waiters hashed on the physical page that is mapped
650 * to this virtual address:
652 static int futex_wake(u32 __user
*uaddr
, int nr_wake
)
654 struct futex_hash_bucket
*hb
;
655 struct futex_q
*this, *next
;
656 struct list_head
*head
;
660 down_read(¤t
->mm
->mmap_sem
);
662 ret
= get_futex_key(uaddr
, &key
);
663 if (unlikely(ret
!= 0))
666 hb
= hash_futex(&key
);
667 spin_lock(&hb
->lock
);
670 list_for_each_entry_safe(this, next
, head
, list
) {
671 if (match_futex (&this->key
, &key
)) {
672 if (this->pi_state
) {
677 if (++ret
>= nr_wake
)
682 spin_unlock(&hb
->lock
);
684 up_read(¤t
->mm
->mmap_sem
);
689 * Wake up all waiters hashed on the physical page that is mapped
690 * to this virtual address:
693 futex_wake_op(u32 __user
*uaddr1
, u32 __user
*uaddr2
,
694 int nr_wake
, int nr_wake2
, int op
)
696 union futex_key key1
, key2
;
697 struct futex_hash_bucket
*hb1
, *hb2
;
698 struct list_head
*head
;
699 struct futex_q
*this, *next
;
700 int ret
, op_ret
, attempt
= 0;
703 down_read(¤t
->mm
->mmap_sem
);
705 ret
= get_futex_key(uaddr1
, &key1
);
706 if (unlikely(ret
!= 0))
708 ret
= get_futex_key(uaddr2
, &key2
);
709 if (unlikely(ret
!= 0))
712 hb1
= hash_futex(&key1
);
713 hb2
= hash_futex(&key2
);
716 double_lock_hb(hb1
, hb2
);
718 op_ret
= futex_atomic_op_inuser(op
, uaddr2
);
719 if (unlikely(op_ret
< 0)) {
722 spin_unlock(&hb1
->lock
);
724 spin_unlock(&hb2
->lock
);
728 * we don't get EFAULT from MMU faults if we don't have an MMU,
729 * but we might get them from range checking
735 if (unlikely(op_ret
!= -EFAULT
)) {
741 * futex_atomic_op_inuser needs to both read and write
742 * *(int __user *)uaddr2, but we can't modify it
743 * non-atomically. Therefore, if get_user below is not
744 * enough, we need to handle the fault ourselves, while
745 * still holding the mmap_sem.
748 if (futex_handle_fault((unsigned long)uaddr2
,
757 * If we would have faulted, release mmap_sem,
758 * fault it in and start all over again.
760 up_read(¤t
->mm
->mmap_sem
);
762 ret
= get_user(dummy
, uaddr2
);
771 list_for_each_entry_safe(this, next
, head
, list
) {
772 if (match_futex (&this->key
, &key1
)) {
774 if (++ret
>= nr_wake
)
783 list_for_each_entry_safe(this, next
, head
, list
) {
784 if (match_futex (&this->key
, &key2
)) {
786 if (++op_ret
>= nr_wake2
)
793 spin_unlock(&hb1
->lock
);
795 spin_unlock(&hb2
->lock
);
797 up_read(¤t
->mm
->mmap_sem
);
802 * Requeue all waiters hashed on one physical page to another
805 static int futex_requeue(u32 __user
*uaddr1
, u32 __user
*uaddr2
,
806 int nr_wake
, int nr_requeue
, u32
*cmpval
)
808 union futex_key key1
, key2
;
809 struct futex_hash_bucket
*hb1
, *hb2
;
810 struct list_head
*head1
;
811 struct futex_q
*this, *next
;
812 int ret
, drop_count
= 0;
815 down_read(¤t
->mm
->mmap_sem
);
817 ret
= get_futex_key(uaddr1
, &key1
);
818 if (unlikely(ret
!= 0))
820 ret
= get_futex_key(uaddr2
, &key2
);
821 if (unlikely(ret
!= 0))
824 hb1
= hash_futex(&key1
);
825 hb2
= hash_futex(&key2
);
827 double_lock_hb(hb1
, hb2
);
829 if (likely(cmpval
!= NULL
)) {
832 ret
= get_futex_value_locked(&curval
, uaddr1
);
835 spin_unlock(&hb1
->lock
);
837 spin_unlock(&hb2
->lock
);
840 * If we would have faulted, release mmap_sem, fault
841 * it in and start all over again.
843 up_read(¤t
->mm
->mmap_sem
);
845 ret
= get_user(curval
, uaddr1
);
852 if (curval
!= *cmpval
) {
859 list_for_each_entry_safe(this, next
, head1
, list
) {
860 if (!match_futex (&this->key
, &key1
))
862 if (++ret
<= nr_wake
) {
866 * If key1 and key2 hash to the same bucket, no need to
869 if (likely(head1
!= &hb2
->chain
)) {
870 list_move_tail(&this->list
, &hb2
->chain
);
871 this->lock_ptr
= &hb2
->lock
;
877 if (ret
- nr_wake
>= nr_requeue
)
883 spin_unlock(&hb1
->lock
);
885 spin_unlock(&hb2
->lock
);
887 /* drop_key_refs() must be called outside the spinlocks. */
888 while (--drop_count
>= 0)
889 drop_key_refs(&key1
);
892 up_read(¤t
->mm
->mmap_sem
);
896 /* The key must be already stored in q->key. */
897 static inline struct futex_hash_bucket
*
898 queue_lock(struct futex_q
*q
, int fd
, struct file
*filp
)
900 struct futex_hash_bucket
*hb
;
905 init_waitqueue_head(&q
->waiters
);
907 get_key_refs(&q
->key
);
908 hb
= hash_futex(&q
->key
);
909 q
->lock_ptr
= &hb
->lock
;
911 spin_lock(&hb
->lock
);
915 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
917 list_add_tail(&q
->list
, &hb
->chain
);
919 spin_unlock(&hb
->lock
);
923 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
925 spin_unlock(&hb
->lock
);
926 drop_key_refs(&q
->key
);
930 * queue_me and unqueue_me must be called as a pair, each
931 * exactly once. They are called with the hashed spinlock held.
934 /* The key must be already stored in q->key. */
935 static void queue_me(struct futex_q
*q
, int fd
, struct file
*filp
)
937 struct futex_hash_bucket
*hb
;
939 hb
= queue_lock(q
, fd
, filp
);
943 /* Return 1 if we were still queued (ie. 0 means we were woken) */
944 static int unqueue_me(struct futex_q
*q
)
946 spinlock_t
*lock_ptr
;
949 /* In the common case we don't take the spinlock, which is nice. */
951 lock_ptr
= q
->lock_ptr
;
956 * q->lock_ptr can change between reading it and
957 * spin_lock(), causing us to take the wrong lock. This
958 * corrects the race condition.
960 * Reasoning goes like this: if we have the wrong lock,
961 * q->lock_ptr must have changed (maybe several times)
962 * between reading it and the spin_lock(). It can
963 * change again after the spin_lock() but only if it was
964 * already changed before the spin_lock(). It cannot,
965 * however, change back to the original value. Therefore
966 * we can detect whether we acquired the correct lock.
968 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
969 spin_unlock(lock_ptr
);
972 WARN_ON(list_empty(&q
->list
));
977 spin_unlock(lock_ptr
);
981 drop_key_refs(&q
->key
);
986 * PI futexes can not be requeued and must remove themself from the
987 * hash bucket. The hash bucket lock is held on entry and dropped here.
989 static void unqueue_me_pi(struct futex_q
*q
, struct futex_hash_bucket
*hb
)
991 WARN_ON(list_empty(&q
->list
));
994 BUG_ON(!q
->pi_state
);
995 free_pi_state(q
->pi_state
);
998 spin_unlock(&hb
->lock
);
1000 drop_key_refs(&q
->key
);
1003 static int futex_wait(u32 __user
*uaddr
, u32 val
, unsigned long time
)
1005 struct task_struct
*curr
= current
;
1006 DECLARE_WAITQUEUE(wait
, curr
);
1007 struct futex_hash_bucket
*hb
;
1014 down_read(&curr
->mm
->mmap_sem
);
1016 ret
= get_futex_key(uaddr
, &q
.key
);
1017 if (unlikely(ret
!= 0))
1018 goto out_release_sem
;
1020 hb
= queue_lock(&q
, -1, NULL
);
1023 * Access the page AFTER the futex is queued.
1024 * Order is important:
1026 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1027 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1029 * The basic logical guarantee of a futex is that it blocks ONLY
1030 * if cond(var) is known to be true at the time of blocking, for
1031 * any cond. If we queued after testing *uaddr, that would open
1032 * a race condition where we could block indefinitely with
1033 * cond(var) false, which would violate the guarantee.
1035 * A consequence is that futex_wait() can return zero and absorb
1036 * a wakeup when *uaddr != val on entry to the syscall. This is
1039 * We hold the mmap semaphore, so the mapping cannot have changed
1040 * since we looked it up in get_futex_key.
1042 ret
= get_futex_value_locked(&uval
, uaddr
);
1044 if (unlikely(ret
)) {
1045 queue_unlock(&q
, hb
);
1048 * If we would have faulted, release mmap_sem, fault it in and
1049 * start all over again.
1051 up_read(&curr
->mm
->mmap_sem
);
1053 ret
= get_user(uval
, uaddr
);
1061 goto out_unlock_release_sem
;
1063 /* Only actually queue if *uaddr contained val. */
1067 * Now the futex is queued and we have checked the data, we
1068 * don't want to hold mmap_sem while we sleep.
1070 up_read(&curr
->mm
->mmap_sem
);
1073 * There might have been scheduling since the queue_me(), as we
1074 * cannot hold a spinlock across the get_user() in case it
1075 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1076 * queueing ourselves into the futex hash. This code thus has to
1077 * rely on the futex_wake() code removing us from hash when it
1081 /* add_wait_queue is the barrier after __set_current_state. */
1082 __set_current_state(TASK_INTERRUPTIBLE
);
1083 add_wait_queue(&q
.waiters
, &wait
);
1085 * !list_empty() is safe here without any lock.
1086 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1088 if (likely(!list_empty(&q
.list
)))
1089 time
= schedule_timeout(time
);
1090 __set_current_state(TASK_RUNNING
);
1093 * NOTE: we don't remove ourselves from the waitqueue because
1094 * we are the only user of it.
1097 /* If we were woken (and unqueued), we succeeded, whatever. */
1098 if (!unqueue_me(&q
))
1103 * We expect signal_pending(current), but another thread may
1104 * have handled it for us already.
1108 out_unlock_release_sem
:
1109 queue_unlock(&q
, hb
);
1112 up_read(&curr
->mm
->mmap_sem
);
1117 * Userspace tried a 0 -> TID atomic transition of the futex value
1118 * and failed. The kernel side here does the whole locking operation:
1119 * if there are waiters then it will block, it does PI, etc. (Due to
1120 * races the kernel might see a 0 value of the futex too.)
1122 static int futex_lock_pi(u32 __user
*uaddr
, int detect
, unsigned long sec
,
1123 long nsec
, int trylock
)
1125 struct hrtimer_sleeper timeout
, *to
= NULL
;
1126 struct task_struct
*curr
= current
;
1127 struct futex_hash_bucket
*hb
;
1128 u32 uval
, newval
, curval
;
1130 int ret
, attempt
= 0;
1132 if (refill_pi_state_cache())
1135 if (sec
!= MAX_SCHEDULE_TIMEOUT
) {
1137 hrtimer_init(&to
->timer
, CLOCK_REALTIME
, HRTIMER_ABS
);
1138 hrtimer_init_sleeper(to
, current
);
1139 to
->timer
.expires
= ktime_set(sec
, nsec
);
1144 down_read(&curr
->mm
->mmap_sem
);
1146 ret
= get_futex_key(uaddr
, &q
.key
);
1147 if (unlikely(ret
!= 0))
1148 goto out_release_sem
;
1150 hb
= queue_lock(&q
, -1, NULL
);
1154 * To avoid races, we attempt to take the lock here again
1155 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1156 * the locks. It will most likely not succeed.
1158 newval
= current
->pid
;
1160 pagefault_disable();
1161 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, 0, newval
);
1164 if (unlikely(curval
== -EFAULT
))
1167 /* We own the lock already */
1168 if (unlikely((curval
& FUTEX_TID_MASK
) == current
->pid
)) {
1170 force_sig(SIGKILL
, current
);
1172 goto out_unlock_release_sem
;
1176 * Surprise - we got the lock. Just return
1179 if (unlikely(!curval
))
1180 goto out_unlock_release_sem
;
1183 newval
= uval
| FUTEX_WAITERS
;
1185 pagefault_disable();
1186 curval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, newval
);
1189 if (unlikely(curval
== -EFAULT
))
1191 if (unlikely(curval
!= uval
))
1195 * We dont have the lock. Look up the PI state (or create it if
1196 * we are the first waiter):
1198 ret
= lookup_pi_state(uval
, hb
, &q
);
1200 if (unlikely(ret
)) {
1202 * There were no waiters and the owner task lookup
1203 * failed. When the OWNER_DIED bit is set, then we
1204 * know that this is a robust futex and we actually
1205 * take the lock. This is safe as we are protected by
1206 * the hash bucket lock. We also set the waiters bit
1207 * unconditionally here, to simplify glibc handling of
1208 * multiple tasks racing to acquire the lock and
1209 * cleanup the problems which were left by the dead
1212 if (curval
& FUTEX_OWNER_DIED
) {
1214 newval
= current
->pid
|
1215 FUTEX_OWNER_DIED
| FUTEX_WAITERS
;
1217 pagefault_disable();
1218 curval
= futex_atomic_cmpxchg_inatomic(uaddr
,
1222 if (unlikely(curval
== -EFAULT
))
1224 if (unlikely(curval
!= uval
))
1228 goto out_unlock_release_sem
;
1232 * Only actually queue now that the atomic ops are done:
1237 * Now the futex is queued and we have checked the data, we
1238 * don't want to hold mmap_sem while we sleep.
1240 up_read(&curr
->mm
->mmap_sem
);
1242 WARN_ON(!q
.pi_state
);
1244 * Block on the PI mutex:
1247 ret
= rt_mutex_timed_lock(&q
.pi_state
->pi_mutex
, to
, 1);
1249 ret
= rt_mutex_trylock(&q
.pi_state
->pi_mutex
);
1250 /* Fixup the trylock return value: */
1251 ret
= ret
? 0 : -EWOULDBLOCK
;
1254 down_read(&curr
->mm
->mmap_sem
);
1255 spin_lock(q
.lock_ptr
);
1258 * Got the lock. We might not be the anticipated owner if we
1259 * did a lock-steal - fix up the PI-state in that case.
1261 if (!ret
&& q
.pi_state
->owner
!= curr
) {
1262 u32 newtid
= current
->pid
| FUTEX_WAITERS
;
1265 if (q
.pi_state
->owner
!= NULL
) {
1266 spin_lock_irq(&q
.pi_state
->owner
->pi_lock
);
1267 WARN_ON(list_empty(&q
.pi_state
->list
));
1268 list_del_init(&q
.pi_state
->list
);
1269 spin_unlock_irq(&q
.pi_state
->owner
->pi_lock
);
1271 newtid
|= FUTEX_OWNER_DIED
;
1273 q
.pi_state
->owner
= current
;
1275 spin_lock_irq(¤t
->pi_lock
);
1276 WARN_ON(!list_empty(&q
.pi_state
->list
));
1277 list_add(&q
.pi_state
->list
, ¤t
->pi_state_list
);
1278 spin_unlock_irq(¤t
->pi_lock
);
1280 /* Unqueue and drop the lock */
1281 unqueue_me_pi(&q
, hb
);
1282 up_read(&curr
->mm
->mmap_sem
);
1284 * We own it, so we have to replace the pending owner
1285 * TID. This must be atomic as we have preserve the
1286 * owner died bit here.
1288 ret
= get_user(uval
, uaddr
);
1290 newval
= (uval
& FUTEX_OWNER_DIED
) | newtid
;
1291 curval
= futex_atomic_cmpxchg_inatomic(uaddr
,
1293 if (curval
== -EFAULT
)
1301 * Catch the rare case, where the lock was released
1302 * when we were on the way back before we locked
1305 if (ret
&& q
.pi_state
->owner
== curr
) {
1306 if (rt_mutex_trylock(&q
.pi_state
->pi_mutex
))
1309 /* Unqueue and drop the lock */
1310 unqueue_me_pi(&q
, hb
);
1311 up_read(&curr
->mm
->mmap_sem
);
1314 if (!detect
&& ret
== -EDEADLK
&& 0)
1315 force_sig(SIGKILL
, current
);
1317 return ret
!= -EINTR
? ret
: -ERESTARTNOINTR
;
1319 out_unlock_release_sem
:
1320 queue_unlock(&q
, hb
);
1323 up_read(&curr
->mm
->mmap_sem
);
1328 * We have to r/w *(int __user *)uaddr, but we can't modify it
1329 * non-atomically. Therefore, if get_user below is not
1330 * enough, we need to handle the fault ourselves, while
1331 * still holding the mmap_sem.
1334 if (futex_handle_fault((unsigned long)uaddr
, attempt
)) {
1336 goto out_unlock_release_sem
;
1341 queue_unlock(&q
, hb
);
1342 up_read(&curr
->mm
->mmap_sem
);
1344 ret
= get_user(uval
, uaddr
);
1345 if (!ret
&& (uval
!= -EFAULT
))
1352 * Userspace attempted a TID -> 0 atomic transition, and failed.
1353 * This is the in-kernel slowpath: we look up the PI state (if any),
1354 * and do the rt-mutex unlock.
1356 static int futex_unlock_pi(u32 __user
*uaddr
)
1358 struct futex_hash_bucket
*hb
;
1359 struct futex_q
*this, *next
;
1361 struct list_head
*head
;
1362 union futex_key key
;
1363 int ret
, attempt
= 0;
1366 if (get_user(uval
, uaddr
))
1369 * We release only a lock we actually own:
1371 if ((uval
& FUTEX_TID_MASK
) != current
->pid
)
1374 * First take all the futex related locks:
1376 down_read(¤t
->mm
->mmap_sem
);
1378 ret
= get_futex_key(uaddr
, &key
);
1379 if (unlikely(ret
!= 0))
1382 hb
= hash_futex(&key
);
1383 spin_lock(&hb
->lock
);
1387 * To avoid races, try to do the TID -> 0 atomic transition
1388 * again. If it succeeds then we can return without waking
1391 if (!(uval
& FUTEX_OWNER_DIED
)) {
1392 pagefault_disable();
1393 uval
= futex_atomic_cmpxchg_inatomic(uaddr
, current
->pid
, 0);
1397 if (unlikely(uval
== -EFAULT
))
1400 * Rare case: we managed to release the lock atomically,
1401 * no need to wake anyone else up:
1403 if (unlikely(uval
== current
->pid
))
1407 * Ok, other tasks may need to be woken up - check waiters
1408 * and do the wakeup if necessary:
1412 list_for_each_entry_safe(this, next
, head
, list
) {
1413 if (!match_futex (&this->key
, &key
))
1415 ret
= wake_futex_pi(uaddr
, uval
, this);
1417 * The atomic access to the futex value
1418 * generated a pagefault, so retry the
1419 * user-access and the wakeup:
1426 * No waiters - kernel unlocks the futex:
1428 if (!(uval
& FUTEX_OWNER_DIED
)) {
1429 ret
= unlock_futex_pi(uaddr
, uval
);
1435 spin_unlock(&hb
->lock
);
1437 up_read(¤t
->mm
->mmap_sem
);
1443 * We have to r/w *(int __user *)uaddr, but we can't modify it
1444 * non-atomically. Therefore, if get_user below is not
1445 * enough, we need to handle the fault ourselves, while
1446 * still holding the mmap_sem.
1449 if (futex_handle_fault((unsigned long)uaddr
, attempt
)) {
1456 spin_unlock(&hb
->lock
);
1457 up_read(¤t
->mm
->mmap_sem
);
1459 ret
= get_user(uval
, uaddr
);
1460 if (!ret
&& (uval
!= -EFAULT
))
1466 static int futex_close(struct inode
*inode
, struct file
*filp
)
1468 struct futex_q
*q
= filp
->private_data
;
1476 /* This is one-shot: once it's gone off you need a new fd */
1477 static unsigned int futex_poll(struct file
*filp
,
1478 struct poll_table_struct
*wait
)
1480 struct futex_q
*q
= filp
->private_data
;
1483 poll_wait(filp
, &q
->waiters
, wait
);
1486 * list_empty() is safe here without any lock.
1487 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1489 if (list_empty(&q
->list
))
1490 ret
= POLLIN
| POLLRDNORM
;
1495 static const struct file_operations futex_fops
= {
1496 .release
= futex_close
,
1501 * Signal allows caller to avoid the race which would occur if they
1502 * set the sigio stuff up afterwards.
1504 static int futex_fd(u32 __user
*uaddr
, int signal
)
1509 static unsigned long printk_interval
;
1511 if (printk_timed_ratelimit(&printk_interval
, 60 * 60 * 1000)) {
1512 printk(KERN_WARNING
"Process `%s' used FUTEX_FD, which "
1513 "will be removed from the kernel in June 2007\n",
1518 if (!valid_signal(signal
))
1521 ret
= get_unused_fd();
1524 filp
= get_empty_filp();
1530 filp
->f_op
= &futex_fops
;
1531 filp
->f_vfsmnt
= mntget(futex_mnt
);
1532 filp
->f_dentry
= dget(futex_mnt
->mnt_root
);
1533 filp
->f_mapping
= filp
->f_dentry
->d_inode
->i_mapping
;
1536 err
= __f_setown(filp
, task_pid(current
), PIDTYPE_PID
, 1);
1540 filp
->f_owner
.signum
= signal
;
1543 q
= kmalloc(sizeof(*q
), GFP_KERNEL
);
1550 down_read(¤t
->mm
->mmap_sem
);
1551 err
= get_futex_key(uaddr
, &q
->key
);
1553 if (unlikely(err
!= 0)) {
1554 up_read(¤t
->mm
->mmap_sem
);
1560 * queue_me() must be called before releasing mmap_sem, because
1561 * key->shared.inode needs to be referenced while holding it.
1563 filp
->private_data
= q
;
1565 queue_me(q
, ret
, filp
);
1566 up_read(¤t
->mm
->mmap_sem
);
1568 /* Now we map fd to filp, so userspace can access it */
1569 fd_install(ret
, filp
);
1580 * Support for robust futexes: the kernel cleans up held futexes at
1583 * Implementation: user-space maintains a per-thread list of locks it
1584 * is holding. Upon do_exit(), the kernel carefully walks this list,
1585 * and marks all locks that are owned by this thread with the
1586 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1587 * always manipulated with the lock held, so the list is private and
1588 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1589 * field, to allow the kernel to clean up if the thread dies after
1590 * acquiring the lock, but just before it could have added itself to
1591 * the list. There can only be one such pending lock.
1595 * sys_set_robust_list - set the robust-futex list head of a task
1596 * @head: pointer to the list-head
1597 * @len: length of the list-head, as userspace expects
1600 sys_set_robust_list(struct robust_list_head __user
*head
,
1604 * The kernel knows only one size for now:
1606 if (unlikely(len
!= sizeof(*head
)))
1609 current
->robust_list
= head
;
1615 * sys_get_robust_list - get the robust-futex list head of a task
1616 * @pid: pid of the process [zero for current task]
1617 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1618 * @len_ptr: pointer to a length field, the kernel fills in the header size
1621 sys_get_robust_list(int pid
, struct robust_list_head __user
* __user
*head_ptr
,
1622 size_t __user
*len_ptr
)
1624 struct robust_list_head __user
*head
;
1628 head
= current
->robust_list
;
1630 struct task_struct
*p
;
1634 p
= find_task_by_pid(pid
);
1638 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
1639 !capable(CAP_SYS_PTRACE
))
1641 head
= p
->robust_list
;
1645 if (put_user(sizeof(*head
), len_ptr
))
1647 return put_user(head
, head_ptr
);
1656 * Process a futex-list entry, check whether it's owned by the
1657 * dying task, and do notification if so:
1659 int handle_futex_death(u32 __user
*uaddr
, struct task_struct
*curr
, int pi
)
1661 u32 uval
, nval
, mval
;
1664 if (get_user(uval
, uaddr
))
1667 if ((uval
& FUTEX_TID_MASK
) == curr
->pid
) {
1669 * Ok, this dying thread is truly holding a futex
1670 * of interest. Set the OWNER_DIED bit atomically
1671 * via cmpxchg, and if the value had FUTEX_WAITERS
1672 * set, wake up a waiter (if any). (We have to do a
1673 * futex_wake() even if OWNER_DIED is already set -
1674 * to handle the rare but possible case of recursive
1675 * thread-death.) The rest of the cleanup is done in
1678 mval
= (uval
& FUTEX_WAITERS
) | FUTEX_OWNER_DIED
;
1679 nval
= futex_atomic_cmpxchg_inatomic(uaddr
, uval
, mval
);
1681 if (nval
== -EFAULT
)
1688 * Wake robust non-PI futexes here. The wakeup of
1689 * PI futexes happens in exit_pi_state():
1692 if (uval
& FUTEX_WAITERS
)
1693 futex_wake(uaddr
, 1);
1700 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1702 static inline int fetch_robust_entry(struct robust_list __user
**entry
,
1703 struct robust_list __user
* __user
*head
,
1706 unsigned long uentry
;
1708 if (get_user(uentry
, (unsigned long __user
*)head
))
1711 *entry
= (void __user
*)(uentry
& ~1UL);
1718 * Walk curr->robust_list (very carefully, it's a userspace list!)
1719 * and mark any locks found there dead, and notify any waiters.
1721 * We silently return on any sign of list-walking problem.
1723 void exit_robust_list(struct task_struct
*curr
)
1725 struct robust_list_head __user
*head
= curr
->robust_list
;
1726 struct robust_list __user
*entry
, *pending
;
1727 unsigned int limit
= ROBUST_LIST_LIMIT
, pi
, pip
;
1728 unsigned long futex_offset
;
1731 * Fetch the list head (which was registered earlier, via
1732 * sys_set_robust_list()):
1734 if (fetch_robust_entry(&entry
, &head
->list
.next
, &pi
))
1737 * Fetch the relative futex offset:
1739 if (get_user(futex_offset
, &head
->futex_offset
))
1742 * Fetch any possibly pending lock-add first, and handle it
1745 if (fetch_robust_entry(&pending
, &head
->list_op_pending
, &pip
))
1749 handle_futex_death((void __user
*)pending
+ futex_offset
, curr
, pip
);
1751 while (entry
!= &head
->list
) {
1753 * A pending lock might already be on the list, so
1754 * don't process it twice:
1756 if (entry
!= pending
)
1757 if (handle_futex_death((void __user
*)entry
+ futex_offset
,
1761 * Fetch the next entry in the list:
1763 if (fetch_robust_entry(&entry
, &entry
->next
, &pi
))
1766 * Avoid excessively long or circular lists:
1775 long do_futex(u32 __user
*uaddr
, int op
, u32 val
, unsigned long timeout
,
1776 u32 __user
*uaddr2
, u32 val2
, u32 val3
)
1782 ret
= futex_wait(uaddr
, val
, timeout
);
1785 ret
= futex_wake(uaddr
, val
);
1788 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
1789 ret
= futex_fd(uaddr
, val
);
1792 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, NULL
);
1794 case FUTEX_CMP_REQUEUE
:
1795 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, &val3
);
1798 ret
= futex_wake_op(uaddr
, uaddr2
, val
, val2
, val3
);
1801 ret
= futex_lock_pi(uaddr
, val
, timeout
, val2
, 0);
1803 case FUTEX_UNLOCK_PI
:
1804 ret
= futex_unlock_pi(uaddr
);
1806 case FUTEX_TRYLOCK_PI
:
1807 ret
= futex_lock_pi(uaddr
, 0, timeout
, val2
, 1);
1816 asmlinkage
long sys_futex(u32 __user
*uaddr
, int op
, u32 val
,
1817 struct timespec __user
*utime
, u32 __user
*uaddr2
,
1821 unsigned long timeout
= MAX_SCHEDULE_TIMEOUT
;
1824 if (utime
&& (op
== FUTEX_WAIT
|| op
== FUTEX_LOCK_PI
)) {
1825 if (copy_from_user(&t
, utime
, sizeof(t
)) != 0)
1827 if (!timespec_valid(&t
))
1829 if (op
== FUTEX_WAIT
)
1830 timeout
= timespec_to_jiffies(&t
) + 1;
1837 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
1839 if (op
== FUTEX_REQUEUE
|| op
== FUTEX_CMP_REQUEUE
)
1840 val2
= (u32
) (unsigned long) utime
;
1842 return do_futex(uaddr
, op
, val
, timeout
, uaddr2
, val2
, val3
);
1845 static int futexfs_get_sb(struct file_system_type
*fs_type
,
1846 int flags
, const char *dev_name
, void *data
,
1847 struct vfsmount
*mnt
)
1849 return get_sb_pseudo(fs_type
, "futex", NULL
, 0xBAD1DEA, mnt
);
1852 static struct file_system_type futex_fs_type
= {
1854 .get_sb
= futexfs_get_sb
,
1855 .kill_sb
= kill_anon_super
,
1858 static int __init
init(void)
1860 int i
= register_filesystem(&futex_fs_type
);
1865 futex_mnt
= kern_mount(&futex_fs_type
);
1866 if (IS_ERR(futex_mnt
)) {
1867 unregister_filesystem(&futex_fs_type
);
1868 return PTR_ERR(futex_mnt
);
1871 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
1872 INIT_LIST_HEAD(&futex_queues
[i
].chain
);
1873 spin_lock_init(&futex_queues
[i
].lock
);