[PATCH] sysctl: implement sysctl_uts_string()
[linux-2.6.22.y-op.git] / mm / readahead.c
blobc0df5ed05f624a61d7e685d9b5ff9c4bfa4d2f90
1 /*
2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 akpm@zip.com.au
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/pagevec.h>
18 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
21 EXPORT_SYMBOL(default_unplug_io_fn);
23 struct backing_dev_info default_backing_dev_info = {
24 .ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE,
25 .state = 0,
26 .capabilities = BDI_CAP_MAP_COPY,
27 .unplug_io_fn = default_unplug_io_fn,
29 EXPORT_SYMBOL_GPL(default_backing_dev_info);
32 * Initialise a struct file's readahead state. Assumes that the caller has
33 * memset *ra to zero.
35 void
36 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
38 ra->ra_pages = mapping->backing_dev_info->ra_pages;
39 ra->prev_page = -1;
41 EXPORT_SYMBOL_GPL(file_ra_state_init);
44 * Return max readahead size for this inode in number-of-pages.
46 static inline unsigned long get_max_readahead(struct file_ra_state *ra)
48 return ra->ra_pages;
51 static inline unsigned long get_min_readahead(struct file_ra_state *ra)
53 return (VM_MIN_READAHEAD * 1024) / PAGE_CACHE_SIZE;
56 static inline void reset_ahead_window(struct file_ra_state *ra)
59 * ... but preserve ahead_start + ahead_size value,
60 * see 'recheck:' label in page_cache_readahead().
61 * Note: We never use ->ahead_size as rvalue without
62 * checking ->ahead_start != 0 first.
64 ra->ahead_size += ra->ahead_start;
65 ra->ahead_start = 0;
68 static inline void ra_off(struct file_ra_state *ra)
70 ra->start = 0;
71 ra->flags = 0;
72 ra->size = 0;
73 reset_ahead_window(ra);
74 return;
78 * Set the initial window size, round to next power of 2 and square
79 * for small size, x 4 for medium, and x 2 for large
80 * for 128k (32 page) max ra
81 * 1-8 page = 32k initial, > 8 page = 128k initial
83 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
85 unsigned long newsize = roundup_pow_of_two(size);
87 if (newsize <= max / 32)
88 newsize = newsize * 4;
89 else if (newsize <= max / 4)
90 newsize = newsize * 2;
91 else
92 newsize = max;
93 return newsize;
97 * Set the new window size, this is called only when I/O is to be submitted,
98 * not for each call to readahead. If a cache miss occured, reduce next I/O
99 * size, else increase depending on how close to max we are.
101 static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
103 unsigned long max = get_max_readahead(ra);
104 unsigned long min = get_min_readahead(ra);
105 unsigned long cur = ra->size;
106 unsigned long newsize;
108 if (ra->flags & RA_FLAG_MISS) {
109 ra->flags &= ~RA_FLAG_MISS;
110 newsize = max((cur - 2), min);
111 } else if (cur < max / 16) {
112 newsize = 4 * cur;
113 } else {
114 newsize = 2 * cur;
116 return min(newsize, max);
119 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
122 * read_cache_pages - populate an address space with some pages & start reads against them
123 * @mapping: the address_space
124 * @pages: The address of a list_head which contains the target pages. These
125 * pages have their ->index populated and are otherwise uninitialised.
126 * @filler: callback routine for filling a single page.
127 * @data: private data for the callback routine.
129 * Hides the details of the LRU cache etc from the filesystems.
131 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
132 int (*filler)(void *, struct page *), void *data)
134 struct page *page;
135 struct pagevec lru_pvec;
136 int ret = 0;
138 pagevec_init(&lru_pvec, 0);
140 while (!list_empty(pages)) {
141 page = list_to_page(pages);
142 list_del(&page->lru);
143 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
144 page_cache_release(page);
145 continue;
147 ret = filler(data, page);
148 if (!pagevec_add(&lru_pvec, page))
149 __pagevec_lru_add(&lru_pvec);
150 if (ret) {
151 put_pages_list(pages);
152 break;
155 pagevec_lru_add(&lru_pvec);
156 return ret;
159 EXPORT_SYMBOL(read_cache_pages);
161 static int read_pages(struct address_space *mapping, struct file *filp,
162 struct list_head *pages, unsigned nr_pages)
164 unsigned page_idx;
165 struct pagevec lru_pvec;
166 int ret;
168 if (mapping->a_ops->readpages) {
169 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
170 /* Clean up the remaining pages */
171 put_pages_list(pages);
172 goto out;
175 pagevec_init(&lru_pvec, 0);
176 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
177 struct page *page = list_to_page(pages);
178 list_del(&page->lru);
179 if (!add_to_page_cache(page, mapping,
180 page->index, GFP_KERNEL)) {
181 mapping->a_ops->readpage(filp, page);
182 if (!pagevec_add(&lru_pvec, page))
183 __pagevec_lru_add(&lru_pvec);
184 } else
185 page_cache_release(page);
187 pagevec_lru_add(&lru_pvec);
188 ret = 0;
189 out:
190 return ret;
194 * Readahead design.
196 * The fields in struct file_ra_state represent the most-recently-executed
197 * readahead attempt:
199 * start: Page index at which we started the readahead
200 * size: Number of pages in that read
201 * Together, these form the "current window".
202 * Together, start and size represent the `readahead window'.
203 * prev_page: The page which the readahead algorithm most-recently inspected.
204 * It is mainly used to detect sequential file reading.
205 * If page_cache_readahead sees that it is again being called for
206 * a page which it just looked at, it can return immediately without
207 * making any state changes.
208 * ahead_start,
209 * ahead_size: Together, these form the "ahead window".
210 * ra_pages: The externally controlled max readahead for this fd.
212 * When readahead is in the off state (size == 0), readahead is disabled.
213 * In this state, prev_page is used to detect the resumption of sequential I/O.
215 * The readahead code manages two windows - the "current" and the "ahead"
216 * windows. The intent is that while the application is walking the pages
217 * in the current window, I/O is underway on the ahead window. When the
218 * current window is fully traversed, it is replaced by the ahead window
219 * and the ahead window is invalidated. When this copying happens, the
220 * new current window's pages are probably still locked. So
221 * we submit a new batch of I/O immediately, creating a new ahead window.
223 * So:
225 * ----|----------------|----------------|-----
226 * ^start ^start+size
227 * ^ahead_start ^ahead_start+ahead_size
229 * ^ When this page is read, we submit I/O for the
230 * ahead window.
232 * A `readahead hit' occurs when a read request is made against a page which is
233 * the next sequential page. Ahead window calculations are done only when it
234 * is time to submit a new IO. The code ramps up the size agressively at first,
235 * but slow down as it approaches max_readhead.
237 * Any seek/ramdom IO will result in readahead being turned off. It will resume
238 * at the first sequential access.
240 * There is a special-case: if the first page which the application tries to
241 * read happens to be the first page of the file, it is assumed that a linear
242 * read is about to happen and the window is immediately set to the initial size
243 * based on I/O request size and the max_readahead.
245 * This function is to be called for every read request, rather than when
246 * it is time to perform readahead. It is called only once for the entire I/O
247 * regardless of size unless readahead is unable to start enough I/O to satisfy
248 * the request (I/O request > max_readahead).
252 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
253 * the pages first, then submits them all for I/O. This avoids the very bad
254 * behaviour which would occur if page allocations are causing VM writeback.
255 * We really don't want to intermingle reads and writes like that.
257 * Returns the number of pages requested, or the maximum amount of I/O allowed.
259 * do_page_cache_readahead() returns -1 if it encountered request queue
260 * congestion.
262 static int
263 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
264 pgoff_t offset, unsigned long nr_to_read)
266 struct inode *inode = mapping->host;
267 struct page *page;
268 unsigned long end_index; /* The last page we want to read */
269 LIST_HEAD(page_pool);
270 int page_idx;
271 int ret = 0;
272 loff_t isize = i_size_read(inode);
274 if (isize == 0)
275 goto out;
277 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
280 * Preallocate as many pages as we will need.
282 read_lock_irq(&mapping->tree_lock);
283 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
284 pgoff_t page_offset = offset + page_idx;
286 if (page_offset > end_index)
287 break;
289 page = radix_tree_lookup(&mapping->page_tree, page_offset);
290 if (page)
291 continue;
293 read_unlock_irq(&mapping->tree_lock);
294 page = page_cache_alloc_cold(mapping);
295 read_lock_irq(&mapping->tree_lock);
296 if (!page)
297 break;
298 page->index = page_offset;
299 list_add(&page->lru, &page_pool);
300 ret++;
302 read_unlock_irq(&mapping->tree_lock);
305 * Now start the IO. We ignore I/O errors - if the page is not
306 * uptodate then the caller will launch readpage again, and
307 * will then handle the error.
309 if (ret)
310 read_pages(mapping, filp, &page_pool, ret);
311 BUG_ON(!list_empty(&page_pool));
312 out:
313 return ret;
317 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
318 * memory at once.
320 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
321 pgoff_t offset, unsigned long nr_to_read)
323 int ret = 0;
325 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
326 return -EINVAL;
328 while (nr_to_read) {
329 int err;
331 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
333 if (this_chunk > nr_to_read)
334 this_chunk = nr_to_read;
335 err = __do_page_cache_readahead(mapping, filp,
336 offset, this_chunk);
337 if (err < 0) {
338 ret = err;
339 break;
341 ret += err;
342 offset += this_chunk;
343 nr_to_read -= this_chunk;
345 return ret;
349 * Check how effective readahead is being. If the amount of started IO is
350 * less than expected then the file is partly or fully in pagecache and
351 * readahead isn't helping.
354 static inline int check_ra_success(struct file_ra_state *ra,
355 unsigned long nr_to_read, unsigned long actual)
357 if (actual == 0) {
358 ra->cache_hit += nr_to_read;
359 if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
360 ra_off(ra);
361 ra->flags |= RA_FLAG_INCACHE;
362 return 0;
364 } else {
365 ra->cache_hit=0;
367 return 1;
371 * This version skips the IO if the queue is read-congested, and will tell the
372 * block layer to abandon the readahead if request allocation would block.
374 * force_page_cache_readahead() will ignore queue congestion and will block on
375 * request queues.
377 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
378 pgoff_t offset, unsigned long nr_to_read)
380 if (bdi_read_congested(mapping->backing_dev_info))
381 return -1;
383 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
387 * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
388 * is set wait till the read completes. Otherwise attempt to read without
389 * blocking.
390 * Returns 1 meaning 'success' if read is successful without switching off
391 * readahead mode. Otherwise return failure.
393 static int
394 blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
395 pgoff_t offset, unsigned long nr_to_read,
396 struct file_ra_state *ra, int block)
398 int actual;
400 if (!block && bdi_read_congested(mapping->backing_dev_info))
401 return 0;
403 actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
405 return check_ra_success(ra, nr_to_read, actual);
408 static int make_ahead_window(struct address_space *mapping, struct file *filp,
409 struct file_ra_state *ra, int force)
411 int block, ret;
413 ra->ahead_size = get_next_ra_size(ra);
414 ra->ahead_start = ra->start + ra->size;
416 block = force || (ra->prev_page >= ra->ahead_start);
417 ret = blockable_page_cache_readahead(mapping, filp,
418 ra->ahead_start, ra->ahead_size, ra, block);
420 if (!ret && !force) {
421 /* A read failure in blocking mode, implies pages are
422 * all cached. So we can safely assume we have taken
423 * care of all the pages requested in this call.
424 * A read failure in non-blocking mode, implies we are
425 * reading more pages than requested in this call. So
426 * we safely assume we have taken care of all the pages
427 * requested in this call.
429 * Just reset the ahead window in case we failed due to
430 * congestion. The ahead window will any way be closed
431 * in case we failed due to excessive page cache hits.
433 reset_ahead_window(ra);
436 return ret;
440 * page_cache_readahead - generic adaptive readahead
441 * @mapping: address_space which holds the pagecache and I/O vectors
442 * @ra: file_ra_state which holds the readahead state
443 * @filp: passed on to ->readpage() and ->readpages()
444 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
445 * @req_size: hint: total size of the read which the caller is performing in
446 * PAGE_CACHE_SIZE units
448 * page_cache_readahead() is the main function. If performs the adaptive
449 * readahead window size management and submits the readahead I/O.
451 * Note that @filp is purely used for passing on to the ->readpage[s]()
452 * handler: it may refer to a different file from @mapping (so we may not use
453 * @filp->f_mapping or @filp->f_path.dentry->d_inode here).
454 * Also, @ra may not be equal to &@filp->f_ra.
457 unsigned long
458 page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
459 struct file *filp, pgoff_t offset, unsigned long req_size)
461 unsigned long max, newsize;
462 int sequential;
465 * We avoid doing extra work and bogusly perturbing the readahead
466 * window expansion logic.
468 if (offset == ra->prev_page && --req_size)
469 ++offset;
471 /* Note that prev_page == -1 if it is a first read */
472 sequential = (offset == ra->prev_page + 1);
473 ra->prev_page = offset;
475 max = get_max_readahead(ra);
476 newsize = min(req_size, max);
478 /* No readahead or sub-page sized read or file already in cache */
479 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
480 goto out;
482 ra->prev_page += newsize - 1;
485 * Special case - first read at start of file. We'll assume it's
486 * a whole-file read and grow the window fast. Or detect first
487 * sequential access
489 if (sequential && ra->size == 0) {
490 ra->size = get_init_ra_size(newsize, max);
491 ra->start = offset;
492 if (!blockable_page_cache_readahead(mapping, filp, offset,
493 ra->size, ra, 1))
494 goto out;
497 * If the request size is larger than our max readahead, we
498 * at least want to be sure that we get 2 IOs in flight and
499 * we know that we will definitly need the new I/O.
500 * once we do this, subsequent calls should be able to overlap
501 * IOs,* thus preventing stalls. so issue the ahead window
502 * immediately.
504 if (req_size >= max)
505 make_ahead_window(mapping, filp, ra, 1);
507 goto out;
511 * Now handle the random case:
512 * partial page reads and first access were handled above,
513 * so this must be the next page otherwise it is random
515 if (!sequential) {
516 ra_off(ra);
517 blockable_page_cache_readahead(mapping, filp, offset,
518 newsize, ra, 1);
519 goto out;
523 * If we get here we are doing sequential IO and this was not the first
524 * occurence (ie we have an existing window)
526 if (ra->ahead_start == 0) { /* no ahead window yet */
527 if (!make_ahead_window(mapping, filp, ra, 0))
528 goto recheck;
532 * Already have an ahead window, check if we crossed into it.
533 * If so, shift windows and issue a new ahead window.
534 * Only return the #pages that are in the current window, so that
535 * we get called back on the first page of the ahead window which
536 * will allow us to submit more IO.
538 if (ra->prev_page >= ra->ahead_start) {
539 ra->start = ra->ahead_start;
540 ra->size = ra->ahead_size;
541 make_ahead_window(mapping, filp, ra, 0);
542 recheck:
543 /* prev_page shouldn't overrun the ahead window */
544 ra->prev_page = min(ra->prev_page,
545 ra->ahead_start + ra->ahead_size - 1);
548 out:
549 return ra->prev_page + 1;
551 EXPORT_SYMBOL_GPL(page_cache_readahead);
554 * handle_ra_miss() is called when it is known that a page which should have
555 * been present in the pagecache (we just did some readahead there) was in fact
556 * not found. This will happen if it was evicted by the VM (readahead
557 * thrashing)
559 * Turn on the cache miss flag in the RA struct, this will cause the RA code
560 * to reduce the RA size on the next read.
562 void handle_ra_miss(struct address_space *mapping,
563 struct file_ra_state *ra, pgoff_t offset)
565 ra->flags |= RA_FLAG_MISS;
566 ra->flags &= ~RA_FLAG_INCACHE;
567 ra->cache_hit = 0;
571 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
572 * sensible upper limit.
574 unsigned long max_sane_readahead(unsigned long nr)
576 unsigned long active;
577 unsigned long inactive;
578 unsigned long free;
580 __get_zone_counts(&active, &inactive, &free, NODE_DATA(numa_node_id()));
581 return min(nr, (inactive + free) / 2);