3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
80 #include <linux/config.h>
81 #include <linux/slab.h>
83 #include <linux/swap.h>
84 #include <linux/cache.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compiler.h>
88 #include <linux/seq_file.h>
89 #include <linux/notifier.h>
90 #include <linux/kallsyms.h>
91 #include <linux/cpu.h>
92 #include <linux/sysctl.h>
93 #include <linux/module.h>
94 #include <linux/rcupdate.h>
95 #include <linux/string.h>
97 #include <asm/uaccess.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100 #include <asm/page.h>
103 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
104 * SLAB_RED_ZONE & SLAB_POISON.
105 * 0 for faster, smaller code (especially in the critical paths).
107 * STATS - 1 to collect stats for /proc/slabinfo.
108 * 0 for faster, smaller code (especially in the critical paths).
110 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
113 #ifdef CONFIG_DEBUG_SLAB
116 #define FORCED_DEBUG 1
120 #define FORCED_DEBUG 0
124 /* Shouldn't this be in a header file somewhere? */
125 #define BYTES_PER_WORD sizeof(void *)
127 #ifndef cache_line_size
128 #define cache_line_size() L1_CACHE_BYTES
131 #ifndef ARCH_KMALLOC_MINALIGN
133 * Enforce a minimum alignment for the kmalloc caches.
134 * Usually, the kmalloc caches are cache_line_size() aligned, except when
135 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
136 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
137 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
138 * Note that this flag disables some debug features.
140 #define ARCH_KMALLOC_MINALIGN 0
143 #ifndef ARCH_SLAB_MINALIGN
145 * Enforce a minimum alignment for all caches.
146 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
147 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
148 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
149 * some debug features.
151 #define ARCH_SLAB_MINALIGN 0
154 #ifndef ARCH_KMALLOC_FLAGS
155 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 /* Legal flag mask for kmem_cache_create(). */
160 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
161 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
162 SLAB_NO_REAP | SLAB_CACHE_DMA | \
163 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
167 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
168 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
169 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 * Bufctl's are used for linking objs within a slab
179 * This implementation relies on "struct page" for locating the cache &
180 * slab an object belongs to.
181 * This allows the bufctl structure to be small (one int), but limits
182 * the number of objects a slab (not a cache) can contain when off-slab
183 * bufctls are used. The limit is the size of the largest general cache
184 * that does not use off-slab slabs.
185 * For 32bit archs with 4 kB pages, is this 56.
186 * This is not serious, as it is only for large objects, when it is unwise
187 * to have too many per slab.
188 * Note: This limit can be raised by introducing a general cache whose size
189 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
192 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
193 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
194 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
196 /* Max number of objs-per-slab for caches which use off-slab slabs.
197 * Needed to avoid a possible looping condition in cache_grow().
199 static unsigned long offslab_limit
;
204 * Manages the objs in a slab. Placed either at the beginning of mem allocated
205 * for a slab, or allocated from an general cache.
206 * Slabs are chained into three list: fully used, partial, fully free slabs.
209 struct list_head list
;
210 unsigned long colouroff
;
211 void *s_mem
; /* including colour offset */
212 unsigned int inuse
; /* num of objs active in slab */
219 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
220 * arrange for kmem_freepages to be called via RCU. This is useful if
221 * we need to approach a kernel structure obliquely, from its address
222 * obtained without the usual locking. We can lock the structure to
223 * stabilize it and check it's still at the given address, only if we
224 * can be sure that the memory has not been meanwhile reused for some
225 * other kind of object (which our subsystem's lock might corrupt).
227 * rcu_read_lock before reading the address, then rcu_read_unlock after
228 * taking the spinlock within the structure expected at that address.
230 * We assume struct slab_rcu can overlay struct slab when destroying.
233 struct rcu_head head
;
234 kmem_cache_t
*cachep
;
243 * - LIFO ordering, to hand out cache-warm objects from _alloc
244 * - reduce the number of linked list operations
245 * - reduce spinlock operations
247 * The limit is stored in the per-cpu structure to reduce the data cache
254 unsigned int batchcount
;
255 unsigned int touched
;
258 /* bootstrap: The caches do not work without cpuarrays anymore,
259 * but the cpuarrays are allocated from the generic caches...
261 #define BOOT_CPUCACHE_ENTRIES 1
262 struct arraycache_init
{
263 struct array_cache cache
;
264 void * entries
[BOOT_CPUCACHE_ENTRIES
];
268 * The slab lists of all objects.
269 * Hopefully reduce the internal fragmentation
270 * NUMA: The spinlock could be moved from the kmem_cache_t
271 * into this structure, too. Figure out what causes
272 * fewer cross-node spinlock operations.
275 struct list_head slabs_partial
; /* partial list first, better asm code */
276 struct list_head slabs_full
;
277 struct list_head slabs_free
;
278 unsigned long free_objects
;
280 unsigned long next_reap
;
281 struct array_cache
*shared
;
284 #define LIST3_INIT(parent) \
286 .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
287 .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
288 .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
290 #define list3_data(cachep) \
294 #define list3_data_ptr(cachep, ptr) \
303 struct kmem_cache_s
{
304 /* 1) per-cpu data, touched during every alloc/free */
305 struct array_cache
*array
[NR_CPUS
];
306 unsigned int batchcount
;
308 /* 2) touched by every alloc & free from the backend */
309 struct kmem_list3 lists
;
310 /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */
311 unsigned int objsize
;
312 unsigned int flags
; /* constant flags */
313 unsigned int num
; /* # of objs per slab */
314 unsigned int free_limit
; /* upper limit of objects in the lists */
317 /* 3) cache_grow/shrink */
318 /* order of pgs per slab (2^n) */
319 unsigned int gfporder
;
321 /* force GFP flags, e.g. GFP_DMA */
322 unsigned int gfpflags
;
324 size_t colour
; /* cache colouring range */
325 unsigned int colour_off
; /* colour offset */
326 unsigned int colour_next
; /* cache colouring */
327 kmem_cache_t
*slabp_cache
;
328 unsigned int slab_size
;
329 unsigned int dflags
; /* dynamic flags */
331 /* constructor func */
332 void (*ctor
)(void *, kmem_cache_t
*, unsigned long);
334 /* de-constructor func */
335 void (*dtor
)(void *, kmem_cache_t
*, unsigned long);
337 /* 4) cache creation/removal */
339 struct list_head next
;
343 unsigned long num_active
;
344 unsigned long num_allocations
;
345 unsigned long high_mark
;
347 unsigned long reaped
;
348 unsigned long errors
;
349 unsigned long max_freeable
;
350 unsigned long node_allocs
;
362 #define CFLGS_OFF_SLAB (0x80000000UL)
363 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
365 #define BATCHREFILL_LIMIT 16
366 /* Optimization question: fewer reaps means less
367 * probability for unnessary cpucache drain/refill cycles.
369 * OTHO the cpuarrays can contain lots of objects,
370 * which could lock up otherwise freeable slabs.
372 #define REAPTIMEOUT_CPUC (2*HZ)
373 #define REAPTIMEOUT_LIST3 (4*HZ)
376 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
377 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
378 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
379 #define STATS_INC_GROWN(x) ((x)->grown++)
380 #define STATS_INC_REAPED(x) ((x)->reaped++)
381 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
382 (x)->high_mark = (x)->num_active; \
384 #define STATS_INC_ERR(x) ((x)->errors++)
385 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
386 #define STATS_SET_FREEABLE(x, i) \
387 do { if ((x)->max_freeable < i) \
388 (x)->max_freeable = i; \
391 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
392 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
393 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
394 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
396 #define STATS_INC_ACTIVE(x) do { } while (0)
397 #define STATS_DEC_ACTIVE(x) do { } while (0)
398 #define STATS_INC_ALLOCED(x) do { } while (0)
399 #define STATS_INC_GROWN(x) do { } while (0)
400 #define STATS_INC_REAPED(x) do { } while (0)
401 #define STATS_SET_HIGH(x) do { } while (0)
402 #define STATS_INC_ERR(x) do { } while (0)
403 #define STATS_INC_NODEALLOCS(x) do { } while (0)
404 #define STATS_SET_FREEABLE(x, i) \
407 #define STATS_INC_ALLOCHIT(x) do { } while (0)
408 #define STATS_INC_ALLOCMISS(x) do { } while (0)
409 #define STATS_INC_FREEHIT(x) do { } while (0)
410 #define STATS_INC_FREEMISS(x) do { } while (0)
414 /* Magic nums for obj red zoning.
415 * Placed in the first word before and the first word after an obj.
417 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
418 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
420 /* ...and for poisoning */
421 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
422 #define POISON_FREE 0x6b /* for use-after-free poisoning */
423 #define POISON_END 0xa5 /* end-byte of poisoning */
425 /* memory layout of objects:
427 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
428 * the end of an object is aligned with the end of the real
429 * allocation. Catches writes behind the end of the allocation.
430 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
432 * cachep->dbghead: The real object.
433 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
434 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
436 static int obj_dbghead(kmem_cache_t
*cachep
)
438 return cachep
->dbghead
;
441 static int obj_reallen(kmem_cache_t
*cachep
)
443 return cachep
->reallen
;
446 static unsigned long *dbg_redzone1(kmem_cache_t
*cachep
, void *objp
)
448 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
449 return (unsigned long*) (objp
+obj_dbghead(cachep
)-BYTES_PER_WORD
);
452 static unsigned long *dbg_redzone2(kmem_cache_t
*cachep
, void *objp
)
454 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
455 if (cachep
->flags
& SLAB_STORE_USER
)
456 return (unsigned long*) (objp
+cachep
->objsize
-2*BYTES_PER_WORD
);
457 return (unsigned long*) (objp
+cachep
->objsize
-BYTES_PER_WORD
);
460 static void **dbg_userword(kmem_cache_t
*cachep
, void *objp
)
462 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
463 return (void**)(objp
+cachep
->objsize
-BYTES_PER_WORD
);
468 #define obj_dbghead(x) 0
469 #define obj_reallen(cachep) (cachep->objsize)
470 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
471 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
472 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
477 * Maximum size of an obj (in 2^order pages)
478 * and absolute limit for the gfp order.
480 #if defined(CONFIG_LARGE_ALLOCS)
481 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
482 #define MAX_GFP_ORDER 13 /* up to 32Mb */
483 #elif defined(CONFIG_MMU)
484 #define MAX_OBJ_ORDER 5 /* 32 pages */
485 #define MAX_GFP_ORDER 5 /* 32 pages */
487 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
488 #define MAX_GFP_ORDER 8 /* up to 1Mb */
492 * Do not go above this order unless 0 objects fit into the slab.
494 #define BREAK_GFP_ORDER_HI 1
495 #define BREAK_GFP_ORDER_LO 0
496 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
498 /* Macros for storing/retrieving the cachep and or slab from the
499 * global 'mem_map'. These are used to find the slab an obj belongs to.
500 * With kfree(), these are used to find the cache which an obj belongs to.
502 #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
503 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
504 #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
505 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
507 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
508 struct cache_sizes malloc_sizes
[] = {
509 #define CACHE(x) { .cs_size = (x) },
510 #include <linux/kmalloc_sizes.h>
514 EXPORT_SYMBOL(malloc_sizes
);
516 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
522 static struct cache_names __initdata cache_names
[] = {
523 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
524 #include <linux/kmalloc_sizes.h>
529 static struct arraycache_init initarray_cache __initdata
=
530 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
531 static struct arraycache_init initarray_generic
=
532 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
534 /* internal cache of cache description objs */
535 static kmem_cache_t cache_cache
= {
536 .lists
= LIST3_INIT(cache_cache
.lists
),
538 .limit
= BOOT_CPUCACHE_ENTRIES
,
539 .objsize
= sizeof(kmem_cache_t
),
540 .flags
= SLAB_NO_REAP
,
541 .spinlock
= SPIN_LOCK_UNLOCKED
,
542 .name
= "kmem_cache",
544 .reallen
= sizeof(kmem_cache_t
),
548 /* Guard access to the cache-chain. */
549 static struct semaphore cache_chain_sem
;
550 static struct list_head cache_chain
;
553 * vm_enough_memory() looks at this to determine how many
554 * slab-allocated pages are possibly freeable under pressure
556 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
558 atomic_t slab_reclaim_pages
;
559 EXPORT_SYMBOL(slab_reclaim_pages
);
562 * chicken and egg problem: delay the per-cpu array allocation
563 * until the general caches are up.
571 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
573 static void free_block(kmem_cache_t
* cachep
, void** objpp
, int len
);
574 static void enable_cpucache (kmem_cache_t
*cachep
);
575 static void cache_reap (void *unused
);
577 static inline void **ac_entry(struct array_cache
*ac
)
579 return (void**)(ac
+1);
582 static inline struct array_cache
*ac_data(kmem_cache_t
*cachep
)
584 return cachep
->array
[smp_processor_id()];
587 static inline kmem_cache_t
*__find_general_cachep(size_t size
, int gfpflags
)
589 struct cache_sizes
*csizep
= malloc_sizes
;
592 /* This happens if someone tries to call
593 * kmem_cache_create(), or __kmalloc(), before
594 * the generic caches are initialized.
596 BUG_ON(csizep
->cs_cachep
== NULL
);
598 while (size
> csizep
->cs_size
)
602 * Really subtile: The last entry with cs->cs_size==ULONG_MAX
603 * has cs_{dma,}cachep==NULL. Thus no special case
604 * for large kmalloc calls required.
606 if (unlikely(gfpflags
& GFP_DMA
))
607 return csizep
->cs_dmacachep
;
608 return csizep
->cs_cachep
;
611 kmem_cache_t
*kmem_find_general_cachep(size_t size
, int gfpflags
)
613 return __find_general_cachep(size
, gfpflags
);
615 EXPORT_SYMBOL(kmem_find_general_cachep
);
617 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
618 static void cache_estimate(unsigned long gfporder
, size_t size
, size_t align
,
619 int flags
, size_t *left_over
, unsigned int *num
)
622 size_t wastage
= PAGE_SIZE
<<gfporder
;
626 if (!(flags
& CFLGS_OFF_SLAB
)) {
627 base
= sizeof(struct slab
);
628 extra
= sizeof(kmem_bufctl_t
);
631 while (i
*size
+ ALIGN(base
+i
*extra
, align
) <= wastage
)
641 wastage
-= ALIGN(base
+i
*extra
, align
);
642 *left_over
= wastage
;
645 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
647 static void __slab_error(const char *function
, kmem_cache_t
*cachep
, char *msg
)
649 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
650 function
, cachep
->name
, msg
);
655 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
656 * via the workqueue/eventd.
657 * Add the CPU number into the expiration time to minimize the possibility of
658 * the CPUs getting into lockstep and contending for the global cache chain
661 static void __devinit
start_cpu_timer(int cpu
)
663 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
666 * When this gets called from do_initcalls via cpucache_init(),
667 * init_workqueues() has already run, so keventd will be setup
670 if (keventd_up() && reap_work
->func
== NULL
) {
671 INIT_WORK(reap_work
, cache_reap
, NULL
);
672 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
676 static struct array_cache
*alloc_arraycache(int cpu
, int entries
,
679 int memsize
= sizeof(void*)*entries
+sizeof(struct array_cache
);
680 struct array_cache
*nc
= NULL
;
683 nc
= kmalloc(memsize
, GFP_KERNEL
);
685 nc
= kmalloc_node(memsize
, GFP_KERNEL
, cpu_to_node(cpu
));
690 nc
->batchcount
= batchcount
;
696 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
697 unsigned long action
, void *hcpu
)
699 long cpu
= (long)hcpu
;
700 kmem_cache_t
* cachep
;
704 down(&cache_chain_sem
);
705 list_for_each_entry(cachep
, &cache_chain
, next
) {
706 struct array_cache
*nc
;
708 nc
= alloc_arraycache(cpu
, cachep
->limit
, cachep
->batchcount
);
712 spin_lock_irq(&cachep
->spinlock
);
713 cachep
->array
[cpu
] = nc
;
714 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
716 spin_unlock_irq(&cachep
->spinlock
);
719 up(&cache_chain_sem
);
722 start_cpu_timer(cpu
);
724 #ifdef CONFIG_HOTPLUG_CPU
727 case CPU_UP_CANCELED
:
728 down(&cache_chain_sem
);
730 list_for_each_entry(cachep
, &cache_chain
, next
) {
731 struct array_cache
*nc
;
733 spin_lock_irq(&cachep
->spinlock
);
734 /* cpu is dead; no one can alloc from it. */
735 nc
= cachep
->array
[cpu
];
736 cachep
->array
[cpu
] = NULL
;
737 cachep
->free_limit
-= cachep
->batchcount
;
738 free_block(cachep
, ac_entry(nc
), nc
->avail
);
739 spin_unlock_irq(&cachep
->spinlock
);
742 up(&cache_chain_sem
);
748 up(&cache_chain_sem
);
752 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
755 * Called after the gfp() functions have been enabled, and before smp_init().
757 void __init
kmem_cache_init(void)
760 struct cache_sizes
*sizes
;
761 struct cache_names
*names
;
764 * Fragmentation resistance on low memory - only use bigger
765 * page orders on machines with more than 32MB of memory.
767 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
768 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
771 /* Bootstrap is tricky, because several objects are allocated
772 * from caches that do not exist yet:
773 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
774 * structures of all caches, except cache_cache itself: cache_cache
775 * is statically allocated.
776 * Initially an __init data area is used for the head array, it's
777 * replaced with a kmalloc allocated array at the end of the bootstrap.
778 * 2) Create the first kmalloc cache.
779 * The kmem_cache_t for the new cache is allocated normally. An __init
780 * data area is used for the head array.
781 * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
782 * 4) Replace the __init data head arrays for cache_cache and the first
783 * kmalloc cache with kmalloc allocated arrays.
784 * 5) Resize the head arrays of the kmalloc caches to their final sizes.
787 /* 1) create the cache_cache */
788 init_MUTEX(&cache_chain_sem
);
789 INIT_LIST_HEAD(&cache_chain
);
790 list_add(&cache_cache
.next
, &cache_chain
);
791 cache_cache
.colour_off
= cache_line_size();
792 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
794 cache_cache
.objsize
= ALIGN(cache_cache
.objsize
, cache_line_size());
796 cache_estimate(0, cache_cache
.objsize
, cache_line_size(), 0,
797 &left_over
, &cache_cache
.num
);
798 if (!cache_cache
.num
)
801 cache_cache
.colour
= left_over
/cache_cache
.colour_off
;
802 cache_cache
.colour_next
= 0;
803 cache_cache
.slab_size
= ALIGN(cache_cache
.num
*sizeof(kmem_bufctl_t
) +
804 sizeof(struct slab
), cache_line_size());
806 /* 2+3) create the kmalloc caches */
807 sizes
= malloc_sizes
;
810 while (sizes
->cs_size
!= ULONG_MAX
) {
811 /* For performance, all the general caches are L1 aligned.
812 * This should be particularly beneficial on SMP boxes, as it
813 * eliminates "false sharing".
814 * Note for systems short on memory removing the alignment will
815 * allow tighter packing of the smaller caches. */
816 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
817 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
818 (ARCH_KMALLOC_FLAGS
| SLAB_PANIC
), NULL
, NULL
);
820 /* Inc off-slab bufctl limit until the ceiling is hit. */
821 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
822 offslab_limit
= sizes
->cs_size
-sizeof(struct slab
);
823 offslab_limit
/= sizeof(kmem_bufctl_t
);
826 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
827 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
828 (ARCH_KMALLOC_FLAGS
| SLAB_CACHE_DMA
| SLAB_PANIC
),
834 /* 4) Replace the bootstrap head arrays */
838 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
840 BUG_ON(ac_data(&cache_cache
) != &initarray_cache
.cache
);
841 memcpy(ptr
, ac_data(&cache_cache
), sizeof(struct arraycache_init
));
842 cache_cache
.array
[smp_processor_id()] = ptr
;
845 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
847 BUG_ON(ac_data(malloc_sizes
[0].cs_cachep
) != &initarray_generic
.cache
);
848 memcpy(ptr
, ac_data(malloc_sizes
[0].cs_cachep
),
849 sizeof(struct arraycache_init
));
850 malloc_sizes
[0].cs_cachep
->array
[smp_processor_id()] = ptr
;
854 /* 5) resize the head arrays to their final sizes */
856 kmem_cache_t
*cachep
;
857 down(&cache_chain_sem
);
858 list_for_each_entry(cachep
, &cache_chain
, next
)
859 enable_cpucache(cachep
);
860 up(&cache_chain_sem
);
864 g_cpucache_up
= FULL
;
866 /* Register a cpu startup notifier callback
867 * that initializes ac_data for all new cpus
869 register_cpu_notifier(&cpucache_notifier
);
872 /* The reap timers are started later, with a module init call:
873 * That part of the kernel is not yet operational.
877 static int __init
cpucache_init(void)
882 * Register the timers that return unneeded
885 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
887 start_cpu_timer(cpu
);
893 __initcall(cpucache_init
);
896 * Interface to system's page allocator. No need to hold the cache-lock.
898 * If we requested dmaable memory, we will get it. Even if we
899 * did not request dmaable memory, we might get it, but that
900 * would be relatively rare and ignorable.
902 static void *kmem_getpages(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
908 flags
|= cachep
->gfpflags
;
909 if (likely(nodeid
== -1)) {
910 page
= alloc_pages(flags
, cachep
->gfporder
);
912 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
916 addr
= page_address(page
);
918 i
= (1 << cachep
->gfporder
);
919 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
920 atomic_add(i
, &slab_reclaim_pages
);
921 add_page_state(nr_slab
, i
);
930 * Interface to system's page release.
932 static void kmem_freepages(kmem_cache_t
*cachep
, void *addr
)
934 unsigned long i
= (1<<cachep
->gfporder
);
935 struct page
*page
= virt_to_page(addr
);
936 const unsigned long nr_freed
= i
;
939 if (!TestClearPageSlab(page
))
943 sub_page_state(nr_slab
, nr_freed
);
944 if (current
->reclaim_state
)
945 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
946 free_pages((unsigned long)addr
, cachep
->gfporder
);
947 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
948 atomic_sub(1<<cachep
->gfporder
, &slab_reclaim_pages
);
951 static void kmem_rcu_free(struct rcu_head
*head
)
953 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*) head
;
954 kmem_cache_t
*cachep
= slab_rcu
->cachep
;
956 kmem_freepages(cachep
, slab_rcu
->addr
);
957 if (OFF_SLAB(cachep
))
958 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
963 #ifdef CONFIG_DEBUG_PAGEALLOC
964 static void store_stackinfo(kmem_cache_t
*cachep
, unsigned long *addr
,
965 unsigned long caller
)
967 int size
= obj_reallen(cachep
);
969 addr
= (unsigned long *)&((char*)addr
)[obj_dbghead(cachep
)];
971 if (size
< 5*sizeof(unsigned long))
976 *addr
++=smp_processor_id();
977 size
-= 3*sizeof(unsigned long);
979 unsigned long *sptr
= &caller
;
980 unsigned long svalue
;
982 while (!kstack_end(sptr
)) {
984 if (kernel_text_address(svalue
)) {
986 size
-= sizeof(unsigned long);
987 if (size
<= sizeof(unsigned long))
997 static void poison_obj(kmem_cache_t
*cachep
, void *addr
, unsigned char val
)
999 int size
= obj_reallen(cachep
);
1000 addr
= &((char*)addr
)[obj_dbghead(cachep
)];
1002 memset(addr
, val
, size
);
1003 *(unsigned char *)(addr
+size
-1) = POISON_END
;
1006 static void dump_line(char *data
, int offset
, int limit
)
1009 printk(KERN_ERR
"%03x:", offset
);
1010 for (i
=0;i
<limit
;i
++) {
1011 printk(" %02x", (unsigned char)data
[offset
+i
]);
1019 static void print_objinfo(kmem_cache_t
*cachep
, void *objp
, int lines
)
1024 if (cachep
->flags
& SLAB_RED_ZONE
) {
1025 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1026 *dbg_redzone1(cachep
, objp
),
1027 *dbg_redzone2(cachep
, objp
));
1030 if (cachep
->flags
& SLAB_STORE_USER
) {
1031 printk(KERN_ERR
"Last user: [<%p>]",
1032 *dbg_userword(cachep
, objp
));
1033 print_symbol("(%s)",
1034 (unsigned long)*dbg_userword(cachep
, objp
));
1037 realobj
= (char*)objp
+obj_dbghead(cachep
);
1038 size
= obj_reallen(cachep
);
1039 for (i
=0; i
<size
&& lines
;i
+=16, lines
--) {
1044 dump_line(realobj
, i
, limit
);
1048 static void check_poison_obj(kmem_cache_t
*cachep
, void *objp
)
1054 realobj
= (char*)objp
+obj_dbghead(cachep
);
1055 size
= obj_reallen(cachep
);
1057 for (i
=0;i
<size
;i
++) {
1058 char exp
= POISON_FREE
;
1061 if (realobj
[i
] != exp
) {
1066 printk(KERN_ERR
"Slab corruption: start=%p, len=%d\n",
1068 print_objinfo(cachep
, objp
, 0);
1070 /* Hexdump the affected line */
1075 dump_line(realobj
, i
, limit
);
1078 /* Limit to 5 lines */
1084 /* Print some data about the neighboring objects, if they
1087 struct slab
*slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
1090 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1092 objp
= slabp
->s_mem
+(objnr
-1)*cachep
->objsize
;
1093 realobj
= (char*)objp
+obj_dbghead(cachep
);
1094 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1096 print_objinfo(cachep
, objp
, 2);
1098 if (objnr
+1 < cachep
->num
) {
1099 objp
= slabp
->s_mem
+(objnr
+1)*cachep
->objsize
;
1100 realobj
= (char*)objp
+obj_dbghead(cachep
);
1101 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1103 print_objinfo(cachep
, objp
, 2);
1109 /* Destroy all the objs in a slab, and release the mem back to the system.
1110 * Before calling the slab must have been unlinked from the cache.
1111 * The cache-lock is not held/needed.
1113 static void slab_destroy (kmem_cache_t
*cachep
, struct slab
*slabp
)
1115 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1119 for (i
= 0; i
< cachep
->num
; i
++) {
1120 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
1122 if (cachep
->flags
& SLAB_POISON
) {
1123 #ifdef CONFIG_DEBUG_PAGEALLOC
1124 if ((cachep
->objsize
%PAGE_SIZE
)==0 && OFF_SLAB(cachep
))
1125 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
,1);
1127 check_poison_obj(cachep
, objp
);
1129 check_poison_obj(cachep
, objp
);
1132 if (cachep
->flags
& SLAB_RED_ZONE
) {
1133 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1134 slab_error(cachep
, "start of a freed object "
1136 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1137 slab_error(cachep
, "end of a freed object "
1140 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1141 (cachep
->dtor
)(objp
+obj_dbghead(cachep
), cachep
, 0);
1146 for (i
= 0; i
< cachep
->num
; i
++) {
1147 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1148 (cachep
->dtor
)(objp
, cachep
, 0);
1153 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1154 struct slab_rcu
*slab_rcu
;
1156 slab_rcu
= (struct slab_rcu
*) slabp
;
1157 slab_rcu
->cachep
= cachep
;
1158 slab_rcu
->addr
= addr
;
1159 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1161 kmem_freepages(cachep
, addr
);
1162 if (OFF_SLAB(cachep
))
1163 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1168 * kmem_cache_create - Create a cache.
1169 * @name: A string which is used in /proc/slabinfo to identify this cache.
1170 * @size: The size of objects to be created in this cache.
1171 * @align: The required alignment for the objects.
1172 * @flags: SLAB flags
1173 * @ctor: A constructor for the objects.
1174 * @dtor: A destructor for the objects.
1176 * Returns a ptr to the cache on success, NULL on failure.
1177 * Cannot be called within a int, but can be interrupted.
1178 * The @ctor is run when new pages are allocated by the cache
1179 * and the @dtor is run before the pages are handed back.
1181 * @name must be valid until the cache is destroyed. This implies that
1182 * the module calling this has to destroy the cache before getting
1187 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1188 * to catch references to uninitialised memory.
1190 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1191 * for buffer overruns.
1193 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1196 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1197 * cacheline. This can be beneficial if you're counting cycles as closely
1201 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1202 unsigned long flags
, void (*ctor
)(void*, kmem_cache_t
*, unsigned long),
1203 void (*dtor
)(void*, kmem_cache_t
*, unsigned long))
1205 size_t left_over
, slab_size
, ralign
;
1206 kmem_cache_t
*cachep
= NULL
;
1209 * Sanity checks... these are all serious usage bugs.
1213 (size
< BYTES_PER_WORD
) ||
1214 (size
> (1<<MAX_OBJ_ORDER
)*PAGE_SIZE
) ||
1216 printk(KERN_ERR
"%s: Early error in slab %s\n",
1217 __FUNCTION__
, name
);
1222 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1223 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1224 /* No constructor, but inital state check requested */
1225 printk(KERN_ERR
"%s: No con, but init state check "
1226 "requested - %s\n", __FUNCTION__
, name
);
1227 flags
&= ~SLAB_DEBUG_INITIAL
;
1232 * Enable redzoning and last user accounting, except for caches with
1233 * large objects, if the increased size would increase the object size
1234 * above the next power of two: caches with object sizes just above a
1235 * power of two have a significant amount of internal fragmentation.
1237 if ((size
< 4096 || fls(size
-1) == fls(size
-1+3*BYTES_PER_WORD
)))
1238 flags
|= SLAB_RED_ZONE
|SLAB_STORE_USER
;
1239 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1240 flags
|= SLAB_POISON
;
1242 if (flags
& SLAB_DESTROY_BY_RCU
)
1243 BUG_ON(flags
& SLAB_POISON
);
1245 if (flags
& SLAB_DESTROY_BY_RCU
)
1249 * Always checks flags, a caller might be expecting debug
1250 * support which isn't available.
1252 if (flags
& ~CREATE_MASK
)
1255 /* Check that size is in terms of words. This is needed to avoid
1256 * unaligned accesses for some archs when redzoning is used, and makes
1257 * sure any on-slab bufctl's are also correctly aligned.
1259 if (size
& (BYTES_PER_WORD
-1)) {
1260 size
+= (BYTES_PER_WORD
-1);
1261 size
&= ~(BYTES_PER_WORD
-1);
1264 /* calculate out the final buffer alignment: */
1265 /* 1) arch recommendation: can be overridden for debug */
1266 if (flags
& SLAB_HWCACHE_ALIGN
) {
1267 /* Default alignment: as specified by the arch code.
1268 * Except if an object is really small, then squeeze multiple
1269 * objects into one cacheline.
1271 ralign
= cache_line_size();
1272 while (size
<= ralign
/2)
1275 ralign
= BYTES_PER_WORD
;
1277 /* 2) arch mandated alignment: disables debug if necessary */
1278 if (ralign
< ARCH_SLAB_MINALIGN
) {
1279 ralign
= ARCH_SLAB_MINALIGN
;
1280 if (ralign
> BYTES_PER_WORD
)
1281 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1283 /* 3) caller mandated alignment: disables debug if necessary */
1284 if (ralign
< align
) {
1286 if (ralign
> BYTES_PER_WORD
)
1287 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1289 /* 4) Store it. Note that the debug code below can reduce
1290 * the alignment to BYTES_PER_WORD.
1294 /* Get cache's description obj. */
1295 cachep
= (kmem_cache_t
*) kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
1298 memset(cachep
, 0, sizeof(kmem_cache_t
));
1301 cachep
->reallen
= size
;
1303 if (flags
& SLAB_RED_ZONE
) {
1304 /* redzoning only works with word aligned caches */
1305 align
= BYTES_PER_WORD
;
1307 /* add space for red zone words */
1308 cachep
->dbghead
+= BYTES_PER_WORD
;
1309 size
+= 2*BYTES_PER_WORD
;
1311 if (flags
& SLAB_STORE_USER
) {
1312 /* user store requires word alignment and
1313 * one word storage behind the end of the real
1316 align
= BYTES_PER_WORD
;
1317 size
+= BYTES_PER_WORD
;
1319 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1320 if (size
> 128 && cachep
->reallen
> cache_line_size() && size
< PAGE_SIZE
) {
1321 cachep
->dbghead
+= PAGE_SIZE
- size
;
1327 /* Determine if the slab management is 'on' or 'off' slab. */
1328 if (size
>= (PAGE_SIZE
>>3))
1330 * Size is large, assume best to place the slab management obj
1331 * off-slab (should allow better packing of objs).
1333 flags
|= CFLGS_OFF_SLAB
;
1335 size
= ALIGN(size
, align
);
1337 if ((flags
& SLAB_RECLAIM_ACCOUNT
) && size
<= PAGE_SIZE
) {
1339 * A VFS-reclaimable slab tends to have most allocations
1340 * as GFP_NOFS and we really don't want to have to be allocating
1341 * higher-order pages when we are unable to shrink dcache.
1343 cachep
->gfporder
= 0;
1344 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1345 &left_over
, &cachep
->num
);
1348 * Calculate size (in pages) of slabs, and the num of objs per
1349 * slab. This could be made much more intelligent. For now,
1350 * try to avoid using high page-orders for slabs. When the
1351 * gfp() funcs are more friendly towards high-order requests,
1352 * this should be changed.
1355 unsigned int break_flag
= 0;
1357 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1358 &left_over
, &cachep
->num
);
1361 if (cachep
->gfporder
>= MAX_GFP_ORDER
)
1365 if (flags
& CFLGS_OFF_SLAB
&&
1366 cachep
->num
> offslab_limit
) {
1367 /* This num of objs will cause problems. */
1374 * Large num of objs is good, but v. large slabs are
1375 * currently bad for the gfp()s.
1377 if (cachep
->gfporder
>= slab_break_gfp_order
)
1380 if ((left_over
*8) <= (PAGE_SIZE
<<cachep
->gfporder
))
1381 break; /* Acceptable internal fragmentation. */
1388 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
1389 kmem_cache_free(&cache_cache
, cachep
);
1393 slab_size
= ALIGN(cachep
->num
*sizeof(kmem_bufctl_t
)
1394 + sizeof(struct slab
), align
);
1397 * If the slab has been placed off-slab, and we have enough space then
1398 * move it on-slab. This is at the expense of any extra colouring.
1400 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
1401 flags
&= ~CFLGS_OFF_SLAB
;
1402 left_over
-= slab_size
;
1405 if (flags
& CFLGS_OFF_SLAB
) {
1406 /* really off slab. No need for manual alignment */
1407 slab_size
= cachep
->num
*sizeof(kmem_bufctl_t
)+sizeof(struct slab
);
1410 cachep
->colour_off
= cache_line_size();
1411 /* Offset must be a multiple of the alignment. */
1412 if (cachep
->colour_off
< align
)
1413 cachep
->colour_off
= align
;
1414 cachep
->colour
= left_over
/cachep
->colour_off
;
1415 cachep
->slab_size
= slab_size
;
1416 cachep
->flags
= flags
;
1417 cachep
->gfpflags
= 0;
1418 if (flags
& SLAB_CACHE_DMA
)
1419 cachep
->gfpflags
|= GFP_DMA
;
1420 spin_lock_init(&cachep
->spinlock
);
1421 cachep
->objsize
= size
;
1423 INIT_LIST_HEAD(&cachep
->lists
.slabs_full
);
1424 INIT_LIST_HEAD(&cachep
->lists
.slabs_partial
);
1425 INIT_LIST_HEAD(&cachep
->lists
.slabs_free
);
1427 if (flags
& CFLGS_OFF_SLAB
)
1428 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
,0);
1429 cachep
->ctor
= ctor
;
1430 cachep
->dtor
= dtor
;
1431 cachep
->name
= name
;
1433 /* Don't let CPUs to come and go */
1436 if (g_cpucache_up
== FULL
) {
1437 enable_cpucache(cachep
);
1439 if (g_cpucache_up
== NONE
) {
1440 /* Note: the first kmem_cache_create must create
1441 * the cache that's used by kmalloc(24), otherwise
1442 * the creation of further caches will BUG().
1444 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
1445 g_cpucache_up
= PARTIAL
;
1447 cachep
->array
[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init
),GFP_KERNEL
);
1449 BUG_ON(!ac_data(cachep
));
1450 ac_data(cachep
)->avail
= 0;
1451 ac_data(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1452 ac_data(cachep
)->batchcount
= 1;
1453 ac_data(cachep
)->touched
= 0;
1454 cachep
->batchcount
= 1;
1455 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1456 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
1460 cachep
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1461 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
1463 /* Need the semaphore to access the chain. */
1464 down(&cache_chain_sem
);
1466 struct list_head
*p
;
1467 mm_segment_t old_fs
;
1471 list_for_each(p
, &cache_chain
) {
1472 kmem_cache_t
*pc
= list_entry(p
, kmem_cache_t
, next
);
1474 /* This happens when the module gets unloaded and doesn't
1475 destroy its slab cache and noone else reuses the vmalloc
1476 area of the module. Print a warning. */
1477 if (__get_user(tmp
,pc
->name
)) {
1478 printk("SLAB: cache with size %d has lost its name\n",
1482 if (!strcmp(pc
->name
,name
)) {
1483 printk("kmem_cache_create: duplicate cache %s\n",name
);
1484 up(&cache_chain_sem
);
1485 unlock_cpu_hotplug();
1492 /* cache setup completed, link it into the list */
1493 list_add(&cachep
->next
, &cache_chain
);
1494 up(&cache_chain_sem
);
1495 unlock_cpu_hotplug();
1497 if (!cachep
&& (flags
& SLAB_PANIC
))
1498 panic("kmem_cache_create(): failed to create slab `%s'\n",
1502 EXPORT_SYMBOL(kmem_cache_create
);
1505 static void check_irq_off(void)
1507 BUG_ON(!irqs_disabled());
1510 static void check_irq_on(void)
1512 BUG_ON(irqs_disabled());
1515 static void check_spinlock_acquired(kmem_cache_t
*cachep
)
1519 BUG_ON(spin_trylock(&cachep
->spinlock
));
1523 #define check_irq_off() do { } while(0)
1524 #define check_irq_on() do { } while(0)
1525 #define check_spinlock_acquired(x) do { } while(0)
1529 * Waits for all CPUs to execute func().
1531 static void smp_call_function_all_cpus(void (*func
) (void *arg
), void *arg
)
1536 local_irq_disable();
1540 if (smp_call_function(func
, arg
, 1, 1))
1546 static void drain_array_locked(kmem_cache_t
* cachep
,
1547 struct array_cache
*ac
, int force
);
1549 static void do_drain(void *arg
)
1551 kmem_cache_t
*cachep
= (kmem_cache_t
*)arg
;
1552 struct array_cache
*ac
;
1555 ac
= ac_data(cachep
);
1556 spin_lock(&cachep
->spinlock
);
1557 free_block(cachep
, &ac_entry(ac
)[0], ac
->avail
);
1558 spin_unlock(&cachep
->spinlock
);
1562 static void drain_cpu_caches(kmem_cache_t
*cachep
)
1564 smp_call_function_all_cpus(do_drain
, cachep
);
1566 spin_lock_irq(&cachep
->spinlock
);
1567 if (cachep
->lists
.shared
)
1568 drain_array_locked(cachep
, cachep
->lists
.shared
, 1);
1569 spin_unlock_irq(&cachep
->spinlock
);
1573 /* NUMA shrink all list3s */
1574 static int __cache_shrink(kmem_cache_t
*cachep
)
1579 drain_cpu_caches(cachep
);
1582 spin_lock_irq(&cachep
->spinlock
);
1585 struct list_head
*p
;
1587 p
= cachep
->lists
.slabs_free
.prev
;
1588 if (p
== &cachep
->lists
.slabs_free
)
1591 slabp
= list_entry(cachep
->lists
.slabs_free
.prev
, struct slab
, list
);
1596 list_del(&slabp
->list
);
1598 cachep
->lists
.free_objects
-= cachep
->num
;
1599 spin_unlock_irq(&cachep
->spinlock
);
1600 slab_destroy(cachep
, slabp
);
1601 spin_lock_irq(&cachep
->spinlock
);
1603 ret
= !list_empty(&cachep
->lists
.slabs_full
) ||
1604 !list_empty(&cachep
->lists
.slabs_partial
);
1605 spin_unlock_irq(&cachep
->spinlock
);
1610 * kmem_cache_shrink - Shrink a cache.
1611 * @cachep: The cache to shrink.
1613 * Releases as many slabs as possible for a cache.
1614 * To help debugging, a zero exit status indicates all slabs were released.
1616 int kmem_cache_shrink(kmem_cache_t
*cachep
)
1618 if (!cachep
|| in_interrupt())
1621 return __cache_shrink(cachep
);
1623 EXPORT_SYMBOL(kmem_cache_shrink
);
1626 * kmem_cache_destroy - delete a cache
1627 * @cachep: the cache to destroy
1629 * Remove a kmem_cache_t object from the slab cache.
1630 * Returns 0 on success.
1632 * It is expected this function will be called by a module when it is
1633 * unloaded. This will remove the cache completely, and avoid a duplicate
1634 * cache being allocated each time a module is loaded and unloaded, if the
1635 * module doesn't have persistent in-kernel storage across loads and unloads.
1637 * The cache must be empty before calling this function.
1639 * The caller must guarantee that noone will allocate memory from the cache
1640 * during the kmem_cache_destroy().
1642 int kmem_cache_destroy(kmem_cache_t
* cachep
)
1646 if (!cachep
|| in_interrupt())
1649 /* Don't let CPUs to come and go */
1652 /* Find the cache in the chain of caches. */
1653 down(&cache_chain_sem
);
1655 * the chain is never empty, cache_cache is never destroyed
1657 list_del(&cachep
->next
);
1658 up(&cache_chain_sem
);
1660 if (__cache_shrink(cachep
)) {
1661 slab_error(cachep
, "Can't free all objects");
1662 down(&cache_chain_sem
);
1663 list_add(&cachep
->next
,&cache_chain
);
1664 up(&cache_chain_sem
);
1665 unlock_cpu_hotplug();
1669 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1672 /* no cpu_online check required here since we clear the percpu
1673 * array on cpu offline and set this to NULL.
1675 for (i
= 0; i
< NR_CPUS
; i
++)
1676 kfree(cachep
->array
[i
]);
1678 /* NUMA: free the list3 structures */
1679 kfree(cachep
->lists
.shared
);
1680 cachep
->lists
.shared
= NULL
;
1681 kmem_cache_free(&cache_cache
, cachep
);
1683 unlock_cpu_hotplug();
1687 EXPORT_SYMBOL(kmem_cache_destroy
);
1689 /* Get the memory for a slab management obj. */
1690 static struct slab
* alloc_slabmgmt(kmem_cache_t
*cachep
,
1691 void *objp
, int colour_off
, unsigned int __nocast local_flags
)
1695 if (OFF_SLAB(cachep
)) {
1696 /* Slab management obj is off-slab. */
1697 slabp
= kmem_cache_alloc(cachep
->slabp_cache
, local_flags
);
1701 slabp
= objp
+colour_off
;
1702 colour_off
+= cachep
->slab_size
;
1705 slabp
->colouroff
= colour_off
;
1706 slabp
->s_mem
= objp
+colour_off
;
1711 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
1713 return (kmem_bufctl_t
*)(slabp
+1);
1716 static void cache_init_objs(kmem_cache_t
*cachep
,
1717 struct slab
*slabp
, unsigned long ctor_flags
)
1721 for (i
= 0; i
< cachep
->num
; i
++) {
1722 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1724 /* need to poison the objs? */
1725 if (cachep
->flags
& SLAB_POISON
)
1726 poison_obj(cachep
, objp
, POISON_FREE
);
1727 if (cachep
->flags
& SLAB_STORE_USER
)
1728 *dbg_userword(cachep
, objp
) = NULL
;
1730 if (cachep
->flags
& SLAB_RED_ZONE
) {
1731 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
1732 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
1735 * Constructors are not allowed to allocate memory from
1736 * the same cache which they are a constructor for.
1737 * Otherwise, deadlock. They must also be threaded.
1739 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
1740 cachep
->ctor(objp
+obj_dbghead(cachep
), cachep
, ctor_flags
);
1742 if (cachep
->flags
& SLAB_RED_ZONE
) {
1743 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1744 slab_error(cachep
, "constructor overwrote the"
1745 " end of an object");
1746 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1747 slab_error(cachep
, "constructor overwrote the"
1748 " start of an object");
1750 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
1751 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1754 cachep
->ctor(objp
, cachep
, ctor_flags
);
1756 slab_bufctl(slabp
)[i
] = i
+1;
1758 slab_bufctl(slabp
)[i
-1] = BUFCTL_END
;
1762 static void kmem_flagcheck(kmem_cache_t
*cachep
, unsigned int flags
)
1764 if (flags
& SLAB_DMA
) {
1765 if (!(cachep
->gfpflags
& GFP_DMA
))
1768 if (cachep
->gfpflags
& GFP_DMA
)
1773 static void set_slab_attr(kmem_cache_t
*cachep
, struct slab
*slabp
, void *objp
)
1778 /* Nasty!!!!!! I hope this is OK. */
1779 i
= 1 << cachep
->gfporder
;
1780 page
= virt_to_page(objp
);
1782 SET_PAGE_CACHE(page
, cachep
);
1783 SET_PAGE_SLAB(page
, slabp
);
1789 * Grow (by 1) the number of slabs within a cache. This is called by
1790 * kmem_cache_alloc() when there are no active objs left in a cache.
1792 static int cache_grow(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
1797 unsigned int local_flags
;
1798 unsigned long ctor_flags
;
1800 /* Be lazy and only check for valid flags here,
1801 * keeping it out of the critical path in kmem_cache_alloc().
1803 if (flags
& ~(SLAB_DMA
|SLAB_LEVEL_MASK
|SLAB_NO_GROW
))
1805 if (flags
& SLAB_NO_GROW
)
1808 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
1809 local_flags
= (flags
& SLAB_LEVEL_MASK
);
1810 if (!(local_flags
& __GFP_WAIT
))
1812 * Not allowed to sleep. Need to tell a constructor about
1813 * this - it might need to know...
1815 ctor_flags
|= SLAB_CTOR_ATOMIC
;
1817 /* About to mess with non-constant members - lock. */
1819 spin_lock(&cachep
->spinlock
);
1821 /* Get colour for the slab, and cal the next value. */
1822 offset
= cachep
->colour_next
;
1823 cachep
->colour_next
++;
1824 if (cachep
->colour_next
>= cachep
->colour
)
1825 cachep
->colour_next
= 0;
1826 offset
*= cachep
->colour_off
;
1828 spin_unlock(&cachep
->spinlock
);
1830 if (local_flags
& __GFP_WAIT
)
1834 * The test for missing atomic flag is performed here, rather than
1835 * the more obvious place, simply to reduce the critical path length
1836 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
1837 * will eventually be caught here (where it matters).
1839 kmem_flagcheck(cachep
, flags
);
1842 /* Get mem for the objs. */
1843 if (!(objp
= kmem_getpages(cachep
, flags
, nodeid
)))
1846 /* Get slab management. */
1847 if (!(slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
)))
1850 set_slab_attr(cachep
, slabp
, objp
);
1852 cache_init_objs(cachep
, slabp
, ctor_flags
);
1854 if (local_flags
& __GFP_WAIT
)
1855 local_irq_disable();
1857 spin_lock(&cachep
->spinlock
);
1859 /* Make slab active. */
1860 list_add_tail(&slabp
->list
, &(list3_data(cachep
)->slabs_free
));
1861 STATS_INC_GROWN(cachep
);
1862 list3_data(cachep
)->free_objects
+= cachep
->num
;
1863 spin_unlock(&cachep
->spinlock
);
1866 kmem_freepages(cachep
, objp
);
1868 if (local_flags
& __GFP_WAIT
)
1869 local_irq_disable();
1876 * Perform extra freeing checks:
1877 * - detect bad pointers.
1878 * - POISON/RED_ZONE checking
1879 * - destructor calls, for caches with POISON+dtor
1881 static void kfree_debugcheck(const void *objp
)
1885 if (!virt_addr_valid(objp
)) {
1886 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
1887 (unsigned long)objp
);
1890 page
= virt_to_page(objp
);
1891 if (!PageSlab(page
)) {
1892 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp
);
1897 static void *cache_free_debugcheck(kmem_cache_t
*cachep
, void *objp
,
1904 objp
-= obj_dbghead(cachep
);
1905 kfree_debugcheck(objp
);
1906 page
= virt_to_page(objp
);
1908 if (GET_PAGE_CACHE(page
) != cachep
) {
1909 printk(KERN_ERR
"mismatch in kmem_cache_free: expected cache %p, got %p\n",
1910 GET_PAGE_CACHE(page
),cachep
);
1911 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
1912 printk(KERN_ERR
"%p is %s.\n", GET_PAGE_CACHE(page
), GET_PAGE_CACHE(page
)->name
);
1915 slabp
= GET_PAGE_SLAB(page
);
1917 if (cachep
->flags
& SLAB_RED_ZONE
) {
1918 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
1919 slab_error(cachep
, "double free, or memory outside"
1920 " object was overwritten");
1921 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
1922 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
1924 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
1925 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
1927 if (cachep
->flags
& SLAB_STORE_USER
)
1928 *dbg_userword(cachep
, objp
) = caller
;
1930 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1932 BUG_ON(objnr
>= cachep
->num
);
1933 BUG_ON(objp
!= slabp
->s_mem
+ objnr
*cachep
->objsize
);
1935 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
1936 /* Need to call the slab's constructor so the
1937 * caller can perform a verify of its state (debugging).
1938 * Called without the cache-lock held.
1940 cachep
->ctor(objp
+obj_dbghead(cachep
),
1941 cachep
, SLAB_CTOR_CONSTRUCTOR
|SLAB_CTOR_VERIFY
);
1943 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
1944 /* we want to cache poison the object,
1945 * call the destruction callback
1947 cachep
->dtor(objp
+obj_dbghead(cachep
), cachep
, 0);
1949 if (cachep
->flags
& SLAB_POISON
) {
1950 #ifdef CONFIG_DEBUG_PAGEALLOC
1951 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
)) {
1952 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
1953 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
1955 poison_obj(cachep
, objp
, POISON_FREE
);
1958 poison_obj(cachep
, objp
, POISON_FREE
);
1964 static void check_slabp(kmem_cache_t
*cachep
, struct slab
*slabp
)
1969 check_spinlock_acquired(cachep
);
1970 /* Check slab's freelist to see if this obj is there. */
1971 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
1973 if (entries
> cachep
->num
|| i
>= cachep
->num
)
1976 if (entries
!= cachep
->num
- slabp
->inuse
) {
1978 printk(KERN_ERR
"slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
1979 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
1980 for (i
=0;i
<sizeof(slabp
)+cachep
->num
*sizeof(kmem_bufctl_t
);i
++) {
1982 printk("\n%03x:", i
);
1983 printk(" %02x", ((unsigned char*)slabp
)[i
]);
1990 #define kfree_debugcheck(x) do { } while(0)
1991 #define cache_free_debugcheck(x,objp,z) (objp)
1992 #define check_slabp(x,y) do { } while(0)
1995 static void *cache_alloc_refill(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
1998 struct kmem_list3
*l3
;
1999 struct array_cache
*ac
;
2002 ac
= ac_data(cachep
);
2004 batchcount
= ac
->batchcount
;
2005 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2006 /* if there was little recent activity on this
2007 * cache, then perform only a partial refill.
2008 * Otherwise we could generate refill bouncing.
2010 batchcount
= BATCHREFILL_LIMIT
;
2012 l3
= list3_data(cachep
);
2014 BUG_ON(ac
->avail
> 0);
2015 spin_lock(&cachep
->spinlock
);
2017 struct array_cache
*shared_array
= l3
->shared
;
2018 if (shared_array
->avail
) {
2019 if (batchcount
> shared_array
->avail
)
2020 batchcount
= shared_array
->avail
;
2021 shared_array
->avail
-= batchcount
;
2022 ac
->avail
= batchcount
;
2023 memcpy(ac_entry(ac
), &ac_entry(shared_array
)[shared_array
->avail
],
2024 sizeof(void*)*batchcount
);
2025 shared_array
->touched
= 1;
2029 while (batchcount
> 0) {
2030 struct list_head
*entry
;
2032 /* Get slab alloc is to come from. */
2033 entry
= l3
->slabs_partial
.next
;
2034 if (entry
== &l3
->slabs_partial
) {
2035 l3
->free_touched
= 1;
2036 entry
= l3
->slabs_free
.next
;
2037 if (entry
== &l3
->slabs_free
)
2041 slabp
= list_entry(entry
, struct slab
, list
);
2042 check_slabp(cachep
, slabp
);
2043 check_spinlock_acquired(cachep
);
2044 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2046 STATS_INC_ALLOCED(cachep
);
2047 STATS_INC_ACTIVE(cachep
);
2048 STATS_SET_HIGH(cachep
);
2050 /* get obj pointer */
2051 ac_entry(ac
)[ac
->avail
++] = slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
2054 next
= slab_bufctl(slabp
)[slabp
->free
];
2056 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2060 check_slabp(cachep
, slabp
);
2062 /* move slabp to correct slabp list: */
2063 list_del(&slabp
->list
);
2064 if (slabp
->free
== BUFCTL_END
)
2065 list_add(&slabp
->list
, &l3
->slabs_full
);
2067 list_add(&slabp
->list
, &l3
->slabs_partial
);
2071 l3
->free_objects
-= ac
->avail
;
2073 spin_unlock(&cachep
->spinlock
);
2075 if (unlikely(!ac
->avail
)) {
2077 x
= cache_grow(cachep
, flags
, -1);
2079 // cache_grow can reenable interrupts, then ac could change.
2080 ac
= ac_data(cachep
);
2081 if (!x
&& ac
->avail
== 0) // no objects in sight? abort
2084 if (!ac
->avail
) // objects refilled by interrupt?
2088 return ac_entry(ac
)[--ac
->avail
];
2092 cache_alloc_debugcheck_before(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2094 might_sleep_if(flags
& __GFP_WAIT
);
2096 kmem_flagcheck(cachep
, flags
);
2102 cache_alloc_debugcheck_after(kmem_cache_t
*cachep
,
2103 unsigned long flags
, void *objp
, void *caller
)
2107 if (cachep
->flags
& SLAB_POISON
) {
2108 #ifdef CONFIG_DEBUG_PAGEALLOC
2109 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2110 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 1);
2112 check_poison_obj(cachep
, objp
);
2114 check_poison_obj(cachep
, objp
);
2116 poison_obj(cachep
, objp
, POISON_INUSE
);
2118 if (cachep
->flags
& SLAB_STORE_USER
)
2119 *dbg_userword(cachep
, objp
) = caller
;
2121 if (cachep
->flags
& SLAB_RED_ZONE
) {
2122 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2123 slab_error(cachep
, "double free, or memory outside"
2124 " object was overwritten");
2125 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2126 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
2128 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2129 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2131 objp
+= obj_dbghead(cachep
);
2132 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2133 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2135 if (!(flags
& __GFP_WAIT
))
2136 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2138 cachep
->ctor(objp
, cachep
, ctor_flags
);
2143 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2147 static inline void *__cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2149 unsigned long save_flags
;
2151 struct array_cache
*ac
;
2153 cache_alloc_debugcheck_before(cachep
, flags
);
2155 local_irq_save(save_flags
);
2156 ac
= ac_data(cachep
);
2157 if (likely(ac
->avail
)) {
2158 STATS_INC_ALLOCHIT(cachep
);
2160 objp
= ac_entry(ac
)[--ac
->avail
];
2162 STATS_INC_ALLOCMISS(cachep
);
2163 objp
= cache_alloc_refill(cachep
, flags
);
2165 local_irq_restore(save_flags
);
2166 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, __builtin_return_address(0));
2171 * NUMA: different approach needed if the spinlock is moved into
2175 static void free_block(kmem_cache_t
*cachep
, void **objpp
, int nr_objects
)
2179 check_spinlock_acquired(cachep
);
2181 /* NUMA: move add into loop */
2182 cachep
->lists
.free_objects
+= nr_objects
;
2184 for (i
= 0; i
< nr_objects
; i
++) {
2185 void *objp
= objpp
[i
];
2189 slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
2190 list_del(&slabp
->list
);
2191 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
2192 check_slabp(cachep
, slabp
);
2194 if (slab_bufctl(slabp
)[objnr
] != BUFCTL_FREE
) {
2195 printk(KERN_ERR
"slab: double free detected in cache '%s', objp %p.\n",
2196 cachep
->name
, objp
);
2200 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2201 slabp
->free
= objnr
;
2202 STATS_DEC_ACTIVE(cachep
);
2204 check_slabp(cachep
, slabp
);
2206 /* fixup slab chains */
2207 if (slabp
->inuse
== 0) {
2208 if (cachep
->lists
.free_objects
> cachep
->free_limit
) {
2209 cachep
->lists
.free_objects
-= cachep
->num
;
2210 slab_destroy(cachep
, slabp
);
2212 list_add(&slabp
->list
,
2213 &list3_data_ptr(cachep
, objp
)->slabs_free
);
2216 /* Unconditionally move a slab to the end of the
2217 * partial list on free - maximum time for the
2218 * other objects to be freed, too.
2220 list_add_tail(&slabp
->list
,
2221 &list3_data_ptr(cachep
, objp
)->slabs_partial
);
2226 static void cache_flusharray(kmem_cache_t
*cachep
, struct array_cache
*ac
)
2230 batchcount
= ac
->batchcount
;
2232 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
2235 spin_lock(&cachep
->spinlock
);
2236 if (cachep
->lists
.shared
) {
2237 struct array_cache
*shared_array
= cachep
->lists
.shared
;
2238 int max
= shared_array
->limit
-shared_array
->avail
;
2240 if (batchcount
> max
)
2242 memcpy(&ac_entry(shared_array
)[shared_array
->avail
],
2244 sizeof(void*)*batchcount
);
2245 shared_array
->avail
+= batchcount
;
2250 free_block(cachep
, &ac_entry(ac
)[0], batchcount
);
2255 struct list_head
*p
;
2257 p
= list3_data(cachep
)->slabs_free
.next
;
2258 while (p
!= &(list3_data(cachep
)->slabs_free
)) {
2261 slabp
= list_entry(p
, struct slab
, list
);
2262 BUG_ON(slabp
->inuse
);
2267 STATS_SET_FREEABLE(cachep
, i
);
2270 spin_unlock(&cachep
->spinlock
);
2271 ac
->avail
-= batchcount
;
2272 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[batchcount
],
2273 sizeof(void*)*ac
->avail
);
2278 * Release an obj back to its cache. If the obj has a constructed
2279 * state, it must be in this state _before_ it is released.
2281 * Called with disabled ints.
2283 static inline void __cache_free(kmem_cache_t
*cachep
, void *objp
)
2285 struct array_cache
*ac
= ac_data(cachep
);
2288 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
2290 if (likely(ac
->avail
< ac
->limit
)) {
2291 STATS_INC_FREEHIT(cachep
);
2292 ac_entry(ac
)[ac
->avail
++] = objp
;
2295 STATS_INC_FREEMISS(cachep
);
2296 cache_flusharray(cachep
, ac
);
2297 ac_entry(ac
)[ac
->avail
++] = objp
;
2302 * kmem_cache_alloc - Allocate an object
2303 * @cachep: The cache to allocate from.
2304 * @flags: See kmalloc().
2306 * Allocate an object from this cache. The flags are only relevant
2307 * if the cache has no available objects.
2309 void *kmem_cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2311 return __cache_alloc(cachep
, flags
);
2313 EXPORT_SYMBOL(kmem_cache_alloc
);
2316 * kmem_ptr_validate - check if an untrusted pointer might
2318 * @cachep: the cache we're checking against
2319 * @ptr: pointer to validate
2321 * This verifies that the untrusted pointer looks sane:
2322 * it is _not_ a guarantee that the pointer is actually
2323 * part of the slab cache in question, but it at least
2324 * validates that the pointer can be dereferenced and
2325 * looks half-way sane.
2327 * Currently only used for dentry validation.
2329 int fastcall
kmem_ptr_validate(kmem_cache_t
*cachep
, void *ptr
)
2331 unsigned long addr
= (unsigned long) ptr
;
2332 unsigned long min_addr
= PAGE_OFFSET
;
2333 unsigned long align_mask
= BYTES_PER_WORD
-1;
2334 unsigned long size
= cachep
->objsize
;
2337 if (unlikely(addr
< min_addr
))
2339 if (unlikely(addr
> (unsigned long)high_memory
- size
))
2341 if (unlikely(addr
& align_mask
))
2343 if (unlikely(!kern_addr_valid(addr
)))
2345 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
2347 page
= virt_to_page(ptr
);
2348 if (unlikely(!PageSlab(page
)))
2350 if (unlikely(GET_PAGE_CACHE(page
) != cachep
))
2359 * kmem_cache_alloc_node - Allocate an object on the specified node
2360 * @cachep: The cache to allocate from.
2361 * @flags: See kmalloc().
2362 * @nodeid: node number of the target node.
2364 * Identical to kmem_cache_alloc, except that this function is slow
2365 * and can sleep. And it will allocate memory on the given node, which
2366 * can improve the performance for cpu bound structures.
2368 void *kmem_cache_alloc_node(kmem_cache_t
*cachep
, int flags
, int nodeid
)
2376 return kmem_cache_alloc(cachep
, flags
);
2378 for (loop
= 0;;loop
++) {
2379 struct list_head
*q
;
2383 spin_lock_irq(&cachep
->spinlock
);
2384 /* walk through all partial and empty slab and find one
2385 * from the right node */
2386 list_for_each(q
,&cachep
->lists
.slabs_partial
) {
2387 slabp
= list_entry(q
, struct slab
, list
);
2389 if (page_to_nid(virt_to_page(slabp
->s_mem
)) == nodeid
||
2393 list_for_each(q
, &cachep
->lists
.slabs_free
) {
2394 slabp
= list_entry(q
, struct slab
, list
);
2396 if (page_to_nid(virt_to_page(slabp
->s_mem
)) == nodeid
||
2400 spin_unlock_irq(&cachep
->spinlock
);
2402 local_irq_disable();
2403 if (!cache_grow(cachep
, flags
, nodeid
)) {
2410 /* found one: allocate object */
2411 check_slabp(cachep
, slabp
);
2412 check_spinlock_acquired(cachep
);
2414 STATS_INC_ALLOCED(cachep
);
2415 STATS_INC_ACTIVE(cachep
);
2416 STATS_SET_HIGH(cachep
);
2417 STATS_INC_NODEALLOCS(cachep
);
2419 objp
= slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
2422 next
= slab_bufctl(slabp
)[slabp
->free
];
2424 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2427 check_slabp(cachep
, slabp
);
2429 /* move slabp to correct slabp list: */
2430 list_del(&slabp
->list
);
2431 if (slabp
->free
== BUFCTL_END
)
2432 list_add(&slabp
->list
, &cachep
->lists
.slabs_full
);
2434 list_add(&slabp
->list
, &cachep
->lists
.slabs_partial
);
2436 list3_data(cachep
)->free_objects
--;
2437 spin_unlock_irq(&cachep
->spinlock
);
2439 objp
= cache_alloc_debugcheck_after(cachep
, GFP_KERNEL
, objp
,
2440 __builtin_return_address(0));
2443 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2445 void *kmalloc_node(size_t size
, int flags
, int node
)
2447 kmem_cache_t
*cachep
;
2449 cachep
= kmem_find_general_cachep(size
, flags
);
2450 if (unlikely(cachep
== NULL
))
2452 return kmem_cache_alloc_node(cachep
, flags
, node
);
2454 EXPORT_SYMBOL(kmalloc_node
);
2458 * kmalloc - allocate memory
2459 * @size: how many bytes of memory are required.
2460 * @flags: the type of memory to allocate.
2462 * kmalloc is the normal method of allocating memory
2465 * The @flags argument may be one of:
2467 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2469 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2471 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2473 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2474 * must be suitable for DMA. This can mean different things on different
2475 * platforms. For example, on i386, it means that the memory must come
2476 * from the first 16MB.
2478 void *__kmalloc(size_t size
, unsigned int __nocast flags
)
2480 kmem_cache_t
*cachep
;
2482 /* If you want to save a few bytes .text space: replace
2484 * Then kmalloc uses the uninlined functions instead of the inline
2487 cachep
= __find_general_cachep(size
, flags
);
2488 if (unlikely(cachep
== NULL
))
2490 return __cache_alloc(cachep
, flags
);
2492 EXPORT_SYMBOL(__kmalloc
);
2496 * __alloc_percpu - allocate one copy of the object for every present
2497 * cpu in the system, zeroing them.
2498 * Objects should be dereferenced using the per_cpu_ptr macro only.
2500 * @size: how many bytes of memory are required.
2501 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2503 void *__alloc_percpu(size_t size
, size_t align
)
2506 struct percpu_data
*pdata
= kmalloc(sizeof (*pdata
), GFP_KERNEL
);
2511 for (i
= 0; i
< NR_CPUS
; i
++) {
2512 if (!cpu_possible(i
))
2514 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
,
2517 if (!pdata
->ptrs
[i
])
2519 memset(pdata
->ptrs
[i
], 0, size
);
2522 /* Catch derefs w/o wrappers */
2523 return (void *) (~(unsigned long) pdata
);
2527 if (!cpu_possible(i
))
2529 kfree(pdata
->ptrs
[i
]);
2534 EXPORT_SYMBOL(__alloc_percpu
);
2538 * kmem_cache_free - Deallocate an object
2539 * @cachep: The cache the allocation was from.
2540 * @objp: The previously allocated object.
2542 * Free an object which was previously allocated from this
2545 void kmem_cache_free(kmem_cache_t
*cachep
, void *objp
)
2547 unsigned long flags
;
2549 local_irq_save(flags
);
2550 __cache_free(cachep
, objp
);
2551 local_irq_restore(flags
);
2553 EXPORT_SYMBOL(kmem_cache_free
);
2556 * kcalloc - allocate memory for an array. The memory is set to zero.
2557 * @n: number of elements.
2558 * @size: element size.
2559 * @flags: the type of memory to allocate.
2561 void *kcalloc(size_t n
, size_t size
, unsigned int __nocast flags
)
2565 if (n
!= 0 && size
> INT_MAX
/ n
)
2568 ret
= kmalloc(n
* size
, flags
);
2570 memset(ret
, 0, n
* size
);
2573 EXPORT_SYMBOL(kcalloc
);
2576 * kfree - free previously allocated memory
2577 * @objp: pointer returned by kmalloc.
2579 * Don't free memory not originally allocated by kmalloc()
2580 * or you will run into trouble.
2582 void kfree(const void *objp
)
2585 unsigned long flags
;
2587 if (unlikely(!objp
))
2589 local_irq_save(flags
);
2590 kfree_debugcheck(objp
);
2591 c
= GET_PAGE_CACHE(virt_to_page(objp
));
2592 __cache_free(c
, (void*)objp
);
2593 local_irq_restore(flags
);
2595 EXPORT_SYMBOL(kfree
);
2599 * free_percpu - free previously allocated percpu memory
2600 * @objp: pointer returned by alloc_percpu.
2602 * Don't free memory not originally allocated by alloc_percpu()
2603 * The complemented objp is to check for that.
2606 free_percpu(const void *objp
)
2609 struct percpu_data
*p
= (struct percpu_data
*) (~(unsigned long) objp
);
2611 for (i
= 0; i
< NR_CPUS
; i
++) {
2612 if (!cpu_possible(i
))
2618 EXPORT_SYMBOL(free_percpu
);
2621 unsigned int kmem_cache_size(kmem_cache_t
*cachep
)
2623 return obj_reallen(cachep
);
2625 EXPORT_SYMBOL(kmem_cache_size
);
2627 const char *kmem_cache_name(kmem_cache_t
*cachep
)
2629 return cachep
->name
;
2631 EXPORT_SYMBOL_GPL(kmem_cache_name
);
2633 struct ccupdate_struct
{
2634 kmem_cache_t
*cachep
;
2635 struct array_cache
*new[NR_CPUS
];
2638 static void do_ccupdate_local(void *info
)
2640 struct ccupdate_struct
*new = (struct ccupdate_struct
*)info
;
2641 struct array_cache
*old
;
2644 old
= ac_data(new->cachep
);
2646 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
2647 new->new[smp_processor_id()] = old
;
2651 static int do_tune_cpucache(kmem_cache_t
*cachep
, int limit
, int batchcount
,
2654 struct ccupdate_struct
new;
2655 struct array_cache
*new_shared
;
2658 memset(&new.new,0,sizeof(new.new));
2659 for (i
= 0; i
< NR_CPUS
; i
++) {
2660 if (cpu_online(i
)) {
2661 new.new[i
] = alloc_arraycache(i
, limit
, batchcount
);
2663 for (i
--; i
>= 0; i
--) kfree(new.new[i
]);
2670 new.cachep
= cachep
;
2672 smp_call_function_all_cpus(do_ccupdate_local
, (void *)&new);
2675 spin_lock_irq(&cachep
->spinlock
);
2676 cachep
->batchcount
= batchcount
;
2677 cachep
->limit
= limit
;
2678 cachep
->free_limit
= (1+num_online_cpus())*cachep
->batchcount
+ cachep
->num
;
2679 spin_unlock_irq(&cachep
->spinlock
);
2681 for (i
= 0; i
< NR_CPUS
; i
++) {
2682 struct array_cache
*ccold
= new.new[i
];
2685 spin_lock_irq(&cachep
->spinlock
);
2686 free_block(cachep
, ac_entry(ccold
), ccold
->avail
);
2687 spin_unlock_irq(&cachep
->spinlock
);
2690 new_shared
= alloc_arraycache(-1, batchcount
*shared
, 0xbaadf00d);
2692 struct array_cache
*old
;
2694 spin_lock_irq(&cachep
->spinlock
);
2695 old
= cachep
->lists
.shared
;
2696 cachep
->lists
.shared
= new_shared
;
2698 free_block(cachep
, ac_entry(old
), old
->avail
);
2699 spin_unlock_irq(&cachep
->spinlock
);
2707 static void enable_cpucache(kmem_cache_t
*cachep
)
2712 /* The head array serves three purposes:
2713 * - create a LIFO ordering, i.e. return objects that are cache-warm
2714 * - reduce the number of spinlock operations.
2715 * - reduce the number of linked list operations on the slab and
2716 * bufctl chains: array operations are cheaper.
2717 * The numbers are guessed, we should auto-tune as described by
2720 if (cachep
->objsize
> 131072)
2722 else if (cachep
->objsize
> PAGE_SIZE
)
2724 else if (cachep
->objsize
> 1024)
2726 else if (cachep
->objsize
> 256)
2731 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
2732 * allocation behaviour: Most allocs on one cpu, most free operations
2733 * on another cpu. For these cases, an efficient object passing between
2734 * cpus is necessary. This is provided by a shared array. The array
2735 * replaces Bonwick's magazine layer.
2736 * On uniprocessor, it's functionally equivalent (but less efficient)
2737 * to a larger limit. Thus disabled by default.
2741 if (cachep
->objsize
<= PAGE_SIZE
)
2746 /* With debugging enabled, large batchcount lead to excessively
2747 * long periods with disabled local interrupts. Limit the
2753 err
= do_tune_cpucache(cachep
, limit
, (limit
+1)/2, shared
);
2755 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
2756 cachep
->name
, -err
);
2759 static void drain_array_locked(kmem_cache_t
*cachep
,
2760 struct array_cache
*ac
, int force
)
2764 check_spinlock_acquired(cachep
);
2765 if (ac
->touched
&& !force
) {
2767 } else if (ac
->avail
) {
2768 tofree
= force
? ac
->avail
: (ac
->limit
+4)/5;
2769 if (tofree
> ac
->avail
) {
2770 tofree
= (ac
->avail
+1)/2;
2772 free_block(cachep
, ac_entry(ac
), tofree
);
2773 ac
->avail
-= tofree
;
2774 memmove(&ac_entry(ac
)[0], &ac_entry(ac
)[tofree
],
2775 sizeof(void*)*ac
->avail
);
2780 * cache_reap - Reclaim memory from caches.
2782 * Called from workqueue/eventd every few seconds.
2784 * - clear the per-cpu caches for this CPU.
2785 * - return freeable pages to the main free memory pool.
2787 * If we cannot acquire the cache chain semaphore then just give up - we'll
2788 * try again on the next iteration.
2790 static void cache_reap(void *unused
)
2792 struct list_head
*walk
;
2794 if (down_trylock(&cache_chain_sem
)) {
2795 /* Give up. Setup the next iteration. */
2796 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
2800 list_for_each(walk
, &cache_chain
) {
2801 kmem_cache_t
*searchp
;
2802 struct list_head
* p
;
2806 searchp
= list_entry(walk
, kmem_cache_t
, next
);
2808 if (searchp
->flags
& SLAB_NO_REAP
)
2813 spin_lock_irq(&searchp
->spinlock
);
2815 drain_array_locked(searchp
, ac_data(searchp
), 0);
2817 if(time_after(searchp
->lists
.next_reap
, jiffies
))
2820 searchp
->lists
.next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
2822 if (searchp
->lists
.shared
)
2823 drain_array_locked(searchp
, searchp
->lists
.shared
, 0);
2825 if (searchp
->lists
.free_touched
) {
2826 searchp
->lists
.free_touched
= 0;
2830 tofree
= (searchp
->free_limit
+5*searchp
->num
-1)/(5*searchp
->num
);
2832 p
= list3_data(searchp
)->slabs_free
.next
;
2833 if (p
== &(list3_data(searchp
)->slabs_free
))
2836 slabp
= list_entry(p
, struct slab
, list
);
2837 BUG_ON(slabp
->inuse
);
2838 list_del(&slabp
->list
);
2839 STATS_INC_REAPED(searchp
);
2841 /* Safe to drop the lock. The slab is no longer
2842 * linked to the cache.
2843 * searchp cannot disappear, we hold
2846 searchp
->lists
.free_objects
-= searchp
->num
;
2847 spin_unlock_irq(&searchp
->spinlock
);
2848 slab_destroy(searchp
, slabp
);
2849 spin_lock_irq(&searchp
->spinlock
);
2850 } while(--tofree
> 0);
2852 spin_unlock_irq(&searchp
->spinlock
);
2857 up(&cache_chain_sem
);
2858 drain_remote_pages();
2859 /* Setup the next iteration */
2860 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
2863 #ifdef CONFIG_PROC_FS
2865 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2868 struct list_head
*p
;
2870 down(&cache_chain_sem
);
2873 * Output format version, so at least we can change it
2874 * without _too_ many complaints.
2877 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
2879 seq_puts(m
, "slabinfo - version: 2.1\n");
2881 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
2882 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
2883 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
2885 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
2886 " <error> <maxfreeable> <freelimit> <nodeallocs>");
2887 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
2891 p
= cache_chain
.next
;
2894 if (p
== &cache_chain
)
2897 return list_entry(p
, kmem_cache_t
, next
);
2900 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2902 kmem_cache_t
*cachep
= p
;
2904 return cachep
->next
.next
== &cache_chain
? NULL
2905 : list_entry(cachep
->next
.next
, kmem_cache_t
, next
);
2908 static void s_stop(struct seq_file
*m
, void *p
)
2910 up(&cache_chain_sem
);
2913 static int s_show(struct seq_file
*m
, void *p
)
2915 kmem_cache_t
*cachep
= p
;
2916 struct list_head
*q
;
2918 unsigned long active_objs
;
2919 unsigned long num_objs
;
2920 unsigned long active_slabs
= 0;
2921 unsigned long num_slabs
;
2926 spin_lock_irq(&cachep
->spinlock
);
2929 list_for_each(q
,&cachep
->lists
.slabs_full
) {
2930 slabp
= list_entry(q
, struct slab
, list
);
2931 if (slabp
->inuse
!= cachep
->num
&& !error
)
2932 error
= "slabs_full accounting error";
2933 active_objs
+= cachep
->num
;
2936 list_for_each(q
,&cachep
->lists
.slabs_partial
) {
2937 slabp
= list_entry(q
, struct slab
, list
);
2938 if (slabp
->inuse
== cachep
->num
&& !error
)
2939 error
= "slabs_partial inuse accounting error";
2940 if (!slabp
->inuse
&& !error
)
2941 error
= "slabs_partial/inuse accounting error";
2942 active_objs
+= slabp
->inuse
;
2945 list_for_each(q
,&cachep
->lists
.slabs_free
) {
2946 slabp
= list_entry(q
, struct slab
, list
);
2947 if (slabp
->inuse
&& !error
)
2948 error
= "slabs_free/inuse accounting error";
2951 num_slabs
+=active_slabs
;
2952 num_objs
= num_slabs
*cachep
->num
;
2953 if (num_objs
- active_objs
!= cachep
->lists
.free_objects
&& !error
)
2954 error
= "free_objects accounting error";
2956 name
= cachep
->name
;
2958 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
2960 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
2961 name
, active_objs
, num_objs
, cachep
->objsize
,
2962 cachep
->num
, (1<<cachep
->gfporder
));
2963 seq_printf(m
, " : tunables %4u %4u %4u",
2964 cachep
->limit
, cachep
->batchcount
,
2965 cachep
->lists
.shared
->limit
/cachep
->batchcount
);
2966 seq_printf(m
, " : slabdata %6lu %6lu %6u",
2967 active_slabs
, num_slabs
, cachep
->lists
.shared
->avail
);
2970 unsigned long high
= cachep
->high_mark
;
2971 unsigned long allocs
= cachep
->num_allocations
;
2972 unsigned long grown
= cachep
->grown
;
2973 unsigned long reaped
= cachep
->reaped
;
2974 unsigned long errors
= cachep
->errors
;
2975 unsigned long max_freeable
= cachep
->max_freeable
;
2976 unsigned long free_limit
= cachep
->free_limit
;
2977 unsigned long node_allocs
= cachep
->node_allocs
;
2979 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu",
2980 allocs
, high
, grown
, reaped
, errors
,
2981 max_freeable
, free_limit
, node_allocs
);
2985 unsigned long allochit
= atomic_read(&cachep
->allochit
);
2986 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
2987 unsigned long freehit
= atomic_read(&cachep
->freehit
);
2988 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
2990 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
2991 allochit
, allocmiss
, freehit
, freemiss
);
2995 spin_unlock_irq(&cachep
->spinlock
);
3000 * slabinfo_op - iterator that generates /proc/slabinfo
3009 * num-pages-per-slab
3010 * + further values on SMP and with statistics enabled
3013 struct seq_operations slabinfo_op
= {
3020 #define MAX_SLABINFO_WRITE 128
3022 * slabinfo_write - Tuning for the slab allocator
3024 * @buffer: user buffer
3025 * @count: data length
3028 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
3029 size_t count
, loff_t
*ppos
)
3031 char kbuf
[MAX_SLABINFO_WRITE
+1], *tmp
;
3032 int limit
, batchcount
, shared
, res
;
3033 struct list_head
*p
;
3035 if (count
> MAX_SLABINFO_WRITE
)
3037 if (copy_from_user(&kbuf
, buffer
, count
))
3039 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3041 tmp
= strchr(kbuf
, ' ');
3046 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3049 /* Find the cache in the chain of caches. */
3050 down(&cache_chain_sem
);
3052 list_for_each(p
,&cache_chain
) {
3053 kmem_cache_t
*cachep
= list_entry(p
, kmem_cache_t
, next
);
3055 if (!strcmp(cachep
->name
, kbuf
)) {
3058 batchcount
> limit
||
3062 res
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
);
3067 up(&cache_chain_sem
);
3074 unsigned int ksize(const void *objp
)
3077 unsigned long flags
;
3078 unsigned int size
= 0;
3080 if (likely(objp
!= NULL
)) {
3081 local_irq_save(flags
);
3082 c
= GET_PAGE_CACHE(virt_to_page(objp
));
3083 size
= kmem_cache_size(c
);
3084 local_irq_restore(flags
);
3092 * kstrdup - allocate space for and copy an existing string
3094 * @s: the string to duplicate
3095 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3097 char *kstrdup(const char *s
, int gfp
)
3105 len
= strlen(s
) + 1;
3106 buf
= kmalloc(len
, gfp
);
3108 memcpy(buf
, s
, len
);
3111 EXPORT_SYMBOL(kstrdup
);