[PATCH] MSI-X: fix resume crash
[linux-2.6.22.y-op.git] / include / net / sock.h
blob2c7d60ca354858ac75ead88773d0886aedcc185c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/list.h>
44 #include <linux/timer.h>
45 #include <linux/cache.h>
46 #include <linux/module.h>
47 #include <linux/lockdep.h>
48 #include <linux/netdevice.h>
49 #include <linux/skbuff.h> /* struct sk_buff */
50 #include <linux/mm.h>
51 #include <linux/security.h>
53 #include <linux/filter.h>
55 #include <asm/atomic.h>
56 #include <net/dst.h>
57 #include <net/checksum.h>
60 * This structure really needs to be cleaned up.
61 * Most of it is for TCP, and not used by any of
62 * the other protocols.
65 /* Define this to get the SOCK_DBG debugging facility. */
66 #define SOCK_DEBUGGING
67 #ifdef SOCK_DEBUGGING
68 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
69 printk(KERN_DEBUG msg); } while (0)
70 #else
71 #define SOCK_DEBUG(sk, msg...) do { } while (0)
72 #endif
74 /* This is the per-socket lock. The spinlock provides a synchronization
75 * between user contexts and software interrupt processing, whereas the
76 * mini-semaphore synchronizes multiple users amongst themselves.
78 struct sock_iocb;
79 typedef struct {
80 spinlock_t slock;
81 struct sock_iocb *owner;
82 wait_queue_head_t wq;
84 * We express the mutex-alike socket_lock semantics
85 * to the lock validator by explicitly managing
86 * the slock as a lock variant (in addition to
87 * the slock itself):
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 struct lockdep_map dep_map;
91 #endif
92 } socket_lock_t;
94 struct sock;
95 struct proto;
97 /**
98 * struct sock_common - minimal network layer representation of sockets
99 * @skc_family: network address family
100 * @skc_state: Connection state
101 * @skc_reuse: %SO_REUSEADDR setting
102 * @skc_bound_dev_if: bound device index if != 0
103 * @skc_node: main hash linkage for various protocol lookup tables
104 * @skc_bind_node: bind hash linkage for various protocol lookup tables
105 * @skc_refcnt: reference count
106 * @skc_hash: hash value used with various protocol lookup tables
107 * @skc_prot: protocol handlers inside a network family
109 * This is the minimal network layer representation of sockets, the header
110 * for struct sock and struct inet_timewait_sock.
112 struct sock_common {
113 unsigned short skc_family;
114 volatile unsigned char skc_state;
115 unsigned char skc_reuse;
116 int skc_bound_dev_if;
117 struct hlist_node skc_node;
118 struct hlist_node skc_bind_node;
119 atomic_t skc_refcnt;
120 unsigned int skc_hash;
121 struct proto *skc_prot;
125 * struct sock - network layer representation of sockets
126 * @__sk_common: shared layout with inet_timewait_sock
127 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
128 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
129 * @sk_lock: synchronizer
130 * @sk_rcvbuf: size of receive buffer in bytes
131 * @sk_sleep: sock wait queue
132 * @sk_dst_cache: destination cache
133 * @sk_dst_lock: destination cache lock
134 * @sk_policy: flow policy
135 * @sk_rmem_alloc: receive queue bytes committed
136 * @sk_receive_queue: incoming packets
137 * @sk_wmem_alloc: transmit queue bytes committed
138 * @sk_write_queue: Packet sending queue
139 * @sk_async_wait_queue: DMA copied packets
140 * @sk_omem_alloc: "o" is "option" or "other"
141 * @sk_wmem_queued: persistent queue size
142 * @sk_forward_alloc: space allocated forward
143 * @sk_allocation: allocation mode
144 * @sk_sndbuf: size of send buffer in bytes
145 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
146 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
147 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
148 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
149 * @sk_lingertime: %SO_LINGER l_linger setting
150 * @sk_backlog: always used with the per-socket spinlock held
151 * @sk_callback_lock: used with the callbacks in the end of this struct
152 * @sk_error_queue: rarely used
153 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
154 * @sk_err: last error
155 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
156 * @sk_ack_backlog: current listen backlog
157 * @sk_max_ack_backlog: listen backlog set in listen()
158 * @sk_priority: %SO_PRIORITY setting
159 * @sk_type: socket type (%SOCK_STREAM, etc)
160 * @sk_protocol: which protocol this socket belongs in this network family
161 * @sk_peercred: %SO_PEERCRED setting
162 * @sk_rcvlowat: %SO_RCVLOWAT setting
163 * @sk_rcvtimeo: %SO_RCVTIMEO setting
164 * @sk_sndtimeo: %SO_SNDTIMEO setting
165 * @sk_filter: socket filtering instructions
166 * @sk_protinfo: private area, net family specific, when not using slab
167 * @sk_timer: sock cleanup timer
168 * @sk_stamp: time stamp of last packet received
169 * @sk_socket: Identd and reporting IO signals
170 * @sk_user_data: RPC layer private data
171 * @sk_sndmsg_page: cached page for sendmsg
172 * @sk_sndmsg_off: cached offset for sendmsg
173 * @sk_send_head: front of stuff to transmit
174 * @sk_security: used by security modules
175 * @sk_write_pending: a write to stream socket waits to start
176 * @sk_state_change: callback to indicate change in the state of the sock
177 * @sk_data_ready: callback to indicate there is data to be processed
178 * @sk_write_space: callback to indicate there is bf sending space available
179 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
180 * @sk_backlog_rcv: callback to process the backlog
181 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
183 struct sock {
185 * Now struct inet_timewait_sock also uses sock_common, so please just
186 * don't add nothing before this first member (__sk_common) --acme
188 struct sock_common __sk_common;
189 #define sk_family __sk_common.skc_family
190 #define sk_state __sk_common.skc_state
191 #define sk_reuse __sk_common.skc_reuse
192 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
193 #define sk_node __sk_common.skc_node
194 #define sk_bind_node __sk_common.skc_bind_node
195 #define sk_refcnt __sk_common.skc_refcnt
196 #define sk_hash __sk_common.skc_hash
197 #define sk_prot __sk_common.skc_prot
198 unsigned char sk_shutdown : 2,
199 sk_no_check : 2,
200 sk_userlocks : 4;
201 unsigned char sk_protocol;
202 unsigned short sk_type;
203 int sk_rcvbuf;
204 socket_lock_t sk_lock;
205 wait_queue_head_t *sk_sleep;
206 struct dst_entry *sk_dst_cache;
207 struct xfrm_policy *sk_policy[2];
208 rwlock_t sk_dst_lock;
209 atomic_t sk_rmem_alloc;
210 atomic_t sk_wmem_alloc;
211 atomic_t sk_omem_alloc;
212 struct sk_buff_head sk_receive_queue;
213 struct sk_buff_head sk_write_queue;
214 struct sk_buff_head sk_async_wait_queue;
215 int sk_wmem_queued;
216 int sk_forward_alloc;
217 gfp_t sk_allocation;
218 int sk_sndbuf;
219 int sk_route_caps;
220 int sk_gso_type;
221 int sk_rcvlowat;
222 unsigned long sk_flags;
223 unsigned long sk_lingertime;
225 * The backlog queue is special, it is always used with
226 * the per-socket spinlock held and requires low latency
227 * access. Therefore we special case it's implementation.
229 struct {
230 struct sk_buff *head;
231 struct sk_buff *tail;
232 } sk_backlog;
233 struct sk_buff_head sk_error_queue;
234 struct proto *sk_prot_creator;
235 rwlock_t sk_callback_lock;
236 int sk_err,
237 sk_err_soft;
238 unsigned short sk_ack_backlog;
239 unsigned short sk_max_ack_backlog;
240 __u32 sk_priority;
241 struct ucred sk_peercred;
242 long sk_rcvtimeo;
243 long sk_sndtimeo;
244 struct sk_filter *sk_filter;
245 void *sk_protinfo;
246 struct timer_list sk_timer;
247 struct timeval sk_stamp;
248 struct socket *sk_socket;
249 void *sk_user_data;
250 struct page *sk_sndmsg_page;
251 struct sk_buff *sk_send_head;
252 __u32 sk_sndmsg_off;
253 int sk_write_pending;
254 void *sk_security;
255 void (*sk_state_change)(struct sock *sk);
256 void (*sk_data_ready)(struct sock *sk, int bytes);
257 void (*sk_write_space)(struct sock *sk);
258 void (*sk_error_report)(struct sock *sk);
259 int (*sk_backlog_rcv)(struct sock *sk,
260 struct sk_buff *skb);
261 void (*sk_destruct)(struct sock *sk);
265 * Hashed lists helper routines
267 static inline struct sock *__sk_head(const struct hlist_head *head)
269 return hlist_entry(head->first, struct sock, sk_node);
272 static inline struct sock *sk_head(const struct hlist_head *head)
274 return hlist_empty(head) ? NULL : __sk_head(head);
277 static inline struct sock *sk_next(const struct sock *sk)
279 return sk->sk_node.next ?
280 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
283 static inline int sk_unhashed(const struct sock *sk)
285 return hlist_unhashed(&sk->sk_node);
288 static inline int sk_hashed(const struct sock *sk)
290 return !sk_unhashed(sk);
293 static __inline__ void sk_node_init(struct hlist_node *node)
295 node->pprev = NULL;
298 static __inline__ void __sk_del_node(struct sock *sk)
300 __hlist_del(&sk->sk_node);
303 static __inline__ int __sk_del_node_init(struct sock *sk)
305 if (sk_hashed(sk)) {
306 __sk_del_node(sk);
307 sk_node_init(&sk->sk_node);
308 return 1;
310 return 0;
313 /* Grab socket reference count. This operation is valid only
314 when sk is ALREADY grabbed f.e. it is found in hash table
315 or a list and the lookup is made under lock preventing hash table
316 modifications.
319 static inline void sock_hold(struct sock *sk)
321 atomic_inc(&sk->sk_refcnt);
324 /* Ungrab socket in the context, which assumes that socket refcnt
325 cannot hit zero, f.e. it is true in context of any socketcall.
327 static inline void __sock_put(struct sock *sk)
329 atomic_dec(&sk->sk_refcnt);
332 static __inline__ int sk_del_node_init(struct sock *sk)
334 int rc = __sk_del_node_init(sk);
336 if (rc) {
337 /* paranoid for a while -acme */
338 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
339 __sock_put(sk);
341 return rc;
344 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
346 hlist_add_head(&sk->sk_node, list);
349 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
351 sock_hold(sk);
352 __sk_add_node(sk, list);
355 static __inline__ void __sk_del_bind_node(struct sock *sk)
357 __hlist_del(&sk->sk_bind_node);
360 static __inline__ void sk_add_bind_node(struct sock *sk,
361 struct hlist_head *list)
363 hlist_add_head(&sk->sk_bind_node, list);
366 #define sk_for_each(__sk, node, list) \
367 hlist_for_each_entry(__sk, node, list, sk_node)
368 #define sk_for_each_from(__sk, node) \
369 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
370 hlist_for_each_entry_from(__sk, node, sk_node)
371 #define sk_for_each_continue(__sk, node) \
372 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
373 hlist_for_each_entry_continue(__sk, node, sk_node)
374 #define sk_for_each_safe(__sk, node, tmp, list) \
375 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
376 #define sk_for_each_bound(__sk, node, list) \
377 hlist_for_each_entry(__sk, node, list, sk_bind_node)
379 /* Sock flags */
380 enum sock_flags {
381 SOCK_DEAD,
382 SOCK_DONE,
383 SOCK_URGINLINE,
384 SOCK_KEEPOPEN,
385 SOCK_LINGER,
386 SOCK_DESTROY,
387 SOCK_BROADCAST,
388 SOCK_TIMESTAMP,
389 SOCK_ZAPPED,
390 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
391 SOCK_DBG, /* %SO_DEBUG setting */
392 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
393 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
394 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
397 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
399 nsk->sk_flags = osk->sk_flags;
402 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
404 __set_bit(flag, &sk->sk_flags);
407 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
409 __clear_bit(flag, &sk->sk_flags);
412 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
414 return test_bit(flag, &sk->sk_flags);
417 static inline void sk_acceptq_removed(struct sock *sk)
419 sk->sk_ack_backlog--;
422 static inline void sk_acceptq_added(struct sock *sk)
424 sk->sk_ack_backlog++;
427 static inline int sk_acceptq_is_full(struct sock *sk)
429 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
433 * Compute minimal free write space needed to queue new packets.
435 static inline int sk_stream_min_wspace(struct sock *sk)
437 return sk->sk_wmem_queued / 2;
440 static inline int sk_stream_wspace(struct sock *sk)
442 return sk->sk_sndbuf - sk->sk_wmem_queued;
445 extern void sk_stream_write_space(struct sock *sk);
447 static inline int sk_stream_memory_free(struct sock *sk)
449 return sk->sk_wmem_queued < sk->sk_sndbuf;
452 extern void sk_stream_rfree(struct sk_buff *skb);
454 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
456 skb->sk = sk;
457 skb->destructor = sk_stream_rfree;
458 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
459 sk->sk_forward_alloc -= skb->truesize;
462 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
464 skb_truesize_check(skb);
465 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
466 sk->sk_wmem_queued -= skb->truesize;
467 sk->sk_forward_alloc += skb->truesize;
468 __kfree_skb(skb);
471 /* The per-socket spinlock must be held here. */
472 static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
474 if (!sk->sk_backlog.tail) {
475 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
476 } else {
477 sk->sk_backlog.tail->next = skb;
478 sk->sk_backlog.tail = skb;
480 skb->next = NULL;
483 #define sk_wait_event(__sk, __timeo, __condition) \
484 ({ int rc; \
485 release_sock(__sk); \
486 rc = __condition; \
487 if (!rc) { \
488 *(__timeo) = schedule_timeout(*(__timeo)); \
490 lock_sock(__sk); \
491 rc = __condition; \
492 rc; \
495 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
496 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
497 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
498 extern int sk_stream_error(struct sock *sk, int flags, int err);
499 extern void sk_stream_kill_queues(struct sock *sk);
501 extern int sk_wait_data(struct sock *sk, long *timeo);
503 struct request_sock_ops;
504 struct timewait_sock_ops;
506 /* Networking protocol blocks we attach to sockets.
507 * socket layer -> transport layer interface
508 * transport -> network interface is defined by struct inet_proto
510 struct proto {
511 void (*close)(struct sock *sk,
512 long timeout);
513 int (*connect)(struct sock *sk,
514 struct sockaddr *uaddr,
515 int addr_len);
516 int (*disconnect)(struct sock *sk, int flags);
518 struct sock * (*accept) (struct sock *sk, int flags, int *err);
520 int (*ioctl)(struct sock *sk, int cmd,
521 unsigned long arg);
522 int (*init)(struct sock *sk);
523 int (*destroy)(struct sock *sk);
524 void (*shutdown)(struct sock *sk, int how);
525 int (*setsockopt)(struct sock *sk, int level,
526 int optname, char __user *optval,
527 int optlen);
528 int (*getsockopt)(struct sock *sk, int level,
529 int optname, char __user *optval,
530 int __user *option);
531 int (*compat_setsockopt)(struct sock *sk,
532 int level,
533 int optname, char __user *optval,
534 int optlen);
535 int (*compat_getsockopt)(struct sock *sk,
536 int level,
537 int optname, char __user *optval,
538 int __user *option);
539 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
540 struct msghdr *msg, size_t len);
541 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
542 struct msghdr *msg,
543 size_t len, int noblock, int flags,
544 int *addr_len);
545 int (*sendpage)(struct sock *sk, struct page *page,
546 int offset, size_t size, int flags);
547 int (*bind)(struct sock *sk,
548 struct sockaddr *uaddr, int addr_len);
550 int (*backlog_rcv) (struct sock *sk,
551 struct sk_buff *skb);
553 /* Keeping track of sk's, looking them up, and port selection methods. */
554 void (*hash)(struct sock *sk);
555 void (*unhash)(struct sock *sk);
556 int (*get_port)(struct sock *sk, unsigned short snum);
558 /* Memory pressure */
559 void (*enter_memory_pressure)(void);
560 atomic_t *memory_allocated; /* Current allocated memory. */
561 atomic_t *sockets_allocated; /* Current number of sockets. */
563 * Pressure flag: try to collapse.
564 * Technical note: it is used by multiple contexts non atomically.
565 * All the sk_stream_mem_schedule() is of this nature: accounting
566 * is strict, actions are advisory and have some latency.
568 int *memory_pressure;
569 int *sysctl_mem;
570 int *sysctl_wmem;
571 int *sysctl_rmem;
572 int max_header;
574 struct kmem_cache *slab;
575 unsigned int obj_size;
577 atomic_t *orphan_count;
579 struct request_sock_ops *rsk_prot;
580 struct timewait_sock_ops *twsk_prot;
582 struct module *owner;
584 char name[32];
586 struct list_head node;
587 #ifdef SOCK_REFCNT_DEBUG
588 atomic_t socks;
589 #endif
590 struct {
591 int inuse;
592 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
593 } stats[NR_CPUS];
596 extern int proto_register(struct proto *prot, int alloc_slab);
597 extern void proto_unregister(struct proto *prot);
599 #ifdef SOCK_REFCNT_DEBUG
600 static inline void sk_refcnt_debug_inc(struct sock *sk)
602 atomic_inc(&sk->sk_prot->socks);
605 static inline void sk_refcnt_debug_dec(struct sock *sk)
607 atomic_dec(&sk->sk_prot->socks);
608 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
609 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
612 static inline void sk_refcnt_debug_release(const struct sock *sk)
614 if (atomic_read(&sk->sk_refcnt) != 1)
615 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
616 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
618 #else /* SOCK_REFCNT_DEBUG */
619 #define sk_refcnt_debug_inc(sk) do { } while (0)
620 #define sk_refcnt_debug_dec(sk) do { } while (0)
621 #define sk_refcnt_debug_release(sk) do { } while (0)
622 #endif /* SOCK_REFCNT_DEBUG */
624 /* Called with local bh disabled */
625 static __inline__ void sock_prot_inc_use(struct proto *prot)
627 prot->stats[smp_processor_id()].inuse++;
630 static __inline__ void sock_prot_dec_use(struct proto *prot)
632 prot->stats[smp_processor_id()].inuse--;
635 /* With per-bucket locks this operation is not-atomic, so that
636 * this version is not worse.
638 static inline void __sk_prot_rehash(struct sock *sk)
640 sk->sk_prot->unhash(sk);
641 sk->sk_prot->hash(sk);
644 /* About 10 seconds */
645 #define SOCK_DESTROY_TIME (10*HZ)
647 /* Sockets 0-1023 can't be bound to unless you are superuser */
648 #define PROT_SOCK 1024
650 #define SHUTDOWN_MASK 3
651 #define RCV_SHUTDOWN 1
652 #define SEND_SHUTDOWN 2
654 #define SOCK_SNDBUF_LOCK 1
655 #define SOCK_RCVBUF_LOCK 2
656 #define SOCK_BINDADDR_LOCK 4
657 #define SOCK_BINDPORT_LOCK 8
659 /* sock_iocb: used to kick off async processing of socket ios */
660 struct sock_iocb {
661 struct list_head list;
663 int flags;
664 int size;
665 struct socket *sock;
666 struct sock *sk;
667 struct scm_cookie *scm;
668 struct msghdr *msg, async_msg;
669 struct kiocb *kiocb;
672 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
674 return (struct sock_iocb *)iocb->private;
677 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
679 return si->kiocb;
682 struct socket_alloc {
683 struct socket socket;
684 struct inode vfs_inode;
687 static inline struct socket *SOCKET_I(struct inode *inode)
689 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
692 static inline struct inode *SOCK_INODE(struct socket *socket)
694 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
697 extern void __sk_stream_mem_reclaim(struct sock *sk);
698 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
700 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
702 static inline int sk_stream_pages(int amt)
704 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
707 static inline void sk_stream_mem_reclaim(struct sock *sk)
709 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
710 __sk_stream_mem_reclaim(sk);
713 static inline void sk_stream_writequeue_purge(struct sock *sk)
715 struct sk_buff *skb;
717 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
718 sk_stream_free_skb(sk, skb);
719 sk_stream_mem_reclaim(sk);
722 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
724 return (int)skb->truesize <= sk->sk_forward_alloc ||
725 sk_stream_mem_schedule(sk, skb->truesize, 1);
728 static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
730 return size <= sk->sk_forward_alloc ||
731 sk_stream_mem_schedule(sk, size, 0);
734 /* Used by processes to "lock" a socket state, so that
735 * interrupts and bottom half handlers won't change it
736 * from under us. It essentially blocks any incoming
737 * packets, so that we won't get any new data or any
738 * packets that change the state of the socket.
740 * While locked, BH processing will add new packets to
741 * the backlog queue. This queue is processed by the
742 * owner of the socket lock right before it is released.
744 * Since ~2.3.5 it is also exclusive sleep lock serializing
745 * accesses from user process context.
747 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
750 * Macro so as to not evaluate some arguments when
751 * lockdep is not enabled.
753 * Mark both the sk_lock and the sk_lock.slock as a
754 * per-address-family lock class.
756 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
757 do { \
758 sk->sk_lock.owner = NULL; \
759 init_waitqueue_head(&sk->sk_lock.wq); \
760 spin_lock_init(&(sk)->sk_lock.slock); \
761 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
762 sizeof((sk)->sk_lock)); \
763 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
764 (skey), (sname)); \
765 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
766 } while (0)
768 extern void FASTCALL(lock_sock_nested(struct sock *sk, int subclass));
770 static inline void lock_sock(struct sock *sk)
772 lock_sock_nested(sk, 0);
775 extern void FASTCALL(release_sock(struct sock *sk));
777 /* BH context may only use the following locking interface. */
778 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
779 #define bh_lock_sock_nested(__sk) \
780 spin_lock_nested(&((__sk)->sk_lock.slock), \
781 SINGLE_DEPTH_NESTING)
782 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
784 extern struct sock *sk_alloc(int family,
785 gfp_t priority,
786 struct proto *prot, int zero_it);
787 extern void sk_free(struct sock *sk);
788 extern struct sock *sk_clone(const struct sock *sk,
789 const gfp_t priority);
791 extern struct sk_buff *sock_wmalloc(struct sock *sk,
792 unsigned long size, int force,
793 gfp_t priority);
794 extern struct sk_buff *sock_rmalloc(struct sock *sk,
795 unsigned long size, int force,
796 gfp_t priority);
797 extern void sock_wfree(struct sk_buff *skb);
798 extern void sock_rfree(struct sk_buff *skb);
800 extern int sock_setsockopt(struct socket *sock, int level,
801 int op, char __user *optval,
802 int optlen);
804 extern int sock_getsockopt(struct socket *sock, int level,
805 int op, char __user *optval,
806 int __user *optlen);
807 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
808 unsigned long size,
809 int noblock,
810 int *errcode);
811 extern void *sock_kmalloc(struct sock *sk, int size,
812 gfp_t priority);
813 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
814 extern void sk_send_sigurg(struct sock *sk);
817 * Functions to fill in entries in struct proto_ops when a protocol
818 * does not implement a particular function.
820 extern int sock_no_bind(struct socket *,
821 struct sockaddr *, int);
822 extern int sock_no_connect(struct socket *,
823 struct sockaddr *, int, int);
824 extern int sock_no_socketpair(struct socket *,
825 struct socket *);
826 extern int sock_no_accept(struct socket *,
827 struct socket *, int);
828 extern int sock_no_getname(struct socket *,
829 struct sockaddr *, int *, int);
830 extern unsigned int sock_no_poll(struct file *, struct socket *,
831 struct poll_table_struct *);
832 extern int sock_no_ioctl(struct socket *, unsigned int,
833 unsigned long);
834 extern int sock_no_listen(struct socket *, int);
835 extern int sock_no_shutdown(struct socket *, int);
836 extern int sock_no_getsockopt(struct socket *, int , int,
837 char __user *, int __user *);
838 extern int sock_no_setsockopt(struct socket *, int, int,
839 char __user *, int);
840 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
841 struct msghdr *, size_t);
842 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
843 struct msghdr *, size_t, int);
844 extern int sock_no_mmap(struct file *file,
845 struct socket *sock,
846 struct vm_area_struct *vma);
847 extern ssize_t sock_no_sendpage(struct socket *sock,
848 struct page *page,
849 int offset, size_t size,
850 int flags);
853 * Functions to fill in entries in struct proto_ops when a protocol
854 * uses the inet style.
856 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
857 char __user *optval, int __user *optlen);
858 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
859 struct msghdr *msg, size_t size, int flags);
860 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
861 char __user *optval, int optlen);
862 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
863 int optname, char __user *optval, int __user *optlen);
864 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
865 int optname, char __user *optval, int optlen);
867 extern void sk_common_release(struct sock *sk);
870 * Default socket callbacks and setup code
873 /* Initialise core socket variables */
874 extern void sock_init_data(struct socket *sock, struct sock *sk);
877 * sk_filter - run a packet through a socket filter
878 * @sk: sock associated with &sk_buff
879 * @skb: buffer to filter
880 * @needlock: set to 1 if the sock is not locked by caller.
882 * Run the filter code and then cut skb->data to correct size returned by
883 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
884 * than pkt_len we keep whole skb->data. This is the socket level
885 * wrapper to sk_run_filter. It returns 0 if the packet should
886 * be accepted or -EPERM if the packet should be tossed.
890 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
892 int err;
893 struct sk_filter *filter;
895 err = security_sock_rcv_skb(sk, skb);
896 if (err)
897 return err;
899 rcu_read_lock_bh();
900 filter = sk->sk_filter;
901 if (filter) {
902 unsigned int pkt_len = sk_run_filter(skb, filter->insns,
903 filter->len);
904 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
906 rcu_read_unlock_bh();
908 return err;
912 * sk_filter_rcu_free: Free a socket filter
913 * @rcu: rcu_head that contains the sk_filter to free
915 static inline void sk_filter_rcu_free(struct rcu_head *rcu)
917 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
918 kfree(fp);
922 * sk_filter_release: Release a socket filter
923 * @sk: socket
924 * @fp: filter to remove
926 * Remove a filter from a socket and release its resources.
929 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
931 unsigned int size = sk_filter_len(fp);
933 atomic_sub(size, &sk->sk_omem_alloc);
935 if (atomic_dec_and_test(&fp->refcnt))
936 call_rcu_bh(&fp->rcu, sk_filter_rcu_free);
939 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
941 atomic_inc(&fp->refcnt);
942 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
946 * Socket reference counting postulates.
948 * * Each user of socket SHOULD hold a reference count.
949 * * Each access point to socket (an hash table bucket, reference from a list,
950 * running timer, skb in flight MUST hold a reference count.
951 * * When reference count hits 0, it means it will never increase back.
952 * * When reference count hits 0, it means that no references from
953 * outside exist to this socket and current process on current CPU
954 * is last user and may/should destroy this socket.
955 * * sk_free is called from any context: process, BH, IRQ. When
956 * it is called, socket has no references from outside -> sk_free
957 * may release descendant resources allocated by the socket, but
958 * to the time when it is called, socket is NOT referenced by any
959 * hash tables, lists etc.
960 * * Packets, delivered from outside (from network or from another process)
961 * and enqueued on receive/error queues SHOULD NOT grab reference count,
962 * when they sit in queue. Otherwise, packets will leak to hole, when
963 * socket is looked up by one cpu and unhasing is made by another CPU.
964 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
965 * (leak to backlog). Packet socket does all the processing inside
966 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
967 * use separate SMP lock, so that they are prone too.
970 /* Ungrab socket and destroy it, if it was the last reference. */
971 static inline void sock_put(struct sock *sk)
973 if (atomic_dec_and_test(&sk->sk_refcnt))
974 sk_free(sk);
977 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
978 const int nested);
980 /* Detach socket from process context.
981 * Announce socket dead, detach it from wait queue and inode.
982 * Note that parent inode held reference count on this struct sock,
983 * we do not release it in this function, because protocol
984 * probably wants some additional cleanups or even continuing
985 * to work with this socket (TCP).
987 static inline void sock_orphan(struct sock *sk)
989 write_lock_bh(&sk->sk_callback_lock);
990 sock_set_flag(sk, SOCK_DEAD);
991 sk->sk_socket = NULL;
992 sk->sk_sleep = NULL;
993 write_unlock_bh(&sk->sk_callback_lock);
996 static inline void sock_graft(struct sock *sk, struct socket *parent)
998 write_lock_bh(&sk->sk_callback_lock);
999 sk->sk_sleep = &parent->wait;
1000 parent->sk = sk;
1001 sk->sk_socket = parent;
1002 security_sock_graft(sk, parent);
1003 write_unlock_bh(&sk->sk_callback_lock);
1006 static inline void sock_copy(struct sock *nsk, const struct sock *osk)
1008 #ifdef CONFIG_SECURITY_NETWORK
1009 void *sptr = nsk->sk_security;
1010 #endif
1012 memcpy(nsk, osk, osk->sk_prot->obj_size);
1013 #ifdef CONFIG_SECURITY_NETWORK
1014 nsk->sk_security = sptr;
1015 security_sk_clone(osk, nsk);
1016 #endif
1019 extern int sock_i_uid(struct sock *sk);
1020 extern unsigned long sock_i_ino(struct sock *sk);
1022 static inline struct dst_entry *
1023 __sk_dst_get(struct sock *sk)
1025 return sk->sk_dst_cache;
1028 static inline struct dst_entry *
1029 sk_dst_get(struct sock *sk)
1031 struct dst_entry *dst;
1033 read_lock(&sk->sk_dst_lock);
1034 dst = sk->sk_dst_cache;
1035 if (dst)
1036 dst_hold(dst);
1037 read_unlock(&sk->sk_dst_lock);
1038 return dst;
1041 static inline void
1042 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1044 struct dst_entry *old_dst;
1046 old_dst = sk->sk_dst_cache;
1047 sk->sk_dst_cache = dst;
1048 dst_release(old_dst);
1051 static inline void
1052 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1054 write_lock(&sk->sk_dst_lock);
1055 __sk_dst_set(sk, dst);
1056 write_unlock(&sk->sk_dst_lock);
1059 static inline void
1060 __sk_dst_reset(struct sock *sk)
1062 struct dst_entry *old_dst;
1064 old_dst = sk->sk_dst_cache;
1065 sk->sk_dst_cache = NULL;
1066 dst_release(old_dst);
1069 static inline void
1070 sk_dst_reset(struct sock *sk)
1072 write_lock(&sk->sk_dst_lock);
1073 __sk_dst_reset(sk);
1074 write_unlock(&sk->sk_dst_lock);
1077 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1079 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1081 static inline int sk_can_gso(const struct sock *sk)
1083 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1086 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1088 __sk_dst_set(sk, dst);
1089 sk->sk_route_caps = dst->dev->features;
1090 if (sk->sk_route_caps & NETIF_F_GSO)
1091 sk->sk_route_caps |= NETIF_F_GSO_MASK;
1092 if (sk_can_gso(sk)) {
1093 if (dst->header_len)
1094 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1095 else
1096 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1100 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1102 sk->sk_wmem_queued += skb->truesize;
1103 sk->sk_forward_alloc -= skb->truesize;
1106 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1107 struct sk_buff *skb, struct page *page,
1108 int off, int copy)
1110 if (skb->ip_summed == CHECKSUM_NONE) {
1111 int err = 0;
1112 __wsum csum = csum_and_copy_from_user(from,
1113 page_address(page) + off,
1114 copy, 0, &err);
1115 if (err)
1116 return err;
1117 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1118 } else if (copy_from_user(page_address(page) + off, from, copy))
1119 return -EFAULT;
1121 skb->len += copy;
1122 skb->data_len += copy;
1123 skb->truesize += copy;
1124 sk->sk_wmem_queued += copy;
1125 sk->sk_forward_alloc -= copy;
1126 return 0;
1130 * Queue a received datagram if it will fit. Stream and sequenced
1131 * protocols can't normally use this as they need to fit buffers in
1132 * and play with them.
1134 * Inlined as it's very short and called for pretty much every
1135 * packet ever received.
1138 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1140 sock_hold(sk);
1141 skb->sk = sk;
1142 skb->destructor = sock_wfree;
1143 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1146 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1148 skb->sk = sk;
1149 skb->destructor = sock_rfree;
1150 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1153 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1154 unsigned long expires);
1156 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1158 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1160 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1162 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1163 number of warnings when compiling with -W --ANK
1165 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1166 (unsigned)sk->sk_rcvbuf)
1167 return -ENOMEM;
1168 skb_set_owner_r(skb, sk);
1169 skb_queue_tail(&sk->sk_error_queue, skb);
1170 if (!sock_flag(sk, SOCK_DEAD))
1171 sk->sk_data_ready(sk, skb->len);
1172 return 0;
1176 * Recover an error report and clear atomically
1179 static inline int sock_error(struct sock *sk)
1181 int err;
1182 if (likely(!sk->sk_err))
1183 return 0;
1184 err = xchg(&sk->sk_err, 0);
1185 return -err;
1188 static inline unsigned long sock_wspace(struct sock *sk)
1190 int amt = 0;
1192 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1193 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1194 if (amt < 0)
1195 amt = 0;
1197 return amt;
1200 static inline void sk_wake_async(struct sock *sk, int how, int band)
1202 if (sk->sk_socket && sk->sk_socket->fasync_list)
1203 sock_wake_async(sk->sk_socket, how, band);
1206 #define SOCK_MIN_SNDBUF 2048
1207 #define SOCK_MIN_RCVBUF 256
1209 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1211 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1212 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1213 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1217 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1218 int size, int mem,
1219 gfp_t gfp)
1221 struct sk_buff *skb;
1222 int hdr_len;
1224 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1225 skb = alloc_skb_fclone(size + hdr_len, gfp);
1226 if (skb) {
1227 skb->truesize += mem;
1228 if (sk_stream_wmem_schedule(sk, skb->truesize)) {
1229 skb_reserve(skb, hdr_len);
1230 return skb;
1232 __kfree_skb(skb);
1233 } else {
1234 sk->sk_prot->enter_memory_pressure();
1235 sk_stream_moderate_sndbuf(sk);
1237 return NULL;
1240 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1241 int size,
1242 gfp_t gfp)
1244 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1247 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1249 struct page *page = NULL;
1251 page = alloc_pages(sk->sk_allocation, 0);
1252 if (!page) {
1253 sk->sk_prot->enter_memory_pressure();
1254 sk_stream_moderate_sndbuf(sk);
1256 return page;
1259 #define sk_stream_for_retrans_queue(skb, sk) \
1260 for (skb = (sk)->sk_write_queue.next; \
1261 (skb != (sk)->sk_send_head) && \
1262 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1263 skb = skb->next)
1265 /*from STCP for fast SACK Process*/
1266 #define sk_stream_for_retrans_queue_from(skb, sk) \
1267 for (; (skb != (sk)->sk_send_head) && \
1268 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1269 skb = skb->next)
1272 * Default write policy as shown to user space via poll/select/SIGIO
1274 static inline int sock_writeable(const struct sock *sk)
1276 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1279 static inline gfp_t gfp_any(void)
1281 return in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
1284 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1286 return noblock ? 0 : sk->sk_rcvtimeo;
1289 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1291 return noblock ? 0 : sk->sk_sndtimeo;
1294 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1296 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1299 /* Alas, with timeout socket operations are not restartable.
1300 * Compare this to poll().
1302 static inline int sock_intr_errno(long timeo)
1304 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1307 static __inline__ void
1308 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1310 struct timeval stamp;
1312 skb_get_timestamp(skb, &stamp);
1313 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1314 /* Race occurred between timestamp enabling and packet
1315 receiving. Fill in the current time for now. */
1316 if (stamp.tv_sec == 0)
1317 do_gettimeofday(&stamp);
1318 skb_set_timestamp(skb, &stamp);
1319 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1320 &stamp);
1321 } else
1322 sk->sk_stamp = stamp;
1326 * sk_eat_skb - Release a skb if it is no longer needed
1327 * @sk: socket to eat this skb from
1328 * @skb: socket buffer to eat
1329 * @copied_early: flag indicating whether DMA operations copied this data early
1331 * This routine must be called with interrupts disabled or with the socket
1332 * locked so that the sk_buff queue operation is ok.
1334 #ifdef CONFIG_NET_DMA
1335 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1337 __skb_unlink(skb, &sk->sk_receive_queue);
1338 if (!copied_early)
1339 __kfree_skb(skb);
1340 else
1341 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1343 #else
1344 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1346 __skb_unlink(skb, &sk->sk_receive_queue);
1347 __kfree_skb(skb);
1349 #endif
1351 extern void sock_enable_timestamp(struct sock *sk);
1352 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1355 * Enable debug/info messages
1358 #ifdef CONFIG_NETDEBUG
1359 #define NETDEBUG(fmt, args...) printk(fmt,##args)
1360 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
1361 #else
1362 #define NETDEBUG(fmt, args...) do { } while (0)
1363 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
1364 #endif
1367 * Macros for sleeping on a socket. Use them like this:
1369 * SOCK_SLEEP_PRE(sk)
1370 * if (condition)
1371 * schedule();
1372 * SOCK_SLEEP_POST(sk)
1374 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1375 * and when the last use of them in DECnet has gone, I'm intending to
1376 * remove them.
1379 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1380 DECLARE_WAITQUEUE(wait, tsk); \
1381 tsk->state = TASK_INTERRUPTIBLE; \
1382 add_wait_queue((sk)->sk_sleep, &wait); \
1383 release_sock(sk);
1385 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1386 remove_wait_queue((sk)->sk_sleep, &wait); \
1387 lock_sock(sk); \
1390 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1392 if (valbool)
1393 sock_set_flag(sk, bit);
1394 else
1395 sock_reset_flag(sk, bit);
1398 extern __u32 sysctl_wmem_max;
1399 extern __u32 sysctl_rmem_max;
1401 #ifdef CONFIG_NET
1402 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1403 #else
1404 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1406 return -ENODEV;
1408 #endif
1410 extern void sk_init(void);
1412 #ifdef CONFIG_SYSCTL
1413 extern struct ctl_table core_table[];
1414 #endif
1416 extern int sysctl_optmem_max;
1418 extern __u32 sysctl_wmem_default;
1419 extern __u32 sysctl_rmem_default;
1421 #endif /* _SOCK_H */