4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr
;
66 EXPORT_SYMBOL(max_mapnr
);
67 EXPORT_SYMBOL(mem_map
);
70 unsigned long num_physpages
;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 unsigned long vmalloc_earlyreserve
;
81 EXPORT_SYMBOL(num_physpages
);
82 EXPORT_SYMBOL(high_memory
);
83 EXPORT_SYMBOL(vmalloc_earlyreserve
);
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
91 void pgd_clear_bad(pgd_t
*pgd
)
97 void pud_clear_bad(pud_t
*pud
)
103 void pmd_clear_bad(pmd_t
*pmd
)
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
113 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
115 struct page
*page
= pmd_page(*pmd
);
117 pte_lock_deinit(page
);
118 pte_free_tlb(tlb
, page
);
119 dec_page_state(nr_page_table_pages
);
123 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
124 unsigned long addr
, unsigned long end
,
125 unsigned long floor
, unsigned long ceiling
)
132 pmd
= pmd_offset(pud
, addr
);
134 next
= pmd_addr_end(addr
, end
);
135 if (pmd_none_or_clear_bad(pmd
))
137 free_pte_range(tlb
, pmd
);
138 } while (pmd
++, addr
= next
, addr
!= end
);
148 if (end
- 1 > ceiling
- 1)
151 pmd
= pmd_offset(pud
, start
);
153 pmd_free_tlb(tlb
, pmd
);
156 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
157 unsigned long addr
, unsigned long end
,
158 unsigned long floor
, unsigned long ceiling
)
165 pud
= pud_offset(pgd
, addr
);
167 next
= pud_addr_end(addr
, end
);
168 if (pud_none_or_clear_bad(pud
))
170 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
171 } while (pud
++, addr
= next
, addr
!= end
);
177 ceiling
&= PGDIR_MASK
;
181 if (end
- 1 > ceiling
- 1)
184 pud
= pud_offset(pgd
, start
);
186 pud_free_tlb(tlb
, pud
);
190 * This function frees user-level page tables of a process.
192 * Must be called with pagetable lock held.
194 void free_pgd_range(struct mmu_gather
**tlb
,
195 unsigned long addr
, unsigned long end
,
196 unsigned long floor
, unsigned long ceiling
)
203 * The next few lines have given us lots of grief...
205 * Why are we testing PMD* at this top level? Because often
206 * there will be no work to do at all, and we'd prefer not to
207 * go all the way down to the bottom just to discover that.
209 * Why all these "- 1"s? Because 0 represents both the bottom
210 * of the address space and the top of it (using -1 for the
211 * top wouldn't help much: the masks would do the wrong thing).
212 * The rule is that addr 0 and floor 0 refer to the bottom of
213 * the address space, but end 0 and ceiling 0 refer to the top
214 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215 * that end 0 case should be mythical).
217 * Wherever addr is brought up or ceiling brought down, we must
218 * be careful to reject "the opposite 0" before it confuses the
219 * subsequent tests. But what about where end is brought down
220 * by PMD_SIZE below? no, end can't go down to 0 there.
222 * Whereas we round start (addr) and ceiling down, by different
223 * masks at different levels, in order to test whether a table
224 * now has no other vmas using it, so can be freed, we don't
225 * bother to round floor or end up - the tests don't need that.
239 if (end
- 1 > ceiling
- 1)
245 pgd
= pgd_offset((*tlb
)->mm
, addr
);
247 next
= pgd_addr_end(addr
, end
);
248 if (pgd_none_or_clear_bad(pgd
))
250 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
251 } while (pgd
++, addr
= next
, addr
!= end
);
254 flush_tlb_pgtables((*tlb
)->mm
, start
, end
);
257 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
258 unsigned long floor
, unsigned long ceiling
)
261 struct vm_area_struct
*next
= vma
->vm_next
;
262 unsigned long addr
= vma
->vm_start
;
265 * Hide vma from rmap and vmtruncate before freeing pgtables
267 anon_vma_unlink(vma
);
268 unlink_file_vma(vma
);
270 if (is_hugepage_only_range(vma
->vm_mm
, addr
, HPAGE_SIZE
)) {
271 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
272 floor
, next
? next
->vm_start
: ceiling
);
275 * Optimization: gather nearby vmas into one call down
277 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
278 && !is_hugepage_only_range(vma
->vm_mm
, next
->vm_start
,
282 anon_vma_unlink(vma
);
283 unlink_file_vma(vma
);
285 free_pgd_range(tlb
, addr
, vma
->vm_end
,
286 floor
, next
? next
->vm_start
: ceiling
);
292 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
294 struct page
*new = pte_alloc_one(mm
, address
);
299 spin_lock(&mm
->page_table_lock
);
300 if (pmd_present(*pmd
)) { /* Another has populated it */
301 pte_lock_deinit(new);
305 inc_page_state(nr_page_table_pages
);
306 pmd_populate(mm
, pmd
, new);
308 spin_unlock(&mm
->page_table_lock
);
312 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
314 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
318 spin_lock(&init_mm
.page_table_lock
);
319 if (pmd_present(*pmd
)) /* Another has populated it */
320 pte_free_kernel(new);
322 pmd_populate_kernel(&init_mm
, pmd
, new);
323 spin_unlock(&init_mm
.page_table_lock
);
327 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
330 add_mm_counter(mm
, file_rss
, file_rss
);
332 add_mm_counter(mm
, anon_rss
, anon_rss
);
336 * This function is called to print an error when a pte in a
337 * !VM_RESERVED region is found pointing to an invalid pfn (which
340 * The calling function must still handle the error.
342 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
344 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
345 "vm_flags = %lx, vaddr = %lx\n",
346 (long long)pte_val(pte
),
347 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
348 vma
->vm_flags
, vaddr
);
353 * copy one vm_area from one task to the other. Assumes the page tables
354 * already present in the new task to be cleared in the whole range
355 * covered by this vma.
359 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
360 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
361 unsigned long addr
, int *rss
)
363 unsigned long vm_flags
= vma
->vm_flags
;
364 pte_t pte
= *src_pte
;
368 /* pte contains position in swap or file, so copy. */
369 if (unlikely(!pte_present(pte
))) {
370 if (!pte_file(pte
)) {
371 swap_duplicate(pte_to_swp_entry(pte
));
372 /* make sure dst_mm is on swapoff's mmlist. */
373 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
374 spin_lock(&mmlist_lock
);
375 if (list_empty(&dst_mm
->mmlist
))
376 list_add(&dst_mm
->mmlist
,
378 spin_unlock(&mmlist_lock
);
384 /* If the region is VM_RESERVED, the mapping is not
385 * mapped via rmap - duplicate the pte as is.
387 if (vm_flags
& VM_RESERVED
)
391 /* If the pte points outside of valid memory but
392 * the region is not VM_RESERVED, we have a problem.
394 if (unlikely(!pfn_valid(pfn
))) {
395 print_bad_pte(vma
, pte
, addr
);
396 goto out_set_pte
; /* try to do something sane */
399 page
= pfn_to_page(pfn
);
402 * If it's a COW mapping, write protect it both
403 * in the parent and the child
405 if ((vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
) {
406 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
411 * If it's a shared mapping, mark it clean in
414 if (vm_flags
& VM_SHARED
)
415 pte
= pte_mkclean(pte
);
416 pte
= pte_mkold(pte
);
419 rss
[!!PageAnon(page
)]++;
422 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
425 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
426 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
427 unsigned long addr
, unsigned long end
)
429 pte_t
*src_pte
, *dst_pte
;
430 spinlock_t
*src_ptl
, *dst_ptl
;
436 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
439 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
440 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
445 * We are holding two locks at this point - either of them
446 * could generate latencies in another task on another CPU.
448 if (progress
>= 32) {
450 if (need_resched() ||
451 need_lockbreak(src_ptl
) ||
452 need_lockbreak(dst_ptl
))
455 if (pte_none(*src_pte
)) {
459 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
461 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
463 spin_unlock(src_ptl
);
464 pte_unmap_nested(src_pte
- 1);
465 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
466 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
473 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
474 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
475 unsigned long addr
, unsigned long end
)
477 pmd_t
*src_pmd
, *dst_pmd
;
480 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
483 src_pmd
= pmd_offset(src_pud
, addr
);
485 next
= pmd_addr_end(addr
, end
);
486 if (pmd_none_or_clear_bad(src_pmd
))
488 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
491 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
495 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
496 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
497 unsigned long addr
, unsigned long end
)
499 pud_t
*src_pud
, *dst_pud
;
502 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
505 src_pud
= pud_offset(src_pgd
, addr
);
507 next
= pud_addr_end(addr
, end
);
508 if (pud_none_or_clear_bad(src_pud
))
510 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
513 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
517 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
518 struct vm_area_struct
*vma
)
520 pgd_t
*src_pgd
, *dst_pgd
;
522 unsigned long addr
= vma
->vm_start
;
523 unsigned long end
= vma
->vm_end
;
526 * Don't copy ptes where a page fault will fill them correctly.
527 * Fork becomes much lighter when there are big shared or private
528 * readonly mappings. The tradeoff is that copy_page_range is more
529 * efficient than faulting.
531 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_RESERVED
))) {
536 if (is_vm_hugetlb_page(vma
))
537 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
539 dst_pgd
= pgd_offset(dst_mm
, addr
);
540 src_pgd
= pgd_offset(src_mm
, addr
);
542 next
= pgd_addr_end(addr
, end
);
543 if (pgd_none_or_clear_bad(src_pgd
))
545 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
548 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
552 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
553 struct vm_area_struct
*vma
, pmd_t
*pmd
,
554 unsigned long addr
, unsigned long end
,
555 long *zap_work
, struct zap_details
*details
)
557 struct mm_struct
*mm
= tlb
->mm
;
563 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
566 if (pte_none(ptent
)) {
570 if (pte_present(ptent
)) {
571 struct page
*page
= NULL
;
573 (*zap_work
) -= PAGE_SIZE
;
575 if (!(vma
->vm_flags
& VM_RESERVED
)) {
576 unsigned long pfn
= pte_pfn(ptent
);
577 if (unlikely(!pfn_valid(pfn
)))
578 print_bad_pte(vma
, ptent
, addr
);
580 page
= pfn_to_page(pfn
);
582 if (unlikely(details
) && page
) {
584 * unmap_shared_mapping_pages() wants to
585 * invalidate cache without truncating:
586 * unmap shared but keep private pages.
588 if (details
->check_mapping
&&
589 details
->check_mapping
!= page
->mapping
)
592 * Each page->index must be checked when
593 * invalidating or truncating nonlinear.
595 if (details
->nonlinear_vma
&&
596 (page
->index
< details
->first_index
||
597 page
->index
> details
->last_index
))
600 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
602 tlb_remove_tlb_entry(tlb
, pte
, addr
);
605 if (unlikely(details
) && details
->nonlinear_vma
606 && linear_page_index(details
->nonlinear_vma
,
607 addr
) != page
->index
)
608 set_pte_at(mm
, addr
, pte
,
609 pgoff_to_pte(page
->index
));
613 if (pte_dirty(ptent
))
614 set_page_dirty(page
);
615 if (pte_young(ptent
))
616 mark_page_accessed(page
);
619 page_remove_rmap(page
);
620 tlb_remove_page(tlb
, page
);
624 * If details->check_mapping, we leave swap entries;
625 * if details->nonlinear_vma, we leave file entries.
627 if (unlikely(details
))
629 if (!pte_file(ptent
))
630 free_swap_and_cache(pte_to_swp_entry(ptent
));
631 pte_clear_full(mm
, addr
, pte
, tlb
->fullmm
);
632 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
634 add_mm_rss(mm
, file_rss
, anon_rss
);
635 pte_unmap_unlock(pte
- 1, ptl
);
640 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
641 struct vm_area_struct
*vma
, pud_t
*pud
,
642 unsigned long addr
, unsigned long end
,
643 long *zap_work
, struct zap_details
*details
)
648 pmd
= pmd_offset(pud
, addr
);
650 next
= pmd_addr_end(addr
, end
);
651 if (pmd_none_or_clear_bad(pmd
)) {
655 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
657 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
662 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
663 struct vm_area_struct
*vma
, pgd_t
*pgd
,
664 unsigned long addr
, unsigned long end
,
665 long *zap_work
, struct zap_details
*details
)
670 pud
= pud_offset(pgd
, addr
);
672 next
= pud_addr_end(addr
, end
);
673 if (pud_none_or_clear_bad(pud
)) {
677 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
679 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
684 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
685 struct vm_area_struct
*vma
,
686 unsigned long addr
, unsigned long end
,
687 long *zap_work
, struct zap_details
*details
)
692 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
696 tlb_start_vma(tlb
, vma
);
697 pgd
= pgd_offset(vma
->vm_mm
, addr
);
699 next
= pgd_addr_end(addr
, end
);
700 if (pgd_none_or_clear_bad(pgd
)) {
704 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
706 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
707 tlb_end_vma(tlb
, vma
);
712 #ifdef CONFIG_PREEMPT
713 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
715 /* No preempt: go for improved straight-line efficiency */
716 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
720 * unmap_vmas - unmap a range of memory covered by a list of vma's
721 * @tlbp: address of the caller's struct mmu_gather
722 * @vma: the starting vma
723 * @start_addr: virtual address at which to start unmapping
724 * @end_addr: virtual address at which to end unmapping
725 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
726 * @details: details of nonlinear truncation or shared cache invalidation
728 * Returns the end address of the unmapping (restart addr if interrupted).
730 * Unmap all pages in the vma list.
732 * We aim to not hold locks for too long (for scheduling latency reasons).
733 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
734 * return the ending mmu_gather to the caller.
736 * Only addresses between `start' and `end' will be unmapped.
738 * The VMA list must be sorted in ascending virtual address order.
740 * unmap_vmas() assumes that the caller will flush the whole unmapped address
741 * range after unmap_vmas() returns. So the only responsibility here is to
742 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
743 * drops the lock and schedules.
745 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
746 struct vm_area_struct
*vma
, unsigned long start_addr
,
747 unsigned long end_addr
, unsigned long *nr_accounted
,
748 struct zap_details
*details
)
750 long zap_work
= ZAP_BLOCK_SIZE
;
751 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
752 int tlb_start_valid
= 0;
753 unsigned long start
= start_addr
;
754 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
755 int fullmm
= (*tlbp
)->fullmm
;
757 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
760 start
= max(vma
->vm_start
, start_addr
);
761 if (start
>= vma
->vm_end
)
763 end
= min(vma
->vm_end
, end_addr
);
764 if (end
<= vma
->vm_start
)
767 if (vma
->vm_flags
& VM_ACCOUNT
)
768 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
770 while (start
!= end
) {
771 if (!tlb_start_valid
) {
776 if (unlikely(is_vm_hugetlb_page(vma
))) {
777 unmap_hugepage_range(vma
, start
, end
);
778 zap_work
-= (end
- start
) /
779 (HPAGE_SIZE
/ PAGE_SIZE
);
782 start
= unmap_page_range(*tlbp
, vma
,
783 start
, end
, &zap_work
, details
);
786 BUG_ON(start
!= end
);
790 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
792 if (need_resched() ||
793 (i_mmap_lock
&& need_lockbreak(i_mmap_lock
))) {
801 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
803 zap_work
= ZAP_BLOCK_SIZE
;
807 return start
; /* which is now the end (or restart) address */
811 * zap_page_range - remove user pages in a given range
812 * @vma: vm_area_struct holding the applicable pages
813 * @address: starting address of pages to zap
814 * @size: number of bytes to zap
815 * @details: details of nonlinear truncation or shared cache invalidation
817 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
818 unsigned long size
, struct zap_details
*details
)
820 struct mm_struct
*mm
= vma
->vm_mm
;
821 struct mmu_gather
*tlb
;
822 unsigned long end
= address
+ size
;
823 unsigned long nr_accounted
= 0;
826 tlb
= tlb_gather_mmu(mm
, 0);
827 update_hiwater_rss(mm
);
828 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
830 tlb_finish_mmu(tlb
, address
, end
);
835 * Do a quick page-table lookup for a single page.
837 struct page
*follow_page(struct mm_struct
*mm
, unsigned long address
,
848 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
850 BUG_ON(flags
& FOLL_GET
);
855 pgd
= pgd_offset(mm
, address
);
856 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
859 pud
= pud_offset(pgd
, address
);
860 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
863 pmd
= pmd_offset(pud
, address
);
864 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
867 if (pmd_huge(*pmd
)) {
868 BUG_ON(flags
& FOLL_GET
);
869 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
873 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
878 if (!pte_present(pte
))
880 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
886 page
= pfn_to_page(pfn
);
887 if (flags
& FOLL_GET
)
889 if (flags
& FOLL_TOUCH
) {
890 if ((flags
& FOLL_WRITE
) &&
891 !pte_dirty(pte
) && !PageDirty(page
))
892 set_page_dirty(page
);
893 mark_page_accessed(page
);
896 pte_unmap_unlock(ptep
, ptl
);
902 * When core dumping an enormous anonymous area that nobody
903 * has touched so far, we don't want to allocate page tables.
905 if (flags
& FOLL_ANON
) {
906 page
= ZERO_PAGE(address
);
907 if (flags
& FOLL_GET
)
909 BUG_ON(flags
& FOLL_WRITE
);
914 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
915 unsigned long start
, int len
, int write
, int force
,
916 struct page
**pages
, struct vm_area_struct
**vmas
)
919 unsigned int vm_flags
;
922 * Require read or write permissions.
923 * If 'force' is set, we only require the "MAY" flags.
925 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
926 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
930 struct vm_area_struct
*vma
;
931 unsigned int foll_flags
;
933 vma
= find_extend_vma(mm
, start
);
934 if (!vma
&& in_gate_area(tsk
, start
)) {
935 unsigned long pg
= start
& PAGE_MASK
;
936 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
941 if (write
) /* user gate pages are read-only */
942 return i
? : -EFAULT
;
944 pgd
= pgd_offset_k(pg
);
946 pgd
= pgd_offset_gate(mm
, pg
);
947 BUG_ON(pgd_none(*pgd
));
948 pud
= pud_offset(pgd
, pg
);
949 BUG_ON(pud_none(*pud
));
950 pmd
= pmd_offset(pud
, pg
);
952 return i
? : -EFAULT
;
953 pte
= pte_offset_map(pmd
, pg
);
954 if (pte_none(*pte
)) {
956 return i
? : -EFAULT
;
959 pages
[i
] = pte_page(*pte
);
971 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_RESERVED
))
972 || !(vm_flags
& vma
->vm_flags
))
973 return i
? : -EFAULT
;
975 if (is_vm_hugetlb_page(vma
)) {
976 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
981 foll_flags
= FOLL_TOUCH
;
983 foll_flags
|= FOLL_GET
;
984 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
985 (!vma
->vm_ops
|| !vma
->vm_ops
->nopage
))
986 foll_flags
|= FOLL_ANON
;
992 foll_flags
|= FOLL_WRITE
;
995 while (!(page
= follow_page(mm
, start
, foll_flags
))) {
997 ret
= __handle_mm_fault(mm
, vma
, start
,
998 foll_flags
& FOLL_WRITE
);
1000 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1001 * broken COW when necessary, even if maybe_mkwrite
1002 * decided not to set pte_write. We can thus safely do
1003 * subsequent page lookups as if they were reads.
1005 if (ret
& VM_FAULT_WRITE
)
1006 foll_flags
&= ~FOLL_WRITE
;
1008 switch (ret
& ~VM_FAULT_WRITE
) {
1009 case VM_FAULT_MINOR
:
1012 case VM_FAULT_MAJOR
:
1015 case VM_FAULT_SIGBUS
:
1016 return i
? i
: -EFAULT
;
1018 return i
? i
: -ENOMEM
;
1025 flush_dcache_page(page
);
1032 } while (len
&& start
< vma
->vm_end
);
1036 EXPORT_SYMBOL(get_user_pages
);
1038 static int zeromap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1039 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1044 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1048 struct page
*page
= ZERO_PAGE(addr
);
1049 pte_t zero_pte
= pte_wrprotect(mk_pte(page
, prot
));
1050 page_cache_get(page
);
1051 page_add_file_rmap(page
);
1052 inc_mm_counter(mm
, file_rss
);
1053 BUG_ON(!pte_none(*pte
));
1054 set_pte_at(mm
, addr
, pte
, zero_pte
);
1055 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1056 pte_unmap_unlock(pte
- 1, ptl
);
1060 static inline int zeromap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1061 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1066 pmd
= pmd_alloc(mm
, pud
, addr
);
1070 next
= pmd_addr_end(addr
, end
);
1071 if (zeromap_pte_range(mm
, pmd
, addr
, next
, prot
))
1073 } while (pmd
++, addr
= next
, addr
!= end
);
1077 static inline int zeromap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1078 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1083 pud
= pud_alloc(mm
, pgd
, addr
);
1087 next
= pud_addr_end(addr
, end
);
1088 if (zeromap_pmd_range(mm
, pud
, addr
, next
, prot
))
1090 } while (pud
++, addr
= next
, addr
!= end
);
1094 int zeromap_page_range(struct vm_area_struct
*vma
,
1095 unsigned long addr
, unsigned long size
, pgprot_t prot
)
1099 unsigned long end
= addr
+ size
;
1100 struct mm_struct
*mm
= vma
->vm_mm
;
1103 BUG_ON(addr
>= end
);
1104 pgd
= pgd_offset(mm
, addr
);
1105 flush_cache_range(vma
, addr
, end
);
1107 next
= pgd_addr_end(addr
, end
);
1108 err
= zeromap_pud_range(mm
, pgd
, addr
, next
, prot
);
1111 } while (pgd
++, addr
= next
, addr
!= end
);
1116 * maps a range of physical memory into the requested pages. the old
1117 * mappings are removed. any references to nonexistent pages results
1118 * in null mappings (currently treated as "copy-on-access")
1120 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1121 unsigned long addr
, unsigned long end
,
1122 unsigned long pfn
, pgprot_t prot
)
1127 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1131 BUG_ON(!pte_none(*pte
));
1132 set_pte_at(mm
, addr
, pte
, pfn_pte(pfn
, prot
));
1134 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1135 pte_unmap_unlock(pte
- 1, ptl
);
1139 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1140 unsigned long addr
, unsigned long end
,
1141 unsigned long pfn
, pgprot_t prot
)
1146 pfn
-= addr
>> PAGE_SHIFT
;
1147 pmd
= pmd_alloc(mm
, pud
, addr
);
1151 next
= pmd_addr_end(addr
, end
);
1152 if (remap_pte_range(mm
, pmd
, addr
, next
,
1153 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1155 } while (pmd
++, addr
= next
, addr
!= end
);
1159 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1160 unsigned long addr
, unsigned long end
,
1161 unsigned long pfn
, pgprot_t prot
)
1166 pfn
-= addr
>> PAGE_SHIFT
;
1167 pud
= pud_alloc(mm
, pgd
, addr
);
1171 next
= pud_addr_end(addr
, end
);
1172 if (remap_pmd_range(mm
, pud
, addr
, next
,
1173 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1175 } while (pud
++, addr
= next
, addr
!= end
);
1179 /* Note: this is only safe if the mm semaphore is held when called. */
1180 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1181 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1185 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1186 struct mm_struct
*mm
= vma
->vm_mm
;
1190 * Physically remapped pages are special. Tell the
1191 * rest of the world about it:
1192 * VM_IO tells people not to look at these pages
1193 * (accesses can have side effects).
1194 * VM_RESERVED tells the core MM not to "manage" these pages
1195 * (e.g. refcount, mapcount, try to swap them out).
1197 vma
->vm_flags
|= VM_IO
| VM_RESERVED
;
1199 BUG_ON(addr
>= end
);
1200 pfn
-= addr
>> PAGE_SHIFT
;
1201 pgd
= pgd_offset(mm
, addr
);
1202 flush_cache_range(vma
, addr
, end
);
1204 next
= pgd_addr_end(addr
, end
);
1205 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1206 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1209 } while (pgd
++, addr
= next
, addr
!= end
);
1212 EXPORT_SYMBOL(remap_pfn_range
);
1215 * handle_pte_fault chooses page fault handler according to an entry
1216 * which was read non-atomically. Before making any commitment, on
1217 * those architectures or configurations (e.g. i386 with PAE) which
1218 * might give a mix of unmatched parts, do_swap_page and do_file_page
1219 * must check under lock before unmapping the pte and proceeding
1220 * (but do_wp_page is only called after already making such a check;
1221 * and do_anonymous_page and do_no_page can safely check later on).
1223 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1224 pte_t
*page_table
, pte_t orig_pte
)
1227 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1228 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1229 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1231 same
= pte_same(*page_table
, orig_pte
);
1235 pte_unmap(page_table
);
1240 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1241 * servicing faults for write access. In the normal case, do always want
1242 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1243 * that do not have writing enabled, when used by access_process_vm.
1245 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1247 if (likely(vma
->vm_flags
& VM_WRITE
))
1248 pte
= pte_mkwrite(pte
);
1253 * This routine handles present pages, when users try to write
1254 * to a shared page. It is done by copying the page to a new address
1255 * and decrementing the shared-page counter for the old page.
1257 * Note that this routine assumes that the protection checks have been
1258 * done by the caller (the low-level page fault routine in most cases).
1259 * Thus we can safely just mark it writable once we've done any necessary
1262 * We also mark the page dirty at this point even though the page will
1263 * change only once the write actually happens. This avoids a few races,
1264 * and potentially makes it more efficient.
1266 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1267 * but allow concurrent faults), with pte both mapped and locked.
1268 * We return with mmap_sem still held, but pte unmapped and unlocked.
1270 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1271 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1272 spinlock_t
*ptl
, pte_t orig_pte
)
1274 struct page
*old_page
, *new_page
;
1275 unsigned long pfn
= pte_pfn(orig_pte
);
1277 int ret
= VM_FAULT_MINOR
;
1279 BUG_ON(vma
->vm_flags
& VM_RESERVED
);
1281 if (unlikely(!pfn_valid(pfn
))) {
1283 * Page table corrupted: show pte and kill process.
1285 print_bad_pte(vma
, orig_pte
, address
);
1289 old_page
= pfn_to_page(pfn
);
1291 if (PageAnon(old_page
) && !TestSetPageLocked(old_page
)) {
1292 int reuse
= can_share_swap_page(old_page
);
1293 unlock_page(old_page
);
1295 flush_cache_page(vma
, address
, pfn
);
1296 entry
= pte_mkyoung(orig_pte
);
1297 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1298 ptep_set_access_flags(vma
, address
, page_table
, entry
, 1);
1299 update_mmu_cache(vma
, address
, entry
);
1300 lazy_mmu_prot_update(entry
);
1301 ret
|= VM_FAULT_WRITE
;
1307 * Ok, we need to copy. Oh, well..
1309 page_cache_get(old_page
);
1310 pte_unmap_unlock(page_table
, ptl
);
1312 if (unlikely(anon_vma_prepare(vma
)))
1314 if (old_page
== ZERO_PAGE(address
)) {
1315 new_page
= alloc_zeroed_user_highpage(vma
, address
);
1319 new_page
= alloc_page_vma(GFP_HIGHUSER
, vma
, address
);
1322 copy_user_highpage(new_page
, old_page
, address
);
1326 * Re-check the pte - we dropped the lock
1328 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1329 if (likely(pte_same(*page_table
, orig_pte
))) {
1330 page_remove_rmap(old_page
);
1331 if (!PageAnon(old_page
)) {
1332 inc_mm_counter(mm
, anon_rss
);
1333 dec_mm_counter(mm
, file_rss
);
1335 flush_cache_page(vma
, address
, pfn
);
1336 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1337 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1338 ptep_establish(vma
, address
, page_table
, entry
);
1339 update_mmu_cache(vma
, address
, entry
);
1340 lazy_mmu_prot_update(entry
);
1341 lru_cache_add_active(new_page
);
1342 page_add_anon_rmap(new_page
, vma
, address
);
1344 /* Free the old page.. */
1345 new_page
= old_page
;
1346 ret
|= VM_FAULT_WRITE
;
1348 page_cache_release(new_page
);
1349 page_cache_release(old_page
);
1351 pte_unmap_unlock(page_table
, ptl
);
1354 page_cache_release(old_page
);
1355 return VM_FAULT_OOM
;
1359 * Helper functions for unmap_mapping_range().
1361 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1363 * We have to restart searching the prio_tree whenever we drop the lock,
1364 * since the iterator is only valid while the lock is held, and anyway
1365 * a later vma might be split and reinserted earlier while lock dropped.
1367 * The list of nonlinear vmas could be handled more efficiently, using
1368 * a placeholder, but handle it in the same way until a need is shown.
1369 * It is important to search the prio_tree before nonlinear list: a vma
1370 * may become nonlinear and be shifted from prio_tree to nonlinear list
1371 * while the lock is dropped; but never shifted from list to prio_tree.
1373 * In order to make forward progress despite restarting the search,
1374 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1375 * quickly skip it next time around. Since the prio_tree search only
1376 * shows us those vmas affected by unmapping the range in question, we
1377 * can't efficiently keep all vmas in step with mapping->truncate_count:
1378 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1379 * mapping->truncate_count and vma->vm_truncate_count are protected by
1382 * In order to make forward progress despite repeatedly restarting some
1383 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1384 * and restart from that address when we reach that vma again. It might
1385 * have been split or merged, shrunk or extended, but never shifted: so
1386 * restart_addr remains valid so long as it remains in the vma's range.
1387 * unmap_mapping_range forces truncate_count to leap over page-aligned
1388 * values so we can save vma's restart_addr in its truncate_count field.
1390 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1392 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1394 struct vm_area_struct
*vma
;
1395 struct prio_tree_iter iter
;
1397 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1398 vma
->vm_truncate_count
= 0;
1399 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1400 vma
->vm_truncate_count
= 0;
1403 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1404 unsigned long start_addr
, unsigned long end_addr
,
1405 struct zap_details
*details
)
1407 unsigned long restart_addr
;
1411 restart_addr
= vma
->vm_truncate_count
;
1412 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1413 start_addr
= restart_addr
;
1414 if (start_addr
>= end_addr
) {
1415 /* Top of vma has been split off since last time */
1416 vma
->vm_truncate_count
= details
->truncate_count
;
1421 restart_addr
= zap_page_range(vma
, start_addr
,
1422 end_addr
- start_addr
, details
);
1423 need_break
= need_resched() ||
1424 need_lockbreak(details
->i_mmap_lock
);
1426 if (restart_addr
>= end_addr
) {
1427 /* We have now completed this vma: mark it so */
1428 vma
->vm_truncate_count
= details
->truncate_count
;
1432 /* Note restart_addr in vma's truncate_count field */
1433 vma
->vm_truncate_count
= restart_addr
;
1438 spin_unlock(details
->i_mmap_lock
);
1440 spin_lock(details
->i_mmap_lock
);
1444 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1445 struct zap_details
*details
)
1447 struct vm_area_struct
*vma
;
1448 struct prio_tree_iter iter
;
1449 pgoff_t vba
, vea
, zba
, zea
;
1452 vma_prio_tree_foreach(vma
, &iter
, root
,
1453 details
->first_index
, details
->last_index
) {
1454 /* Skip quickly over those we have already dealt with */
1455 if (vma
->vm_truncate_count
== details
->truncate_count
)
1458 vba
= vma
->vm_pgoff
;
1459 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1460 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1461 zba
= details
->first_index
;
1464 zea
= details
->last_index
;
1468 if (unmap_mapping_range_vma(vma
,
1469 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1470 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1476 static inline void unmap_mapping_range_list(struct list_head
*head
,
1477 struct zap_details
*details
)
1479 struct vm_area_struct
*vma
;
1482 * In nonlinear VMAs there is no correspondence between virtual address
1483 * offset and file offset. So we must perform an exhaustive search
1484 * across *all* the pages in each nonlinear VMA, not just the pages
1485 * whose virtual address lies outside the file truncation point.
1488 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1489 /* Skip quickly over those we have already dealt with */
1490 if (vma
->vm_truncate_count
== details
->truncate_count
)
1492 details
->nonlinear_vma
= vma
;
1493 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1494 vma
->vm_end
, details
) < 0)
1500 * unmap_mapping_range - unmap the portion of all mmaps
1501 * in the specified address_space corresponding to the specified
1502 * page range in the underlying file.
1503 * @mapping: the address space containing mmaps to be unmapped.
1504 * @holebegin: byte in first page to unmap, relative to the start of
1505 * the underlying file. This will be rounded down to a PAGE_SIZE
1506 * boundary. Note that this is different from vmtruncate(), which
1507 * must keep the partial page. In contrast, we must get rid of
1509 * @holelen: size of prospective hole in bytes. This will be rounded
1510 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1512 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1513 * but 0 when invalidating pagecache, don't throw away private data.
1515 void unmap_mapping_range(struct address_space
*mapping
,
1516 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1518 struct zap_details details
;
1519 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1520 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1522 /* Check for overflow. */
1523 if (sizeof(holelen
) > sizeof(hlen
)) {
1525 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1526 if (holeend
& ~(long long)ULONG_MAX
)
1527 hlen
= ULONG_MAX
- hba
+ 1;
1530 details
.check_mapping
= even_cows
? NULL
: mapping
;
1531 details
.nonlinear_vma
= NULL
;
1532 details
.first_index
= hba
;
1533 details
.last_index
= hba
+ hlen
- 1;
1534 if (details
.last_index
< details
.first_index
)
1535 details
.last_index
= ULONG_MAX
;
1536 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
1538 spin_lock(&mapping
->i_mmap_lock
);
1540 /* serialize i_size write against truncate_count write */
1542 /* Protect against page faults, and endless unmapping loops */
1543 mapping
->truncate_count
++;
1545 * For archs where spin_lock has inclusive semantics like ia64
1546 * this smp_mb() will prevent to read pagetable contents
1547 * before the truncate_count increment is visible to
1551 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
1552 if (mapping
->truncate_count
== 0)
1553 reset_vma_truncate_counts(mapping
);
1554 mapping
->truncate_count
++;
1556 details
.truncate_count
= mapping
->truncate_count
;
1558 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
1559 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
1560 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
1561 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
1562 spin_unlock(&mapping
->i_mmap_lock
);
1564 EXPORT_SYMBOL(unmap_mapping_range
);
1567 * Handle all mappings that got truncated by a "truncate()"
1570 * NOTE! We have to be ready to update the memory sharing
1571 * between the file and the memory map for a potential last
1572 * incomplete page. Ugly, but necessary.
1574 int vmtruncate(struct inode
* inode
, loff_t offset
)
1576 struct address_space
*mapping
= inode
->i_mapping
;
1577 unsigned long limit
;
1579 if (inode
->i_size
< offset
)
1582 * truncation of in-use swapfiles is disallowed - it would cause
1583 * subsequent swapout to scribble on the now-freed blocks.
1585 if (IS_SWAPFILE(inode
))
1587 i_size_write(inode
, offset
);
1588 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1589 truncate_inode_pages(mapping
, offset
);
1593 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1594 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
1596 if (offset
> inode
->i_sb
->s_maxbytes
)
1598 i_size_write(inode
, offset
);
1601 if (inode
->i_op
&& inode
->i_op
->truncate
)
1602 inode
->i_op
->truncate(inode
);
1605 send_sig(SIGXFSZ
, current
, 0);
1612 EXPORT_SYMBOL(vmtruncate
);
1615 * Primitive swap readahead code. We simply read an aligned block of
1616 * (1 << page_cluster) entries in the swap area. This method is chosen
1617 * because it doesn't cost us any seek time. We also make sure to queue
1618 * the 'original' request together with the readahead ones...
1620 * This has been extended to use the NUMA policies from the mm triggering
1623 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1625 void swapin_readahead(swp_entry_t entry
, unsigned long addr
,struct vm_area_struct
*vma
)
1628 struct vm_area_struct
*next_vma
= vma
? vma
->vm_next
: NULL
;
1631 struct page
*new_page
;
1632 unsigned long offset
;
1635 * Get the number of handles we should do readahead io to.
1637 num
= valid_swaphandles(entry
, &offset
);
1638 for (i
= 0; i
< num
; offset
++, i
++) {
1639 /* Ok, do the async read-ahead now */
1640 new_page
= read_swap_cache_async(swp_entry(swp_type(entry
),
1641 offset
), vma
, addr
);
1644 page_cache_release(new_page
);
1647 * Find the next applicable VMA for the NUMA policy.
1653 if (addr
>= vma
->vm_end
) {
1655 next_vma
= vma
? vma
->vm_next
: NULL
;
1657 if (vma
&& addr
< vma
->vm_start
)
1660 if (next_vma
&& addr
>= next_vma
->vm_start
) {
1662 next_vma
= vma
->vm_next
;
1667 lru_add_drain(); /* Push any new pages onto the LRU now */
1671 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1672 * but allow concurrent faults), and pte mapped but not yet locked.
1673 * We return with mmap_sem still held, but pte unmapped and unlocked.
1675 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1676 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1677 int write_access
, pte_t orig_pte
)
1683 int ret
= VM_FAULT_MINOR
;
1685 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
1688 entry
= pte_to_swp_entry(orig_pte
);
1689 page
= lookup_swap_cache(entry
);
1691 swapin_readahead(entry
, address
, vma
);
1692 page
= read_swap_cache_async(entry
, vma
, address
);
1695 * Back out if somebody else faulted in this pte
1696 * while we released the pte lock.
1698 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1699 if (likely(pte_same(*page_table
, orig_pte
)))
1704 /* Had to read the page from swap area: Major fault */
1705 ret
= VM_FAULT_MAJOR
;
1706 inc_page_state(pgmajfault
);
1710 mark_page_accessed(page
);
1714 * Back out if somebody else already faulted in this pte.
1716 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1717 if (unlikely(!pte_same(*page_table
, orig_pte
)))
1720 if (unlikely(!PageUptodate(page
))) {
1721 ret
= VM_FAULT_SIGBUS
;
1725 /* The page isn't present yet, go ahead with the fault. */
1727 inc_mm_counter(mm
, anon_rss
);
1728 pte
= mk_pte(page
, vma
->vm_page_prot
);
1729 if (write_access
&& can_share_swap_page(page
)) {
1730 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
1734 flush_icache_page(vma
, page
);
1735 set_pte_at(mm
, address
, page_table
, pte
);
1736 page_add_anon_rmap(page
, vma
, address
);
1740 remove_exclusive_swap_page(page
);
1744 if (do_wp_page(mm
, vma
, address
,
1745 page_table
, pmd
, ptl
, pte
) == VM_FAULT_OOM
)
1750 /* No need to invalidate - it was non-present before */
1751 update_mmu_cache(vma
, address
, pte
);
1752 lazy_mmu_prot_update(pte
);
1754 pte_unmap_unlock(page_table
, ptl
);
1758 pte_unmap_unlock(page_table
, ptl
);
1760 page_cache_release(page
);
1765 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1766 * but allow concurrent faults), and pte mapped but not yet locked.
1767 * We return with mmap_sem still held, but pte unmapped and unlocked.
1769 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1770 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1778 /* Allocate our own private page. */
1779 pte_unmap(page_table
);
1781 if (unlikely(anon_vma_prepare(vma
)))
1783 page
= alloc_zeroed_user_highpage(vma
, address
);
1787 entry
= mk_pte(page
, vma
->vm_page_prot
);
1788 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1790 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1791 if (!pte_none(*page_table
))
1793 inc_mm_counter(mm
, anon_rss
);
1794 lru_cache_add_active(page
);
1795 SetPageReferenced(page
);
1796 page_add_anon_rmap(page
, vma
, address
);
1798 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1799 page
= ZERO_PAGE(address
);
1800 page_cache_get(page
);
1801 entry
= mk_pte(page
, vma
->vm_page_prot
);
1803 ptl
= pte_lockptr(mm
, pmd
);
1805 if (!pte_none(*page_table
))
1807 inc_mm_counter(mm
, file_rss
);
1808 page_add_file_rmap(page
);
1811 set_pte_at(mm
, address
, page_table
, entry
);
1813 /* No need to invalidate - it was non-present before */
1814 update_mmu_cache(vma
, address
, entry
);
1815 lazy_mmu_prot_update(entry
);
1817 pte_unmap_unlock(page_table
, ptl
);
1818 return VM_FAULT_MINOR
;
1820 page_cache_release(page
);
1823 return VM_FAULT_OOM
;
1827 * do_no_page() tries to create a new page mapping. It aggressively
1828 * tries to share with existing pages, but makes a separate copy if
1829 * the "write_access" parameter is true in order to avoid the next
1832 * As this is called only for pages that do not currently exist, we
1833 * do not need to flush old virtual caches or the TLB.
1835 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1836 * but allow concurrent faults), and pte mapped but not yet locked.
1837 * We return with mmap_sem still held, but pte unmapped and unlocked.
1839 static int do_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1840 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1844 struct page
*new_page
;
1845 struct address_space
*mapping
= NULL
;
1847 unsigned int sequence
= 0;
1848 int ret
= VM_FAULT_MINOR
;
1851 pte_unmap(page_table
);
1854 mapping
= vma
->vm_file
->f_mapping
;
1855 sequence
= mapping
->truncate_count
;
1856 smp_rmb(); /* serializes i_size against truncate_count */
1859 new_page
= vma
->vm_ops
->nopage(vma
, address
& PAGE_MASK
, &ret
);
1861 * No smp_rmb is needed here as long as there's a full
1862 * spin_lock/unlock sequence inside the ->nopage callback
1863 * (for the pagecache lookup) that acts as an implicit
1864 * smp_mb() and prevents the i_size read to happen
1865 * after the next truncate_count read.
1868 /* no page was available -- either SIGBUS or OOM */
1869 if (new_page
== NOPAGE_SIGBUS
)
1870 return VM_FAULT_SIGBUS
;
1871 if (new_page
== NOPAGE_OOM
)
1872 return VM_FAULT_OOM
;
1875 * Should we do an early C-O-W break?
1877 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
1880 if (unlikely(anon_vma_prepare(vma
)))
1882 page
= alloc_page_vma(GFP_HIGHUSER
, vma
, address
);
1885 copy_user_highpage(page
, new_page
, address
);
1886 page_cache_release(new_page
);
1891 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1893 * For a file-backed vma, someone could have truncated or otherwise
1894 * invalidated this page. If unmap_mapping_range got called,
1895 * retry getting the page.
1897 if (mapping
&& unlikely(sequence
!= mapping
->truncate_count
)) {
1898 pte_unmap_unlock(page_table
, ptl
);
1899 page_cache_release(new_page
);
1901 sequence
= mapping
->truncate_count
;
1907 * This silly early PAGE_DIRTY setting removes a race
1908 * due to the bad i386 page protection. But it's valid
1909 * for other architectures too.
1911 * Note that if write_access is true, we either now have
1912 * an exclusive copy of the page, or this is a shared mapping,
1913 * so we can make it writable and dirty to avoid having to
1914 * handle that later.
1916 /* Only go through if we didn't race with anybody else... */
1917 if (pte_none(*page_table
)) {
1918 flush_icache_page(vma
, new_page
);
1919 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1921 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1922 set_pte_at(mm
, address
, page_table
, entry
);
1924 inc_mm_counter(mm
, anon_rss
);
1925 lru_cache_add_active(new_page
);
1926 page_add_anon_rmap(new_page
, vma
, address
);
1927 } else if (!(vma
->vm_flags
& VM_RESERVED
)) {
1928 inc_mm_counter(mm
, file_rss
);
1929 page_add_file_rmap(new_page
);
1932 /* One of our sibling threads was faster, back out. */
1933 page_cache_release(new_page
);
1937 /* no need to invalidate: a not-present page shouldn't be cached */
1938 update_mmu_cache(vma
, address
, entry
);
1939 lazy_mmu_prot_update(entry
);
1941 pte_unmap_unlock(page_table
, ptl
);
1944 page_cache_release(new_page
);
1945 return VM_FAULT_OOM
;
1949 * Fault of a previously existing named mapping. Repopulate the pte
1950 * from the encoded file_pte if possible. This enables swappable
1953 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1954 * but allow concurrent faults), and pte mapped but not yet locked.
1955 * We return with mmap_sem still held, but pte unmapped and unlocked.
1957 static int do_file_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1958 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1959 int write_access
, pte_t orig_pte
)
1964 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
1965 return VM_FAULT_MINOR
;
1967 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
1969 * Page table corrupted: show pte and kill process.
1971 print_bad_pte(vma
, orig_pte
, address
);
1972 return VM_FAULT_OOM
;
1974 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1976 pgoff
= pte_to_pgoff(orig_pte
);
1977 err
= vma
->vm_ops
->populate(vma
, address
& PAGE_MASK
, PAGE_SIZE
,
1978 vma
->vm_page_prot
, pgoff
, 0);
1980 return VM_FAULT_OOM
;
1982 return VM_FAULT_SIGBUS
;
1983 return VM_FAULT_MAJOR
;
1987 * These routines also need to handle stuff like marking pages dirty
1988 * and/or accessed for architectures that don't do it in hardware (most
1989 * RISC architectures). The early dirtying is also good on the i386.
1991 * There is also a hook called "update_mmu_cache()" that architectures
1992 * with external mmu caches can use to update those (ie the Sparc or
1993 * PowerPC hashed page tables that act as extended TLBs).
1995 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1996 * but allow concurrent faults), and pte mapped but not yet locked.
1997 * We return with mmap_sem still held, but pte unmapped and unlocked.
1999 static inline int handle_pte_fault(struct mm_struct
*mm
,
2000 struct vm_area_struct
*vma
, unsigned long address
,
2001 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2007 old_entry
= entry
= *pte
;
2008 if (!pte_present(entry
)) {
2009 if (pte_none(entry
)) {
2010 if (!vma
->vm_ops
|| !vma
->vm_ops
->nopage
)
2011 return do_anonymous_page(mm
, vma
, address
,
2012 pte
, pmd
, write_access
);
2013 return do_no_page(mm
, vma
, address
,
2014 pte
, pmd
, write_access
);
2016 if (pte_file(entry
))
2017 return do_file_page(mm
, vma
, address
,
2018 pte
, pmd
, write_access
, entry
);
2019 return do_swap_page(mm
, vma
, address
,
2020 pte
, pmd
, write_access
, entry
);
2023 ptl
= pte_lockptr(mm
, pmd
);
2025 if (unlikely(!pte_same(*pte
, entry
)))
2028 if (!pte_write(entry
))
2029 return do_wp_page(mm
, vma
, address
,
2030 pte
, pmd
, ptl
, entry
);
2031 entry
= pte_mkdirty(entry
);
2033 entry
= pte_mkyoung(entry
);
2034 if (!pte_same(old_entry
, entry
)) {
2035 ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
);
2036 update_mmu_cache(vma
, address
, entry
);
2037 lazy_mmu_prot_update(entry
);
2040 * This is needed only for protection faults but the arch code
2041 * is not yet telling us if this is a protection fault or not.
2042 * This still avoids useless tlb flushes for .text page faults
2046 flush_tlb_page(vma
, address
);
2049 pte_unmap_unlock(pte
, ptl
);
2050 return VM_FAULT_MINOR
;
2054 * By the time we get here, we already hold the mm semaphore
2056 int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2057 unsigned long address
, int write_access
)
2064 __set_current_state(TASK_RUNNING
);
2066 inc_page_state(pgfault
);
2068 if (unlikely(is_vm_hugetlb_page(vma
)))
2069 return hugetlb_fault(mm
, vma
, address
, write_access
);
2071 pgd
= pgd_offset(mm
, address
);
2072 pud
= pud_alloc(mm
, pgd
, address
);
2074 return VM_FAULT_OOM
;
2075 pmd
= pmd_alloc(mm
, pud
, address
);
2077 return VM_FAULT_OOM
;
2078 pte
= pte_alloc_map(mm
, pmd
, address
);
2080 return VM_FAULT_OOM
;
2082 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2085 #ifndef __PAGETABLE_PUD_FOLDED
2087 * Allocate page upper directory.
2088 * We've already handled the fast-path in-line.
2090 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2092 pud_t
*new = pud_alloc_one(mm
, address
);
2096 spin_lock(&mm
->page_table_lock
);
2097 if (pgd_present(*pgd
)) /* Another has populated it */
2100 pgd_populate(mm
, pgd
, new);
2101 spin_unlock(&mm
->page_table_lock
);
2104 #endif /* __PAGETABLE_PUD_FOLDED */
2106 #ifndef __PAGETABLE_PMD_FOLDED
2108 * Allocate page middle directory.
2109 * We've already handled the fast-path in-line.
2111 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2113 pmd_t
*new = pmd_alloc_one(mm
, address
);
2117 spin_lock(&mm
->page_table_lock
);
2118 #ifndef __ARCH_HAS_4LEVEL_HACK
2119 if (pud_present(*pud
)) /* Another has populated it */
2122 pud_populate(mm
, pud
, new);
2124 if (pgd_present(*pud
)) /* Another has populated it */
2127 pgd_populate(mm
, pud
, new);
2128 #endif /* __ARCH_HAS_4LEVEL_HACK */
2129 spin_unlock(&mm
->page_table_lock
);
2132 #endif /* __PAGETABLE_PMD_FOLDED */
2134 int make_pages_present(unsigned long addr
, unsigned long end
)
2136 int ret
, len
, write
;
2137 struct vm_area_struct
* vma
;
2139 vma
= find_vma(current
->mm
, addr
);
2142 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2145 if (end
> vma
->vm_end
)
2147 len
= (end
+PAGE_SIZE
-1)/PAGE_SIZE
-addr
/PAGE_SIZE
;
2148 ret
= get_user_pages(current
, current
->mm
, addr
,
2149 len
, write
, 0, NULL
, NULL
);
2152 return ret
== len
? 0 : -1;
2156 * Map a vmalloc()-space virtual address to the physical page.
2158 struct page
* vmalloc_to_page(void * vmalloc_addr
)
2160 unsigned long addr
= (unsigned long) vmalloc_addr
;
2161 struct page
*page
= NULL
;
2162 pgd_t
*pgd
= pgd_offset_k(addr
);
2167 if (!pgd_none(*pgd
)) {
2168 pud
= pud_offset(pgd
, addr
);
2169 if (!pud_none(*pud
)) {
2170 pmd
= pmd_offset(pud
, addr
);
2171 if (!pmd_none(*pmd
)) {
2172 ptep
= pte_offset_map(pmd
, addr
);
2174 if (pte_present(pte
))
2175 page
= pte_page(pte
);
2183 EXPORT_SYMBOL(vmalloc_to_page
);
2186 * Map a vmalloc()-space virtual address to the physical page frame number.
2188 unsigned long vmalloc_to_pfn(void * vmalloc_addr
)
2190 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
2193 EXPORT_SYMBOL(vmalloc_to_pfn
);
2195 #if !defined(__HAVE_ARCH_GATE_AREA)
2197 #if defined(AT_SYSINFO_EHDR)
2198 static struct vm_area_struct gate_vma
;
2200 static int __init
gate_vma_init(void)
2202 gate_vma
.vm_mm
= NULL
;
2203 gate_vma
.vm_start
= FIXADDR_USER_START
;
2204 gate_vma
.vm_end
= FIXADDR_USER_END
;
2205 gate_vma
.vm_page_prot
= PAGE_READONLY
;
2206 gate_vma
.vm_flags
= VM_RESERVED
;
2209 __initcall(gate_vma_init
);
2212 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2214 #ifdef AT_SYSINFO_EHDR
2221 int in_gate_area_no_task(unsigned long addr
)
2223 #ifdef AT_SYSINFO_EHDR
2224 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2230 #endif /* __HAVE_ARCH_GATE_AREA */