[PARISC] Update bitops from parisc tree
[linux-2.6.22.y-op.git] / mm / sparse.c
blob347249a4917afa922f4c8ae5d38fbfe81c189a5a
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/config.h>
5 #include <linux/mm.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <asm/dma.h>
13 * Permanent SPARSEMEM data:
15 * 1) mem_section - memory sections, mem_map's for valid memory
17 #ifdef CONFIG_SPARSEMEM_EXTREME
18 struct mem_section *mem_section[NR_SECTION_ROOTS]
19 ____cacheline_maxaligned_in_smp;
20 #else
21 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22 ____cacheline_maxaligned_in_smp;
23 #endif
24 EXPORT_SYMBOL(mem_section);
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 static struct mem_section *sparse_index_alloc(int nid)
29 struct mem_section *section = NULL;
30 unsigned long array_size = SECTIONS_PER_ROOT *
31 sizeof(struct mem_section);
33 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
35 if (section)
36 memset(section, 0, array_size);
38 return section;
41 static int sparse_index_init(unsigned long section_nr, int nid)
43 static spinlock_t index_init_lock = SPIN_LOCK_UNLOCKED;
44 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
45 struct mem_section *section;
46 int ret = 0;
48 if (mem_section[root])
49 return -EEXIST;
51 section = sparse_index_alloc(nid);
53 * This lock keeps two different sections from
54 * reallocating for the same index
56 spin_lock(&index_init_lock);
58 if (mem_section[root]) {
59 ret = -EEXIST;
60 goto out;
63 mem_section[root] = section;
64 out:
65 spin_unlock(&index_init_lock);
66 return ret;
68 #else /* !SPARSEMEM_EXTREME */
69 static inline int sparse_index_init(unsigned long section_nr, int nid)
71 return 0;
73 #endif
75 /* Record a memory area against a node. */
76 void memory_present(int nid, unsigned long start, unsigned long end)
78 unsigned long pfn;
80 start &= PAGE_SECTION_MASK;
81 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
82 unsigned long section = pfn_to_section_nr(pfn);
83 struct mem_section *ms;
85 sparse_index_init(section, nid);
87 ms = __nr_to_section(section);
88 if (!ms->section_mem_map)
89 ms->section_mem_map = SECTION_MARKED_PRESENT;
94 * Only used by the i386 NUMA architecures, but relatively
95 * generic code.
97 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
98 unsigned long end_pfn)
100 unsigned long pfn;
101 unsigned long nr_pages = 0;
103 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
104 if (nid != early_pfn_to_nid(pfn))
105 continue;
107 if (pfn_valid(pfn))
108 nr_pages += PAGES_PER_SECTION;
111 return nr_pages * sizeof(struct page);
115 * Subtle, we encode the real pfn into the mem_map such that
116 * the identity pfn - section_mem_map will return the actual
117 * physical page frame number.
119 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
121 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
125 * We need this if we ever free the mem_maps. While not implemented yet,
126 * this function is included for parity with its sibling.
128 static __attribute((unused))
129 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
131 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
134 static int sparse_init_one_section(struct mem_section *ms,
135 unsigned long pnum, struct page *mem_map)
137 if (!valid_section(ms))
138 return -EINVAL;
140 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
142 return 1;
145 static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
147 struct page *map;
148 int nid = early_pfn_to_nid(section_nr_to_pfn(pnum));
149 struct mem_section *ms = __nr_to_section(pnum);
151 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
152 if (map)
153 return map;
155 map = alloc_bootmem_node(NODE_DATA(nid),
156 sizeof(struct page) * PAGES_PER_SECTION);
157 if (map)
158 return map;
160 printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
161 ms->section_mem_map = 0;
162 return NULL;
166 * Allocate the accumulated non-linear sections, allocate a mem_map
167 * for each and record the physical to section mapping.
169 void sparse_init(void)
171 unsigned long pnum;
172 struct page *map;
174 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
175 if (!valid_section_nr(pnum))
176 continue;
178 map = sparse_early_mem_map_alloc(pnum);
179 if (!map)
180 continue;
181 sparse_init_one_section(__nr_to_section(pnum), pnum, map);
186 * returns the number of sections whose mem_maps were properly
187 * set. If this is <=0, then that means that the passed-in
188 * map was not consumed and must be freed.
190 int sparse_add_one_section(unsigned long start_pfn, int nr_pages, struct page *map)
192 struct mem_section *ms = __pfn_to_section(start_pfn);
194 if (ms->section_mem_map & SECTION_MARKED_PRESENT)
195 return -EEXIST;
197 ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 return sparse_init_one_section(ms, pfn_to_section_nr(start_pfn), map);