4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
9 * 10Apr2002 akpm@zip.com.au
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/rmap.h>
27 #include <linux/percpu.h>
28 #include <linux/notifier.h>
29 #include <linux/smp.h>
30 #include <linux/sysctl.h>
31 #include <linux/cpu.h>
32 #include <linux/syscalls.h>
33 #include <linux/buffer_head.h>
34 #include <linux/pagevec.h>
37 * The maximum number of pages to writeout in a single bdflush/kupdate
38 * operation. We do this so we don't hold I_LOCK against an inode for
39 * enormous amounts of time, which would block a userspace task which has
40 * been forced to throttle against that inode. Also, the code reevaluates
41 * the dirty each time it has written this many pages.
43 #define MAX_WRITEBACK_PAGES 1024
46 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
47 * will look to see if it needs to force writeback or throttling.
49 static long ratelimit_pages
= 32;
51 static int dirty_exceeded __cacheline_aligned_in_smp
; /* Dirty mem may be over limit */
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages
+ ratelimit_pages
/ 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio
= 10;
72 * The generator of dirty data starts writeback at this percentage
74 int vm_dirty_ratio
= 40;
77 * The interval between `kupdate'-style writebacks, in jiffies
79 int dirty_writeback_interval
= 5 * HZ
;
82 * The longest number of jiffies for which data is allowed to remain dirty
84 int dirty_expire_interval
= 30 * HZ
;
87 * Flag that makes the machine dump writes/reads and block dirtyings.
92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93 * a full sync is triggered after this time elapses without any disk activity.
97 EXPORT_SYMBOL(laptop_mode
);
99 /* End of sysctl-exported parameters */
102 static void background_writeout(unsigned long _min_pages
);
105 * Work out the current dirty-memory clamping and background writeout
108 * The main aim here is to lower them aggressively if there is a lot of mapped
109 * memory around. To avoid stressing page reclaim with lots of unreclaimable
110 * pages. It is better to clamp down on writers than to start swapping, and
111 * performing lots of scanning.
113 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115 * We don't permit the clamping level to fall below 5% - that is getting rather
118 * We make sure that the background writeout level is below the adjusted
122 get_dirty_limits(long *pbackground
, long *pdirty
,
123 struct address_space
*mapping
)
125 int background_ratio
; /* Percentages */
130 unsigned long available_memory
= vm_total_pages
;
131 struct task_struct
*tsk
;
133 #ifdef CONFIG_HIGHMEM
135 * If this mapping can only allocate from low memory,
136 * we exclude high memory from our count.
138 if (mapping
&& !(mapping_gfp_mask(mapping
) & __GFP_HIGHMEM
))
139 available_memory
-= totalhigh_pages
;
143 unmapped_ratio
= 100 - ((global_page_state(NR_FILE_MAPPED
) +
144 global_page_state(NR_ANON_PAGES
)) * 100) /
147 dirty_ratio
= vm_dirty_ratio
;
148 if (dirty_ratio
> unmapped_ratio
/ 2)
149 dirty_ratio
= unmapped_ratio
/ 2;
154 background_ratio
= dirty_background_ratio
;
155 if (background_ratio
>= dirty_ratio
)
156 background_ratio
= dirty_ratio
/ 2;
158 background
= (background_ratio
* available_memory
) / 100;
159 dirty
= (dirty_ratio
* available_memory
) / 100;
161 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
162 background
+= background
/ 4;
165 *pbackground
= background
;
170 * balance_dirty_pages() must be called by processes which are generating dirty
171 * data. It looks at the number of dirty pages in the machine and will force
172 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
173 * If we're over `background_thresh' then pdflush is woken to perform some
176 static void balance_dirty_pages(struct address_space
*mapping
)
179 long background_thresh
;
181 unsigned long pages_written
= 0;
182 unsigned long write_chunk
= sync_writeback_pages();
184 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
187 struct writeback_control wbc
= {
189 .sync_mode
= WB_SYNC_NONE
,
190 .older_than_this
= NULL
,
191 .nr_to_write
= write_chunk
,
195 get_dirty_limits(&background_thresh
, &dirty_thresh
, mapping
);
196 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
197 global_page_state(NR_UNSTABLE_NFS
);
198 if (nr_reclaimable
+ global_page_state(NR_WRITEBACK
) <=
205 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
206 * Unstable writes are a feature of certain networked
207 * filesystems (i.e. NFS) in which data may have been
208 * written to the server's write cache, but has not yet
209 * been flushed to permanent storage.
211 if (nr_reclaimable
) {
212 writeback_inodes(&wbc
);
213 get_dirty_limits(&background_thresh
,
214 &dirty_thresh
, mapping
);
215 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
216 global_page_state(NR_UNSTABLE_NFS
);
218 global_page_state(NR_WRITEBACK
)
221 pages_written
+= write_chunk
- wbc
.nr_to_write
;
222 if (pages_written
>= write_chunk
)
223 break; /* We've done our duty */
225 congestion_wait(WRITE
, HZ
/10);
228 if (nr_reclaimable
+ global_page_state(NR_WRITEBACK
)
229 <= dirty_thresh
&& dirty_exceeded
)
232 if (writeback_in_progress(bdi
))
233 return; /* pdflush is already working this queue */
236 * In laptop mode, we wait until hitting the higher threshold before
237 * starting background writeout, and then write out all the way down
238 * to the lower threshold. So slow writers cause minimal disk activity.
240 * In normal mode, we start background writeout at the lower
241 * background_thresh, to keep the amount of dirty memory low.
243 if ((laptop_mode
&& pages_written
) ||
244 (!laptop_mode
&& (nr_reclaimable
> background_thresh
)))
245 pdflush_operation(background_writeout
, 0);
248 void set_page_dirty_balance(struct page
*page
)
250 if (set_page_dirty(page
)) {
251 struct address_space
*mapping
= page_mapping(page
);
254 balance_dirty_pages_ratelimited(mapping
);
259 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
260 * @mapping: address_space which was dirtied
261 * @nr_pages_dirtied: number of pages which the caller has just dirtied
263 * Processes which are dirtying memory should call in here once for each page
264 * which was newly dirtied. The function will periodically check the system's
265 * dirty state and will initiate writeback if needed.
267 * On really big machines, get_writeback_state is expensive, so try to avoid
268 * calling it too often (ratelimiting). But once we're over the dirty memory
269 * limit we decrease the ratelimiting by a lot, to prevent individual processes
270 * from overshooting the limit by (ratelimit_pages) each.
272 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
273 unsigned long nr_pages_dirtied
)
275 static DEFINE_PER_CPU(unsigned long, ratelimits
) = 0;
276 unsigned long ratelimit
;
279 ratelimit
= ratelimit_pages
;
284 * Check the rate limiting. Also, we do not want to throttle real-time
285 * tasks in balance_dirty_pages(). Period.
288 p
= &__get_cpu_var(ratelimits
);
289 *p
+= nr_pages_dirtied
;
290 if (unlikely(*p
>= ratelimit
)) {
293 balance_dirty_pages(mapping
);
298 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
300 void throttle_vm_writeout(void)
302 long background_thresh
;
306 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
);
309 * Boost the allowable dirty threshold a bit for page
310 * allocators so they don't get DoS'ed by heavy writers
312 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
314 if (global_page_state(NR_UNSTABLE_NFS
) +
315 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
317 congestion_wait(WRITE
, HZ
/10);
323 * writeback at least _min_pages, and keep writing until the amount of dirty
324 * memory is less than the background threshold, or until we're all clean.
326 static void background_writeout(unsigned long _min_pages
)
328 long min_pages
= _min_pages
;
329 struct writeback_control wbc
= {
331 .sync_mode
= WB_SYNC_NONE
,
332 .older_than_this
= NULL
,
339 long background_thresh
;
342 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
);
343 if (global_page_state(NR_FILE_DIRTY
) +
344 global_page_state(NR_UNSTABLE_NFS
) < background_thresh
347 wbc
.encountered_congestion
= 0;
348 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
349 wbc
.pages_skipped
= 0;
350 writeback_inodes(&wbc
);
351 min_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
352 if (wbc
.nr_to_write
> 0 || wbc
.pages_skipped
> 0) {
353 /* Wrote less than expected */
354 congestion_wait(WRITE
, HZ
/10);
355 if (!wbc
.encountered_congestion
)
362 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
363 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
364 * -1 if all pdflush threads were busy.
366 int wakeup_pdflush(long nr_pages
)
369 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
370 global_page_state(NR_UNSTABLE_NFS
);
371 return pdflush_operation(background_writeout
, nr_pages
);
374 static void wb_timer_fn(unsigned long unused
);
375 static void laptop_timer_fn(unsigned long unused
);
377 static DEFINE_TIMER(wb_timer
, wb_timer_fn
, 0, 0);
378 static DEFINE_TIMER(laptop_mode_wb_timer
, laptop_timer_fn
, 0, 0);
381 * Periodic writeback of "old" data.
383 * Define "old": the first time one of an inode's pages is dirtied, we mark the
384 * dirtying-time in the inode's address_space. So this periodic writeback code
385 * just walks the superblock inode list, writing back any inodes which are
386 * older than a specific point in time.
388 * Try to run once per dirty_writeback_interval. But if a writeback event
389 * takes longer than a dirty_writeback_interval interval, then leave a
392 * older_than_this takes precedence over nr_to_write. So we'll only write back
393 * all dirty pages if they are all attached to "old" mappings.
395 static void wb_kupdate(unsigned long arg
)
397 unsigned long oldest_jif
;
398 unsigned long start_jif
;
399 unsigned long next_jif
;
401 struct writeback_control wbc
= {
403 .sync_mode
= WB_SYNC_NONE
,
404 .older_than_this
= &oldest_jif
,
413 oldest_jif
= jiffies
- dirty_expire_interval
;
415 next_jif
= start_jif
+ dirty_writeback_interval
;
416 nr_to_write
= global_page_state(NR_FILE_DIRTY
) +
417 global_page_state(NR_UNSTABLE_NFS
) +
418 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
419 while (nr_to_write
> 0) {
420 wbc
.encountered_congestion
= 0;
421 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
422 writeback_inodes(&wbc
);
423 if (wbc
.nr_to_write
> 0) {
424 if (wbc
.encountered_congestion
)
425 congestion_wait(WRITE
, HZ
/10);
427 break; /* All the old data is written */
429 nr_to_write
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
431 if (time_before(next_jif
, jiffies
+ HZ
))
432 next_jif
= jiffies
+ HZ
;
433 if (dirty_writeback_interval
)
434 mod_timer(&wb_timer
, next_jif
);
438 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
440 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
441 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
443 proc_dointvec_userhz_jiffies(table
, write
, file
, buffer
, length
, ppos
);
444 if (dirty_writeback_interval
) {
446 jiffies
+ dirty_writeback_interval
);
448 del_timer(&wb_timer
);
453 static void wb_timer_fn(unsigned long unused
)
455 if (pdflush_operation(wb_kupdate
, 0) < 0)
456 mod_timer(&wb_timer
, jiffies
+ HZ
); /* delay 1 second */
459 static void laptop_flush(unsigned long unused
)
464 static void laptop_timer_fn(unsigned long unused
)
466 pdflush_operation(laptop_flush
, 0);
470 * We've spun up the disk and we're in laptop mode: schedule writeback
471 * of all dirty data a few seconds from now. If the flush is already scheduled
472 * then push it back - the user is still using the disk.
474 void laptop_io_completion(void)
476 mod_timer(&laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
480 * We're in laptop mode and we've just synced. The sync's writes will have
481 * caused another writeback to be scheduled by laptop_io_completion.
482 * Nothing needs to be written back anymore, so we unschedule the writeback.
484 void laptop_sync_completion(void)
486 del_timer(&laptop_mode_wb_timer
);
490 * If ratelimit_pages is too high then we can get into dirty-data overload
491 * if a large number of processes all perform writes at the same time.
492 * If it is too low then SMP machines will call the (expensive)
493 * get_writeback_state too often.
495 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
496 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
497 * thresholds before writeback cuts in.
499 * But the limit should not be set too high. Because it also controls the
500 * amount of memory which the balance_dirty_pages() caller has to write back.
501 * If this is too large then the caller will block on the IO queue all the
502 * time. So limit it to four megabytes - the balance_dirty_pages() caller
503 * will write six megabyte chunks, max.
506 void writeback_set_ratelimit(void)
508 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
509 if (ratelimit_pages
< 16)
510 ratelimit_pages
= 16;
511 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
512 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
516 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
518 writeback_set_ratelimit();
522 static struct notifier_block __cpuinitdata ratelimit_nb
= {
523 .notifier_call
= ratelimit_handler
,
528 * If the machine has a large highmem:lowmem ratio then scale back the default
529 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
530 * number of buffer_heads.
532 void __init
page_writeback_init(void)
534 long buffer_pages
= nr_free_buffer_pages();
537 correction
= (100 * 4 * buffer_pages
) / vm_total_pages
;
539 if (correction
< 100) {
540 dirty_background_ratio
*= correction
;
541 dirty_background_ratio
/= 100;
542 vm_dirty_ratio
*= correction
;
543 vm_dirty_ratio
/= 100;
545 if (dirty_background_ratio
<= 0)
546 dirty_background_ratio
= 1;
547 if (vm_dirty_ratio
<= 0)
550 mod_timer(&wb_timer
, jiffies
+ dirty_writeback_interval
);
551 writeback_set_ratelimit();
552 register_cpu_notifier(&ratelimit_nb
);
556 * generic_writepages - walk the list of dirty pages of the given
557 * address space and writepage() all of them.
559 * @mapping: address space structure to write
560 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
562 * This is a library function, which implements the writepages()
563 * address_space_operation.
565 * If a page is already under I/O, generic_writepages() skips it, even
566 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
567 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
568 * and msync() need to guarantee that all the data which was dirty at the time
569 * the call was made get new I/O started against them. If wbc->sync_mode is
570 * WB_SYNC_ALL then we were called for data integrity and we must wait for
571 * existing IO to complete.
573 * Derived from mpage_writepages() - if you fix this you should check that
576 int generic_writepages(struct address_space
*mapping
,
577 struct writeback_control
*wbc
)
579 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
582 int (*writepage
)(struct page
*page
, struct writeback_control
*wbc
);
586 pgoff_t end
; /* Inclusive */
590 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
591 wbc
->encountered_congestion
= 1;
595 writepage
= mapping
->a_ops
->writepage
;
597 /* deal with chardevs and other special file */
601 pagevec_init(&pvec
, 0);
602 if (wbc
->range_cyclic
) {
603 index
= mapping
->writeback_index
; /* Start from prev offset */
606 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
607 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
608 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
613 while (!done
&& (index
<= end
) &&
614 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
616 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
620 for (i
= 0; i
< nr_pages
; i
++) {
621 struct page
*page
= pvec
.pages
[i
];
624 * At this point we hold neither mapping->tree_lock nor
625 * lock on the page itself: the page may be truncated or
626 * invalidated (changing page->mapping to NULL), or even
627 * swizzled back from swapper_space to tmpfs file
632 if (unlikely(page
->mapping
!= mapping
)) {
637 if (!wbc
->range_cyclic
&& page
->index
> end
) {
643 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
644 wait_on_page_writeback(page
);
646 if (PageWriteback(page
) ||
647 !clear_page_dirty_for_io(page
)) {
652 ret
= (*writepage
)(page
, wbc
);
655 set_bit(AS_ENOSPC
, &mapping
->flags
);
657 set_bit(AS_EIO
, &mapping
->flags
);
660 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
))
662 if (ret
|| (--(wbc
->nr_to_write
) <= 0))
664 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
665 wbc
->encountered_congestion
= 1;
669 pagevec_release(&pvec
);
672 if (!scanned
&& !done
) {
674 * We hit the last page and there is more work to be done: wrap
675 * back to the start of the file
681 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
682 mapping
->writeback_index
= index
;
686 EXPORT_SYMBOL(generic_writepages
);
688 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
692 if (wbc
->nr_to_write
<= 0)
694 wbc
->for_writepages
= 1;
695 if (mapping
->a_ops
->writepages
)
696 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
698 ret
= generic_writepages(mapping
, wbc
);
699 wbc
->for_writepages
= 0;
704 * write_one_page - write out a single page and optionally wait on I/O
706 * @page: the page to write
707 * @wait: if true, wait on writeout
709 * The page must be locked by the caller and will be unlocked upon return.
711 * write_one_page() returns a negative error code if I/O failed.
713 int write_one_page(struct page
*page
, int wait
)
715 struct address_space
*mapping
= page
->mapping
;
717 struct writeback_control wbc
= {
718 .sync_mode
= WB_SYNC_ALL
,
722 BUG_ON(!PageLocked(page
));
725 wait_on_page_writeback(page
);
727 if (clear_page_dirty_for_io(page
)) {
728 page_cache_get(page
);
729 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
730 if (ret
== 0 && wait
) {
731 wait_on_page_writeback(page
);
735 page_cache_release(page
);
741 EXPORT_SYMBOL(write_one_page
);
744 * For address_spaces which do not use buffers. Just tag the page as dirty in
747 * This is also used when a single buffer is being dirtied: we want to set the
748 * page dirty in that case, but not all the buffers. This is a "bottom-up"
749 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
751 * Most callers have locked the page, which pins the address_space in memory.
752 * But zap_pte_range() does not lock the page, however in that case the
753 * mapping is pinned by the vma's ->vm_file reference.
755 * We take care to handle the case where the page was truncated from the
756 * mapping by re-checking page_mapping() insode tree_lock.
758 int __set_page_dirty_nobuffers(struct page
*page
)
760 if (!TestSetPageDirty(page
)) {
761 struct address_space
*mapping
= page_mapping(page
);
762 struct address_space
*mapping2
;
765 write_lock_irq(&mapping
->tree_lock
);
766 mapping2
= page_mapping(page
);
767 if (mapping2
) { /* Race with truncate? */
768 BUG_ON(mapping2
!= mapping
);
769 if (mapping_cap_account_dirty(mapping
))
770 __inc_zone_page_state(page
,
772 radix_tree_tag_set(&mapping
->page_tree
,
773 page_index(page
), PAGECACHE_TAG_DIRTY
);
775 write_unlock_irq(&mapping
->tree_lock
);
777 /* !PageAnon && !swapper_space */
778 __mark_inode_dirty(mapping
->host
,
786 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
789 * When a writepage implementation decides that it doesn't want to write this
790 * page for some reason, it should redirty the locked page via
791 * redirty_page_for_writepage() and it should then unlock the page and return 0
793 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
795 wbc
->pages_skipped
++;
796 return __set_page_dirty_nobuffers(page
);
798 EXPORT_SYMBOL(redirty_page_for_writepage
);
801 * If the mapping doesn't provide a set_page_dirty a_op, then
802 * just fall through and assume that it wants buffer_heads.
804 int fastcall
set_page_dirty(struct page
*page
)
806 struct address_space
*mapping
= page_mapping(page
);
808 if (likely(mapping
)) {
809 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
812 spd
= __set_page_dirty_buffers
;
816 if (!PageDirty(page
)) {
817 if (!TestSetPageDirty(page
))
822 EXPORT_SYMBOL(set_page_dirty
);
825 * set_page_dirty() is racy if the caller has no reference against
826 * page->mapping->host, and if the page is unlocked. This is because another
827 * CPU could truncate the page off the mapping and then free the mapping.
829 * Usually, the page _is_ locked, or the caller is a user-space process which
830 * holds a reference on the inode by having an open file.
832 * In other cases, the page should be locked before running set_page_dirty().
834 int set_page_dirty_lock(struct page
*page
)
838 lock_page_nosync(page
);
839 ret
= set_page_dirty(page
);
843 EXPORT_SYMBOL(set_page_dirty_lock
);
846 * Clear a page's dirty flag, while caring for dirty memory accounting.
847 * Returns true if the page was previously dirty.
849 int test_clear_page_dirty(struct page
*page
)
851 struct address_space
*mapping
= page_mapping(page
);
855 write_lock_irqsave(&mapping
->tree_lock
, flags
);
856 if (TestClearPageDirty(page
)) {
857 radix_tree_tag_clear(&mapping
->page_tree
,
859 PAGECACHE_TAG_DIRTY
);
860 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
862 * We can continue to use `mapping' here because the
863 * page is locked, which pins the address_space
865 if (mapping_cap_account_dirty(mapping
)) {
867 dec_zone_page_state(page
, NR_FILE_DIRTY
);
871 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
874 return TestClearPageDirty(page
);
876 EXPORT_SYMBOL(test_clear_page_dirty
);
879 * Clear a page's dirty flag, while caring for dirty memory accounting.
880 * Returns true if the page was previously dirty.
882 * This is for preparing to put the page under writeout. We leave the page
883 * tagged as dirty in the radix tree so that a concurrent write-for-sync
884 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
885 * implementation will run either set_page_writeback() or set_page_dirty(),
886 * at which stage we bring the page's dirty flag and radix-tree dirty tag
889 * This incoherency between the page's dirty flag and radix-tree tag is
890 * unfortunate, but it only exists while the page is locked.
892 int clear_page_dirty_for_io(struct page
*page
)
894 struct address_space
*mapping
= page_mapping(page
);
897 if (TestClearPageDirty(page
)) {
898 if (mapping_cap_account_dirty(mapping
)) {
900 dec_zone_page_state(page
, NR_FILE_DIRTY
);
906 return TestClearPageDirty(page
);
908 EXPORT_SYMBOL(clear_page_dirty_for_io
);
910 int test_clear_page_writeback(struct page
*page
)
912 struct address_space
*mapping
= page_mapping(page
);
918 write_lock_irqsave(&mapping
->tree_lock
, flags
);
919 ret
= TestClearPageWriteback(page
);
921 radix_tree_tag_clear(&mapping
->page_tree
,
923 PAGECACHE_TAG_WRITEBACK
);
924 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
926 ret
= TestClearPageWriteback(page
);
931 int test_set_page_writeback(struct page
*page
)
933 struct address_space
*mapping
= page_mapping(page
);
939 write_lock_irqsave(&mapping
->tree_lock
, flags
);
940 ret
= TestSetPageWriteback(page
);
942 radix_tree_tag_set(&mapping
->page_tree
,
944 PAGECACHE_TAG_WRITEBACK
);
945 if (!PageDirty(page
))
946 radix_tree_tag_clear(&mapping
->page_tree
,
948 PAGECACHE_TAG_DIRTY
);
949 write_unlock_irqrestore(&mapping
->tree_lock
, flags
);
951 ret
= TestSetPageWriteback(page
);
956 EXPORT_SYMBOL(test_set_page_writeback
);
959 * Return true if any of the pages in the mapping are marged with the
962 int mapping_tagged(struct address_space
*mapping
, int tag
)
967 read_lock_irqsave(&mapping
->tree_lock
, flags
);
968 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
969 read_unlock_irqrestore(&mapping
->tree_lock
, flags
);
972 EXPORT_SYMBOL(mapping_tagged
);