[MTD] NAND: Fix timing calculation in CAFÉ debugging message
[linux-2.6.22.y-op.git] / drivers / mtd / nand / cafe.c
blob35a868708e032f08abe4d83924478c890ca16d1b
1 /*
2 * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
4 * Copyright © 2006 Red Hat, Inc.
5 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
6 */
8 #define DEBUG
10 #include <linux/device.h>
11 #undef DEBUG
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/nand.h>
14 #include <linux/pci.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <asm/io.h>
19 #define CAFE_NAND_CTRL1 0x00
20 #define CAFE_NAND_CTRL2 0x04
21 #define CAFE_NAND_CTRL3 0x08
22 #define CAFE_NAND_STATUS 0x0c
23 #define CAFE_NAND_IRQ 0x10
24 #define CAFE_NAND_IRQ_MASK 0x14
25 #define CAFE_NAND_DATA_LEN 0x18
26 #define CAFE_NAND_ADDR1 0x1c
27 #define CAFE_NAND_ADDR2 0x20
28 #define CAFE_NAND_TIMING1 0x24
29 #define CAFE_NAND_TIMING2 0x28
30 #define CAFE_NAND_TIMING3 0x2c
31 #define CAFE_NAND_NONMEM 0x30
32 #define CAFE_NAND_ECC_RESULT 0x3C
33 #define CAFE_NAND_DMA_CTRL 0x40
34 #define CAFE_NAND_DMA_ADDR0 0x44
35 #define CAFE_NAND_DMA_ADDR1 0x48
36 #define CAFE_NAND_ECC_SYN01 0x50
37 #define CAFE_NAND_ECC_SYN23 0x54
38 #define CAFE_NAND_ECC_SYN45 0x58
39 #define CAFE_NAND_ECC_SYN67 0x5c
40 #define CAFE_NAND_READ_DATA 0x1000
41 #define CAFE_NAND_WRITE_DATA 0x2000
43 int cafe_correct_ecc(unsigned char *buf,
44 unsigned short *chk_syndrome_list);
46 struct cafe_priv {
47 struct nand_chip nand;
48 struct pci_dev *pdev;
49 void __iomem *mmio;
50 uint32_t ctl1;
51 uint32_t ctl2;
52 int datalen;
53 int nr_data;
54 int data_pos;
55 int page_addr;
56 dma_addr_t dmaaddr;
57 unsigned char *dmabuf;
61 static int usedma = 1;
62 module_param(usedma, int, 0644);
64 static int skipbbt = 0;
65 module_param(skipbbt, int, 0644);
67 static int debug = 0;
68 module_param(debug, int, 0644);
70 static int checkecc = 1;
71 module_param(checkecc, int, 0644);
73 static int slowtiming = 0;
74 module_param(slowtiming, int, 0644);
76 /* Hrm. Why isn't this already conditional on something in the struct device? */
77 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
80 static int cafe_device_ready(struct mtd_info *mtd)
82 struct cafe_priv *cafe = mtd->priv;
83 int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);
84 uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
86 writel(irqs, cafe->mmio+CAFE_NAND_IRQ);
88 cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
89 result?"":" not", irqs, readl(cafe->mmio + CAFE_NAND_IRQ),
90 readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
92 return result;
96 static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
98 struct cafe_priv *cafe = mtd->priv;
100 if (usedma)
101 memcpy(cafe->dmabuf + cafe->datalen, buf, len);
102 else
103 memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
105 cafe->datalen += len;
107 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
108 len, cafe->datalen);
111 static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
113 struct cafe_priv *cafe = mtd->priv;
115 if (usedma)
116 memcpy(buf, cafe->dmabuf + cafe->datalen, len);
117 else
118 memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
120 cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
121 len, cafe->datalen);
122 cafe->datalen += len;
125 static uint8_t cafe_read_byte(struct mtd_info *mtd)
127 struct cafe_priv *cafe = mtd->priv;
128 uint8_t d;
130 cafe_read_buf(mtd, &d, 1);
131 cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
133 return d;
136 static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
137 int column, int page_addr)
139 struct cafe_priv *cafe = mtd->priv;
140 int adrbytes = 0;
141 uint32_t ctl1;
142 uint32_t doneint = 0x80000000;
144 cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
145 command, column, page_addr);
147 if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
148 /* Second half of a command we already calculated */
149 writel(cafe->ctl2 | 0x100 | command, cafe->mmio + CAFE_NAND_CTRL2);
150 ctl1 = cafe->ctl1;
151 cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
152 cafe->ctl1, cafe->nr_data);
153 goto do_command;
155 /* Reset ECC engine */
156 writel(0, cafe->mmio + CAFE_NAND_CTRL2);
158 /* Emulate NAND_CMD_READOOB on large-page chips */
159 if (mtd->writesize > 512 &&
160 command == NAND_CMD_READOOB) {
161 column += mtd->writesize;
162 command = NAND_CMD_READ0;
165 /* FIXME: Do we need to send read command before sending data
166 for small-page chips, to position the buffer correctly? */
168 if (column != -1) {
169 writel(column, cafe->mmio + CAFE_NAND_ADDR1);
170 adrbytes = 2;
171 if (page_addr != -1)
172 goto write_adr2;
173 } else if (page_addr != -1) {
174 writel(page_addr & 0xffff, cafe->mmio + CAFE_NAND_ADDR1);
175 page_addr >>= 16;
176 write_adr2:
177 writel(page_addr, cafe->mmio+0x20);
178 adrbytes += 2;
179 if (mtd->size > mtd->writesize << 16)
180 adrbytes++;
183 cafe->data_pos = cafe->datalen = 0;
185 /* Set command valid bit */
186 ctl1 = 0x80000000 | command;
188 /* Set RD or WR bits as appropriate */
189 if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
190 ctl1 |= (1<<26); /* rd */
191 /* Always 5 bytes, for now */
192 cafe->datalen = 4;
193 /* And one address cycle -- even for STATUS, since the controller doesn't work without */
194 adrbytes = 1;
195 } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
196 command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
197 ctl1 |= 1<<26; /* rd */
198 /* For now, assume just read to end of page */
199 cafe->datalen = mtd->writesize + mtd->oobsize - column;
200 } else if (command == NAND_CMD_SEQIN)
201 ctl1 |= 1<<25; /* wr */
203 /* Set number of address bytes */
204 if (adrbytes)
205 ctl1 |= ((adrbytes-1)|8) << 27;
207 if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
208 /* Ignore the first command of a pair; the hardware
209 deals with them both at once, later */
210 cafe->ctl1 = ctl1;
211 cafe->ctl2 = 0;
212 cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
213 cafe->ctl1, cafe->datalen);
214 return;
216 /* RNDOUT and READ0 commands need a following byte */
217 if (command == NAND_CMD_RNDOUT)
218 writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
219 else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
220 writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);
222 do_command:
223 #if 0
224 /* http://dev.laptop.org/ticket/200
225 ECC on read only works if we read precisely 0x80e bytes */
226 if (cafe->datalen == 2112)
227 cafe->datalen = 2062;
228 #endif
229 cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
230 cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
232 /* NB: The datasheet lies -- we really should be subtracting 1 here */
233 writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
234 writel(0x90000000, cafe->mmio + CAFE_NAND_IRQ);
235 if (usedma && (ctl1 & (3<<25))) {
236 uint32_t dmactl = 0xc0000000 + cafe->datalen;
237 /* If WR or RD bits set, set up DMA */
238 if (ctl1 & (1<<26)) {
239 /* It's a read */
240 dmactl |= (1<<29);
241 /* ... so it's done when the DMA is done, not just
242 the command. */
243 doneint = 0x10000000;
245 writel(dmactl, cafe->mmio + CAFE_NAND_DMA_CTRL);
247 cafe->datalen = 0;
249 #if 0
250 { int i;
251 printk("About to write command %08x\n", ctl1);
252 for (i=0; i< 0x5c; i+=4)
253 printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
255 #endif
256 writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
257 /* Apply this short delay always to ensure that we do wait tWB in
258 * any case on any machine. */
259 ndelay(100);
261 if (1) {
262 int c = 500000;
263 uint32_t irqs;
265 while (c--) {
266 irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
267 if (irqs & doneint)
268 break;
269 udelay(1);
270 if (!(c % 100000))
271 cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
272 cpu_relax();
274 writel(doneint, cafe->mmio + CAFE_NAND_IRQ);
275 cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
276 command, 500000-c, irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
280 cafe->ctl2 &= ~(1<<8);
281 cafe->ctl2 &= ~(1<<30);
283 switch (command) {
285 case NAND_CMD_CACHEDPROG:
286 case NAND_CMD_PAGEPROG:
287 case NAND_CMD_ERASE1:
288 case NAND_CMD_ERASE2:
289 case NAND_CMD_SEQIN:
290 case NAND_CMD_RNDIN:
291 case NAND_CMD_STATUS:
292 case NAND_CMD_DEPLETE1:
293 case NAND_CMD_RNDOUT:
294 case NAND_CMD_STATUS_ERROR:
295 case NAND_CMD_STATUS_ERROR0:
296 case NAND_CMD_STATUS_ERROR1:
297 case NAND_CMD_STATUS_ERROR2:
298 case NAND_CMD_STATUS_ERROR3:
299 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
300 return;
302 nand_wait_ready(mtd);
303 writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
306 static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
308 //struct cafe_priv *cafe = mtd->priv;
309 // cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
312 static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
314 struct mtd_info *mtd = id;
315 struct cafe_priv *cafe = mtd->priv;
316 uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
317 writel(irqs & ~0x90000000, cafe->mmio + CAFE_NAND_IRQ);
318 if (!irqs)
319 return IRQ_NONE;
321 cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
322 return IRQ_HANDLED;
325 static void cafe_nand_bug(struct mtd_info *mtd)
327 BUG();
330 static int cafe_nand_write_oob(struct mtd_info *mtd,
331 struct nand_chip *chip, int page)
333 int status = 0;
335 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
336 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
337 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
338 status = chip->waitfunc(mtd, chip);
340 return status & NAND_STATUS_FAIL ? -EIO : 0;
343 /* Don't use -- use nand_read_oob_std for now */
344 static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
345 int page, int sndcmd)
347 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
348 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
349 return 1;
352 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
353 * @mtd: mtd info structure
354 * @chip: nand chip info structure
355 * @buf: buffer to store read data
357 * The hw generator calculates the error syndrome automatically. Therefor
358 * we need a special oob layout and handling.
360 static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
361 uint8_t *buf)
363 struct cafe_priv *cafe = mtd->priv;
365 cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
366 readl(cafe->mmio + CAFE_NAND_ECC_RESULT),
367 readl(cafe->mmio + CAFE_NAND_ECC_SYN01));
369 chip->read_buf(mtd, buf, mtd->writesize);
370 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
372 if (checkecc && readl(cafe->mmio + CAFE_NAND_ECC_RESULT) & (1<<18)) {
373 unsigned short syn[8];
374 int i;
376 for (i=0; i<8; i+=2) {
377 uint32_t tmp = readl(cafe->mmio + CAFE_NAND_ECC_SYN01 + (i*2));
378 syn[i] = tmp & 0xfff;
379 syn[i+1] = (tmp >> 16) & 0xfff;
382 if ((i = cafe_correct_ecc(buf, syn)) < 0) {
383 dev_dbg(&cafe->pdev->dev, "Failed to correct ECC\n");
384 mtd->ecc_stats.failed++;
385 } else {
386 dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", i);
387 mtd->ecc_stats.corrected += i;
392 return 0;
395 static struct nand_ecclayout cafe_oobinfo_2048 = {
396 .eccbytes = 14,
397 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
398 .oobfree = {{14, 50}}
401 /* Ick. The BBT code really ought to be able to work this bit out
402 for itself from the above, at least for the 2KiB case */
403 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
404 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
406 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
407 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
410 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
411 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
412 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
413 .offs = 14,
414 .len = 4,
415 .veroffs = 18,
416 .maxblocks = 4,
417 .pattern = cafe_bbt_pattern_2048
420 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
421 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
422 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
423 .offs = 14,
424 .len = 4,
425 .veroffs = 18,
426 .maxblocks = 4,
427 .pattern = cafe_mirror_pattern_2048
430 static struct nand_ecclayout cafe_oobinfo_512 = {
431 .eccbytes = 14,
432 .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
433 .oobfree = {{14, 2}}
436 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
437 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
438 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
439 .offs = 14,
440 .len = 1,
441 .veroffs = 15,
442 .maxblocks = 4,
443 .pattern = cafe_bbt_pattern_512
446 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
447 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
448 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
449 .offs = 14,
450 .len = 1,
451 .veroffs = 15,
452 .maxblocks = 4,
453 .pattern = cafe_mirror_pattern_512
457 static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
458 struct nand_chip *chip, const uint8_t *buf)
460 struct cafe_priv *cafe = mtd->priv;
462 chip->write_buf(mtd, buf, mtd->writesize);
463 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
465 /* Set up ECC autogeneration */
466 cafe->ctl2 |= (1<<27) | (1<<30);
467 if (mtd->writesize == 2048)
468 cafe->ctl2 |= (1<<29);
471 static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
472 const uint8_t *buf, int page, int cached, int raw)
474 int status;
476 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
478 if (unlikely(raw))
479 chip->ecc.write_page_raw(mtd, chip, buf);
480 else
481 chip->ecc.write_page(mtd, chip, buf);
484 * Cached progamming disabled for now, Not sure if its worth the
485 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
487 cached = 0;
489 if (!cached || !(chip->options & NAND_CACHEPRG)) {
491 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
492 status = chip->waitfunc(mtd, chip);
494 * See if operation failed and additional status checks are
495 * available
497 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
498 status = chip->errstat(mtd, chip, FL_WRITING, status,
499 page);
501 if (status & NAND_STATUS_FAIL)
502 return -EIO;
503 } else {
504 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
505 status = chip->waitfunc(mtd, chip);
508 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
509 /* Send command to read back the data */
510 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
512 if (chip->verify_buf(mtd, buf, mtd->writesize))
513 return -EIO;
514 #endif
515 return 0;
518 static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
520 return 0;
523 static int __devinit cafe_nand_probe(struct pci_dev *pdev,
524 const struct pci_device_id *ent)
526 struct mtd_info *mtd;
527 struct cafe_priv *cafe;
528 uint32_t ctrl;
529 int err = 0;
531 err = pci_enable_device(pdev);
532 if (err)
533 return err;
535 pci_set_master(pdev);
537 mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
538 if (!mtd) {
539 dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
540 return -ENOMEM;
542 cafe = (void *)(&mtd[1]);
544 mtd->priv = cafe;
545 mtd->owner = THIS_MODULE;
547 cafe->pdev = pdev;
548 cafe->mmio = pci_iomap(pdev, 0, 0);
549 if (!cafe->mmio) {
550 dev_warn(&pdev->dev, "failed to iomap\n");
551 err = -ENOMEM;
552 goto out_free_mtd;
554 cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
555 &cafe->dmaaddr, GFP_KERNEL);
556 if (!cafe->dmabuf) {
557 err = -ENOMEM;
558 goto out_ior;
560 cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
562 cafe->nand.cmdfunc = cafe_nand_cmdfunc;
563 cafe->nand.dev_ready = cafe_device_ready;
564 cafe->nand.read_byte = cafe_read_byte;
565 cafe->nand.read_buf = cafe_read_buf;
566 cafe->nand.write_buf = cafe_write_buf;
567 cafe->nand.select_chip = cafe_select_chip;
569 cafe->nand.chip_delay = 0;
571 /* Enable the following for a flash based bad block table */
572 cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
574 if (skipbbt) {
575 cafe->nand.options |= NAND_SKIP_BBTSCAN;
576 cafe->nand.block_bad = cafe_nand_block_bad;
579 /* Start off by resetting the NAND controller completely */
580 writel(1, cafe->mmio + 0x3034);
581 writel(0, cafe->mmio + 0x3034);
583 /* Timings from Marvell's test code (not verified or calculated by us) */
584 writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
586 if (!slowtiming) {
587 writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
588 writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
589 writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
590 } else {
591 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
592 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
593 writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
595 writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
596 err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
597 if (err) {
598 dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
600 goto out_free_dma;
602 #if 1
603 /* Disable master reset, enable NAND clock */
604 ctrl = readl(cafe->mmio + 0x3004);
605 ctrl &= 0xffffeff0;
606 ctrl |= 0x00007000;
607 writel(ctrl | 0x05, cafe->mmio + 0x3004);
608 writel(ctrl | 0x0a, cafe->mmio + 0x3004);
609 writel(0, cafe->mmio + CAFE_NAND_DMA_CTRL);
611 writel(0x7006, cafe->mmio + 0x3004);
612 writel(0x700a, cafe->mmio + 0x3004);
614 /* Set up DMA address */
615 writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + CAFE_NAND_DMA_ADDR0);
616 if (sizeof(cafe->dmaaddr) > 4)
617 /* Shift in two parts to shut the compiler up */
618 writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + CAFE_NAND_DMA_ADDR1);
619 else
620 writel(0, cafe->mmio + CAFE_NAND_DMA_ADDR1);
622 cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
623 readl(cafe->mmio + CAFE_NAND_DMA_ADDR0), cafe->dmabuf);
625 /* Enable NAND IRQ in global IRQ mask register */
626 writel(0x80000007, cafe->mmio + 0x300c);
627 cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
628 readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
629 #endif
630 #if 1
631 mtd->writesize=2048;
632 mtd->oobsize = 0x40;
633 memset(cafe->dmabuf, 0x5a, 2112);
634 cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
635 cafe->nand.read_byte(mtd);
636 cafe->nand.read_byte(mtd);
637 cafe->nand.read_byte(mtd);
638 cafe->nand.read_byte(mtd);
639 cafe->nand.read_byte(mtd);
640 #endif
641 #if 0
642 cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
643 // nand_wait_ready(mtd);
644 cafe->nand.read_byte(mtd);
645 cafe->nand.read_byte(mtd);
646 cafe->nand.read_byte(mtd);
647 cafe->nand.read_byte(mtd);
648 #endif
649 #if 0
650 writel(0x84600070, cafe->mmio);
651 udelay(10);
652 cafe_dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
653 #endif
654 /* Scan to find existance of the device */
655 if (nand_scan_ident(mtd, 1)) {
656 err = -ENXIO;
657 goto out_irq;
660 cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
661 if (mtd->writesize == 2048)
662 cafe->ctl2 |= 1<<29; /* 2KiB page size */
664 /* Set up ECC according to the type of chip we found */
665 if (mtd->writesize == 2048) {
666 cafe->nand.ecc.layout = &cafe_oobinfo_2048;
667 cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
668 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
669 } else if (mtd->writesize == 512) {
670 cafe->nand.ecc.layout = &cafe_oobinfo_512;
671 cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
672 cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
673 } else {
674 printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
675 mtd->writesize);
676 goto out_irq;
678 cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
679 cafe->nand.ecc.size = mtd->writesize;
680 cafe->nand.ecc.bytes = 14;
681 cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
682 cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
683 cafe->nand.ecc.correct = (void *)cafe_nand_bug;
684 cafe->nand.write_page = cafe_nand_write_page;
685 cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
686 cafe->nand.ecc.write_oob = cafe_nand_write_oob;
687 cafe->nand.ecc.read_page = cafe_nand_read_page;
688 cafe->nand.ecc.read_oob = cafe_nand_read_oob;
690 err = nand_scan_tail(mtd);
691 if (err)
692 goto out_irq;
694 pci_set_drvdata(pdev, mtd);
695 add_mtd_device(mtd);
696 goto out;
698 out_irq:
699 /* Disable NAND IRQ in global IRQ mask register */
700 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
701 free_irq(pdev->irq, mtd);
702 out_free_dma:
703 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
704 out_ior:
705 pci_iounmap(pdev, cafe->mmio);
706 out_free_mtd:
707 kfree(mtd);
708 out:
709 return err;
712 static void __devexit cafe_nand_remove(struct pci_dev *pdev)
714 struct mtd_info *mtd = pci_get_drvdata(pdev);
715 struct cafe_priv *cafe = mtd->priv;
717 del_mtd_device(mtd);
718 /* Disable NAND IRQ in global IRQ mask register */
719 writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
720 free_irq(pdev->irq, mtd);
721 nand_release(mtd);
722 pci_iounmap(pdev, cafe->mmio);
723 dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
724 kfree(mtd);
727 static struct pci_device_id cafe_nand_tbl[] = {
728 { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
731 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
733 static struct pci_driver cafe_nand_pci_driver = {
734 .name = "CAFÉ NAND",
735 .id_table = cafe_nand_tbl,
736 .probe = cafe_nand_probe,
737 .remove = __devexit_p(cafe_nand_remove),
738 #ifdef CONFIG_PMx
739 .suspend = cafe_nand_suspend,
740 .resume = cafe_nand_resume,
741 #endif
744 static int cafe_nand_init(void)
746 return pci_register_driver(&cafe_nand_pci_driver);
749 static void cafe_nand_exit(void)
751 pci_unregister_driver(&cafe_nand_pci_driver);
753 module_init(cafe_nand_init);
754 module_exit(cafe_nand_exit);
756 MODULE_LICENSE("GPL");
757 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
758 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");
760 /* Correct ECC for 2048 bytes of 0xff:
761 41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
763 /* dwmw2's B-test board, in case of completely screwing it:
764 Bad eraseblock 2394 at 0x12b40000
765 Bad eraseblock 2627 at 0x14860000
766 Bad eraseblock 3349 at 0x1a2a0000