1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
50 #include <linux/namei.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
72 extern struct list_head audit_filter_list
[];
74 /* No syscall auditing will take place unless audit_enabled != 0. */
75 extern int audit_enabled
;
77 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
78 * for saving names from getname(). */
79 #define AUDIT_NAMES 20
81 /* Indicates that audit should log the full pathname. */
82 #define AUDIT_NAME_FULL -1
84 /* number of audit rules */
87 /* determines whether we collect data for signals sent */
90 /* When fs/namei.c:getname() is called, we store the pointer in name and
91 * we don't let putname() free it (instead we free all of the saved
92 * pointers at syscall exit time).
94 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
97 int name_len
; /* number of name's characters to log */
98 unsigned name_put
; /* call __putname() for this name */
108 struct audit_aux_data
{
109 struct audit_aux_data
*next
;
113 #define AUDIT_AUX_IPCPERM 0
115 /* Number of target pids per aux struct. */
116 #define AUDIT_AUX_PIDS 16
118 struct audit_aux_data_mq_open
{
119 struct audit_aux_data d
;
125 struct audit_aux_data_mq_sendrecv
{
126 struct audit_aux_data d
;
129 unsigned int msg_prio
;
130 struct timespec abs_timeout
;
133 struct audit_aux_data_mq_notify
{
134 struct audit_aux_data d
;
136 struct sigevent notification
;
139 struct audit_aux_data_mq_getsetattr
{
140 struct audit_aux_data d
;
142 struct mq_attr mqstat
;
145 struct audit_aux_data_ipcctl
{
146 struct audit_aux_data d
;
148 unsigned long qbytes
;
155 struct audit_aux_data_execve
{
156 struct audit_aux_data d
;
162 struct audit_aux_data_socketcall
{
163 struct audit_aux_data d
;
165 unsigned long args
[0];
168 struct audit_aux_data_sockaddr
{
169 struct audit_aux_data d
;
174 struct audit_aux_data_fd_pair
{
175 struct audit_aux_data d
;
179 struct audit_aux_data_path
{
180 struct audit_aux_data d
;
181 struct dentry
*dentry
;
182 struct vfsmount
*mnt
;
185 struct audit_aux_data_pids
{
186 struct audit_aux_data d
;
187 pid_t target_pid
[AUDIT_AUX_PIDS
];
188 u32 target_sid
[AUDIT_AUX_PIDS
];
192 /* The per-task audit context. */
193 struct audit_context
{
194 int dummy
; /* must be the first element */
195 int in_syscall
; /* 1 if task is in a syscall */
196 enum audit_state state
;
197 unsigned int serial
; /* serial number for record */
198 struct timespec ctime
; /* time of syscall entry */
199 uid_t loginuid
; /* login uid (identity) */
200 int major
; /* syscall number */
201 unsigned long argv
[4]; /* syscall arguments */
202 int return_valid
; /* return code is valid */
203 long return_code
;/* syscall return code */
204 int auditable
; /* 1 if record should be written */
206 struct audit_names names
[AUDIT_NAMES
];
207 char * filterkey
; /* key for rule that triggered record */
209 struct vfsmount
* pwdmnt
;
210 struct audit_context
*previous
; /* For nested syscalls */
211 struct audit_aux_data
*aux
;
212 struct audit_aux_data
*aux_pids
;
214 /* Save things to print about task_struct */
216 uid_t uid
, euid
, suid
, fsuid
;
217 gid_t gid
, egid
, sgid
, fsgid
;
218 unsigned long personality
;
230 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
231 static inline int open_arg(int flags
, int mask
)
233 int n
= ACC_MODE(flags
);
234 if (flags
& (O_TRUNC
| O_CREAT
))
235 n
|= AUDIT_PERM_WRITE
;
239 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
241 unsigned n
= ctx
->major
;
242 switch (audit_classify_syscall(ctx
->arch
, n
)) {
244 if ((mask
& AUDIT_PERM_WRITE
) &&
245 audit_match_class(AUDIT_CLASS_WRITE
, n
))
247 if ((mask
& AUDIT_PERM_READ
) &&
248 audit_match_class(AUDIT_CLASS_READ
, n
))
250 if ((mask
& AUDIT_PERM_ATTR
) &&
251 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
254 case 1: /* 32bit on biarch */
255 if ((mask
& AUDIT_PERM_WRITE
) &&
256 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
258 if ((mask
& AUDIT_PERM_READ
) &&
259 audit_match_class(AUDIT_CLASS_READ_32
, n
))
261 if ((mask
& AUDIT_PERM_ATTR
) &&
262 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
266 return mask
& ACC_MODE(ctx
->argv
[1]);
268 return mask
& ACC_MODE(ctx
->argv
[2]);
269 case 4: /* socketcall */
270 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
272 return mask
& AUDIT_PERM_EXEC
;
278 /* Determine if any context name data matches a rule's watch data */
279 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
281 static int audit_filter_rules(struct task_struct
*tsk
,
282 struct audit_krule
*rule
,
283 struct audit_context
*ctx
,
284 struct audit_names
*name
,
285 enum audit_state
*state
)
287 int i
, j
, need_sid
= 1;
290 for (i
= 0; i
< rule
->field_count
; i
++) {
291 struct audit_field
*f
= &rule
->fields
[i
];
296 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
301 ctx
->ppid
= sys_getppid();
302 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
306 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
309 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
312 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
315 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
318 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
321 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
324 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
327 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
330 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
334 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
338 if (ctx
&& ctx
->return_valid
)
339 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
342 if (ctx
&& ctx
->return_valid
) {
344 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
346 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
351 result
= audit_comparator(MAJOR(name
->dev
),
354 for (j
= 0; j
< ctx
->name_count
; j
++) {
355 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
364 result
= audit_comparator(MINOR(name
->dev
),
367 for (j
= 0; j
< ctx
->name_count
; j
++) {
368 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
377 result
= (name
->ino
== f
->val
);
379 for (j
= 0; j
< ctx
->name_count
; j
++) {
380 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
388 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
389 result
= (name
->dev
== rule
->watch
->dev
&&
390 name
->ino
== rule
->watch
->ino
);
395 result
= audit_comparator(ctx
->loginuid
, f
->op
, f
->val
);
397 case AUDIT_SUBJ_USER
:
398 case AUDIT_SUBJ_ROLE
:
399 case AUDIT_SUBJ_TYPE
:
402 /* NOTE: this may return negative values indicating
403 a temporary error. We simply treat this as a
404 match for now to avoid losing information that
405 may be wanted. An error message will also be
409 selinux_get_task_sid(tsk
, &sid
);
412 result
= selinux_audit_rule_match(sid
, f
->type
,
421 case AUDIT_OBJ_LEV_LOW
:
422 case AUDIT_OBJ_LEV_HIGH
:
423 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
426 /* Find files that match */
428 result
= selinux_audit_rule_match(
429 name
->osid
, f
->type
, f
->op
,
432 for (j
= 0; j
< ctx
->name_count
; j
++) {
433 if (selinux_audit_rule_match(
442 /* Find ipc objects that match */
444 struct audit_aux_data
*aux
;
445 for (aux
= ctx
->aux
; aux
;
447 if (aux
->type
== AUDIT_IPC
) {
448 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
449 if (selinux_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->se_rule
, ctx
)) {
463 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
465 case AUDIT_FILTERKEY
:
466 /* ignore this field for filtering */
470 result
= audit_match_perm(ctx
, f
->val
);
478 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
479 switch (rule
->action
) {
480 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
481 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
486 /* At process creation time, we can determine if system-call auditing is
487 * completely disabled for this task. Since we only have the task
488 * structure at this point, we can only check uid and gid.
490 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
492 struct audit_entry
*e
;
493 enum audit_state state
;
496 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
497 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
503 return AUDIT_BUILD_CONTEXT
;
506 /* At syscall entry and exit time, this filter is called if the
507 * audit_state is not low enough that auditing cannot take place, but is
508 * also not high enough that we already know we have to write an audit
509 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
511 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
512 struct audit_context
*ctx
,
513 struct list_head
*list
)
515 struct audit_entry
*e
;
516 enum audit_state state
;
518 if (audit_pid
&& tsk
->tgid
== audit_pid
)
519 return AUDIT_DISABLED
;
522 if (!list_empty(list
)) {
523 int word
= AUDIT_WORD(ctx
->major
);
524 int bit
= AUDIT_BIT(ctx
->major
);
526 list_for_each_entry_rcu(e
, list
, list
) {
527 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
528 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
536 return AUDIT_BUILD_CONTEXT
;
539 /* At syscall exit time, this filter is called if any audit_names[] have been
540 * collected during syscall processing. We only check rules in sublists at hash
541 * buckets applicable to the inode numbers in audit_names[].
542 * Regarding audit_state, same rules apply as for audit_filter_syscall().
544 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
545 struct audit_context
*ctx
)
548 struct audit_entry
*e
;
549 enum audit_state state
;
551 if (audit_pid
&& tsk
->tgid
== audit_pid
)
552 return AUDIT_DISABLED
;
555 for (i
= 0; i
< ctx
->name_count
; i
++) {
556 int word
= AUDIT_WORD(ctx
->major
);
557 int bit
= AUDIT_BIT(ctx
->major
);
558 struct audit_names
*n
= &ctx
->names
[i
];
559 int h
= audit_hash_ino((u32
)n
->ino
);
560 struct list_head
*list
= &audit_inode_hash
[h
];
562 if (list_empty(list
))
565 list_for_each_entry_rcu(e
, list
, list
) {
566 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
567 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
574 return AUDIT_BUILD_CONTEXT
;
577 void audit_set_auditable(struct audit_context
*ctx
)
582 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
586 struct audit_context
*context
= tsk
->audit_context
;
588 if (likely(!context
))
590 context
->return_valid
= return_valid
;
591 context
->return_code
= return_code
;
593 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
594 enum audit_state state
;
596 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
597 if (state
== AUDIT_RECORD_CONTEXT
) {
598 context
->auditable
= 1;
602 state
= audit_filter_inodes(tsk
, context
);
603 if (state
== AUDIT_RECORD_CONTEXT
)
604 context
->auditable
= 1;
610 tsk
->audit_context
= NULL
;
614 static inline void audit_free_names(struct audit_context
*context
)
619 if (context
->auditable
620 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
621 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
622 " name_count=%d put_count=%d"
623 " ino_count=%d [NOT freeing]\n",
625 context
->serial
, context
->major
, context
->in_syscall
,
626 context
->name_count
, context
->put_count
,
628 for (i
= 0; i
< context
->name_count
; i
++) {
629 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
630 context
->names
[i
].name
,
631 context
->names
[i
].name
?: "(null)");
638 context
->put_count
= 0;
639 context
->ino_count
= 0;
642 for (i
= 0; i
< context
->name_count
; i
++) {
643 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
644 __putname(context
->names
[i
].name
);
646 context
->name_count
= 0;
650 mntput(context
->pwdmnt
);
652 context
->pwdmnt
= NULL
;
655 static inline void audit_free_aux(struct audit_context
*context
)
657 struct audit_aux_data
*aux
;
659 while ((aux
= context
->aux
)) {
660 if (aux
->type
== AUDIT_AVC_PATH
) {
661 struct audit_aux_data_path
*axi
= (void *)aux
;
666 context
->aux
= aux
->next
;
669 while ((aux
= context
->aux_pids
)) {
670 context
->aux_pids
= aux
->next
;
675 static inline void audit_zero_context(struct audit_context
*context
,
676 enum audit_state state
)
678 uid_t loginuid
= context
->loginuid
;
680 memset(context
, 0, sizeof(*context
));
681 context
->state
= state
;
682 context
->loginuid
= loginuid
;
685 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
687 struct audit_context
*context
;
689 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
691 audit_zero_context(context
, state
);
696 * audit_alloc - allocate an audit context block for a task
699 * Filter on the task information and allocate a per-task audit context
700 * if necessary. Doing so turns on system call auditing for the
701 * specified task. This is called from copy_process, so no lock is
704 int audit_alloc(struct task_struct
*tsk
)
706 struct audit_context
*context
;
707 enum audit_state state
;
709 if (likely(!audit_enabled
))
710 return 0; /* Return if not auditing. */
712 state
= audit_filter_task(tsk
);
713 if (likely(state
== AUDIT_DISABLED
))
716 if (!(context
= audit_alloc_context(state
))) {
717 audit_log_lost("out of memory in audit_alloc");
721 /* Preserve login uid */
722 context
->loginuid
= -1;
723 if (current
->audit_context
)
724 context
->loginuid
= current
->audit_context
->loginuid
;
726 tsk
->audit_context
= context
;
727 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
731 static inline void audit_free_context(struct audit_context
*context
)
733 struct audit_context
*previous
;
737 previous
= context
->previous
;
738 if (previous
|| (count
&& count
< 10)) {
740 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
741 " freeing multiple contexts (%d)\n",
742 context
->serial
, context
->major
,
743 context
->name_count
, count
);
745 audit_free_names(context
);
746 audit_free_aux(context
);
747 kfree(context
->filterkey
);
752 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
755 void audit_log_task_context(struct audit_buffer
*ab
)
762 selinux_get_task_sid(current
, &sid
);
766 error
= selinux_sid_to_string(sid
, &ctx
, &len
);
768 if (error
!= -EINVAL
)
773 audit_log_format(ab
, " subj=%s", ctx
);
778 audit_panic("error in audit_log_task_context");
782 EXPORT_SYMBOL(audit_log_task_context
);
784 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
786 char name
[sizeof(tsk
->comm
)];
787 struct mm_struct
*mm
= tsk
->mm
;
788 struct vm_area_struct
*vma
;
792 get_task_comm(name
, tsk
);
793 audit_log_format(ab
, " comm=");
794 audit_log_untrustedstring(ab
, name
);
797 down_read(&mm
->mmap_sem
);
800 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
802 audit_log_d_path(ab
, "exe=",
803 vma
->vm_file
->f_path
.dentry
,
804 vma
->vm_file
->f_path
.mnt
);
809 up_read(&mm
->mmap_sem
);
811 audit_log_task_context(ab
);
814 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
817 struct audit_buffer
*ab
;
822 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
826 if (selinux_sid_to_string(sid
, &s
, &len
)) {
827 audit_log_format(ab
, "opid=%d obj=(none)", pid
);
830 audit_log_format(ab
, "opid=%d obj=%s", pid
, s
);
837 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
839 int i
, call_panic
= 0;
840 struct audit_buffer
*ab
;
841 struct audit_aux_data
*aux
;
845 context
->pid
= tsk
->pid
;
847 context
->ppid
= sys_getppid();
848 context
->uid
= tsk
->uid
;
849 context
->gid
= tsk
->gid
;
850 context
->euid
= tsk
->euid
;
851 context
->suid
= tsk
->suid
;
852 context
->fsuid
= tsk
->fsuid
;
853 context
->egid
= tsk
->egid
;
854 context
->sgid
= tsk
->sgid
;
855 context
->fsgid
= tsk
->fsgid
;
856 context
->personality
= tsk
->personality
;
858 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
860 return; /* audit_panic has been called */
861 audit_log_format(ab
, "arch=%x syscall=%d",
862 context
->arch
, context
->major
);
863 if (context
->personality
!= PER_LINUX
)
864 audit_log_format(ab
, " per=%lx", context
->personality
);
865 if (context
->return_valid
)
866 audit_log_format(ab
, " success=%s exit=%ld",
867 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
868 context
->return_code
);
870 mutex_lock(&tty_mutex
);
871 read_lock(&tasklist_lock
);
872 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
873 tty
= tsk
->signal
->tty
->name
;
876 read_unlock(&tasklist_lock
);
878 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
879 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
880 " euid=%u suid=%u fsuid=%u"
881 " egid=%u sgid=%u fsgid=%u tty=%s",
892 context
->euid
, context
->suid
, context
->fsuid
,
893 context
->egid
, context
->sgid
, context
->fsgid
, tty
);
895 mutex_unlock(&tty_mutex
);
897 audit_log_task_info(ab
, tsk
);
898 if (context
->filterkey
) {
899 audit_log_format(ab
, " key=");
900 audit_log_untrustedstring(ab
, context
->filterkey
);
902 audit_log_format(ab
, " key=(null)");
905 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
907 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
909 continue; /* audit_panic has been called */
912 case AUDIT_MQ_OPEN
: {
913 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
915 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
916 "mq_msgsize=%ld mq_curmsgs=%ld",
917 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
918 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
919 axi
->attr
.mq_curmsgs
);
922 case AUDIT_MQ_SENDRECV
: {
923 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
925 "mqdes=%d msg_len=%zd msg_prio=%u "
926 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
927 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
928 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
931 case AUDIT_MQ_NOTIFY
: {
932 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
934 "mqdes=%d sigev_signo=%d",
936 axi
->notification
.sigev_signo
);
939 case AUDIT_MQ_GETSETATTR
: {
940 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
942 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
945 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
946 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
950 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
952 "ouid=%u ogid=%u mode=%x",
953 axi
->uid
, axi
->gid
, axi
->mode
);
954 if (axi
->osid
!= 0) {
957 if (selinux_sid_to_string(
958 axi
->osid
, &ctx
, &len
)) {
959 audit_log_format(ab
, " osid=%u",
963 audit_log_format(ab
, " obj=%s", ctx
);
968 case AUDIT_IPC_SET_PERM
: {
969 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
971 "qbytes=%lx ouid=%u ogid=%u mode=%x",
972 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
976 struct audit_aux_data_execve
*axi
= (void *)aux
;
979 for (i
= 0, p
= axi
->mem
; i
< axi
->argc
; i
++) {
980 audit_log_format(ab
, "a%d=", i
);
981 p
= audit_log_untrustedstring(ab
, p
);
982 audit_log_format(ab
, "\n");
986 case AUDIT_SOCKETCALL
: {
988 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
989 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
990 for (i
=0; i
<axs
->nargs
; i
++)
991 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
994 case AUDIT_SOCKADDR
: {
995 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
997 audit_log_format(ab
, "saddr=");
998 audit_log_hex(ab
, axs
->a
, axs
->len
);
1001 case AUDIT_AVC_PATH
: {
1002 struct audit_aux_data_path
*axi
= (void *)aux
;
1003 audit_log_d_path(ab
, "path=", axi
->dentry
, axi
->mnt
);
1006 case AUDIT_FD_PAIR
: {
1007 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1008 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1015 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1016 struct audit_aux_data_pids
*axs
= (void *)aux
;
1019 for (i
= 0; i
< axs
->pid_count
; i
++)
1020 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1021 axs
->target_sid
[i
]))
1025 if (context
->target_pid
&&
1026 audit_log_pid_context(context
, context
->target_pid
,
1027 context
->target_sid
))
1030 if (context
->pwd
&& context
->pwdmnt
) {
1031 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1033 audit_log_d_path(ab
, "cwd=", context
->pwd
, context
->pwdmnt
);
1037 for (i
= 0; i
< context
->name_count
; i
++) {
1038 struct audit_names
*n
= &context
->names
[i
];
1040 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1042 continue; /* audit_panic has been called */
1044 audit_log_format(ab
, "item=%d", i
);
1047 switch(n
->name_len
) {
1048 case AUDIT_NAME_FULL
:
1049 /* log the full path */
1050 audit_log_format(ab
, " name=");
1051 audit_log_untrustedstring(ab
, n
->name
);
1054 /* name was specified as a relative path and the
1055 * directory component is the cwd */
1056 audit_log_d_path(ab
, " name=", context
->pwd
,
1060 /* log the name's directory component */
1061 audit_log_format(ab
, " name=");
1062 audit_log_n_untrustedstring(ab
, n
->name_len
,
1066 audit_log_format(ab
, " name=(null)");
1068 if (n
->ino
!= (unsigned long)-1) {
1069 audit_log_format(ab
, " inode=%lu"
1070 " dev=%02x:%02x mode=%#o"
1071 " ouid=%u ogid=%u rdev=%02x:%02x",
1084 if (selinux_sid_to_string(
1085 n
->osid
, &ctx
, &len
)) {
1086 audit_log_format(ab
, " osid=%u", n
->osid
);
1089 audit_log_format(ab
, " obj=%s", ctx
);
1096 audit_panic("error converting sid to string");
1100 * audit_free - free a per-task audit context
1101 * @tsk: task whose audit context block to free
1103 * Called from copy_process and do_exit
1105 void audit_free(struct task_struct
*tsk
)
1107 struct audit_context
*context
;
1109 context
= audit_get_context(tsk
, 0, 0);
1110 if (likely(!context
))
1113 /* Check for system calls that do not go through the exit
1114 * function (e.g., exit_group), then free context block.
1115 * We use GFP_ATOMIC here because we might be doing this
1116 * in the context of the idle thread */
1117 /* that can happen only if we are called from do_exit() */
1118 if (context
->in_syscall
&& context
->auditable
)
1119 audit_log_exit(context
, tsk
);
1121 audit_free_context(context
);
1125 * audit_syscall_entry - fill in an audit record at syscall entry
1126 * @tsk: task being audited
1127 * @arch: architecture type
1128 * @major: major syscall type (function)
1129 * @a1: additional syscall register 1
1130 * @a2: additional syscall register 2
1131 * @a3: additional syscall register 3
1132 * @a4: additional syscall register 4
1134 * Fill in audit context at syscall entry. This only happens if the
1135 * audit context was created when the task was created and the state or
1136 * filters demand the audit context be built. If the state from the
1137 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1138 * then the record will be written at syscall exit time (otherwise, it
1139 * will only be written if another part of the kernel requests that it
1142 void audit_syscall_entry(int arch
, int major
,
1143 unsigned long a1
, unsigned long a2
,
1144 unsigned long a3
, unsigned long a4
)
1146 struct task_struct
*tsk
= current
;
1147 struct audit_context
*context
= tsk
->audit_context
;
1148 enum audit_state state
;
1153 * This happens only on certain architectures that make system
1154 * calls in kernel_thread via the entry.S interface, instead of
1155 * with direct calls. (If you are porting to a new
1156 * architecture, hitting this condition can indicate that you
1157 * got the _exit/_leave calls backward in entry.S.)
1161 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1163 * This also happens with vm86 emulation in a non-nested manner
1164 * (entries without exits), so this case must be caught.
1166 if (context
->in_syscall
) {
1167 struct audit_context
*newctx
;
1171 "audit(:%d) pid=%d in syscall=%d;"
1172 " entering syscall=%d\n",
1173 context
->serial
, tsk
->pid
, context
->major
, major
);
1175 newctx
= audit_alloc_context(context
->state
);
1177 newctx
->previous
= context
;
1179 tsk
->audit_context
= newctx
;
1181 /* If we can't alloc a new context, the best we
1182 * can do is to leak memory (any pending putname
1183 * will be lost). The only other alternative is
1184 * to abandon auditing. */
1185 audit_zero_context(context
, context
->state
);
1188 BUG_ON(context
->in_syscall
|| context
->name_count
);
1193 context
->arch
= arch
;
1194 context
->major
= major
;
1195 context
->argv
[0] = a1
;
1196 context
->argv
[1] = a2
;
1197 context
->argv
[2] = a3
;
1198 context
->argv
[3] = a4
;
1200 state
= context
->state
;
1201 context
->dummy
= !audit_n_rules
;
1202 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1203 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1204 if (likely(state
== AUDIT_DISABLED
))
1207 context
->serial
= 0;
1208 context
->ctime
= CURRENT_TIME
;
1209 context
->in_syscall
= 1;
1210 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1215 * audit_syscall_exit - deallocate audit context after a system call
1216 * @tsk: task being audited
1217 * @valid: success/failure flag
1218 * @return_code: syscall return value
1220 * Tear down after system call. If the audit context has been marked as
1221 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1222 * filtering, or because some other part of the kernel write an audit
1223 * message), then write out the syscall information. In call cases,
1224 * free the names stored from getname().
1226 void audit_syscall_exit(int valid
, long return_code
)
1228 struct task_struct
*tsk
= current
;
1229 struct audit_context
*context
;
1231 context
= audit_get_context(tsk
, valid
, return_code
);
1233 if (likely(!context
))
1236 if (context
->in_syscall
&& context
->auditable
)
1237 audit_log_exit(context
, tsk
);
1239 context
->in_syscall
= 0;
1240 context
->auditable
= 0;
1242 if (context
->previous
) {
1243 struct audit_context
*new_context
= context
->previous
;
1244 context
->previous
= NULL
;
1245 audit_free_context(context
);
1246 tsk
->audit_context
= new_context
;
1248 audit_free_names(context
);
1249 audit_free_aux(context
);
1250 context
->aux
= NULL
;
1251 context
->aux_pids
= NULL
;
1252 context
->target_pid
= 0;
1253 context
->target_sid
= 0;
1254 kfree(context
->filterkey
);
1255 context
->filterkey
= NULL
;
1256 tsk
->audit_context
= context
;
1261 * audit_getname - add a name to the list
1262 * @name: name to add
1264 * Add a name to the list of audit names for this context.
1265 * Called from fs/namei.c:getname().
1267 void __audit_getname(const char *name
)
1269 struct audit_context
*context
= current
->audit_context
;
1271 if (IS_ERR(name
) || !name
)
1274 if (!context
->in_syscall
) {
1275 #if AUDIT_DEBUG == 2
1276 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1277 __FILE__
, __LINE__
, context
->serial
, name
);
1282 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1283 context
->names
[context
->name_count
].name
= name
;
1284 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1285 context
->names
[context
->name_count
].name_put
= 1;
1286 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1287 context
->names
[context
->name_count
].osid
= 0;
1288 ++context
->name_count
;
1289 if (!context
->pwd
) {
1290 read_lock(¤t
->fs
->lock
);
1291 context
->pwd
= dget(current
->fs
->pwd
);
1292 context
->pwdmnt
= mntget(current
->fs
->pwdmnt
);
1293 read_unlock(¤t
->fs
->lock
);
1298 /* audit_putname - intercept a putname request
1299 * @name: name to intercept and delay for putname
1301 * If we have stored the name from getname in the audit context,
1302 * then we delay the putname until syscall exit.
1303 * Called from include/linux/fs.h:putname().
1305 void audit_putname(const char *name
)
1307 struct audit_context
*context
= current
->audit_context
;
1310 if (!context
->in_syscall
) {
1311 #if AUDIT_DEBUG == 2
1312 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1313 __FILE__
, __LINE__
, context
->serial
, name
);
1314 if (context
->name_count
) {
1316 for (i
= 0; i
< context
->name_count
; i
++)
1317 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1318 context
->names
[i
].name
,
1319 context
->names
[i
].name
?: "(null)");
1326 ++context
->put_count
;
1327 if (context
->put_count
> context
->name_count
) {
1328 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1329 " in_syscall=%d putname(%p) name_count=%d"
1332 context
->serial
, context
->major
,
1333 context
->in_syscall
, name
, context
->name_count
,
1334 context
->put_count
);
1341 static int audit_inc_name_count(struct audit_context
*context
,
1342 const struct inode
*inode
)
1344 if (context
->name_count
>= AUDIT_NAMES
) {
1346 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1347 "dev=%02x:%02x, inode=%lu",
1348 MAJOR(inode
->i_sb
->s_dev
),
1349 MINOR(inode
->i_sb
->s_dev
),
1353 printk(KERN_DEBUG
"name_count maxed, losing inode data");
1356 context
->name_count
++;
1358 context
->ino_count
++;
1363 /* Copy inode data into an audit_names. */
1364 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1366 name
->ino
= inode
->i_ino
;
1367 name
->dev
= inode
->i_sb
->s_dev
;
1368 name
->mode
= inode
->i_mode
;
1369 name
->uid
= inode
->i_uid
;
1370 name
->gid
= inode
->i_gid
;
1371 name
->rdev
= inode
->i_rdev
;
1372 selinux_get_inode_sid(inode
, &name
->osid
);
1376 * audit_inode - store the inode and device from a lookup
1377 * @name: name being audited
1378 * @inode: inode being audited
1380 * Called from fs/namei.c:path_lookup().
1382 void __audit_inode(const char *name
, const struct inode
*inode
)
1385 struct audit_context
*context
= current
->audit_context
;
1387 if (!context
->in_syscall
)
1389 if (context
->name_count
1390 && context
->names
[context
->name_count
-1].name
1391 && context
->names
[context
->name_count
-1].name
== name
)
1392 idx
= context
->name_count
- 1;
1393 else if (context
->name_count
> 1
1394 && context
->names
[context
->name_count
-2].name
1395 && context
->names
[context
->name_count
-2].name
== name
)
1396 idx
= context
->name_count
- 2;
1398 /* FIXME: how much do we care about inodes that have no
1399 * associated name? */
1400 if (audit_inc_name_count(context
, inode
))
1402 idx
= context
->name_count
- 1;
1403 context
->names
[idx
].name
= NULL
;
1405 audit_copy_inode(&context
->names
[idx
], inode
);
1409 * audit_inode_child - collect inode info for created/removed objects
1410 * @dname: inode's dentry name
1411 * @inode: inode being audited
1412 * @parent: inode of dentry parent
1414 * For syscalls that create or remove filesystem objects, audit_inode
1415 * can only collect information for the filesystem object's parent.
1416 * This call updates the audit context with the child's information.
1417 * Syscalls that create a new filesystem object must be hooked after
1418 * the object is created. Syscalls that remove a filesystem object
1419 * must be hooked prior, in order to capture the target inode during
1420 * unsuccessful attempts.
1422 void __audit_inode_child(const char *dname
, const struct inode
*inode
,
1423 const struct inode
*parent
)
1426 struct audit_context
*context
= current
->audit_context
;
1427 const char *found_parent
= NULL
, *found_child
= NULL
;
1430 if (!context
->in_syscall
)
1433 /* determine matching parent */
1437 /* parent is more likely, look for it first */
1438 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1439 struct audit_names
*n
= &context
->names
[idx
];
1444 if (n
->ino
== parent
->i_ino
&&
1445 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1446 n
->name_len
= dirlen
; /* update parent data in place */
1447 found_parent
= n
->name
;
1452 /* no matching parent, look for matching child */
1453 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1454 struct audit_names
*n
= &context
->names
[idx
];
1459 /* strcmp() is the more likely scenario */
1460 if (!strcmp(dname
, n
->name
) ||
1461 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1463 audit_copy_inode(n
, inode
);
1465 n
->ino
= (unsigned long)-1;
1466 found_child
= n
->name
;
1472 if (!found_parent
) {
1473 if (audit_inc_name_count(context
, parent
))
1475 idx
= context
->name_count
- 1;
1476 context
->names
[idx
].name
= NULL
;
1477 audit_copy_inode(&context
->names
[idx
], parent
);
1481 if (audit_inc_name_count(context
, inode
))
1483 idx
= context
->name_count
- 1;
1485 /* Re-use the name belonging to the slot for a matching parent
1486 * directory. All names for this context are relinquished in
1487 * audit_free_names() */
1489 context
->names
[idx
].name
= found_parent
;
1490 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1491 /* don't call __putname() */
1492 context
->names
[idx
].name_put
= 0;
1494 context
->names
[idx
].name
= NULL
;
1498 audit_copy_inode(&context
->names
[idx
], inode
);
1500 context
->names
[idx
].ino
= (unsigned long)-1;
1505 * auditsc_get_stamp - get local copies of audit_context values
1506 * @ctx: audit_context for the task
1507 * @t: timespec to store time recorded in the audit_context
1508 * @serial: serial value that is recorded in the audit_context
1510 * Also sets the context as auditable.
1512 void auditsc_get_stamp(struct audit_context
*ctx
,
1513 struct timespec
*t
, unsigned int *serial
)
1516 ctx
->serial
= audit_serial();
1517 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1518 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1519 *serial
= ctx
->serial
;
1524 * audit_set_loginuid - set a task's audit_context loginuid
1525 * @task: task whose audit context is being modified
1526 * @loginuid: loginuid value
1530 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1532 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1534 struct audit_context
*context
= task
->audit_context
;
1537 /* Only log if audit is enabled */
1538 if (context
->in_syscall
) {
1539 struct audit_buffer
*ab
;
1541 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1543 audit_log_format(ab
, "login pid=%d uid=%u "
1544 "old auid=%u new auid=%u",
1545 task
->pid
, task
->uid
,
1546 context
->loginuid
, loginuid
);
1550 context
->loginuid
= loginuid
;
1556 * audit_get_loginuid - get the loginuid for an audit_context
1557 * @ctx: the audit_context
1559 * Returns the context's loginuid or -1 if @ctx is NULL.
1561 uid_t
audit_get_loginuid(struct audit_context
*ctx
)
1563 return ctx
? ctx
->loginuid
: -1;
1566 EXPORT_SYMBOL(audit_get_loginuid
);
1569 * __audit_mq_open - record audit data for a POSIX MQ open
1572 * @u_attr: queue attributes
1574 * Returns 0 for success or NULL context or < 0 on error.
1576 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
1578 struct audit_aux_data_mq_open
*ax
;
1579 struct audit_context
*context
= current
->audit_context
;
1584 if (likely(!context
))
1587 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1591 if (u_attr
!= NULL
) {
1592 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
1597 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
1602 ax
->d
.type
= AUDIT_MQ_OPEN
;
1603 ax
->d
.next
= context
->aux
;
1604 context
->aux
= (void *)ax
;
1609 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1610 * @mqdes: MQ descriptor
1611 * @msg_len: Message length
1612 * @msg_prio: Message priority
1613 * @u_abs_timeout: Message timeout in absolute time
1615 * Returns 0 for success or NULL context or < 0 on error.
1617 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
1618 const struct timespec __user
*u_abs_timeout
)
1620 struct audit_aux_data_mq_sendrecv
*ax
;
1621 struct audit_context
*context
= current
->audit_context
;
1626 if (likely(!context
))
1629 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1633 if (u_abs_timeout
!= NULL
) {
1634 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
1639 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
1642 ax
->msg_len
= msg_len
;
1643 ax
->msg_prio
= msg_prio
;
1645 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
1646 ax
->d
.next
= context
->aux
;
1647 context
->aux
= (void *)ax
;
1652 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1653 * @mqdes: MQ descriptor
1654 * @msg_len: Message length
1655 * @u_msg_prio: Message priority
1656 * @u_abs_timeout: Message timeout in absolute time
1658 * Returns 0 for success or NULL context or < 0 on error.
1660 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
1661 unsigned int __user
*u_msg_prio
,
1662 const struct timespec __user
*u_abs_timeout
)
1664 struct audit_aux_data_mq_sendrecv
*ax
;
1665 struct audit_context
*context
= current
->audit_context
;
1670 if (likely(!context
))
1673 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1677 if (u_msg_prio
!= NULL
) {
1678 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
1685 if (u_abs_timeout
!= NULL
) {
1686 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
1691 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
1694 ax
->msg_len
= msg_len
;
1696 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
1697 ax
->d
.next
= context
->aux
;
1698 context
->aux
= (void *)ax
;
1703 * __audit_mq_notify - record audit data for a POSIX MQ notify
1704 * @mqdes: MQ descriptor
1705 * @u_notification: Notification event
1707 * Returns 0 for success or NULL context or < 0 on error.
1710 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
1712 struct audit_aux_data_mq_notify
*ax
;
1713 struct audit_context
*context
= current
->audit_context
;
1718 if (likely(!context
))
1721 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1725 if (u_notification
!= NULL
) {
1726 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
1731 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
1735 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
1736 ax
->d
.next
= context
->aux
;
1737 context
->aux
= (void *)ax
;
1742 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1743 * @mqdes: MQ descriptor
1746 * Returns 0 for success or NULL context or < 0 on error.
1748 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
1750 struct audit_aux_data_mq_getsetattr
*ax
;
1751 struct audit_context
*context
= current
->audit_context
;
1756 if (likely(!context
))
1759 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1764 ax
->mqstat
= *mqstat
;
1766 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
1767 ax
->d
.next
= context
->aux
;
1768 context
->aux
= (void *)ax
;
1773 * audit_ipc_obj - record audit data for ipc object
1774 * @ipcp: ipc permissions
1776 * Returns 0 for success or NULL context or < 0 on error.
1778 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
1780 struct audit_aux_data_ipcctl
*ax
;
1781 struct audit_context
*context
= current
->audit_context
;
1783 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1787 ax
->uid
= ipcp
->uid
;
1788 ax
->gid
= ipcp
->gid
;
1789 ax
->mode
= ipcp
->mode
;
1790 selinux_get_ipc_sid(ipcp
, &ax
->osid
);
1792 ax
->d
.type
= AUDIT_IPC
;
1793 ax
->d
.next
= context
->aux
;
1794 context
->aux
= (void *)ax
;
1799 * audit_ipc_set_perm - record audit data for new ipc permissions
1800 * @qbytes: msgq bytes
1801 * @uid: msgq user id
1802 * @gid: msgq group id
1803 * @mode: msgq mode (permissions)
1805 * Returns 0 for success or NULL context or < 0 on error.
1807 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
1809 struct audit_aux_data_ipcctl
*ax
;
1810 struct audit_context
*context
= current
->audit_context
;
1812 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1816 ax
->qbytes
= qbytes
;
1821 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
1822 ax
->d
.next
= context
->aux
;
1823 context
->aux
= (void *)ax
;
1827 int audit_bprm(struct linux_binprm
*bprm
)
1829 struct audit_aux_data_execve
*ax
;
1830 struct audit_context
*context
= current
->audit_context
;
1831 unsigned long p
, next
;
1834 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
1837 ax
= kmalloc(sizeof(*ax
) + PAGE_SIZE
* MAX_ARG_PAGES
- bprm
->p
,
1842 ax
->argc
= bprm
->argc
;
1843 ax
->envc
= bprm
->envc
;
1844 for (p
= bprm
->p
, to
= ax
->mem
; p
< MAX_ARG_PAGES
*PAGE_SIZE
; p
= next
) {
1845 struct page
*page
= bprm
->page
[p
/ PAGE_SIZE
];
1846 void *kaddr
= kmap(page
);
1847 next
= (p
+ PAGE_SIZE
) & ~(PAGE_SIZE
- 1);
1848 memcpy(to
, kaddr
+ (p
& (PAGE_SIZE
- 1)), next
- p
);
1853 ax
->d
.type
= AUDIT_EXECVE
;
1854 ax
->d
.next
= context
->aux
;
1855 context
->aux
= (void *)ax
;
1861 * audit_socketcall - record audit data for sys_socketcall
1862 * @nargs: number of args
1865 * Returns 0 for success or NULL context or < 0 on error.
1867 int audit_socketcall(int nargs
, unsigned long *args
)
1869 struct audit_aux_data_socketcall
*ax
;
1870 struct audit_context
*context
= current
->audit_context
;
1872 if (likely(!context
|| context
->dummy
))
1875 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
1880 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
1882 ax
->d
.type
= AUDIT_SOCKETCALL
;
1883 ax
->d
.next
= context
->aux
;
1884 context
->aux
= (void *)ax
;
1889 * __audit_fd_pair - record audit data for pipe and socketpair
1890 * @fd1: the first file descriptor
1891 * @fd2: the second file descriptor
1893 * Returns 0 for success or NULL context or < 0 on error.
1895 int __audit_fd_pair(int fd1
, int fd2
)
1897 struct audit_context
*context
= current
->audit_context
;
1898 struct audit_aux_data_fd_pair
*ax
;
1900 if (likely(!context
)) {
1904 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
1912 ax
->d
.type
= AUDIT_FD_PAIR
;
1913 ax
->d
.next
= context
->aux
;
1914 context
->aux
= (void *)ax
;
1919 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1920 * @len: data length in user space
1921 * @a: data address in kernel space
1923 * Returns 0 for success or NULL context or < 0 on error.
1925 int audit_sockaddr(int len
, void *a
)
1927 struct audit_aux_data_sockaddr
*ax
;
1928 struct audit_context
*context
= current
->audit_context
;
1930 if (likely(!context
|| context
->dummy
))
1933 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
1938 memcpy(ax
->a
, a
, len
);
1940 ax
->d
.type
= AUDIT_SOCKADDR
;
1941 ax
->d
.next
= context
->aux
;
1942 context
->aux
= (void *)ax
;
1946 void __audit_ptrace(struct task_struct
*t
)
1948 struct audit_context
*context
= current
->audit_context
;
1950 context
->target_pid
= t
->pid
;
1951 selinux_get_task_sid(t
, &context
->target_sid
);
1955 * audit_avc_path - record the granting or denial of permissions
1956 * @dentry: dentry to record
1957 * @mnt: mnt to record
1959 * Returns 0 for success or NULL context or < 0 on error.
1961 * Called from security/selinux/avc.c::avc_audit()
1963 int audit_avc_path(struct dentry
*dentry
, struct vfsmount
*mnt
)
1965 struct audit_aux_data_path
*ax
;
1966 struct audit_context
*context
= current
->audit_context
;
1968 if (likely(!context
))
1971 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1975 ax
->dentry
= dget(dentry
);
1976 ax
->mnt
= mntget(mnt
);
1978 ax
->d
.type
= AUDIT_AVC_PATH
;
1979 ax
->d
.next
= context
->aux
;
1980 context
->aux
= (void *)ax
;
1985 * audit_signal_info - record signal info for shutting down audit subsystem
1986 * @sig: signal value
1987 * @t: task being signaled
1989 * If the audit subsystem is being terminated, record the task (pid)
1990 * and uid that is doing that.
1992 int __audit_signal_info(int sig
, struct task_struct
*t
)
1994 struct audit_aux_data_pids
*axp
;
1995 struct task_struct
*tsk
= current
;
1996 struct audit_context
*ctx
= tsk
->audit_context
;
1997 extern pid_t audit_sig_pid
;
1998 extern uid_t audit_sig_uid
;
1999 extern u32 audit_sig_sid
;
2001 if (audit_pid
&& t
->tgid
== audit_pid
) {
2002 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
) {
2003 audit_sig_pid
= tsk
->pid
;
2005 audit_sig_uid
= ctx
->loginuid
;
2007 audit_sig_uid
= tsk
->uid
;
2008 selinux_get_task_sid(tsk
, &audit_sig_sid
);
2010 if (!audit_signals
|| audit_dummy_context())
2014 /* optimize the common case by putting first signal recipient directly
2015 * in audit_context */
2016 if (!ctx
->target_pid
) {
2017 ctx
->target_pid
= t
->tgid
;
2018 selinux_get_task_sid(t
, &ctx
->target_sid
);
2022 axp
= (void *)ctx
->aux_pids
;
2023 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2024 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2028 axp
->d
.type
= AUDIT_OBJ_PID
;
2029 axp
->d
.next
= ctx
->aux_pids
;
2030 ctx
->aux_pids
= (void *)axp
;
2032 BUG_ON(axp
->pid_count
> AUDIT_AUX_PIDS
);
2034 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2035 selinux_get_task_sid(t
, &axp
->target_sid
[axp
->pid_count
]);
2042 * audit_core_dumps - record information about processes that end abnormally
2043 * @sig: signal value
2045 * If a process ends with a core dump, something fishy is going on and we
2046 * should record the event for investigation.
2048 void audit_core_dumps(long signr
)
2050 struct audit_buffer
*ab
;
2056 if (signr
== SIGQUIT
) /* don't care for those */
2059 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2060 audit_log_format(ab
, "auid=%u uid=%u gid=%u",
2061 audit_get_loginuid(current
->audit_context
),
2062 current
->uid
, current
->gid
);
2063 selinux_get_task_sid(current
, &sid
);
2068 if (selinux_sid_to_string(sid
, &ctx
, &len
))
2069 audit_log_format(ab
, " ssid=%u", sid
);
2071 audit_log_format(ab
, " subj=%s", ctx
);
2074 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2075 audit_log_untrustedstring(ab
, current
->comm
);
2076 audit_log_format(ab
, " sig=%ld", signr
);