v2.6.22.24-op1
[linux-2.6.22.y-op.git] / drivers / char / keyboard.c
blob1b094509b1d2fdb5acaebb980a7e157c3b592b2e
1 /*
2 * linux/drivers/char/keyboard.c
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
7 * Some additional features added by Christoph Niemann (ChN), March 1993
9 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
27 #include <linux/module.h>
28 #include <linux/sched.h>
29 #include <linux/tty.h>
30 #include <linux/tty_flip.h>
31 #include <linux/mm.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/irq.h>
37 #include <linux/kbd_kern.h>
38 #include <linux/kbd_diacr.h>
39 #include <linux/vt_kern.h>
40 #include <linux/sysrq.h>
41 #include <linux/input.h>
42 #include <linux/reboot.h>
44 extern void ctrl_alt_del(void);
47 * Exported functions/variables
50 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
53 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
54 * This seems a good reason to start with NumLock off. On HIL keyboards
55 * of PARISC machines however there is no NumLock key and everyone expects the keypad
56 * to be used for numbers.
59 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
60 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
61 #else
62 #define KBD_DEFLEDS 0
63 #endif
65 #define KBD_DEFLOCK 0
67 void compute_shiftstate(void);
70 * Handler Tables.
73 #define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
79 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81 static k_handler_fn K_HANDLERS;
82 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84 #define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91 typedef void (fn_handler_fn)(struct vc_data *vc);
92 static fn_handler_fn FN_HANDLERS;
93 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96 * Variables exported for vt_ioctl.c
99 /* maximum values each key_handler can handle */
100 const int max_vals[] = {
101 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
102 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
103 255, NR_LOCK - 1, 255, NR_BRL - 1
106 const int NR_TYPES = ARRAY_SIZE(max_vals);
108 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
109 static struct kbd_struct *kbd = kbd_table;
111 struct vt_spawn_console vt_spawn_con = {
112 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
113 .pid = NULL,
114 .sig = 0,
118 * Variables exported for vt.c
121 int shift_state = 0;
124 * Internal Data.
127 static struct input_handler kbd_handler;
128 static unsigned long key_down[NBITS(KEY_MAX)]; /* keyboard key bitmap */
129 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
130 static int dead_key_next;
131 static int npadch = -1; /* -1 or number assembled on pad */
132 static unsigned int diacr;
133 static char rep; /* flag telling character repeat */
135 static unsigned char ledstate = 0xff; /* undefined */
136 static unsigned char ledioctl;
138 static struct ledptr {
139 unsigned int *addr;
140 unsigned int mask;
141 unsigned char valid:1;
142 } ledptrs[3];
144 /* Simple translation table for the SysRq keys */
146 #ifdef CONFIG_MAGIC_SYSRQ
147 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
148 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
149 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
150 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
151 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
152 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
153 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
154 "\r\000/"; /* 0x60 - 0x6f */
155 static int sysrq_down;
156 static int sysrq_alt_use;
157 #endif
158 static int sysrq_alt;
161 * Translation of scancodes to keycodes. We set them on only the first
162 * keyboard in the list that accepts the scancode and keycode.
163 * Explanation for not choosing the first attached keyboard anymore:
164 * USB keyboards for example have two event devices: one for all "normal"
165 * keys and one for extra function keys (like "volume up", "make coffee",
166 * etc.). So this means that scancodes for the extra function keys won't
167 * be valid for the first event device, but will be for the second.
169 int getkeycode(unsigned int scancode)
171 struct input_handle *handle;
172 int keycode;
173 int error = -ENODEV;
175 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
176 error = handle->dev->getkeycode(handle->dev, scancode, &keycode);
177 if (!error)
178 return keycode;
181 return error;
184 int setkeycode(unsigned int scancode, unsigned int keycode)
186 struct input_handle *handle;
187 int error = -ENODEV;
189 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
190 error = handle->dev->setkeycode(handle->dev, scancode, keycode);
191 if (!error)
192 break;
195 return error;
199 * Making beeps and bells.
201 static void kd_nosound(unsigned long ignored)
203 struct input_handle *handle;
205 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
206 if (test_bit(EV_SND, handle->dev->evbit)) {
207 if (test_bit(SND_TONE, handle->dev->sndbit))
208 input_inject_event(handle, EV_SND, SND_TONE, 0);
209 if (test_bit(SND_BELL, handle->dev->sndbit))
210 input_inject_event(handle, EV_SND, SND_BELL, 0);
215 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
217 void kd_mksound(unsigned int hz, unsigned int ticks)
219 struct list_head *node;
221 del_timer(&kd_mksound_timer);
223 if (hz) {
224 list_for_each_prev(node, &kbd_handler.h_list) {
225 struct input_handle *handle = to_handle_h(node);
226 if (test_bit(EV_SND, handle->dev->evbit)) {
227 if (test_bit(SND_TONE, handle->dev->sndbit)) {
228 input_inject_event(handle, EV_SND, SND_TONE, hz);
229 break;
231 if (test_bit(SND_BELL, handle->dev->sndbit)) {
232 input_inject_event(handle, EV_SND, SND_BELL, 1);
233 break;
237 if (ticks)
238 mod_timer(&kd_mksound_timer, jiffies + ticks);
239 } else
240 kd_nosound(0);
244 * Setting the keyboard rate.
247 int kbd_rate(struct kbd_repeat *rep)
249 struct list_head *node;
250 unsigned int d = 0;
251 unsigned int p = 0;
253 list_for_each(node, &kbd_handler.h_list) {
254 struct input_handle *handle = to_handle_h(node);
255 struct input_dev *dev = handle->dev;
257 if (test_bit(EV_REP, dev->evbit)) {
258 if (rep->delay > 0)
259 input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
260 if (rep->period > 0)
261 input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
262 d = dev->rep[REP_DELAY];
263 p = dev->rep[REP_PERIOD];
266 rep->delay = d;
267 rep->period = p;
268 return 0;
272 * Helper Functions.
274 static void put_queue(struct vc_data *vc, int ch)
276 struct tty_struct *tty = vc->vc_tty;
278 if (tty) {
279 tty_insert_flip_char(tty, ch, 0);
280 con_schedule_flip(tty);
284 static void puts_queue(struct vc_data *vc, char *cp)
286 struct tty_struct *tty = vc->vc_tty;
288 if (!tty)
289 return;
291 while (*cp) {
292 tty_insert_flip_char(tty, *cp, 0);
293 cp++;
295 con_schedule_flip(tty);
298 static void applkey(struct vc_data *vc, int key, char mode)
300 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
302 buf[1] = (mode ? 'O' : '[');
303 buf[2] = key;
304 puts_queue(vc, buf);
308 * Many other routines do put_queue, but I think either
309 * they produce ASCII, or they produce some user-assigned
310 * string, and in both cases we might assume that it is
311 * in utf-8 already. UTF-8 is defined for words of up to 31 bits,
312 * but we need only 16 bits here
314 static void to_utf8(struct vc_data *vc, ushort c)
316 if (c < 0x80)
317 /* 0******* */
318 put_queue(vc, c);
319 else if (c < 0x800) {
320 /* 110***** 10****** */
321 put_queue(vc, 0xc0 | (c >> 6));
322 put_queue(vc, 0x80 | (c & 0x3f));
323 } else {
324 /* 1110**** 10****** 10****** */
325 put_queue(vc, 0xe0 | (c >> 12));
326 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
327 put_queue(vc, 0x80 | (c & 0x3f));
332 * Called after returning from RAW mode or when changing consoles - recompute
333 * shift_down[] and shift_state from key_down[] maybe called when keymap is
334 * undefined, so that shiftkey release is seen
336 void compute_shiftstate(void)
338 unsigned int i, j, k, sym, val;
340 shift_state = 0;
341 memset(shift_down, 0, sizeof(shift_down));
343 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
345 if (!key_down[i])
346 continue;
348 k = i * BITS_PER_LONG;
350 for (j = 0; j < BITS_PER_LONG; j++, k++) {
352 if (!test_bit(k, key_down))
353 continue;
355 sym = U(key_maps[0][k]);
356 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
357 continue;
359 val = KVAL(sym);
360 if (val == KVAL(K_CAPSSHIFT))
361 val = KVAL(K_SHIFT);
363 shift_down[val]++;
364 shift_state |= (1 << val);
370 * We have a combining character DIACR here, followed by the character CH.
371 * If the combination occurs in the table, return the corresponding value.
372 * Otherwise, if CH is a space or equals DIACR, return DIACR.
373 * Otherwise, conclude that DIACR was not combining after all,
374 * queue it and return CH.
376 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
378 unsigned int d = diacr;
379 unsigned int i;
381 diacr = 0;
383 if ((d & ~0xff) == BRL_UC_ROW) {
384 if ((ch & ~0xff) == BRL_UC_ROW)
385 return d | ch;
386 } else {
387 for (i = 0; i < accent_table_size; i++)
388 if (accent_table[i].diacr == d && accent_table[i].base == ch)
389 return accent_table[i].result;
392 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
393 return d;
395 if (kbd->kbdmode == VC_UNICODE)
396 to_utf8(vc, d);
397 else if (d < 0x100)
398 put_queue(vc, d);
400 return ch;
404 * Special function handlers
406 static void fn_enter(struct vc_data *vc)
408 if (diacr) {
409 if (kbd->kbdmode == VC_UNICODE)
410 to_utf8(vc, diacr);
411 else if (diacr < 0x100)
412 put_queue(vc, diacr);
413 diacr = 0;
415 put_queue(vc, 13);
416 if (vc_kbd_mode(kbd, VC_CRLF))
417 put_queue(vc, 10);
420 static void fn_caps_toggle(struct vc_data *vc)
422 if (rep)
423 return;
424 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
427 static void fn_caps_on(struct vc_data *vc)
429 if (rep)
430 return;
431 set_vc_kbd_led(kbd, VC_CAPSLOCK);
434 static void fn_show_ptregs(struct vc_data *vc)
436 struct pt_regs *regs = get_irq_regs();
437 if (regs)
438 show_regs(regs);
441 static void fn_hold(struct vc_data *vc)
443 struct tty_struct *tty = vc->vc_tty;
445 if (rep || !tty)
446 return;
449 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
450 * these routines are also activated by ^S/^Q.
451 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
453 if (tty->stopped)
454 start_tty(tty);
455 else
456 stop_tty(tty);
459 static void fn_num(struct vc_data *vc)
461 if (vc_kbd_mode(kbd,VC_APPLIC))
462 applkey(vc, 'P', 1);
463 else
464 fn_bare_num(vc);
468 * Bind this to Shift-NumLock if you work in application keypad mode
469 * but want to be able to change the NumLock flag.
470 * Bind this to NumLock if you prefer that the NumLock key always
471 * changes the NumLock flag.
473 static void fn_bare_num(struct vc_data *vc)
475 if (!rep)
476 chg_vc_kbd_led(kbd, VC_NUMLOCK);
479 static void fn_lastcons(struct vc_data *vc)
481 /* switch to the last used console, ChN */
482 set_console(last_console);
485 static void fn_dec_console(struct vc_data *vc)
487 int i, cur = fg_console;
489 /* Currently switching? Queue this next switch relative to that. */
490 if (want_console != -1)
491 cur = want_console;
493 for (i = cur - 1; i != cur; i--) {
494 if (i == -1)
495 i = MAX_NR_CONSOLES - 1;
496 if (vc_cons_allocated(i))
497 break;
499 set_console(i);
502 static void fn_inc_console(struct vc_data *vc)
504 int i, cur = fg_console;
506 /* Currently switching? Queue this next switch relative to that. */
507 if (want_console != -1)
508 cur = want_console;
510 for (i = cur+1; i != cur; i++) {
511 if (i == MAX_NR_CONSOLES)
512 i = 0;
513 if (vc_cons_allocated(i))
514 break;
516 set_console(i);
519 static void fn_send_intr(struct vc_data *vc)
521 struct tty_struct *tty = vc->vc_tty;
523 if (!tty)
524 return;
525 tty_insert_flip_char(tty, 0, TTY_BREAK);
526 con_schedule_flip(tty);
529 static void fn_scroll_forw(struct vc_data *vc)
531 scrollfront(vc, 0);
534 static void fn_scroll_back(struct vc_data *vc)
536 scrollback(vc, 0);
539 static void fn_show_mem(struct vc_data *vc)
541 show_mem();
544 static void fn_show_state(struct vc_data *vc)
546 show_state();
549 static void fn_boot_it(struct vc_data *vc)
551 ctrl_alt_del();
554 static void fn_compose(struct vc_data *vc)
556 dead_key_next = 1;
559 static void fn_spawn_con(struct vc_data *vc)
561 spin_lock(&vt_spawn_con.lock);
562 if (vt_spawn_con.pid)
563 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
564 put_pid(vt_spawn_con.pid);
565 vt_spawn_con.pid = NULL;
567 spin_unlock(&vt_spawn_con.lock);
570 static void fn_SAK(struct vc_data *vc)
572 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
573 schedule_work(SAK_work);
576 static void fn_null(struct vc_data *vc)
578 compute_shiftstate();
582 * Special key handlers
584 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
588 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
590 if (up_flag)
591 return;
592 if (value >= ARRAY_SIZE(fn_handler))
593 return;
594 if ((kbd->kbdmode == VC_RAW ||
595 kbd->kbdmode == VC_MEDIUMRAW) &&
596 value != KVAL(K_SAK))
597 return; /* SAK is allowed even in raw mode */
598 fn_handler[value](vc);
601 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
603 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
606 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
608 if (up_flag)
609 return; /* no action, if this is a key release */
611 if (diacr)
612 value = handle_diacr(vc, value);
614 if (dead_key_next) {
615 dead_key_next = 0;
616 diacr = value;
617 return;
619 if (kbd->kbdmode == VC_UNICODE)
620 to_utf8(vc, value);
621 else if (value < 0x100)
622 put_queue(vc, value);
626 * Handle dead key. Note that we now may have several
627 * dead keys modifying the same character. Very useful
628 * for Vietnamese.
630 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
632 if (up_flag)
633 return;
634 diacr = (diacr ? handle_diacr(vc, value) : value);
637 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
639 k_unicode(vc, value, up_flag);
642 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
644 k_deadunicode(vc, value, up_flag);
648 * Obsolete - for backwards compatibility only
650 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
652 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
653 value = ret_diacr[value];
654 k_deadunicode(vc, value, up_flag);
657 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
659 if (up_flag)
660 return;
661 set_console(value);
664 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
666 unsigned v;
668 if (up_flag)
669 return;
670 v = value;
671 if (v < ARRAY_SIZE(func_table)) {
672 if (func_table[value])
673 puts_queue(vc, func_table[value]);
674 } else
675 printk(KERN_ERR "k_fn called with value=%d\n", value);
678 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
680 static const char cur_chars[] = "BDCA";
682 if (up_flag)
683 return;
684 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
687 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
689 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
690 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
692 if (up_flag)
693 return; /* no action, if this is a key release */
695 /* kludge... shift forces cursor/number keys */
696 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
697 applkey(vc, app_map[value], 1);
698 return;
701 if (!vc_kbd_led(kbd, VC_NUMLOCK))
702 switch (value) {
703 case KVAL(K_PCOMMA):
704 case KVAL(K_PDOT):
705 k_fn(vc, KVAL(K_REMOVE), 0);
706 return;
707 case KVAL(K_P0):
708 k_fn(vc, KVAL(K_INSERT), 0);
709 return;
710 case KVAL(K_P1):
711 k_fn(vc, KVAL(K_SELECT), 0);
712 return;
713 case KVAL(K_P2):
714 k_cur(vc, KVAL(K_DOWN), 0);
715 return;
716 case KVAL(K_P3):
717 k_fn(vc, KVAL(K_PGDN), 0);
718 return;
719 case KVAL(K_P4):
720 k_cur(vc, KVAL(K_LEFT), 0);
721 return;
722 case KVAL(K_P6):
723 k_cur(vc, KVAL(K_RIGHT), 0);
724 return;
725 case KVAL(K_P7):
726 k_fn(vc, KVAL(K_FIND), 0);
727 return;
728 case KVAL(K_P8):
729 k_cur(vc, KVAL(K_UP), 0);
730 return;
731 case KVAL(K_P9):
732 k_fn(vc, KVAL(K_PGUP), 0);
733 return;
734 case KVAL(K_P5):
735 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
736 return;
739 put_queue(vc, pad_chars[value]);
740 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
741 put_queue(vc, 10);
744 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
746 int old_state = shift_state;
748 if (rep)
749 return;
751 * Mimic typewriter:
752 * a CapsShift key acts like Shift but undoes CapsLock
754 if (value == KVAL(K_CAPSSHIFT)) {
755 value = KVAL(K_SHIFT);
756 if (!up_flag)
757 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
760 if (up_flag) {
762 * handle the case that two shift or control
763 * keys are depressed simultaneously
765 if (shift_down[value])
766 shift_down[value]--;
767 } else
768 shift_down[value]++;
770 if (shift_down[value])
771 shift_state |= (1 << value);
772 else
773 shift_state &= ~(1 << value);
775 /* kludge */
776 if (up_flag && shift_state != old_state && npadch != -1) {
777 if (kbd->kbdmode == VC_UNICODE)
778 to_utf8(vc, npadch & 0xffff);
779 else
780 put_queue(vc, npadch & 0xff);
781 npadch = -1;
785 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
787 if (up_flag)
788 return;
790 if (vc_kbd_mode(kbd, VC_META)) {
791 put_queue(vc, '\033');
792 put_queue(vc, value);
793 } else
794 put_queue(vc, value | 0x80);
797 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
799 int base;
801 if (up_flag)
802 return;
804 if (value < 10) {
805 /* decimal input of code, while Alt depressed */
806 base = 10;
807 } else {
808 /* hexadecimal input of code, while AltGr depressed */
809 value -= 10;
810 base = 16;
813 if (npadch == -1)
814 npadch = value;
815 else
816 npadch = npadch * base + value;
819 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
821 if (up_flag || rep)
822 return;
823 chg_vc_kbd_lock(kbd, value);
826 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
828 k_shift(vc, value, up_flag);
829 if (up_flag || rep)
830 return;
831 chg_vc_kbd_slock(kbd, value);
832 /* try to make Alt, oops, AltGr and such work */
833 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
834 kbd->slockstate = 0;
835 chg_vc_kbd_slock(kbd, value);
839 /* by default, 300ms interval for combination release */
840 static unsigned brl_timeout = 300;
841 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
842 module_param(brl_timeout, uint, 0644);
844 static unsigned brl_nbchords = 1;
845 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
846 module_param(brl_nbchords, uint, 0644);
848 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
850 static unsigned long chords;
851 static unsigned committed;
853 if (!brl_nbchords)
854 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
855 else {
856 committed |= pattern;
857 chords++;
858 if (chords == brl_nbchords) {
859 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
860 chords = 0;
861 committed = 0;
866 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
868 static unsigned pressed,committing;
869 static unsigned long releasestart;
871 if (kbd->kbdmode != VC_UNICODE) {
872 if (!up_flag)
873 printk("keyboard mode must be unicode for braille patterns\n");
874 return;
877 if (!value) {
878 k_unicode(vc, BRL_UC_ROW, up_flag);
879 return;
882 if (value > 8)
883 return;
885 if (up_flag) {
886 if (brl_timeout) {
887 if (!committing ||
888 jiffies - releasestart > (brl_timeout * HZ) / 1000) {
889 committing = pressed;
890 releasestart = jiffies;
892 pressed &= ~(1 << (value - 1));
893 if (!pressed) {
894 if (committing) {
895 k_brlcommit(vc, committing, 0);
896 committing = 0;
899 } else {
900 if (committing) {
901 k_brlcommit(vc, committing, 0);
902 committing = 0;
904 pressed &= ~(1 << (value - 1));
906 } else {
907 pressed |= 1 << (value - 1);
908 if (!brl_timeout)
909 committing = pressed;
914 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
915 * or (ii) whatever pattern of lights people want to show using KDSETLED,
916 * or (iii) specified bits of specified words in kernel memory.
918 unsigned char getledstate(void)
920 return ledstate;
923 void setledstate(struct kbd_struct *kbd, unsigned int led)
925 if (!(led & ~7)) {
926 ledioctl = led;
927 kbd->ledmode = LED_SHOW_IOCTL;
928 } else
929 kbd->ledmode = LED_SHOW_FLAGS;
930 set_leds();
933 static inline unsigned char getleds(void)
935 struct kbd_struct *kbd = kbd_table + fg_console;
936 unsigned char leds;
937 int i;
939 if (kbd->ledmode == LED_SHOW_IOCTL)
940 return ledioctl;
942 leds = kbd->ledflagstate;
944 if (kbd->ledmode == LED_SHOW_MEM) {
945 for (i = 0; i < 3; i++)
946 if (ledptrs[i].valid) {
947 if (*ledptrs[i].addr & ledptrs[i].mask)
948 leds |= (1 << i);
949 else
950 leds &= ~(1 << i);
953 return leds;
957 * This routine is the bottom half of the keyboard interrupt
958 * routine, and runs with all interrupts enabled. It does
959 * console changing, led setting and copy_to_cooked, which can
960 * take a reasonably long time.
962 * Aside from timing (which isn't really that important for
963 * keyboard interrupts as they happen often), using the software
964 * interrupt routines for this thing allows us to easily mask
965 * this when we don't want any of the above to happen.
966 * This allows for easy and efficient race-condition prevention
967 * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
970 static void kbd_bh(unsigned long dummy)
972 struct list_head *node;
973 unsigned char leds = getleds();
975 if (leds != ledstate) {
976 list_for_each(node, &kbd_handler.h_list) {
977 struct input_handle *handle = to_handle_h(node);
978 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
979 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
980 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
981 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
985 ledstate = leds;
988 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
990 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
991 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
992 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
993 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
995 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
996 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
998 static const unsigned short x86_keycodes[256] =
999 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1000 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1001 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1002 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1003 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1004 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1005 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1006 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1007 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1008 103,104,105,275,287,279,306,106,274,107,294,364,358,363,362,361,
1009 291,108,381,281,290,272,292,305,280, 99,112,257,258,359,113,114,
1010 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1011 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1012 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1013 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1015 #ifdef CONFIG_MAC_EMUMOUSEBTN
1016 extern int mac_hid_mouse_emulate_buttons(int, int, int);
1017 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1019 #ifdef CONFIG_SPARC
1020 static int sparc_l1_a_state = 0;
1021 extern void sun_do_break(void);
1022 #endif
1024 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1025 unsigned char up_flag)
1027 int code;
1029 switch (keycode) {
1030 case KEY_PAUSE:
1031 put_queue(vc, 0xe1);
1032 put_queue(vc, 0x1d | up_flag);
1033 put_queue(vc, 0x45 | up_flag);
1034 break;
1036 case KEY_HANGEUL:
1037 if (!up_flag)
1038 put_queue(vc, 0xf2);
1039 break;
1041 case KEY_HANJA:
1042 if (!up_flag)
1043 put_queue(vc, 0xf1);
1044 break;
1046 case KEY_SYSRQ:
1048 * Real AT keyboards (that's what we're trying
1049 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1050 * pressing PrtSc/SysRq alone, but simply 0x54
1051 * when pressing Alt+PrtSc/SysRq.
1053 if (sysrq_alt) {
1054 put_queue(vc, 0x54 | up_flag);
1055 } else {
1056 put_queue(vc, 0xe0);
1057 put_queue(vc, 0x2a | up_flag);
1058 put_queue(vc, 0xe0);
1059 put_queue(vc, 0x37 | up_flag);
1061 break;
1063 default:
1064 if (keycode > 255)
1065 return -1;
1067 code = x86_keycodes[keycode];
1068 if (!code)
1069 return -1;
1071 if (code & 0x100)
1072 put_queue(vc, 0xe0);
1073 put_queue(vc, (code & 0x7f) | up_flag);
1075 break;
1078 return 0;
1081 #else
1083 #define HW_RAW(dev) 0
1085 #warning "Cannot generate rawmode keyboard for your architecture yet."
1087 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1089 if (keycode > 127)
1090 return -1;
1092 put_queue(vc, keycode | up_flag);
1093 return 0;
1095 #endif
1097 static void kbd_rawcode(unsigned char data)
1099 struct vc_data *vc = vc_cons[fg_console].d;
1100 kbd = kbd_table + fg_console;
1101 if (kbd->kbdmode == VC_RAW)
1102 put_queue(vc, data);
1105 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1107 struct vc_data *vc = vc_cons[fg_console].d;
1108 unsigned short keysym, *key_map;
1109 unsigned char type, raw_mode;
1110 struct tty_struct *tty;
1111 int shift_final;
1113 tty = vc->vc_tty;
1115 if (tty && (!tty->driver_data)) {
1116 /* No driver data? Strange. Okay we fix it then. */
1117 tty->driver_data = vc;
1120 kbd = kbd_table + fg_console;
1122 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1123 sysrq_alt = down ? keycode : 0;
1124 #ifdef CONFIG_SPARC
1125 if (keycode == KEY_STOP)
1126 sparc_l1_a_state = down;
1127 #endif
1129 rep = (down == 2);
1131 #ifdef CONFIG_MAC_EMUMOUSEBTN
1132 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
1133 return;
1134 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1136 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1137 if (emulate_raw(vc, keycode, !down << 7))
1138 if (keycode < BTN_MISC && printk_ratelimit())
1139 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1141 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1142 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1143 if (!sysrq_down) {
1144 sysrq_down = down;
1145 sysrq_alt_use = sysrq_alt;
1147 return;
1149 if (sysrq_down && !down && keycode == sysrq_alt_use)
1150 sysrq_down = 0;
1151 if (sysrq_down && down && !rep) {
1152 handle_sysrq(kbd_sysrq_xlate[keycode], tty);
1153 return;
1155 #endif
1156 #ifdef CONFIG_SPARC
1157 if (keycode == KEY_A && sparc_l1_a_state) {
1158 sparc_l1_a_state = 0;
1159 sun_do_break();
1161 #endif
1163 if (kbd->kbdmode == VC_MEDIUMRAW) {
1165 * This is extended medium raw mode, with keys above 127
1166 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1167 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1168 * interfere with anything else. The two bytes after 0 will
1169 * always have the up flag set not to interfere with older
1170 * applications. This allows for 16384 different keycodes,
1171 * which should be enough.
1173 if (keycode < 128) {
1174 put_queue(vc, keycode | (!down << 7));
1175 } else {
1176 put_queue(vc, !down << 7);
1177 put_queue(vc, (keycode >> 7) | 0x80);
1178 put_queue(vc, keycode | 0x80);
1180 raw_mode = 1;
1183 if (down)
1184 set_bit(keycode, key_down);
1185 else
1186 clear_bit(keycode, key_down);
1188 if (rep &&
1189 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1190 (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
1192 * Don't repeat a key if the input buffers are not empty and the
1193 * characters get aren't echoed locally. This makes key repeat
1194 * usable with slow applications and under heavy loads.
1196 return;
1199 shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1200 key_map = key_maps[shift_final];
1202 if (!key_map) {
1203 compute_shiftstate();
1204 kbd->slockstate = 0;
1205 return;
1208 if (keycode > NR_KEYS)
1209 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1210 keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
1211 else
1212 return;
1213 else
1214 keysym = key_map[keycode];
1216 type = KTYP(keysym);
1218 if (type < 0xf0) {
1219 if (down && !raw_mode)
1220 to_utf8(vc, keysym);
1221 return;
1224 type -= 0xf0;
1226 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1227 return;
1229 if (type == KT_LETTER) {
1230 type = KT_LATIN;
1231 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1232 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1233 if (key_map)
1234 keysym = key_map[keycode];
1238 (*k_handler[type])(vc, keysym & 0xff, !down);
1240 if (type != KT_SLOCK)
1241 kbd->slockstate = 0;
1244 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1245 unsigned int event_code, int value)
1247 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1248 kbd_rawcode(value);
1249 if (event_type == EV_KEY)
1250 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1251 tasklet_schedule(&keyboard_tasklet);
1252 do_poke_blanked_console = 1;
1253 schedule_console_callback();
1257 * When a keyboard (or other input device) is found, the kbd_connect
1258 * function is called. The function then looks at the device, and if it
1259 * likes it, it can open it and get events from it. In this (kbd_connect)
1260 * function, we should decide which VT to bind that keyboard to initially.
1262 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1263 const struct input_device_id *id)
1265 struct input_handle *handle;
1266 int error;
1267 int i;
1269 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1270 if (test_bit(i, dev->keybit))
1271 break;
1273 if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
1274 return -ENODEV;
1276 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1277 if (!handle)
1278 return -ENOMEM;
1280 handle->dev = dev;
1281 handle->handler = handler;
1282 handle->name = "kbd";
1284 error = input_register_handle(handle);
1285 if (error)
1286 goto err_free_handle;
1288 error = input_open_device(handle);
1289 if (error)
1290 goto err_unregister_handle;
1292 return 0;
1294 err_unregister_handle:
1295 input_unregister_handle(handle);
1296 err_free_handle:
1297 kfree(handle);
1298 return error;
1301 static void kbd_disconnect(struct input_handle *handle)
1303 input_close_device(handle);
1304 input_unregister_handle(handle);
1305 kfree(handle);
1309 * Start keyboard handler on the new keyboard by refreshing LED state to
1310 * match the rest of the system.
1312 static void kbd_start(struct input_handle *handle)
1314 unsigned char leds = ledstate;
1316 tasklet_disable(&keyboard_tasklet);
1317 if (leds != 0xff) {
1318 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1319 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1320 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1321 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1323 tasklet_enable(&keyboard_tasklet);
1326 static const struct input_device_id kbd_ids[] = {
1328 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1329 .evbit = { BIT(EV_KEY) },
1333 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1334 .evbit = { BIT(EV_SND) },
1337 { }, /* Terminating entry */
1340 MODULE_DEVICE_TABLE(input, kbd_ids);
1342 static struct input_handler kbd_handler = {
1343 .event = kbd_event,
1344 .connect = kbd_connect,
1345 .disconnect = kbd_disconnect,
1346 .start = kbd_start,
1347 .name = "kbd",
1348 .id_table = kbd_ids,
1351 int __init kbd_init(void)
1353 int i;
1354 int error;
1356 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1357 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1358 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1359 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1360 kbd_table[i].lockstate = KBD_DEFLOCK;
1361 kbd_table[i].slockstate = 0;
1362 kbd_table[i].modeflags = KBD_DEFMODE;
1363 kbd_table[i].kbdmode = VC_XLATE;
1366 error = input_register_handler(&kbd_handler);
1367 if (error)
1368 return error;
1370 tasklet_enable(&keyboard_tasklet);
1371 tasklet_schedule(&keyboard_tasklet);
1373 return 0;