2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
7 * This code is released under the GNU General Public License version 2 or
11 #include <linux/init.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/cpu.h>
21 #include <linux/module.h>
24 #include <asm/tlbflush.h>
25 #include <mach_apic.h>
28 * Some notes on x86 processor bugs affecting SMP operation:
30 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
31 * The Linux implications for SMP are handled as follows:
33 * Pentium III / [Xeon]
34 * None of the E1AP-E3AP errata are visible to the user.
41 * None of the A1AP-A3AP errata are visible to the user.
48 * None of 1AP-9AP errata are visible to the normal user,
49 * except occasional delivery of 'spurious interrupt' as trap #15.
50 * This is very rare and a non-problem.
52 * 1AP. Linux maps APIC as non-cacheable
53 * 2AP. worked around in hardware
54 * 3AP. fixed in C0 and above steppings microcode update.
55 * Linux does not use excessive STARTUP_IPIs.
56 * 4AP. worked around in hardware
57 * 5AP. symmetric IO mode (normal Linux operation) not affected.
58 * 'noapic' mode has vector 0xf filled out properly.
59 * 6AP. 'noapic' mode might be affected - fixed in later steppings
60 * 7AP. We do not assume writes to the LVT deassering IRQs
61 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
62 * 9AP. We do not use mixed mode
65 * There is a marginal case where REP MOVS on 100MHz SMP
66 * machines with B stepping processors can fail. XXX should provide
67 * an L1cache=Writethrough or L1cache=off option.
69 * B stepping CPUs may hang. There are hardware work arounds
70 * for this. We warn about it in case your board doesn't have the work
71 * arounds. Basically thats so I can tell anyone with a B stepping
72 * CPU and SMP problems "tough".
74 * Specific items [From Pentium Processor Specification Update]
76 * 1AP. Linux doesn't use remote read
77 * 2AP. Linux doesn't trust APIC errors
78 * 3AP. We work around this
79 * 4AP. Linux never generated 3 interrupts of the same priority
80 * to cause a lost local interrupt.
81 * 5AP. Remote read is never used
82 * 6AP. not affected - worked around in hardware
83 * 7AP. not affected - worked around in hardware
84 * 8AP. worked around in hardware - we get explicit CS errors if not
85 * 9AP. only 'noapic' mode affected. Might generate spurious
86 * interrupts, we log only the first one and count the
88 * 10AP. not affected - worked around in hardware
89 * 11AP. Linux reads the APIC between writes to avoid this, as per
90 * the documentation. Make sure you preserve this as it affects
91 * the C stepping chips too.
92 * 12AP. not affected - worked around in hardware
93 * 13AP. not affected - worked around in hardware
94 * 14AP. we always deassert INIT during bootup
95 * 15AP. not affected - worked around in hardware
96 * 16AP. not affected - worked around in hardware
97 * 17AP. not affected - worked around in hardware
98 * 18AP. not affected - worked around in hardware
99 * 19AP. not affected - worked around in BIOS
101 * If this sounds worrying believe me these bugs are either ___RARE___,
102 * or are signal timing bugs worked around in hardware and there's
103 * about nothing of note with C stepping upwards.
106 DEFINE_PER_CPU(struct tlb_state
, cpu_tlbstate
) ____cacheline_aligned
= { &init_mm
, 0, };
109 * the following functions deal with sending IPIs between CPUs.
111 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
114 static inline int __prepare_ICR (unsigned int shortcut
, int vector
)
116 unsigned int icr
= shortcut
| APIC_DEST_LOGICAL
;
120 icr
|= APIC_DM_FIXED
| vector
;
129 static inline int __prepare_ICR2 (unsigned int mask
)
131 return SET_APIC_DEST_FIELD(mask
);
134 void __send_IPI_shortcut(unsigned int shortcut
, int vector
)
137 * Subtle. In the case of the 'never do double writes' workaround
138 * we have to lock out interrupts to be safe. As we don't care
139 * of the value read we use an atomic rmw access to avoid costly
140 * cli/sti. Otherwise we use an even cheaper single atomic write
148 apic_wait_icr_idle();
151 * No need to touch the target chip field
153 cfg
= __prepare_ICR(shortcut
, vector
);
156 * Send the IPI. The write to APIC_ICR fires this off.
158 apic_write_around(APIC_ICR
, cfg
);
161 void fastcall
send_IPI_self(int vector
)
163 __send_IPI_shortcut(APIC_DEST_SELF
, vector
);
167 * This is used to send an IPI with no shorthand notation (the destination is
168 * specified in bits 56 to 63 of the ICR).
170 static inline void __send_IPI_dest_field(unsigned long mask
, int vector
)
177 if (unlikely(vector
== NMI_VECTOR
))
178 safe_apic_wait_icr_idle();
180 apic_wait_icr_idle();
183 * prepare target chip field
185 cfg
= __prepare_ICR2(mask
);
186 apic_write_around(APIC_ICR2
, cfg
);
191 cfg
= __prepare_ICR(0, vector
);
194 * Send the IPI. The write to APIC_ICR fires this off.
196 apic_write_around(APIC_ICR
, cfg
);
200 * This is only used on smaller machines.
202 void send_IPI_mask_bitmask(cpumask_t cpumask
, int vector
)
204 unsigned long mask
= cpus_addr(cpumask
)[0];
207 local_irq_save(flags
);
208 WARN_ON(mask
& ~cpus_addr(cpu_online_map
)[0]);
209 __send_IPI_dest_field(mask
, vector
);
210 local_irq_restore(flags
);
213 void send_IPI_mask_sequence(cpumask_t mask
, int vector
)
216 unsigned int query_cpu
;
219 * Hack. The clustered APIC addressing mode doesn't allow us to send
220 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
221 * should be modified to do 1 message per cluster ID - mbligh
224 local_irq_save(flags
);
225 for (query_cpu
= 0; query_cpu
< NR_CPUS
; ++query_cpu
) {
226 if (cpu_isset(query_cpu
, mask
)) {
227 __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu
),
231 local_irq_restore(flags
);
234 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
237 * Smarter SMP flushing macros.
238 * c/o Linus Torvalds.
240 * These mean you can really definitely utterly forget about
241 * writing to user space from interrupts. (Its not allowed anyway).
243 * Optimizations Manfred Spraul <manfred@colorfullife.com>
246 static cpumask_t flush_cpumask
;
247 static struct mm_struct
* flush_mm
;
248 static unsigned long flush_va
;
249 static DEFINE_SPINLOCK(tlbstate_lock
);
252 * We cannot call mmdrop() because we are in interrupt context,
253 * instead update mm->cpu_vm_mask.
255 * We need to reload %cr3 since the page tables may be going
256 * away from under us..
258 static inline void leave_mm (unsigned long cpu
)
260 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
)
262 cpu_clear(cpu
, per_cpu(cpu_tlbstate
, cpu
).active_mm
->cpu_vm_mask
);
263 load_cr3(swapper_pg_dir
);
268 * The flush IPI assumes that a thread switch happens in this order:
269 * [cpu0: the cpu that switches]
270 * 1) switch_mm() either 1a) or 1b)
271 * 1a) thread switch to a different mm
272 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
273 * Stop ipi delivery for the old mm. This is not synchronized with
274 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
275 * for the wrong mm, and in the worst case we perform a superflous
277 * 1a2) set cpu_tlbstate to TLBSTATE_OK
278 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
279 * was in lazy tlb mode.
280 * 1a3) update cpu_tlbstate[].active_mm
281 * Now cpu0 accepts tlb flushes for the new mm.
282 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
283 * Now the other cpus will send tlb flush ipis.
285 * 1b) thread switch without mm change
286 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
288 * 1b1) set cpu_tlbstate to TLBSTATE_OK
289 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
290 * Atomically set the bit [other cpus will start sending flush ipis],
292 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
293 * 2) switch %%esp, ie current
295 * The interrupt must handle 2 special cases:
296 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
297 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
298 * runs in kernel space, the cpu could load tlb entries for user space
301 * The good news is that cpu_tlbstate is local to each cpu, no
302 * write/read ordering problems.
308 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
309 * 2) Leave the mm if we are in the lazy tlb mode.
312 fastcall
void smp_invalidate_interrupt(struct pt_regs
*regs
)
318 if (!cpu_isset(cpu
, flush_cpumask
))
321 * This was a BUG() but until someone can quote me the
322 * line from the intel manual that guarantees an IPI to
323 * multiple CPUs is retried _only_ on the erroring CPUs
324 * its staying as a return
329 if (flush_mm
== per_cpu(cpu_tlbstate
, cpu
).active_mm
) {
330 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_OK
) {
331 if (flush_va
== TLB_FLUSH_ALL
)
334 __flush_tlb_one(flush_va
);
339 smp_mb__before_clear_bit();
340 cpu_clear(cpu
, flush_cpumask
);
341 smp_mb__after_clear_bit();
343 put_cpu_no_resched();
346 void native_flush_tlb_others(const cpumask_t
*cpumaskp
, struct mm_struct
*mm
,
349 cpumask_t cpumask
= *cpumaskp
;
352 * A couple of (to be removed) sanity checks:
354 * - current CPU must not be in mask
355 * - mask must exist :)
357 BUG_ON(cpus_empty(cpumask
));
358 BUG_ON(cpu_isset(smp_processor_id(), cpumask
));
361 #ifdef CONFIG_HOTPLUG_CPU
362 /* If a CPU which we ran on has gone down, OK. */
363 cpus_and(cpumask
, cpumask
, cpu_online_map
);
364 if (unlikely(cpus_empty(cpumask
)))
369 * i'm not happy about this global shared spinlock in the
370 * MM hot path, but we'll see how contended it is.
371 * AK: x86-64 has a faster method that could be ported.
373 spin_lock(&tlbstate_lock
);
377 cpus_or(flush_cpumask
, cpumask
, flush_cpumask
);
379 * We have to send the IPI only to
382 send_IPI_mask(cpumask
, INVALIDATE_TLB_VECTOR
);
384 while (!cpus_empty(flush_cpumask
))
385 /* nothing. lockup detection does not belong here */
390 spin_unlock(&tlbstate_lock
);
393 void flush_tlb_current_task(void)
395 struct mm_struct
*mm
= current
->mm
;
399 cpu_mask
= mm
->cpu_vm_mask
;
400 cpu_clear(smp_processor_id(), cpu_mask
);
403 if (!cpus_empty(cpu_mask
))
404 flush_tlb_others(cpu_mask
, mm
, TLB_FLUSH_ALL
);
408 void flush_tlb_mm (struct mm_struct
* mm
)
413 cpu_mask
= mm
->cpu_vm_mask
;
414 cpu_clear(smp_processor_id(), cpu_mask
);
416 if (current
->active_mm
== mm
) {
420 leave_mm(smp_processor_id());
422 if (!cpus_empty(cpu_mask
))
423 flush_tlb_others(cpu_mask
, mm
, TLB_FLUSH_ALL
);
428 void flush_tlb_page(struct vm_area_struct
* vma
, unsigned long va
)
430 struct mm_struct
*mm
= vma
->vm_mm
;
434 cpu_mask
= mm
->cpu_vm_mask
;
435 cpu_clear(smp_processor_id(), cpu_mask
);
437 if (current
->active_mm
== mm
) {
441 leave_mm(smp_processor_id());
444 if (!cpus_empty(cpu_mask
))
445 flush_tlb_others(cpu_mask
, mm
, va
);
449 EXPORT_SYMBOL(flush_tlb_page
);
451 static void do_flush_tlb_all(void* info
)
453 unsigned long cpu
= smp_processor_id();
456 if (per_cpu(cpu_tlbstate
, cpu
).state
== TLBSTATE_LAZY
)
460 void flush_tlb_all(void)
462 on_each_cpu(do_flush_tlb_all
, NULL
, 1, 1);
466 * this function sends a 'reschedule' IPI to another CPU.
467 * it goes straight through and wastes no time serializing
468 * anything. Worst case is that we lose a reschedule ...
470 static void native_smp_send_reschedule(int cpu
)
472 WARN_ON(cpu_is_offline(cpu
));
473 send_IPI_mask(cpumask_of_cpu(cpu
), RESCHEDULE_VECTOR
);
477 * Structure and data for smp_call_function(). This is designed to minimise
478 * static memory requirements. It also looks cleaner.
480 static DEFINE_SPINLOCK(call_lock
);
482 struct call_data_struct
{
483 void (*func
) (void *info
);
490 void lock_ipi_call_lock(void)
492 spin_lock_irq(&call_lock
);
495 void unlock_ipi_call_lock(void)
497 spin_unlock_irq(&call_lock
);
500 static struct call_data_struct
*call_data
;
502 static void __smp_call_function(void (*func
) (void *info
), void *info
,
503 int nonatomic
, int wait
)
505 struct call_data_struct data
;
506 int cpus
= num_online_cpus() - 1;
513 atomic_set(&data
.started
, 0);
516 atomic_set(&data
.finished
, 0);
521 /* Send a message to all other CPUs and wait for them to respond */
522 send_IPI_allbutself(CALL_FUNCTION_VECTOR
);
524 /* Wait for response */
525 while (atomic_read(&data
.started
) != cpus
)
529 while (atomic_read(&data
.finished
) != cpus
)
535 * smp_call_function_mask(): Run a function on a set of other CPUs.
536 * @mask: The set of cpus to run on. Must not include the current cpu.
537 * @func: The function to run. This must be fast and non-blocking.
538 * @info: An arbitrary pointer to pass to the function.
539 * @wait: If true, wait (atomically) until function has completed on other CPUs.
541 * Returns 0 on success, else a negative status code.
543 * If @wait is true, then returns once @func has returned; otherwise
544 * it returns just before the target cpu calls @func.
546 * You must not call this function with disabled interrupts or from a
547 * hardware interrupt handler or from a bottom half handler.
550 native_smp_call_function_mask(cpumask_t mask
,
551 void (*func
)(void *), void *info
,
554 struct call_data_struct data
;
555 cpumask_t allbutself
;
558 /* Can deadlock when called with interrupts disabled */
559 WARN_ON(irqs_disabled());
561 /* Holding any lock stops cpus from going down. */
562 spin_lock(&call_lock
);
564 allbutself
= cpu_online_map
;
565 cpu_clear(smp_processor_id(), allbutself
);
567 cpus_and(mask
, mask
, allbutself
);
568 cpus
= cpus_weight(mask
);
571 spin_unlock(&call_lock
);
577 atomic_set(&data
.started
, 0);
580 atomic_set(&data
.finished
, 0);
585 /* Send a message to other CPUs */
586 if (cpus_equal(mask
, allbutself
))
587 send_IPI_allbutself(CALL_FUNCTION_VECTOR
);
589 send_IPI_mask(mask
, CALL_FUNCTION_VECTOR
);
591 /* Wait for response */
592 while (atomic_read(&data
.started
) != cpus
)
596 while (atomic_read(&data
.finished
) != cpus
)
598 spin_unlock(&call_lock
);
603 static void stop_this_cpu (void * dummy
)
609 cpu_clear(smp_processor_id(), cpu_online_map
);
610 disable_local_APIC();
611 if (cpu_data
[smp_processor_id()].hlt_works_ok
)
617 * this function calls the 'stop' function on all other CPUs in the system.
620 static void native_smp_send_stop(void)
622 /* Don't deadlock on the call lock in panic */
623 int nolock
= !spin_trylock(&call_lock
);
626 local_irq_save(flags
);
627 __smp_call_function(stop_this_cpu
, NULL
, 0, 0);
629 spin_unlock(&call_lock
);
630 disable_local_APIC();
631 local_irq_restore(flags
);
635 * Reschedule call back. Nothing to do,
636 * all the work is done automatically when
637 * we return from the interrupt.
639 fastcall
void smp_reschedule_interrupt(struct pt_regs
*regs
)
644 fastcall
void smp_call_function_interrupt(struct pt_regs
*regs
)
646 void (*func
) (void *info
) = call_data
->func
;
647 void *info
= call_data
->info
;
648 int wait
= call_data
->wait
;
652 * Notify initiating CPU that I've grabbed the data and am
653 * about to execute the function
656 atomic_inc(&call_data
->started
);
658 * At this point the info structure may be out of scope unless wait==1
666 atomic_inc(&call_data
->finished
);
670 static int convert_apicid_to_cpu(int apic_id
)
674 for (i
= 0; i
< NR_CPUS
; i
++) {
675 if (x86_cpu_to_apicid
[i
] == apic_id
)
681 int safe_smp_processor_id(void)
685 if (!boot_cpu_has(X86_FEATURE_APIC
))
688 apicid
= hard_smp_processor_id();
689 if (apicid
== BAD_APICID
)
692 cpuid
= convert_apicid_to_cpu(apicid
);
694 return cpuid
>= 0 ? cpuid
: 0;
697 struct smp_ops smp_ops
= {
698 .smp_prepare_boot_cpu
= native_smp_prepare_boot_cpu
,
699 .smp_prepare_cpus
= native_smp_prepare_cpus
,
700 .cpu_up
= native_cpu_up
,
701 .smp_cpus_done
= native_smp_cpus_done
,
703 .smp_send_stop
= native_smp_send_stop
,
704 .smp_send_reschedule
= native_smp_send_reschedule
,
705 .smp_call_function_mask
= native_smp_call_function_mask
,