[PARISC] Use CONFIG_HZ to determine interval timer rate (aka clock ticks)
[linux-2.6.22.y-op.git] / kernel / fork.c
blob7dc6140baac69325f1ce2fa08fa9bd858aa57258
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
60 * Protected counters by write_lock_irq(&tasklist_lock)
62 unsigned long total_forks; /* Handle normal Linux uptimes. */
63 int nr_threads; /* The idle threads do not count.. */
65 int max_threads; /* tunable limit on nr_threads */
67 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
69 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
71 int nr_processes(void)
73 int cpu;
74 int total = 0;
76 for_each_online_cpu(cpu)
77 total += per_cpu(process_counts, cpu);
79 return total;
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
85 static kmem_cache_t *task_struct_cachep;
86 #endif
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static kmem_cache_t *signal_cachep;
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 kmem_cache_t *sighand_cachep;
94 /* SLAB cache for files_struct structures (tsk->files) */
95 kmem_cache_t *files_cachep;
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 kmem_cache_t *fs_cachep;
100 /* SLAB cache for vm_area_struct structures */
101 kmem_cache_t *vm_area_cachep;
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static kmem_cache_t *mm_cachep;
106 void free_task(struct task_struct *tsk)
108 free_thread_info(tsk->thread_info);
109 rt_mutex_debug_task_free(tsk);
110 free_task_struct(tsk);
112 EXPORT_SYMBOL(free_task);
114 void __put_task_struct(struct task_struct *tsk)
116 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
117 WARN_ON(atomic_read(&tsk->usage));
118 WARN_ON(tsk == current);
120 security_task_free(tsk);
121 free_uid(tsk->user);
122 put_group_info(tsk->group_info);
123 delayacct_tsk_free(tsk);
125 if (!profile_handoff_task(tsk))
126 free_task(tsk);
129 void __init fork_init(unsigned long mempages)
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
134 #endif
135 /* create a slab on which task_structs can be allocated */
136 task_struct_cachep =
137 kmem_cache_create("task_struct", sizeof(struct task_struct),
138 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
142 * The default maximum number of threads is set to a safe
143 * value: the thread structures can take up at most half
144 * of memory.
146 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
149 * we need to allow at least 20 threads to boot a system
151 if(max_threads < 20)
152 max_threads = 20;
154 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 init_task.signal->rlim[RLIMIT_NPROC];
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
162 struct task_struct *tsk;
163 struct thread_info *ti;
165 prepare_to_copy(orig);
167 tsk = alloc_task_struct();
168 if (!tsk)
169 return NULL;
171 ti = alloc_thread_info(tsk);
172 if (!ti) {
173 free_task_struct(tsk);
174 return NULL;
177 *tsk = *orig;
178 tsk->thread_info = ti;
179 setup_thread_stack(tsk, orig);
181 #ifdef CONFIG_CC_STACKPROTECTOR
182 tsk->stack_canary = get_random_int();
183 #endif
185 /* One for us, one for whoever does the "release_task()" (usually parent) */
186 atomic_set(&tsk->usage,2);
187 atomic_set(&tsk->fs_excl, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
189 tsk->btrace_seq = 0;
190 #endif
191 tsk->splice_pipe = NULL;
192 return tsk;
195 #ifdef CONFIG_MMU
196 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
198 struct vm_area_struct *mpnt, *tmp, **pprev;
199 struct rb_node **rb_link, *rb_parent;
200 int retval;
201 unsigned long charge;
202 struct mempolicy *pol;
204 down_write(&oldmm->mmap_sem);
205 flush_cache_mm(oldmm);
207 * Not linked in yet - no deadlock potential:
209 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
211 mm->locked_vm = 0;
212 mm->mmap = NULL;
213 mm->mmap_cache = NULL;
214 mm->free_area_cache = oldmm->mmap_base;
215 mm->cached_hole_size = ~0UL;
216 mm->map_count = 0;
217 cpus_clear(mm->cpu_vm_mask);
218 mm->mm_rb = RB_ROOT;
219 rb_link = &mm->mm_rb.rb_node;
220 rb_parent = NULL;
221 pprev = &mm->mmap;
223 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
224 struct file *file;
226 if (mpnt->vm_flags & VM_DONTCOPY) {
227 long pages = vma_pages(mpnt);
228 mm->total_vm -= pages;
229 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
230 -pages);
231 continue;
233 charge = 0;
234 if (mpnt->vm_flags & VM_ACCOUNT) {
235 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
236 if (security_vm_enough_memory(len))
237 goto fail_nomem;
238 charge = len;
240 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
241 if (!tmp)
242 goto fail_nomem;
243 *tmp = *mpnt;
244 pol = mpol_copy(vma_policy(mpnt));
245 retval = PTR_ERR(pol);
246 if (IS_ERR(pol))
247 goto fail_nomem_policy;
248 vma_set_policy(tmp, pol);
249 tmp->vm_flags &= ~VM_LOCKED;
250 tmp->vm_mm = mm;
251 tmp->vm_next = NULL;
252 anon_vma_link(tmp);
253 file = tmp->vm_file;
254 if (file) {
255 struct inode *inode = file->f_dentry->d_inode;
256 get_file(file);
257 if (tmp->vm_flags & VM_DENYWRITE)
258 atomic_dec(&inode->i_writecount);
260 /* insert tmp into the share list, just after mpnt */
261 spin_lock(&file->f_mapping->i_mmap_lock);
262 tmp->vm_truncate_count = mpnt->vm_truncate_count;
263 flush_dcache_mmap_lock(file->f_mapping);
264 vma_prio_tree_add(tmp, mpnt);
265 flush_dcache_mmap_unlock(file->f_mapping);
266 spin_unlock(&file->f_mapping->i_mmap_lock);
270 * Link in the new vma and copy the page table entries.
272 *pprev = tmp;
273 pprev = &tmp->vm_next;
275 __vma_link_rb(mm, tmp, rb_link, rb_parent);
276 rb_link = &tmp->vm_rb.rb_right;
277 rb_parent = &tmp->vm_rb;
279 mm->map_count++;
280 retval = copy_page_range(mm, oldmm, mpnt);
282 if (tmp->vm_ops && tmp->vm_ops->open)
283 tmp->vm_ops->open(tmp);
285 if (retval)
286 goto out;
288 retval = 0;
289 out:
290 up_write(&mm->mmap_sem);
291 flush_tlb_mm(oldmm);
292 up_write(&oldmm->mmap_sem);
293 return retval;
294 fail_nomem_policy:
295 kmem_cache_free(vm_area_cachep, tmp);
296 fail_nomem:
297 retval = -ENOMEM;
298 vm_unacct_memory(charge);
299 goto out;
302 static inline int mm_alloc_pgd(struct mm_struct * mm)
304 mm->pgd = pgd_alloc(mm);
305 if (unlikely(!mm->pgd))
306 return -ENOMEM;
307 return 0;
310 static inline void mm_free_pgd(struct mm_struct * mm)
312 pgd_free(mm->pgd);
314 #else
315 #define dup_mmap(mm, oldmm) (0)
316 #define mm_alloc_pgd(mm) (0)
317 #define mm_free_pgd(mm)
318 #endif /* CONFIG_MMU */
320 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
322 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
323 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
325 #include <linux/init_task.h>
327 static struct mm_struct * mm_init(struct mm_struct * mm)
329 atomic_set(&mm->mm_users, 1);
330 atomic_set(&mm->mm_count, 1);
331 init_rwsem(&mm->mmap_sem);
332 INIT_LIST_HEAD(&mm->mmlist);
333 mm->core_waiters = 0;
334 mm->nr_ptes = 0;
335 set_mm_counter(mm, file_rss, 0);
336 set_mm_counter(mm, anon_rss, 0);
337 spin_lock_init(&mm->page_table_lock);
338 rwlock_init(&mm->ioctx_list_lock);
339 mm->ioctx_list = NULL;
340 mm->free_area_cache = TASK_UNMAPPED_BASE;
341 mm->cached_hole_size = ~0UL;
343 if (likely(!mm_alloc_pgd(mm))) {
344 mm->def_flags = 0;
345 return mm;
347 free_mm(mm);
348 return NULL;
352 * Allocate and initialize an mm_struct.
354 struct mm_struct * mm_alloc(void)
356 struct mm_struct * mm;
358 mm = allocate_mm();
359 if (mm) {
360 memset(mm, 0, sizeof(*mm));
361 mm = mm_init(mm);
363 return mm;
367 * Called when the last reference to the mm
368 * is dropped: either by a lazy thread or by
369 * mmput. Free the page directory and the mm.
371 void fastcall __mmdrop(struct mm_struct *mm)
373 BUG_ON(mm == &init_mm);
374 mm_free_pgd(mm);
375 destroy_context(mm);
376 free_mm(mm);
380 * Decrement the use count and release all resources for an mm.
382 void mmput(struct mm_struct *mm)
384 might_sleep();
386 if (atomic_dec_and_test(&mm->mm_users)) {
387 exit_aio(mm);
388 exit_mmap(mm);
389 if (!list_empty(&mm->mmlist)) {
390 spin_lock(&mmlist_lock);
391 list_del(&mm->mmlist);
392 spin_unlock(&mmlist_lock);
394 put_swap_token(mm);
395 mmdrop(mm);
398 EXPORT_SYMBOL_GPL(mmput);
401 * get_task_mm - acquire a reference to the task's mm
403 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
404 * this kernel workthread has transiently adopted a user mm with use_mm,
405 * to do its AIO) is not set and if so returns a reference to it, after
406 * bumping up the use count. User must release the mm via mmput()
407 * after use. Typically used by /proc and ptrace.
409 struct mm_struct *get_task_mm(struct task_struct *task)
411 struct mm_struct *mm;
413 task_lock(task);
414 mm = task->mm;
415 if (mm) {
416 if (task->flags & PF_BORROWED_MM)
417 mm = NULL;
418 else
419 atomic_inc(&mm->mm_users);
421 task_unlock(task);
422 return mm;
424 EXPORT_SYMBOL_GPL(get_task_mm);
426 /* Please note the differences between mmput and mm_release.
427 * mmput is called whenever we stop holding onto a mm_struct,
428 * error success whatever.
430 * mm_release is called after a mm_struct has been removed
431 * from the current process.
433 * This difference is important for error handling, when we
434 * only half set up a mm_struct for a new process and need to restore
435 * the old one. Because we mmput the new mm_struct before
436 * restoring the old one. . .
437 * Eric Biederman 10 January 1998
439 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
441 struct completion *vfork_done = tsk->vfork_done;
443 /* Get rid of any cached register state */
444 deactivate_mm(tsk, mm);
446 /* notify parent sleeping on vfork() */
447 if (vfork_done) {
448 tsk->vfork_done = NULL;
449 complete(vfork_done);
451 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
452 u32 __user * tidptr = tsk->clear_child_tid;
453 tsk->clear_child_tid = NULL;
456 * We don't check the error code - if userspace has
457 * not set up a proper pointer then tough luck.
459 put_user(0, tidptr);
460 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
465 * Allocate a new mm structure and copy contents from the
466 * mm structure of the passed in task structure.
468 static struct mm_struct *dup_mm(struct task_struct *tsk)
470 struct mm_struct *mm, *oldmm = current->mm;
471 int err;
473 if (!oldmm)
474 return NULL;
476 mm = allocate_mm();
477 if (!mm)
478 goto fail_nomem;
480 memcpy(mm, oldmm, sizeof(*mm));
482 if (!mm_init(mm))
483 goto fail_nomem;
485 if (init_new_context(tsk, mm))
486 goto fail_nocontext;
488 err = dup_mmap(mm, oldmm);
489 if (err)
490 goto free_pt;
492 mm->hiwater_rss = get_mm_rss(mm);
493 mm->hiwater_vm = mm->total_vm;
495 return mm;
497 free_pt:
498 mmput(mm);
500 fail_nomem:
501 return NULL;
503 fail_nocontext:
505 * If init_new_context() failed, we cannot use mmput() to free the mm
506 * because it calls destroy_context()
508 mm_free_pgd(mm);
509 free_mm(mm);
510 return NULL;
513 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
515 struct mm_struct * mm, *oldmm;
516 int retval;
518 tsk->min_flt = tsk->maj_flt = 0;
519 tsk->nvcsw = tsk->nivcsw = 0;
521 tsk->mm = NULL;
522 tsk->active_mm = NULL;
525 * Are we cloning a kernel thread?
527 * We need to steal a active VM for that..
529 oldmm = current->mm;
530 if (!oldmm)
531 return 0;
533 if (clone_flags & CLONE_VM) {
534 atomic_inc(&oldmm->mm_users);
535 mm = oldmm;
536 goto good_mm;
539 retval = -ENOMEM;
540 mm = dup_mm(tsk);
541 if (!mm)
542 goto fail_nomem;
544 good_mm:
545 tsk->mm = mm;
546 tsk->active_mm = mm;
547 return 0;
549 fail_nomem:
550 return retval;
553 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
555 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
556 /* We don't need to lock fs - think why ;-) */
557 if (fs) {
558 atomic_set(&fs->count, 1);
559 rwlock_init(&fs->lock);
560 fs->umask = old->umask;
561 read_lock(&old->lock);
562 fs->rootmnt = mntget(old->rootmnt);
563 fs->root = dget(old->root);
564 fs->pwdmnt = mntget(old->pwdmnt);
565 fs->pwd = dget(old->pwd);
566 if (old->altroot) {
567 fs->altrootmnt = mntget(old->altrootmnt);
568 fs->altroot = dget(old->altroot);
569 } else {
570 fs->altrootmnt = NULL;
571 fs->altroot = NULL;
573 read_unlock(&old->lock);
575 return fs;
578 struct fs_struct *copy_fs_struct(struct fs_struct *old)
580 return __copy_fs_struct(old);
583 EXPORT_SYMBOL_GPL(copy_fs_struct);
585 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
587 if (clone_flags & CLONE_FS) {
588 atomic_inc(&current->fs->count);
589 return 0;
591 tsk->fs = __copy_fs_struct(current->fs);
592 if (!tsk->fs)
593 return -ENOMEM;
594 return 0;
597 static int count_open_files(struct fdtable *fdt)
599 int size = fdt->max_fdset;
600 int i;
602 /* Find the last open fd */
603 for (i = size/(8*sizeof(long)); i > 0; ) {
604 if (fdt->open_fds->fds_bits[--i])
605 break;
607 i = (i+1) * 8 * sizeof(long);
608 return i;
611 static struct files_struct *alloc_files(void)
613 struct files_struct *newf;
614 struct fdtable *fdt;
616 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
617 if (!newf)
618 goto out;
620 atomic_set(&newf->count, 1);
622 spin_lock_init(&newf->file_lock);
623 newf->next_fd = 0;
624 fdt = &newf->fdtab;
625 fdt->max_fds = NR_OPEN_DEFAULT;
626 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
627 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
628 fdt->open_fds = (fd_set *)&newf->open_fds_init;
629 fdt->fd = &newf->fd_array[0];
630 INIT_RCU_HEAD(&fdt->rcu);
631 fdt->free_files = NULL;
632 fdt->next = NULL;
633 rcu_assign_pointer(newf->fdt, fdt);
634 out:
635 return newf;
639 * Allocate a new files structure and copy contents from the
640 * passed in files structure.
641 * errorp will be valid only when the returned files_struct is NULL.
643 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
645 struct files_struct *newf;
646 struct file **old_fds, **new_fds;
647 int open_files, size, i, expand;
648 struct fdtable *old_fdt, *new_fdt;
650 *errorp = -ENOMEM;
651 newf = alloc_files();
652 if (!newf)
653 goto out;
655 spin_lock(&oldf->file_lock);
656 old_fdt = files_fdtable(oldf);
657 new_fdt = files_fdtable(newf);
658 size = old_fdt->max_fdset;
659 open_files = count_open_files(old_fdt);
660 expand = 0;
663 * Check whether we need to allocate a larger fd array or fd set.
664 * Note: we're not a clone task, so the open count won't change.
666 if (open_files > new_fdt->max_fdset) {
667 new_fdt->max_fdset = 0;
668 expand = 1;
670 if (open_files > new_fdt->max_fds) {
671 new_fdt->max_fds = 0;
672 expand = 1;
675 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
676 if (expand) {
677 spin_unlock(&oldf->file_lock);
678 spin_lock(&newf->file_lock);
679 *errorp = expand_files(newf, open_files-1);
680 spin_unlock(&newf->file_lock);
681 if (*errorp < 0)
682 goto out_release;
683 new_fdt = files_fdtable(newf);
685 * Reacquire the oldf lock and a pointer to its fd table
686 * who knows it may have a new bigger fd table. We need
687 * the latest pointer.
689 spin_lock(&oldf->file_lock);
690 old_fdt = files_fdtable(oldf);
693 old_fds = old_fdt->fd;
694 new_fds = new_fdt->fd;
696 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
697 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
699 for (i = open_files; i != 0; i--) {
700 struct file *f = *old_fds++;
701 if (f) {
702 get_file(f);
703 } else {
705 * The fd may be claimed in the fd bitmap but not yet
706 * instantiated in the files array if a sibling thread
707 * is partway through open(). So make sure that this
708 * fd is available to the new process.
710 FD_CLR(open_files - i, new_fdt->open_fds);
712 rcu_assign_pointer(*new_fds++, f);
714 spin_unlock(&oldf->file_lock);
716 /* compute the remainder to be cleared */
717 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
719 /* This is long word aligned thus could use a optimized version */
720 memset(new_fds, 0, size);
722 if (new_fdt->max_fdset > open_files) {
723 int left = (new_fdt->max_fdset-open_files)/8;
724 int start = open_files / (8 * sizeof(unsigned long));
726 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
727 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
730 out:
731 return newf;
733 out_release:
734 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
735 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
736 free_fd_array(new_fdt->fd, new_fdt->max_fds);
737 kmem_cache_free(files_cachep, newf);
738 return NULL;
741 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
743 struct files_struct *oldf, *newf;
744 int error = 0;
747 * A background process may not have any files ...
749 oldf = current->files;
750 if (!oldf)
751 goto out;
753 if (clone_flags & CLONE_FILES) {
754 atomic_inc(&oldf->count);
755 goto out;
759 * Note: we may be using current for both targets (See exec.c)
760 * This works because we cache current->files (old) as oldf. Don't
761 * break this.
763 tsk->files = NULL;
764 newf = dup_fd(oldf, &error);
765 if (!newf)
766 goto out;
768 tsk->files = newf;
769 error = 0;
770 out:
771 return error;
775 * Helper to unshare the files of the current task.
776 * We don't want to expose copy_files internals to
777 * the exec layer of the kernel.
780 int unshare_files(void)
782 struct files_struct *files = current->files;
783 int rc;
785 BUG_ON(!files);
787 /* This can race but the race causes us to copy when we don't
788 need to and drop the copy */
789 if(atomic_read(&files->count) == 1)
791 atomic_inc(&files->count);
792 return 0;
794 rc = copy_files(0, current);
795 if(rc)
796 current->files = files;
797 return rc;
800 EXPORT_SYMBOL(unshare_files);
802 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
804 struct sighand_struct *sig;
806 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
807 atomic_inc(&current->sighand->count);
808 return 0;
810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
811 rcu_assign_pointer(tsk->sighand, sig);
812 if (!sig)
813 return -ENOMEM;
814 atomic_set(&sig->count, 1);
815 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
816 return 0;
819 void __cleanup_sighand(struct sighand_struct *sighand)
821 if (atomic_dec_and_test(&sighand->count))
822 kmem_cache_free(sighand_cachep, sighand);
825 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
827 struct signal_struct *sig;
828 int ret;
830 if (clone_flags & CLONE_THREAD) {
831 atomic_inc(&current->signal->count);
832 atomic_inc(&current->signal->live);
833 taskstats_tgid_alloc(current->signal);
834 return 0;
836 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
837 tsk->signal = sig;
838 if (!sig)
839 return -ENOMEM;
841 ret = copy_thread_group_keys(tsk);
842 if (ret < 0) {
843 kmem_cache_free(signal_cachep, sig);
844 return ret;
847 atomic_set(&sig->count, 1);
848 atomic_set(&sig->live, 1);
849 init_waitqueue_head(&sig->wait_chldexit);
850 sig->flags = 0;
851 sig->group_exit_code = 0;
852 sig->group_exit_task = NULL;
853 sig->group_stop_count = 0;
854 sig->curr_target = NULL;
855 init_sigpending(&sig->shared_pending);
856 INIT_LIST_HEAD(&sig->posix_timers);
858 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
859 sig->it_real_incr.tv64 = 0;
860 sig->real_timer.function = it_real_fn;
861 sig->tsk = tsk;
863 sig->it_virt_expires = cputime_zero;
864 sig->it_virt_incr = cputime_zero;
865 sig->it_prof_expires = cputime_zero;
866 sig->it_prof_incr = cputime_zero;
868 sig->leader = 0; /* session leadership doesn't inherit */
869 sig->tty_old_pgrp = 0;
871 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
872 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
873 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
874 sig->sched_time = 0;
875 INIT_LIST_HEAD(&sig->cpu_timers[0]);
876 INIT_LIST_HEAD(&sig->cpu_timers[1]);
877 INIT_LIST_HEAD(&sig->cpu_timers[2]);
878 taskstats_tgid_init(sig);
880 task_lock(current->group_leader);
881 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
882 task_unlock(current->group_leader);
884 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
886 * New sole thread in the process gets an expiry time
887 * of the whole CPU time limit.
889 tsk->it_prof_expires =
890 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
892 acct_init_pacct(&sig->pacct);
894 return 0;
897 void __cleanup_signal(struct signal_struct *sig)
899 exit_thread_group_keys(sig);
900 taskstats_tgid_free(sig);
901 kmem_cache_free(signal_cachep, sig);
904 static inline void cleanup_signal(struct task_struct *tsk)
906 struct signal_struct *sig = tsk->signal;
908 atomic_dec(&sig->live);
910 if (atomic_dec_and_test(&sig->count))
911 __cleanup_signal(sig);
914 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
916 unsigned long new_flags = p->flags;
918 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
919 new_flags |= PF_FORKNOEXEC;
920 if (!(clone_flags & CLONE_PTRACE))
921 p->ptrace = 0;
922 p->flags = new_flags;
925 asmlinkage long sys_set_tid_address(int __user *tidptr)
927 current->clear_child_tid = tidptr;
929 return current->pid;
932 static inline void rt_mutex_init_task(struct task_struct *p)
934 #ifdef CONFIG_RT_MUTEXES
935 spin_lock_init(&p->pi_lock);
936 plist_head_init(&p->pi_waiters, &p->pi_lock);
937 p->pi_blocked_on = NULL;
938 #endif
942 * This creates a new process as a copy of the old one,
943 * but does not actually start it yet.
945 * It copies the registers, and all the appropriate
946 * parts of the process environment (as per the clone
947 * flags). The actual kick-off is left to the caller.
949 static struct task_struct *copy_process(unsigned long clone_flags,
950 unsigned long stack_start,
951 struct pt_regs *regs,
952 unsigned long stack_size,
953 int __user *parent_tidptr,
954 int __user *child_tidptr,
955 int pid)
957 int retval;
958 struct task_struct *p = NULL;
960 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
961 return ERR_PTR(-EINVAL);
964 * Thread groups must share signals as well, and detached threads
965 * can only be started up within the thread group.
967 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
968 return ERR_PTR(-EINVAL);
971 * Shared signal handlers imply shared VM. By way of the above,
972 * thread groups also imply shared VM. Blocking this case allows
973 * for various simplifications in other code.
975 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
976 return ERR_PTR(-EINVAL);
978 retval = security_task_create(clone_flags);
979 if (retval)
980 goto fork_out;
982 retval = -ENOMEM;
983 p = dup_task_struct(current);
984 if (!p)
985 goto fork_out;
987 #ifdef CONFIG_TRACE_IRQFLAGS
988 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
989 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
990 #endif
991 retval = -EAGAIN;
992 if (atomic_read(&p->user->processes) >=
993 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
994 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
995 p->user != &root_user)
996 goto bad_fork_free;
999 atomic_inc(&p->user->__count);
1000 atomic_inc(&p->user->processes);
1001 get_group_info(p->group_info);
1004 * If multiple threads are within copy_process(), then this check
1005 * triggers too late. This doesn't hurt, the check is only there
1006 * to stop root fork bombs.
1008 if (nr_threads >= max_threads)
1009 goto bad_fork_cleanup_count;
1011 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1012 goto bad_fork_cleanup_count;
1014 if (p->binfmt && !try_module_get(p->binfmt->module))
1015 goto bad_fork_cleanup_put_domain;
1017 p->did_exec = 0;
1018 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1019 copy_flags(clone_flags, p);
1020 p->pid = pid;
1021 retval = -EFAULT;
1022 if (clone_flags & CLONE_PARENT_SETTID)
1023 if (put_user(p->pid, parent_tidptr))
1024 goto bad_fork_cleanup_delays_binfmt;
1026 INIT_LIST_HEAD(&p->children);
1027 INIT_LIST_HEAD(&p->sibling);
1028 p->vfork_done = NULL;
1029 spin_lock_init(&p->alloc_lock);
1031 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1032 init_sigpending(&p->pending);
1034 p->utime = cputime_zero;
1035 p->stime = cputime_zero;
1036 p->sched_time = 0;
1037 p->rchar = 0; /* I/O counter: bytes read */
1038 p->wchar = 0; /* I/O counter: bytes written */
1039 p->syscr = 0; /* I/O counter: read syscalls */
1040 p->syscw = 0; /* I/O counter: write syscalls */
1041 acct_clear_integrals(p);
1043 p->it_virt_expires = cputime_zero;
1044 p->it_prof_expires = cputime_zero;
1045 p->it_sched_expires = 0;
1046 INIT_LIST_HEAD(&p->cpu_timers[0]);
1047 INIT_LIST_HEAD(&p->cpu_timers[1]);
1048 INIT_LIST_HEAD(&p->cpu_timers[2]);
1050 p->lock_depth = -1; /* -1 = no lock */
1051 do_posix_clock_monotonic_gettime(&p->start_time);
1052 p->security = NULL;
1053 p->io_context = NULL;
1054 p->io_wait = NULL;
1055 p->audit_context = NULL;
1056 cpuset_fork(p);
1057 #ifdef CONFIG_NUMA
1058 p->mempolicy = mpol_copy(p->mempolicy);
1059 if (IS_ERR(p->mempolicy)) {
1060 retval = PTR_ERR(p->mempolicy);
1061 p->mempolicy = NULL;
1062 goto bad_fork_cleanup_cpuset;
1064 mpol_fix_fork_child_flag(p);
1065 #endif
1066 #ifdef CONFIG_TRACE_IRQFLAGS
1067 p->irq_events = 0;
1068 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 p->hardirqs_enabled = 1;
1070 #else
1071 p->hardirqs_enabled = 0;
1072 #endif
1073 p->hardirq_enable_ip = 0;
1074 p->hardirq_enable_event = 0;
1075 p->hardirq_disable_ip = _THIS_IP_;
1076 p->hardirq_disable_event = 0;
1077 p->softirqs_enabled = 1;
1078 p->softirq_enable_ip = _THIS_IP_;
1079 p->softirq_enable_event = 0;
1080 p->softirq_disable_ip = 0;
1081 p->softirq_disable_event = 0;
1082 p->hardirq_context = 0;
1083 p->softirq_context = 0;
1084 #endif
1085 #ifdef CONFIG_LOCKDEP
1086 p->lockdep_depth = 0; /* no locks held yet */
1087 p->curr_chain_key = 0;
1088 p->lockdep_recursion = 0;
1089 #endif
1091 rt_mutex_init_task(p);
1093 #ifdef CONFIG_DEBUG_MUTEXES
1094 p->blocked_on = NULL; /* not blocked yet */
1095 #endif
1097 p->tgid = p->pid;
1098 if (clone_flags & CLONE_THREAD)
1099 p->tgid = current->tgid;
1101 if ((retval = security_task_alloc(p)))
1102 goto bad_fork_cleanup_policy;
1103 if ((retval = audit_alloc(p)))
1104 goto bad_fork_cleanup_security;
1105 /* copy all the process information */
1106 if ((retval = copy_semundo(clone_flags, p)))
1107 goto bad_fork_cleanup_audit;
1108 if ((retval = copy_files(clone_flags, p)))
1109 goto bad_fork_cleanup_semundo;
1110 if ((retval = copy_fs(clone_flags, p)))
1111 goto bad_fork_cleanup_files;
1112 if ((retval = copy_sighand(clone_flags, p)))
1113 goto bad_fork_cleanup_fs;
1114 if ((retval = copy_signal(clone_flags, p)))
1115 goto bad_fork_cleanup_sighand;
1116 if ((retval = copy_mm(clone_flags, p)))
1117 goto bad_fork_cleanup_signal;
1118 if ((retval = copy_keys(clone_flags, p)))
1119 goto bad_fork_cleanup_mm;
1120 if ((retval = copy_namespaces(clone_flags, p)))
1121 goto bad_fork_cleanup_keys;
1122 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1123 if (retval)
1124 goto bad_fork_cleanup_namespaces;
1126 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1128 * Clear TID on mm_release()?
1130 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1131 p->robust_list = NULL;
1132 #ifdef CONFIG_COMPAT
1133 p->compat_robust_list = NULL;
1134 #endif
1135 INIT_LIST_HEAD(&p->pi_state_list);
1136 p->pi_state_cache = NULL;
1139 * sigaltstack should be cleared when sharing the same VM
1141 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1142 p->sas_ss_sp = p->sas_ss_size = 0;
1145 * Syscall tracing should be turned off in the child regardless
1146 * of CLONE_PTRACE.
1148 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1149 #ifdef TIF_SYSCALL_EMU
1150 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1151 #endif
1153 /* Our parent execution domain becomes current domain
1154 These must match for thread signalling to apply */
1155 p->parent_exec_id = p->self_exec_id;
1157 /* ok, now we should be set up.. */
1158 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1159 p->pdeath_signal = 0;
1160 p->exit_state = 0;
1163 * Ok, make it visible to the rest of the system.
1164 * We dont wake it up yet.
1166 p->group_leader = p;
1167 INIT_LIST_HEAD(&p->thread_group);
1168 INIT_LIST_HEAD(&p->ptrace_children);
1169 INIT_LIST_HEAD(&p->ptrace_list);
1171 /* Perform scheduler related setup. Assign this task to a CPU. */
1172 sched_fork(p, clone_flags);
1174 /* Need tasklist lock for parent etc handling! */
1175 write_lock_irq(&tasklist_lock);
1177 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1178 p->ioprio = current->ioprio;
1181 * The task hasn't been attached yet, so its cpus_allowed mask will
1182 * not be changed, nor will its assigned CPU.
1184 * The cpus_allowed mask of the parent may have changed after it was
1185 * copied first time - so re-copy it here, then check the child's CPU
1186 * to ensure it is on a valid CPU (and if not, just force it back to
1187 * parent's CPU). This avoids alot of nasty races.
1189 p->cpus_allowed = current->cpus_allowed;
1190 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1191 !cpu_online(task_cpu(p))))
1192 set_task_cpu(p, smp_processor_id());
1194 /* CLONE_PARENT re-uses the old parent */
1195 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1196 p->real_parent = current->real_parent;
1197 else
1198 p->real_parent = current;
1199 p->parent = p->real_parent;
1201 spin_lock(&current->sighand->siglock);
1204 * Process group and session signals need to be delivered to just the
1205 * parent before the fork or both the parent and the child after the
1206 * fork. Restart if a signal comes in before we add the new process to
1207 * it's process group.
1208 * A fatal signal pending means that current will exit, so the new
1209 * thread can't slip out of an OOM kill (or normal SIGKILL).
1211 recalc_sigpending();
1212 if (signal_pending(current)) {
1213 spin_unlock(&current->sighand->siglock);
1214 write_unlock_irq(&tasklist_lock);
1215 retval = -ERESTARTNOINTR;
1216 goto bad_fork_cleanup_namespaces;
1219 if (clone_flags & CLONE_THREAD) {
1220 p->group_leader = current->group_leader;
1221 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1223 if (!cputime_eq(current->signal->it_virt_expires,
1224 cputime_zero) ||
1225 !cputime_eq(current->signal->it_prof_expires,
1226 cputime_zero) ||
1227 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1228 !list_empty(&current->signal->cpu_timers[0]) ||
1229 !list_empty(&current->signal->cpu_timers[1]) ||
1230 !list_empty(&current->signal->cpu_timers[2])) {
1232 * Have child wake up on its first tick to check
1233 * for process CPU timers.
1235 p->it_prof_expires = jiffies_to_cputime(1);
1239 if (likely(p->pid)) {
1240 add_parent(p);
1241 if (unlikely(p->ptrace & PT_PTRACED))
1242 __ptrace_link(p, current->parent);
1244 if (thread_group_leader(p)) {
1245 p->signal->tty = current->signal->tty;
1246 p->signal->pgrp = process_group(current);
1247 p->signal->session = current->signal->session;
1248 attach_pid(p, PIDTYPE_PGID, process_group(p));
1249 attach_pid(p, PIDTYPE_SID, p->signal->session);
1251 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1252 __get_cpu_var(process_counts)++;
1254 attach_pid(p, PIDTYPE_PID, p->pid);
1255 nr_threads++;
1258 total_forks++;
1259 spin_unlock(&current->sighand->siglock);
1260 write_unlock_irq(&tasklist_lock);
1261 proc_fork_connector(p);
1262 return p;
1264 bad_fork_cleanup_namespaces:
1265 exit_task_namespaces(p);
1266 bad_fork_cleanup_keys:
1267 exit_keys(p);
1268 bad_fork_cleanup_mm:
1269 if (p->mm)
1270 mmput(p->mm);
1271 bad_fork_cleanup_signal:
1272 cleanup_signal(p);
1273 bad_fork_cleanup_sighand:
1274 __cleanup_sighand(p->sighand);
1275 bad_fork_cleanup_fs:
1276 exit_fs(p); /* blocking */
1277 bad_fork_cleanup_files:
1278 exit_files(p); /* blocking */
1279 bad_fork_cleanup_semundo:
1280 exit_sem(p);
1281 bad_fork_cleanup_audit:
1282 audit_free(p);
1283 bad_fork_cleanup_security:
1284 security_task_free(p);
1285 bad_fork_cleanup_policy:
1286 #ifdef CONFIG_NUMA
1287 mpol_free(p->mempolicy);
1288 bad_fork_cleanup_cpuset:
1289 #endif
1290 cpuset_exit(p);
1291 bad_fork_cleanup_delays_binfmt:
1292 delayacct_tsk_free(p);
1293 if (p->binfmt)
1294 module_put(p->binfmt->module);
1295 bad_fork_cleanup_put_domain:
1296 module_put(task_thread_info(p)->exec_domain->module);
1297 bad_fork_cleanup_count:
1298 put_group_info(p->group_info);
1299 atomic_dec(&p->user->processes);
1300 free_uid(p->user);
1301 bad_fork_free:
1302 free_task(p);
1303 fork_out:
1304 return ERR_PTR(retval);
1307 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1309 memset(regs, 0, sizeof(struct pt_regs));
1310 return regs;
1313 struct task_struct * __devinit fork_idle(int cpu)
1315 struct task_struct *task;
1316 struct pt_regs regs;
1318 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1319 if (!task)
1320 return ERR_PTR(-ENOMEM);
1321 init_idle(task, cpu);
1323 return task;
1326 static inline int fork_traceflag (unsigned clone_flags)
1328 if (clone_flags & CLONE_UNTRACED)
1329 return 0;
1330 else if (clone_flags & CLONE_VFORK) {
1331 if (current->ptrace & PT_TRACE_VFORK)
1332 return PTRACE_EVENT_VFORK;
1333 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1334 if (current->ptrace & PT_TRACE_CLONE)
1335 return PTRACE_EVENT_CLONE;
1336 } else if (current->ptrace & PT_TRACE_FORK)
1337 return PTRACE_EVENT_FORK;
1339 return 0;
1343 * Ok, this is the main fork-routine.
1345 * It copies the process, and if successful kick-starts
1346 * it and waits for it to finish using the VM if required.
1348 long do_fork(unsigned long clone_flags,
1349 unsigned long stack_start,
1350 struct pt_regs *regs,
1351 unsigned long stack_size,
1352 int __user *parent_tidptr,
1353 int __user *child_tidptr)
1355 struct task_struct *p;
1356 int trace = 0;
1357 struct pid *pid = alloc_pid();
1358 long nr;
1360 if (!pid)
1361 return -EAGAIN;
1362 nr = pid->nr;
1363 if (unlikely(current->ptrace)) {
1364 trace = fork_traceflag (clone_flags);
1365 if (trace)
1366 clone_flags |= CLONE_PTRACE;
1369 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1371 * Do this prior waking up the new thread - the thread pointer
1372 * might get invalid after that point, if the thread exits quickly.
1374 if (!IS_ERR(p)) {
1375 struct completion vfork;
1377 if (clone_flags & CLONE_VFORK) {
1378 p->vfork_done = &vfork;
1379 init_completion(&vfork);
1382 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1384 * We'll start up with an immediate SIGSTOP.
1386 sigaddset(&p->pending.signal, SIGSTOP);
1387 set_tsk_thread_flag(p, TIF_SIGPENDING);
1390 if (!(clone_flags & CLONE_STOPPED))
1391 wake_up_new_task(p, clone_flags);
1392 else
1393 p->state = TASK_STOPPED;
1395 if (unlikely (trace)) {
1396 current->ptrace_message = nr;
1397 ptrace_notify ((trace << 8) | SIGTRAP);
1400 if (clone_flags & CLONE_VFORK) {
1401 wait_for_completion(&vfork);
1402 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1403 current->ptrace_message = nr;
1404 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1407 } else {
1408 free_pid(pid);
1409 nr = PTR_ERR(p);
1411 return nr;
1414 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1415 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1416 #endif
1418 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1420 struct sighand_struct *sighand = data;
1422 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1423 SLAB_CTOR_CONSTRUCTOR)
1424 spin_lock_init(&sighand->siglock);
1427 void __init proc_caches_init(void)
1429 sighand_cachep = kmem_cache_create("sighand_cache",
1430 sizeof(struct sighand_struct), 0,
1431 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1432 sighand_ctor, NULL);
1433 signal_cachep = kmem_cache_create("signal_cache",
1434 sizeof(struct signal_struct), 0,
1435 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1436 files_cachep = kmem_cache_create("files_cache",
1437 sizeof(struct files_struct), 0,
1438 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1439 fs_cachep = kmem_cache_create("fs_cache",
1440 sizeof(struct fs_struct), 0,
1441 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1442 vm_area_cachep = kmem_cache_create("vm_area_struct",
1443 sizeof(struct vm_area_struct), 0,
1444 SLAB_PANIC, NULL, NULL);
1445 mm_cachep = kmem_cache_create("mm_struct",
1446 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1447 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1452 * Check constraints on flags passed to the unshare system call and
1453 * force unsharing of additional process context as appropriate.
1455 static inline void check_unshare_flags(unsigned long *flags_ptr)
1458 * If unsharing a thread from a thread group, must also
1459 * unshare vm.
1461 if (*flags_ptr & CLONE_THREAD)
1462 *flags_ptr |= CLONE_VM;
1465 * If unsharing vm, must also unshare signal handlers.
1467 if (*flags_ptr & CLONE_VM)
1468 *flags_ptr |= CLONE_SIGHAND;
1471 * If unsharing signal handlers and the task was created
1472 * using CLONE_THREAD, then must unshare the thread
1474 if ((*flags_ptr & CLONE_SIGHAND) &&
1475 (atomic_read(&current->signal->count) > 1))
1476 *flags_ptr |= CLONE_THREAD;
1479 * If unsharing namespace, must also unshare filesystem information.
1481 if (*flags_ptr & CLONE_NEWNS)
1482 *flags_ptr |= CLONE_FS;
1486 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1488 static int unshare_thread(unsigned long unshare_flags)
1490 if (unshare_flags & CLONE_THREAD)
1491 return -EINVAL;
1493 return 0;
1497 * Unshare the filesystem structure if it is being shared
1499 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1501 struct fs_struct *fs = current->fs;
1503 if ((unshare_flags & CLONE_FS) &&
1504 (fs && atomic_read(&fs->count) > 1)) {
1505 *new_fsp = __copy_fs_struct(current->fs);
1506 if (!*new_fsp)
1507 return -ENOMEM;
1510 return 0;
1514 * Unshare the namespace structure if it is being shared
1516 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1518 struct namespace *ns = current->nsproxy->namespace;
1520 if ((unshare_flags & CLONE_NEWNS) && ns) {
1521 if (!capable(CAP_SYS_ADMIN))
1522 return -EPERM;
1524 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1525 if (!*new_nsp)
1526 return -ENOMEM;
1529 return 0;
1533 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1534 * supported yet
1536 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1538 struct sighand_struct *sigh = current->sighand;
1540 if ((unshare_flags & CLONE_SIGHAND) &&
1541 (sigh && atomic_read(&sigh->count) > 1))
1542 return -EINVAL;
1543 else
1544 return 0;
1548 * Unshare vm if it is being shared
1550 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1552 struct mm_struct *mm = current->mm;
1554 if ((unshare_flags & CLONE_VM) &&
1555 (mm && atomic_read(&mm->mm_users) > 1)) {
1556 return -EINVAL;
1559 return 0;
1563 * Unshare file descriptor table if it is being shared
1565 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1567 struct files_struct *fd = current->files;
1568 int error = 0;
1570 if ((unshare_flags & CLONE_FILES) &&
1571 (fd && atomic_read(&fd->count) > 1)) {
1572 *new_fdp = dup_fd(fd, &error);
1573 if (!*new_fdp)
1574 return error;
1577 return 0;
1581 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1582 * supported yet
1584 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1586 if (unshare_flags & CLONE_SYSVSEM)
1587 return -EINVAL;
1589 return 0;
1592 #ifndef CONFIG_IPC_NS
1593 static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
1595 if (flags & CLONE_NEWIPC)
1596 return -EINVAL;
1598 return 0;
1600 #endif
1603 * unshare allows a process to 'unshare' part of the process
1604 * context which was originally shared using clone. copy_*
1605 * functions used by do_fork() cannot be used here directly
1606 * because they modify an inactive task_struct that is being
1607 * constructed. Here we are modifying the current, active,
1608 * task_struct.
1610 asmlinkage long sys_unshare(unsigned long unshare_flags)
1612 int err = 0;
1613 struct fs_struct *fs, *new_fs = NULL;
1614 struct namespace *ns, *new_ns = NULL;
1615 struct sighand_struct *sigh, *new_sigh = NULL;
1616 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1617 struct files_struct *fd, *new_fd = NULL;
1618 struct sem_undo_list *new_ulist = NULL;
1619 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1620 struct uts_namespace *uts, *new_uts = NULL;
1621 struct ipc_namespace *ipc, *new_ipc = NULL;
1623 check_unshare_flags(&unshare_flags);
1625 /* Return -EINVAL for all unsupported flags */
1626 err = -EINVAL;
1627 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1628 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1629 CLONE_NEWUTS|CLONE_NEWIPC))
1630 goto bad_unshare_out;
1632 if ((err = unshare_thread(unshare_flags)))
1633 goto bad_unshare_out;
1634 if ((err = unshare_fs(unshare_flags, &new_fs)))
1635 goto bad_unshare_cleanup_thread;
1636 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1637 goto bad_unshare_cleanup_fs;
1638 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1639 goto bad_unshare_cleanup_ns;
1640 if ((err = unshare_vm(unshare_flags, &new_mm)))
1641 goto bad_unshare_cleanup_sigh;
1642 if ((err = unshare_fd(unshare_flags, &new_fd)))
1643 goto bad_unshare_cleanup_vm;
1644 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1645 goto bad_unshare_cleanup_fd;
1646 if ((err = unshare_utsname(unshare_flags, &new_uts)))
1647 goto bad_unshare_cleanup_semundo;
1648 if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
1649 goto bad_unshare_cleanup_uts;
1651 if (new_ns || new_uts || new_ipc) {
1652 old_nsproxy = current->nsproxy;
1653 new_nsproxy = dup_namespaces(old_nsproxy);
1654 if (!new_nsproxy) {
1655 err = -ENOMEM;
1656 goto bad_unshare_cleanup_ipc;
1660 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist ||
1661 new_uts || new_ipc) {
1663 task_lock(current);
1665 if (new_nsproxy) {
1666 current->nsproxy = new_nsproxy;
1667 new_nsproxy = old_nsproxy;
1670 if (new_fs) {
1671 fs = current->fs;
1672 current->fs = new_fs;
1673 new_fs = fs;
1676 if (new_ns) {
1677 ns = current->nsproxy->namespace;
1678 current->nsproxy->namespace = new_ns;
1679 new_ns = ns;
1682 if (new_sigh) {
1683 sigh = current->sighand;
1684 rcu_assign_pointer(current->sighand, new_sigh);
1685 new_sigh = sigh;
1688 if (new_mm) {
1689 mm = current->mm;
1690 active_mm = current->active_mm;
1691 current->mm = new_mm;
1692 current->active_mm = new_mm;
1693 activate_mm(active_mm, new_mm);
1694 new_mm = mm;
1697 if (new_fd) {
1698 fd = current->files;
1699 current->files = new_fd;
1700 new_fd = fd;
1703 if (new_uts) {
1704 uts = current->nsproxy->uts_ns;
1705 current->nsproxy->uts_ns = new_uts;
1706 new_uts = uts;
1709 if (new_ipc) {
1710 ipc = current->nsproxy->ipc_ns;
1711 current->nsproxy->ipc_ns = new_ipc;
1712 new_ipc = ipc;
1715 task_unlock(current);
1718 if (new_nsproxy)
1719 put_nsproxy(new_nsproxy);
1721 bad_unshare_cleanup_ipc:
1722 if (new_ipc)
1723 put_ipc_ns(new_ipc);
1725 bad_unshare_cleanup_uts:
1726 if (new_uts)
1727 put_uts_ns(new_uts);
1729 bad_unshare_cleanup_semundo:
1730 bad_unshare_cleanup_fd:
1731 if (new_fd)
1732 put_files_struct(new_fd);
1734 bad_unshare_cleanup_vm:
1735 if (new_mm)
1736 mmput(new_mm);
1738 bad_unshare_cleanup_sigh:
1739 if (new_sigh)
1740 if (atomic_dec_and_test(&new_sigh->count))
1741 kmem_cache_free(sighand_cachep, new_sigh);
1743 bad_unshare_cleanup_ns:
1744 if (new_ns)
1745 put_namespace(new_ns);
1747 bad_unshare_cleanup_fs:
1748 if (new_fs)
1749 put_fs_struct(new_fs);
1751 bad_unshare_cleanup_thread:
1752 bad_unshare_out:
1753 return err;