[NETFILTER]: nf_conntrack: move conntrack protocol sysctls to individual modules
[linux-2.6.22.y-op.git] / net / netfilter / nf_conntrack_core.c
blob4b972791149decabed7616b3a04d5e88b0a018fe
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14 * - new API and handling of conntrack/nat helpers
15 * - now capable of multiple expectations for one master
16 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17 * - add usage/reference counts to ip_conntrack_expect
18 * - export ip_conntrack[_expect]_{find_get,put} functions
19 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20 * - generalize L3 protocol denendent part.
21 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22 * - add support various size of conntrack structures.
23 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24 * - restructure nf_conn (introduce nf_conn_help)
25 * - redesign 'features' how they were originally intended
26 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27 * - add support for L3 protocol module load on demand.
29 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
32 #include <linux/types.h>
33 #include <linux/netfilter.h>
34 #include <linux/module.h>
35 #include <linux/skbuff.h>
36 #include <linux/proc_fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/stddef.h>
39 #include <linux/slab.h>
40 #include <linux/random.h>
41 #include <linux/jhash.h>
42 #include <linux/err.h>
43 #include <linux/percpu.h>
44 #include <linux/moduleparam.h>
45 #include <linux/notifier.h>
46 #include <linux/kernel.h>
47 #include <linux/netdevice.h>
48 #include <linux/socket.h>
50 #include <net/netfilter/nf_conntrack.h>
51 #include <net/netfilter/nf_conntrack_l3proto.h>
52 #include <net/netfilter/nf_conntrack_l4proto.h>
53 #include <net/netfilter/nf_conntrack_expect.h>
54 #include <net/netfilter/nf_conntrack_helper.h>
55 #include <net/netfilter/nf_conntrack_core.h>
57 #define NF_CONNTRACK_VERSION "0.5.0"
59 #if 0
60 #define DEBUGP printk
61 #else
62 #define DEBUGP(format, args...)
63 #endif
65 DEFINE_RWLOCK(nf_conntrack_lock);
67 /* nf_conntrack_standalone needs this */
68 atomic_t nf_conntrack_count = ATOMIC_INIT(0);
70 void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
71 unsigned int nf_conntrack_htable_size __read_mostly;
72 int nf_conntrack_max __read_mostly;
73 struct list_head *nf_conntrack_hash __read_mostly;
74 struct nf_conn nf_conntrack_untracked __read_mostly;
75 unsigned int nf_ct_log_invalid __read_mostly;
76 LIST_HEAD(unconfirmed);
77 static int nf_conntrack_vmalloc __read_mostly;
79 static unsigned int nf_conntrack_next_id;
81 DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
82 EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
85 * This scheme offers various size of "struct nf_conn" dependent on
86 * features(helper, nat, ...)
89 #define NF_CT_FEATURES_NAMELEN 256
90 static struct {
91 /* name of slab cache. printed in /proc/slabinfo */
92 char *name;
94 /* size of slab cache */
95 size_t size;
97 /* slab cache pointer */
98 kmem_cache_t *cachep;
100 /* allocated slab cache + modules which uses this slab cache */
101 int use;
103 } nf_ct_cache[NF_CT_F_NUM];
105 /* protect members of nf_ct_cache except of "use" */
106 DEFINE_RWLOCK(nf_ct_cache_lock);
108 /* This avoids calling kmem_cache_create() with same name simultaneously */
109 static DEFINE_MUTEX(nf_ct_cache_mutex);
111 static int nf_conntrack_hash_rnd_initted;
112 static unsigned int nf_conntrack_hash_rnd;
114 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
115 unsigned int size, unsigned int rnd)
117 unsigned int a, b;
118 a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
119 ((tuple->src.l3num) << 16) | tuple->dst.protonum);
120 b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
121 (tuple->src.u.all << 16) | tuple->dst.u.all);
123 return jhash_2words(a, b, rnd) % size;
126 static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
128 return __hash_conntrack(tuple, nf_conntrack_htable_size,
129 nf_conntrack_hash_rnd);
132 int nf_conntrack_register_cache(u_int32_t features, const char *name,
133 size_t size)
135 int ret = 0;
136 char *cache_name;
137 kmem_cache_t *cachep;
139 DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
140 features, name, size);
142 if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
143 DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
144 features);
145 return -EINVAL;
148 mutex_lock(&nf_ct_cache_mutex);
150 write_lock_bh(&nf_ct_cache_lock);
151 /* e.g: multiple helpers are loaded */
152 if (nf_ct_cache[features].use > 0) {
153 DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
154 if ((!strncmp(nf_ct_cache[features].name, name,
155 NF_CT_FEATURES_NAMELEN))
156 && nf_ct_cache[features].size == size) {
157 DEBUGP("nf_conntrack_register_cache: reusing.\n");
158 nf_ct_cache[features].use++;
159 ret = 0;
160 } else
161 ret = -EBUSY;
163 write_unlock_bh(&nf_ct_cache_lock);
164 mutex_unlock(&nf_ct_cache_mutex);
165 return ret;
167 write_unlock_bh(&nf_ct_cache_lock);
170 * The memory space for name of slab cache must be alive until
171 * cache is destroyed.
173 cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
174 if (cache_name == NULL) {
175 DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
176 ret = -ENOMEM;
177 goto out_up_mutex;
180 if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
181 >= NF_CT_FEATURES_NAMELEN) {
182 printk("nf_conntrack_register_cache: name too long\n");
183 ret = -EINVAL;
184 goto out_free_name;
187 cachep = kmem_cache_create(cache_name, size, 0, 0,
188 NULL, NULL);
189 if (!cachep) {
190 printk("nf_conntrack_register_cache: Can't create slab cache "
191 "for the features = 0x%x\n", features);
192 ret = -ENOMEM;
193 goto out_free_name;
196 write_lock_bh(&nf_ct_cache_lock);
197 nf_ct_cache[features].use = 1;
198 nf_ct_cache[features].size = size;
199 nf_ct_cache[features].cachep = cachep;
200 nf_ct_cache[features].name = cache_name;
201 write_unlock_bh(&nf_ct_cache_lock);
203 goto out_up_mutex;
205 out_free_name:
206 kfree(cache_name);
207 out_up_mutex:
208 mutex_unlock(&nf_ct_cache_mutex);
209 return ret;
212 /* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
213 void nf_conntrack_unregister_cache(u_int32_t features)
215 kmem_cache_t *cachep;
216 char *name;
219 * This assures that kmem_cache_create() isn't called before destroying
220 * slab cache.
222 DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
223 mutex_lock(&nf_ct_cache_mutex);
225 write_lock_bh(&nf_ct_cache_lock);
226 if (--nf_ct_cache[features].use > 0) {
227 write_unlock_bh(&nf_ct_cache_lock);
228 mutex_unlock(&nf_ct_cache_mutex);
229 return;
231 cachep = nf_ct_cache[features].cachep;
232 name = nf_ct_cache[features].name;
233 nf_ct_cache[features].cachep = NULL;
234 nf_ct_cache[features].name = NULL;
235 nf_ct_cache[features].size = 0;
236 write_unlock_bh(&nf_ct_cache_lock);
238 synchronize_net();
240 kmem_cache_destroy(cachep);
241 kfree(name);
243 mutex_unlock(&nf_ct_cache_mutex);
247 nf_ct_get_tuple(const struct sk_buff *skb,
248 unsigned int nhoff,
249 unsigned int dataoff,
250 u_int16_t l3num,
251 u_int8_t protonum,
252 struct nf_conntrack_tuple *tuple,
253 const struct nf_conntrack_l3proto *l3proto,
254 const struct nf_conntrack_l4proto *l4proto)
256 NF_CT_TUPLE_U_BLANK(tuple);
258 tuple->src.l3num = l3num;
259 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
260 return 0;
262 tuple->dst.protonum = protonum;
263 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
265 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
269 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
270 const struct nf_conntrack_tuple *orig,
271 const struct nf_conntrack_l3proto *l3proto,
272 const struct nf_conntrack_l4proto *l4proto)
274 NF_CT_TUPLE_U_BLANK(inverse);
276 inverse->src.l3num = orig->src.l3num;
277 if (l3proto->invert_tuple(inverse, orig) == 0)
278 return 0;
280 inverse->dst.dir = !orig->dst.dir;
282 inverse->dst.protonum = orig->dst.protonum;
283 return l4proto->invert_tuple(inverse, orig);
286 static void
287 clean_from_lists(struct nf_conn *ct)
289 DEBUGP("clean_from_lists(%p)\n", ct);
290 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
291 list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
293 /* Destroy all pending expectations */
294 nf_ct_remove_expectations(ct);
297 static void
298 destroy_conntrack(struct nf_conntrack *nfct)
300 struct nf_conn *ct = (struct nf_conn *)nfct;
301 struct nf_conntrack_l3proto *l3proto;
302 struct nf_conntrack_l4proto *l4proto;
304 DEBUGP("destroy_conntrack(%p)\n", ct);
305 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
306 NF_CT_ASSERT(!timer_pending(&ct->timeout));
308 nf_conntrack_event(IPCT_DESTROY, ct);
309 set_bit(IPS_DYING_BIT, &ct->status);
311 /* To make sure we don't get any weird locking issues here:
312 * destroy_conntrack() MUST NOT be called with a write lock
313 * to nf_conntrack_lock!!! -HW */
314 l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
315 if (l3proto && l3proto->destroy)
316 l3proto->destroy(ct);
318 l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
319 if (l4proto && l4proto->destroy)
320 l4proto->destroy(ct);
322 if (nf_conntrack_destroyed)
323 nf_conntrack_destroyed(ct);
325 write_lock_bh(&nf_conntrack_lock);
326 /* Expectations will have been removed in clean_from_lists,
327 * except TFTP can create an expectation on the first packet,
328 * before connection is in the list, so we need to clean here,
329 * too. */
330 nf_ct_remove_expectations(ct);
332 /* We overload first tuple to link into unconfirmed list. */
333 if (!nf_ct_is_confirmed(ct)) {
334 BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
335 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
338 NF_CT_STAT_INC(delete);
339 write_unlock_bh(&nf_conntrack_lock);
341 if (ct->master)
342 nf_ct_put(ct->master);
344 DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
345 nf_conntrack_free(ct);
348 static void death_by_timeout(unsigned long ul_conntrack)
350 struct nf_conn *ct = (void *)ul_conntrack;
352 write_lock_bh(&nf_conntrack_lock);
353 /* Inside lock so preempt is disabled on module removal path.
354 * Otherwise we can get spurious warnings. */
355 NF_CT_STAT_INC(delete_list);
356 clean_from_lists(ct);
357 write_unlock_bh(&nf_conntrack_lock);
358 nf_ct_put(ct);
361 struct nf_conntrack_tuple_hash *
362 __nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
363 const struct nf_conn *ignored_conntrack)
365 struct nf_conntrack_tuple_hash *h;
366 unsigned int hash = hash_conntrack(tuple);
368 list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
369 if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
370 nf_ct_tuple_equal(tuple, &h->tuple)) {
371 NF_CT_STAT_INC(found);
372 return h;
374 NF_CT_STAT_INC(searched);
377 return NULL;
380 /* Find a connection corresponding to a tuple. */
381 struct nf_conntrack_tuple_hash *
382 nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
383 const struct nf_conn *ignored_conntrack)
385 struct nf_conntrack_tuple_hash *h;
387 read_lock_bh(&nf_conntrack_lock);
388 h = __nf_conntrack_find(tuple, ignored_conntrack);
389 if (h)
390 atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
391 read_unlock_bh(&nf_conntrack_lock);
393 return h;
396 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
397 unsigned int hash,
398 unsigned int repl_hash)
400 ct->id = ++nf_conntrack_next_id;
401 list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
402 &nf_conntrack_hash[hash]);
403 list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
404 &nf_conntrack_hash[repl_hash]);
407 void nf_conntrack_hash_insert(struct nf_conn *ct)
409 unsigned int hash, repl_hash;
411 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
412 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
414 write_lock_bh(&nf_conntrack_lock);
415 __nf_conntrack_hash_insert(ct, hash, repl_hash);
416 write_unlock_bh(&nf_conntrack_lock);
419 /* Confirm a connection given skb; places it in hash table */
421 __nf_conntrack_confirm(struct sk_buff **pskb)
423 unsigned int hash, repl_hash;
424 struct nf_conntrack_tuple_hash *h;
425 struct nf_conn *ct;
426 struct nf_conn_help *help;
427 enum ip_conntrack_info ctinfo;
429 ct = nf_ct_get(*pskb, &ctinfo);
431 /* ipt_REJECT uses nf_conntrack_attach to attach related
432 ICMP/TCP RST packets in other direction. Actual packet
433 which created connection will be IP_CT_NEW or for an
434 expected connection, IP_CT_RELATED. */
435 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
436 return NF_ACCEPT;
438 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
439 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
441 /* We're not in hash table, and we refuse to set up related
442 connections for unconfirmed conns. But packet copies and
443 REJECT will give spurious warnings here. */
444 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
446 /* No external references means noone else could have
447 confirmed us. */
448 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
449 DEBUGP("Confirming conntrack %p\n", ct);
451 write_lock_bh(&nf_conntrack_lock);
453 /* See if there's one in the list already, including reverse:
454 NAT could have grabbed it without realizing, since we're
455 not in the hash. If there is, we lost race. */
456 list_for_each_entry(h, &nf_conntrack_hash[hash], list)
457 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
458 &h->tuple))
459 goto out;
460 list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
461 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
462 &h->tuple))
463 goto out;
465 /* Remove from unconfirmed list */
466 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
468 __nf_conntrack_hash_insert(ct, hash, repl_hash);
469 /* Timer relative to confirmation time, not original
470 setting time, otherwise we'd get timer wrap in
471 weird delay cases. */
472 ct->timeout.expires += jiffies;
473 add_timer(&ct->timeout);
474 atomic_inc(&ct->ct_general.use);
475 set_bit(IPS_CONFIRMED_BIT, &ct->status);
476 NF_CT_STAT_INC(insert);
477 write_unlock_bh(&nf_conntrack_lock);
478 help = nfct_help(ct);
479 if (help && help->helper)
480 nf_conntrack_event_cache(IPCT_HELPER, *pskb);
481 #ifdef CONFIG_NF_NAT_NEEDED
482 if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
483 test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
484 nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
485 #endif
486 nf_conntrack_event_cache(master_ct(ct) ?
487 IPCT_RELATED : IPCT_NEW, *pskb);
488 return NF_ACCEPT;
490 out:
491 NF_CT_STAT_INC(insert_failed);
492 write_unlock_bh(&nf_conntrack_lock);
493 return NF_DROP;
496 /* Returns true if a connection correspondings to the tuple (required
497 for NAT). */
499 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
500 const struct nf_conn *ignored_conntrack)
502 struct nf_conntrack_tuple_hash *h;
504 read_lock_bh(&nf_conntrack_lock);
505 h = __nf_conntrack_find(tuple, ignored_conntrack);
506 read_unlock_bh(&nf_conntrack_lock);
508 return h != NULL;
511 /* There's a small race here where we may free a just-assured
512 connection. Too bad: we're in trouble anyway. */
513 static int early_drop(struct list_head *chain)
515 /* Traverse backwards: gives us oldest, which is roughly LRU */
516 struct nf_conntrack_tuple_hash *h;
517 struct nf_conn *ct = NULL, *tmp;
518 int dropped = 0;
520 read_lock_bh(&nf_conntrack_lock);
521 list_for_each_entry_reverse(h, chain, list) {
522 tmp = nf_ct_tuplehash_to_ctrack(h);
523 if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
524 ct = tmp;
525 atomic_inc(&ct->ct_general.use);
526 break;
529 read_unlock_bh(&nf_conntrack_lock);
531 if (!ct)
532 return dropped;
534 if (del_timer(&ct->timeout)) {
535 death_by_timeout((unsigned long)ct);
536 dropped = 1;
537 NF_CT_STAT_INC(early_drop);
539 nf_ct_put(ct);
540 return dropped;
543 static struct nf_conn *
544 __nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
545 const struct nf_conntrack_tuple *repl,
546 const struct nf_conntrack_l3proto *l3proto)
548 struct nf_conn *conntrack = NULL;
549 u_int32_t features = 0;
550 struct nf_conntrack_helper *helper;
552 if (unlikely(!nf_conntrack_hash_rnd_initted)) {
553 get_random_bytes(&nf_conntrack_hash_rnd, 4);
554 nf_conntrack_hash_rnd_initted = 1;
557 /* We don't want any race condition at early drop stage */
558 atomic_inc(&nf_conntrack_count);
560 if (nf_conntrack_max
561 && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
562 unsigned int hash = hash_conntrack(orig);
563 /* Try dropping from this hash chain. */
564 if (!early_drop(&nf_conntrack_hash[hash])) {
565 atomic_dec(&nf_conntrack_count);
566 if (net_ratelimit())
567 printk(KERN_WARNING
568 "nf_conntrack: table full, dropping"
569 " packet.\n");
570 return ERR_PTR(-ENOMEM);
574 /* find features needed by this conntrack. */
575 features = l3proto->get_features(orig);
577 /* FIXME: protect helper list per RCU */
578 read_lock_bh(&nf_conntrack_lock);
579 helper = __nf_ct_helper_find(repl);
580 if (helper)
581 features |= NF_CT_F_HELP;
582 read_unlock_bh(&nf_conntrack_lock);
584 DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
586 read_lock_bh(&nf_ct_cache_lock);
588 if (unlikely(!nf_ct_cache[features].use)) {
589 DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
590 features);
591 goto out;
594 conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
595 if (conntrack == NULL) {
596 DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
597 goto out;
600 memset(conntrack, 0, nf_ct_cache[features].size);
601 conntrack->features = features;
602 atomic_set(&conntrack->ct_general.use, 1);
603 conntrack->ct_general.destroy = destroy_conntrack;
604 conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
605 conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
606 /* Don't set timer yet: wait for confirmation */
607 init_timer(&conntrack->timeout);
608 conntrack->timeout.data = (unsigned long)conntrack;
609 conntrack->timeout.function = death_by_timeout;
610 read_unlock_bh(&nf_ct_cache_lock);
612 return conntrack;
613 out:
614 read_unlock_bh(&nf_ct_cache_lock);
615 atomic_dec(&nf_conntrack_count);
616 return conntrack;
619 struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
620 const struct nf_conntrack_tuple *repl)
622 struct nf_conntrack_l3proto *l3proto;
624 l3proto = __nf_ct_l3proto_find(orig->src.l3num);
625 return __nf_conntrack_alloc(orig, repl, l3proto);
628 void nf_conntrack_free(struct nf_conn *conntrack)
630 u_int32_t features = conntrack->features;
631 NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
632 DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
633 conntrack);
634 kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
635 atomic_dec(&nf_conntrack_count);
638 /* Allocate a new conntrack: we return -ENOMEM if classification
639 failed due to stress. Otherwise it really is unclassifiable. */
640 static struct nf_conntrack_tuple_hash *
641 init_conntrack(const struct nf_conntrack_tuple *tuple,
642 struct nf_conntrack_l3proto *l3proto,
643 struct nf_conntrack_l4proto *l4proto,
644 struct sk_buff *skb,
645 unsigned int dataoff)
647 struct nf_conn *conntrack;
648 struct nf_conntrack_tuple repl_tuple;
649 struct nf_conntrack_expect *exp;
651 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
652 DEBUGP("Can't invert tuple.\n");
653 return NULL;
656 conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto);
657 if (conntrack == NULL || IS_ERR(conntrack)) {
658 DEBUGP("Can't allocate conntrack.\n");
659 return (struct nf_conntrack_tuple_hash *)conntrack;
662 if (!l4proto->new(conntrack, skb, dataoff)) {
663 nf_conntrack_free(conntrack);
664 DEBUGP("init conntrack: can't track with proto module\n");
665 return NULL;
668 write_lock_bh(&nf_conntrack_lock);
669 exp = find_expectation(tuple);
671 if (exp) {
672 DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
673 conntrack, exp);
674 /* Welcome, Mr. Bond. We've been expecting you... */
675 __set_bit(IPS_EXPECTED_BIT, &conntrack->status);
676 conntrack->master = exp->master;
677 #ifdef CONFIG_NF_CONNTRACK_MARK
678 conntrack->mark = exp->master->mark;
679 #endif
680 #ifdef CONFIG_NF_CONNTRACK_SECMARK
681 conntrack->secmark = exp->master->secmark;
682 #endif
683 nf_conntrack_get(&conntrack->master->ct_general);
684 NF_CT_STAT_INC(expect_new);
685 } else {
686 struct nf_conn_help *help = nfct_help(conntrack);
688 if (help)
689 help->helper = __nf_ct_helper_find(&repl_tuple);
690 NF_CT_STAT_INC(new);
693 /* Overload tuple linked list to put us in unconfirmed list. */
694 list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
696 write_unlock_bh(&nf_conntrack_lock);
698 if (exp) {
699 if (exp->expectfn)
700 exp->expectfn(conntrack, exp);
701 nf_conntrack_expect_put(exp);
704 return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
707 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
708 static inline struct nf_conn *
709 resolve_normal_ct(struct sk_buff *skb,
710 unsigned int dataoff,
711 u_int16_t l3num,
712 u_int8_t protonum,
713 struct nf_conntrack_l3proto *l3proto,
714 struct nf_conntrack_l4proto *l4proto,
715 int *set_reply,
716 enum ip_conntrack_info *ctinfo)
718 struct nf_conntrack_tuple tuple;
719 struct nf_conntrack_tuple_hash *h;
720 struct nf_conn *ct;
722 if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
723 dataoff, l3num, protonum, &tuple, l3proto,
724 l4proto)) {
725 DEBUGP("resolve_normal_ct: Can't get tuple\n");
726 return NULL;
729 /* look for tuple match */
730 h = nf_conntrack_find_get(&tuple, NULL);
731 if (!h) {
732 h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
733 if (!h)
734 return NULL;
735 if (IS_ERR(h))
736 return (void *)h;
738 ct = nf_ct_tuplehash_to_ctrack(h);
740 /* It exists; we have (non-exclusive) reference. */
741 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
742 *ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
743 /* Please set reply bit if this packet OK */
744 *set_reply = 1;
745 } else {
746 /* Once we've had two way comms, always ESTABLISHED. */
747 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
748 DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
749 *ctinfo = IP_CT_ESTABLISHED;
750 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
751 DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
752 *ctinfo = IP_CT_RELATED;
753 } else {
754 DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
755 *ctinfo = IP_CT_NEW;
757 *set_reply = 0;
759 skb->nfct = &ct->ct_general;
760 skb->nfctinfo = *ctinfo;
761 return ct;
764 unsigned int
765 nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
767 struct nf_conn *ct;
768 enum ip_conntrack_info ctinfo;
769 struct nf_conntrack_l3proto *l3proto;
770 struct nf_conntrack_l4proto *l4proto;
771 unsigned int dataoff;
772 u_int8_t protonum;
773 int set_reply = 0;
774 int ret;
776 /* Previously seen (loopback or untracked)? Ignore. */
777 if ((*pskb)->nfct) {
778 NF_CT_STAT_INC(ignore);
779 return NF_ACCEPT;
782 l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
783 if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
784 DEBUGP("not prepared to track yet or error occured\n");
785 return -ret;
788 l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
790 /* It may be an special packet, error, unclean...
791 * inverse of the return code tells to the netfilter
792 * core what to do with the packet. */
793 if (l4proto->error != NULL &&
794 (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
795 NF_CT_STAT_INC(error);
796 NF_CT_STAT_INC(invalid);
797 return -ret;
800 ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
801 &set_reply, &ctinfo);
802 if (!ct) {
803 /* Not valid part of a connection */
804 NF_CT_STAT_INC(invalid);
805 return NF_ACCEPT;
808 if (IS_ERR(ct)) {
809 /* Too stressed to deal. */
810 NF_CT_STAT_INC(drop);
811 return NF_DROP;
814 NF_CT_ASSERT((*pskb)->nfct);
816 ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
817 if (ret < 0) {
818 /* Invalid: inverse of the return code tells
819 * the netfilter core what to do */
820 DEBUGP("nf_conntrack_in: Can't track with proto module\n");
821 nf_conntrack_put((*pskb)->nfct);
822 (*pskb)->nfct = NULL;
823 NF_CT_STAT_INC(invalid);
824 return -ret;
827 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
828 nf_conntrack_event_cache(IPCT_STATUS, *pskb);
830 return ret;
833 int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
834 const struct nf_conntrack_tuple *orig)
836 return nf_ct_invert_tuple(inverse, orig,
837 __nf_ct_l3proto_find(orig->src.l3num),
838 __nf_ct_l4proto_find(orig->src.l3num,
839 orig->dst.protonum));
842 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
843 void __nf_ct_refresh_acct(struct nf_conn *ct,
844 enum ip_conntrack_info ctinfo,
845 const struct sk_buff *skb,
846 unsigned long extra_jiffies,
847 int do_acct)
849 int event = 0;
851 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
852 NF_CT_ASSERT(skb);
854 write_lock_bh(&nf_conntrack_lock);
856 /* Only update if this is not a fixed timeout */
857 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
858 write_unlock_bh(&nf_conntrack_lock);
859 return;
862 /* If not in hash table, timer will not be active yet */
863 if (!nf_ct_is_confirmed(ct)) {
864 ct->timeout.expires = extra_jiffies;
865 event = IPCT_REFRESH;
866 } else {
867 unsigned long newtime = jiffies + extra_jiffies;
869 /* Only update the timeout if the new timeout is at least
870 HZ jiffies from the old timeout. Need del_timer for race
871 avoidance (may already be dying). */
872 if (newtime - ct->timeout.expires >= HZ
873 && del_timer(&ct->timeout)) {
874 ct->timeout.expires = newtime;
875 add_timer(&ct->timeout);
876 event = IPCT_REFRESH;
880 #ifdef CONFIG_NF_CT_ACCT
881 if (do_acct) {
882 ct->counters[CTINFO2DIR(ctinfo)].packets++;
883 ct->counters[CTINFO2DIR(ctinfo)].bytes +=
884 skb->len - (unsigned int)(skb->nh.raw - skb->data);
886 if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
887 || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
888 event |= IPCT_COUNTER_FILLING;
890 #endif
892 write_unlock_bh(&nf_conntrack_lock);
894 /* must be unlocked when calling event cache */
895 if (event)
896 nf_conntrack_event_cache(event, skb);
899 #if defined(CONFIG_NF_CT_NETLINK) || \
900 defined(CONFIG_NF_CT_NETLINK_MODULE)
902 #include <linux/netfilter/nfnetlink.h>
903 #include <linux/netfilter/nfnetlink_conntrack.h>
904 #include <linux/mutex.h>
907 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
908 * in ip_conntrack_core, since we don't want the protocols to autoload
909 * or depend on ctnetlink */
910 int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
911 const struct nf_conntrack_tuple *tuple)
913 NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
914 &tuple->src.u.tcp.port);
915 NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
916 &tuple->dst.u.tcp.port);
917 return 0;
919 nfattr_failure:
920 return -1;
923 static const size_t cta_min_proto[CTA_PROTO_MAX] = {
924 [CTA_PROTO_SRC_PORT-1] = sizeof(u_int16_t),
925 [CTA_PROTO_DST_PORT-1] = sizeof(u_int16_t)
928 int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
929 struct nf_conntrack_tuple *t)
931 if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
932 return -EINVAL;
934 if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
935 return -EINVAL;
937 t->src.u.tcp.port =
938 *(u_int16_t *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
939 t->dst.u.tcp.port =
940 *(u_int16_t *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
942 return 0;
944 #endif
946 /* Used by ipt_REJECT and ip6t_REJECT. */
947 void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
949 struct nf_conn *ct;
950 enum ip_conntrack_info ctinfo;
952 /* This ICMP is in reverse direction to the packet which caused it */
953 ct = nf_ct_get(skb, &ctinfo);
954 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
955 ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
956 else
957 ctinfo = IP_CT_RELATED;
959 /* Attach to new skbuff, and increment count */
960 nskb->nfct = &ct->ct_general;
961 nskb->nfctinfo = ctinfo;
962 nf_conntrack_get(nskb->nfct);
965 static inline int
966 do_iter(const struct nf_conntrack_tuple_hash *i,
967 int (*iter)(struct nf_conn *i, void *data),
968 void *data)
970 return iter(nf_ct_tuplehash_to_ctrack(i), data);
973 /* Bring out ya dead! */
974 static struct nf_conn *
975 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
976 void *data, unsigned int *bucket)
978 struct nf_conntrack_tuple_hash *h;
979 struct nf_conn *ct;
981 write_lock_bh(&nf_conntrack_lock);
982 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
983 list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
984 ct = nf_ct_tuplehash_to_ctrack(h);
985 if (iter(ct, data))
986 goto found;
989 list_for_each_entry(h, &unconfirmed, list) {
990 ct = nf_ct_tuplehash_to_ctrack(h);
991 if (iter(ct, data))
992 goto found;
994 write_unlock_bh(&nf_conntrack_lock);
995 return NULL;
996 found:
997 atomic_inc(&ct->ct_general.use);
998 write_unlock_bh(&nf_conntrack_lock);
999 return ct;
1002 void
1003 nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1005 struct nf_conn *ct;
1006 unsigned int bucket = 0;
1008 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1009 /* Time to push up daises... */
1010 if (del_timer(&ct->timeout))
1011 death_by_timeout((unsigned long)ct);
1012 /* ... else the timer will get him soon. */
1014 nf_ct_put(ct);
1018 static int kill_all(struct nf_conn *i, void *data)
1020 return 1;
1023 static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1025 if (vmalloced)
1026 vfree(hash);
1027 else
1028 free_pages((unsigned long)hash,
1029 get_order(sizeof(struct list_head) * size));
1032 void nf_conntrack_flush()
1034 nf_ct_iterate_cleanup(kill_all, NULL);
1037 /* Mishearing the voices in his head, our hero wonders how he's
1038 supposed to kill the mall. */
1039 void nf_conntrack_cleanup(void)
1041 int i;
1043 ip_ct_attach = NULL;
1045 /* This makes sure all current packets have passed through
1046 netfilter framework. Roll on, two-stage module
1047 delete... */
1048 synchronize_net();
1050 nf_ct_event_cache_flush();
1051 i_see_dead_people:
1052 nf_conntrack_flush();
1053 if (atomic_read(&nf_conntrack_count) != 0) {
1054 schedule();
1055 goto i_see_dead_people;
1057 /* wait until all references to nf_conntrack_untracked are dropped */
1058 while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1059 schedule();
1061 for (i = 0; i < NF_CT_F_NUM; i++) {
1062 if (nf_ct_cache[i].use == 0)
1063 continue;
1065 NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1066 nf_ct_cache[i].use = 1;
1067 nf_conntrack_unregister_cache(i);
1069 kmem_cache_destroy(nf_conntrack_expect_cachep);
1070 free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1071 nf_conntrack_htable_size);
1073 nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);
1075 /* free l3proto protocol tables */
1076 for (i = 0; i < PF_MAX; i++)
1077 if (nf_ct_protos[i]) {
1078 kfree(nf_ct_protos[i]);
1079 nf_ct_protos[i] = NULL;
1083 static struct list_head *alloc_hashtable(int size, int *vmalloced)
1085 struct list_head *hash;
1086 unsigned int i;
1088 *vmalloced = 0;
1089 hash = (void*)__get_free_pages(GFP_KERNEL,
1090 get_order(sizeof(struct list_head)
1091 * size));
1092 if (!hash) {
1093 *vmalloced = 1;
1094 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1095 hash = vmalloc(sizeof(struct list_head) * size);
1098 if (hash)
1099 for (i = 0; i < size; i++)
1100 INIT_LIST_HEAD(&hash[i]);
1102 return hash;
1105 int set_hashsize(const char *val, struct kernel_param *kp)
1107 int i, bucket, hashsize, vmalloced;
1108 int old_vmalloced, old_size;
1109 int rnd;
1110 struct list_head *hash, *old_hash;
1111 struct nf_conntrack_tuple_hash *h;
1113 /* On boot, we can set this without any fancy locking. */
1114 if (!nf_conntrack_htable_size)
1115 return param_set_uint(val, kp);
1117 hashsize = simple_strtol(val, NULL, 0);
1118 if (!hashsize)
1119 return -EINVAL;
1121 hash = alloc_hashtable(hashsize, &vmalloced);
1122 if (!hash)
1123 return -ENOMEM;
1125 /* We have to rehahs for the new table anyway, so we also can
1126 * use a newrandom seed */
1127 get_random_bytes(&rnd, 4);
1129 write_lock_bh(&nf_conntrack_lock);
1130 for (i = 0; i < nf_conntrack_htable_size; i++) {
1131 while (!list_empty(&nf_conntrack_hash[i])) {
1132 h = list_entry(nf_conntrack_hash[i].next,
1133 struct nf_conntrack_tuple_hash, list);
1134 list_del(&h->list);
1135 bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1136 list_add_tail(&h->list, &hash[bucket]);
1139 old_size = nf_conntrack_htable_size;
1140 old_vmalloced = nf_conntrack_vmalloc;
1141 old_hash = nf_conntrack_hash;
1143 nf_conntrack_htable_size = hashsize;
1144 nf_conntrack_vmalloc = vmalloced;
1145 nf_conntrack_hash = hash;
1146 nf_conntrack_hash_rnd = rnd;
1147 write_unlock_bh(&nf_conntrack_lock);
1149 free_conntrack_hash(old_hash, old_vmalloced, old_size);
1150 return 0;
1153 module_param_call(hashsize, set_hashsize, param_get_uint,
1154 &nf_conntrack_htable_size, 0600);
1156 int __init nf_conntrack_init(void)
1158 unsigned int i;
1159 int ret;
1161 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1162 * machine has 256 buckets. >= 1GB machines have 8192 buckets. */
1163 if (!nf_conntrack_htable_size) {
1164 nf_conntrack_htable_size
1165 = (((num_physpages << PAGE_SHIFT) / 16384)
1166 / sizeof(struct list_head));
1167 if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1168 nf_conntrack_htable_size = 8192;
1169 if (nf_conntrack_htable_size < 16)
1170 nf_conntrack_htable_size = 16;
1172 nf_conntrack_max = 8 * nf_conntrack_htable_size;
1174 printk("nf_conntrack version %s (%u buckets, %d max)\n",
1175 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1176 nf_conntrack_max);
1178 nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1179 &nf_conntrack_vmalloc);
1180 if (!nf_conntrack_hash) {
1181 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1182 goto err_out;
1185 ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1186 sizeof(struct nf_conn));
1187 if (ret < 0) {
1188 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1189 goto err_free_hash;
1192 nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1193 sizeof(struct nf_conntrack_expect),
1194 0, 0, NULL, NULL);
1195 if (!nf_conntrack_expect_cachep) {
1196 printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1197 goto err_free_conntrack_slab;
1200 ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
1201 if (ret < 0)
1202 goto out_free_expect_slab;
1204 /* Don't NEED lock here, but good form anyway. */
1205 write_lock_bh(&nf_conntrack_lock);
1206 for (i = 0; i < AF_MAX; i++)
1207 nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1208 write_unlock_bh(&nf_conntrack_lock);
1210 /* For use by REJECT target */
1211 ip_ct_attach = __nf_conntrack_attach;
1213 /* Set up fake conntrack:
1214 - to never be deleted, not in any hashes */
1215 atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1216 /* - and look it like as a confirmed connection */
1217 set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1219 return ret;
1221 out_free_expect_slab:
1222 kmem_cache_destroy(nf_conntrack_expect_cachep);
1223 err_free_conntrack_slab:
1224 nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1225 err_free_hash:
1226 free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1227 nf_conntrack_htable_size);
1228 err_out:
1229 return -ENOMEM;