Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.22.y-op.git] / kernel / exit.c
blobdba194a8d41619d689d4e53f9819bb51583cb72c
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/taskstats_kern.h>
29 #include <linux/delayacct.h>
30 #include <linux/cpuset.h>
31 #include <linux/syscalls.h>
32 #include <linux/signal.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cn_proc.h>
35 #include <linux/mutex.h>
36 #include <linux/futex.h>
37 #include <linux/compat.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/audit.h> /* for audit_free() */
40 #include <linux/resource.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/pgtable.h>
45 #include <asm/mmu_context.h>
47 extern void sem_exit (void);
48 extern struct task_struct *child_reaper;
50 static void exit_mm(struct task_struct * tsk);
52 static void __unhash_process(struct task_struct *p)
54 nr_threads--;
55 detach_pid(p, PIDTYPE_PID);
56 if (thread_group_leader(p)) {
57 detach_pid(p, PIDTYPE_PGID);
58 detach_pid(p, PIDTYPE_SID);
60 list_del_rcu(&p->tasks);
61 __get_cpu_var(process_counts)--;
63 list_del_rcu(&p->thread_group);
64 remove_parent(p);
68 * This function expects the tasklist_lock write-locked.
70 static void __exit_signal(struct task_struct *tsk)
72 struct signal_struct *sig = tsk->signal;
73 struct sighand_struct *sighand;
75 BUG_ON(!sig);
76 BUG_ON(!atomic_read(&sig->count));
78 rcu_read_lock();
79 sighand = rcu_dereference(tsk->sighand);
80 spin_lock(&sighand->siglock);
82 posix_cpu_timers_exit(tsk);
83 if (atomic_dec_and_test(&sig->count))
84 posix_cpu_timers_exit_group(tsk);
85 else {
87 * If there is any task waiting for the group exit
88 * then notify it:
90 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
91 wake_up_process(sig->group_exit_task);
92 sig->group_exit_task = NULL;
94 if (tsk == sig->curr_target)
95 sig->curr_target = next_thread(tsk);
97 * Accumulate here the counters for all threads but the
98 * group leader as they die, so they can be added into
99 * the process-wide totals when those are taken.
100 * The group leader stays around as a zombie as long
101 * as there are other threads. When it gets reaped,
102 * the exit.c code will add its counts into these totals.
103 * We won't ever get here for the group leader, since it
104 * will have been the last reference on the signal_struct.
106 sig->utime = cputime_add(sig->utime, tsk->utime);
107 sig->stime = cputime_add(sig->stime, tsk->stime);
108 sig->min_flt += tsk->min_flt;
109 sig->maj_flt += tsk->maj_flt;
110 sig->nvcsw += tsk->nvcsw;
111 sig->nivcsw += tsk->nivcsw;
112 sig->sched_time += tsk->sched_time;
113 sig = NULL; /* Marker for below. */
116 __unhash_process(tsk);
118 tsk->signal = NULL;
119 tsk->sighand = NULL;
120 spin_unlock(&sighand->siglock);
121 rcu_read_unlock();
123 __cleanup_sighand(sighand);
124 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
125 flush_sigqueue(&tsk->pending);
126 if (sig) {
127 flush_sigqueue(&sig->shared_pending);
128 __cleanup_signal(sig);
132 static void delayed_put_task_struct(struct rcu_head *rhp)
134 put_task_struct(container_of(rhp, struct task_struct, rcu));
137 void release_task(struct task_struct * p)
139 struct task_struct *leader;
140 int zap_leader;
141 repeat:
142 atomic_dec(&p->user->processes);
143 write_lock_irq(&tasklist_lock);
144 ptrace_unlink(p);
145 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
146 __exit_signal(p);
149 * If we are the last non-leader member of the thread
150 * group, and the leader is zombie, then notify the
151 * group leader's parent process. (if it wants notification.)
153 zap_leader = 0;
154 leader = p->group_leader;
155 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
156 BUG_ON(leader->exit_signal == -1);
157 do_notify_parent(leader, leader->exit_signal);
159 * If we were the last child thread and the leader has
160 * exited already, and the leader's parent ignores SIGCHLD,
161 * then we are the one who should release the leader.
163 * do_notify_parent() will have marked it self-reaping in
164 * that case.
166 zap_leader = (leader->exit_signal == -1);
169 sched_exit(p);
170 write_unlock_irq(&tasklist_lock);
171 proc_flush_task(p);
172 release_thread(p);
173 call_rcu(&p->rcu, delayed_put_task_struct);
175 p = leader;
176 if (unlikely(zap_leader))
177 goto repeat;
181 * This checks not only the pgrp, but falls back on the pid if no
182 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
183 * without this...
185 int session_of_pgrp(int pgrp)
187 struct task_struct *p;
188 int sid = -1;
190 read_lock(&tasklist_lock);
191 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
192 if (p->signal->session > 0) {
193 sid = p->signal->session;
194 goto out;
196 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
197 p = find_task_by_pid(pgrp);
198 if (p)
199 sid = p->signal->session;
200 out:
201 read_unlock(&tasklist_lock);
203 return sid;
207 * Determine if a process group is "orphaned", according to the POSIX
208 * definition in 2.2.2.52. Orphaned process groups are not to be affected
209 * by terminal-generated stop signals. Newly orphaned process groups are
210 * to receive a SIGHUP and a SIGCONT.
212 * "I ask you, have you ever known what it is to be an orphan?"
214 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
216 struct task_struct *p;
217 int ret = 1;
219 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
220 if (p == ignored_task
221 || p->exit_state
222 || p->real_parent->pid == 1)
223 continue;
224 if (process_group(p->real_parent) != pgrp
225 && p->real_parent->signal->session == p->signal->session) {
226 ret = 0;
227 break;
229 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
230 return ret; /* (sighing) "Often!" */
233 int is_orphaned_pgrp(int pgrp)
235 int retval;
237 read_lock(&tasklist_lock);
238 retval = will_become_orphaned_pgrp(pgrp, NULL);
239 read_unlock(&tasklist_lock);
241 return retval;
244 static int has_stopped_jobs(int pgrp)
246 int retval = 0;
247 struct task_struct *p;
249 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
250 if (p->state != TASK_STOPPED)
251 continue;
253 /* If p is stopped by a debugger on a signal that won't
254 stop it, then don't count p as stopped. This isn't
255 perfect but it's a good approximation. */
256 if (unlikely (p->ptrace)
257 && p->exit_code != SIGSTOP
258 && p->exit_code != SIGTSTP
259 && p->exit_code != SIGTTOU
260 && p->exit_code != SIGTTIN)
261 continue;
263 retval = 1;
264 break;
265 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
266 return retval;
270 * reparent_to_init - Reparent the calling kernel thread to the init task.
272 * If a kernel thread is launched as a result of a system call, or if
273 * it ever exits, it should generally reparent itself to init so that
274 * it is correctly cleaned up on exit.
276 * The various task state such as scheduling policy and priority may have
277 * been inherited from a user process, so we reset them to sane values here.
279 * NOTE that reparent_to_init() gives the caller full capabilities.
281 static void reparent_to_init(void)
283 write_lock_irq(&tasklist_lock);
285 ptrace_unlink(current);
286 /* Reparent to init */
287 remove_parent(current);
288 current->parent = child_reaper;
289 current->real_parent = child_reaper;
290 add_parent(current);
292 /* Set the exit signal to SIGCHLD so we signal init on exit */
293 current->exit_signal = SIGCHLD;
295 if ((current->policy == SCHED_NORMAL ||
296 current->policy == SCHED_BATCH)
297 && (task_nice(current) < 0))
298 set_user_nice(current, 0);
299 /* cpus_allowed? */
300 /* rt_priority? */
301 /* signals? */
302 security_task_reparent_to_init(current);
303 memcpy(current->signal->rlim, init_task.signal->rlim,
304 sizeof(current->signal->rlim));
305 atomic_inc(&(INIT_USER->__count));
306 write_unlock_irq(&tasklist_lock);
307 switch_uid(INIT_USER);
310 void __set_special_pids(pid_t session, pid_t pgrp)
312 struct task_struct *curr = current->group_leader;
314 if (curr->signal->session != session) {
315 detach_pid(curr, PIDTYPE_SID);
316 curr->signal->session = session;
317 attach_pid(curr, PIDTYPE_SID, session);
319 if (process_group(curr) != pgrp) {
320 detach_pid(curr, PIDTYPE_PGID);
321 curr->signal->pgrp = pgrp;
322 attach_pid(curr, PIDTYPE_PGID, pgrp);
326 void set_special_pids(pid_t session, pid_t pgrp)
328 write_lock_irq(&tasklist_lock);
329 __set_special_pids(session, pgrp);
330 write_unlock_irq(&tasklist_lock);
334 * Let kernel threads use this to say that they
335 * allow a certain signal (since daemonize() will
336 * have disabled all of them by default).
338 int allow_signal(int sig)
340 if (!valid_signal(sig) || sig < 1)
341 return -EINVAL;
343 spin_lock_irq(&current->sighand->siglock);
344 sigdelset(&current->blocked, sig);
345 if (!current->mm) {
346 /* Kernel threads handle their own signals.
347 Let the signal code know it'll be handled, so
348 that they don't get converted to SIGKILL or
349 just silently dropped */
350 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
352 recalc_sigpending();
353 spin_unlock_irq(&current->sighand->siglock);
354 return 0;
357 EXPORT_SYMBOL(allow_signal);
359 int disallow_signal(int sig)
361 if (!valid_signal(sig) || sig < 1)
362 return -EINVAL;
364 spin_lock_irq(&current->sighand->siglock);
365 sigaddset(&current->blocked, sig);
366 recalc_sigpending();
367 spin_unlock_irq(&current->sighand->siglock);
368 return 0;
371 EXPORT_SYMBOL(disallow_signal);
374 * Put all the gunge required to become a kernel thread without
375 * attached user resources in one place where it belongs.
378 void daemonize(const char *name, ...)
380 va_list args;
381 struct fs_struct *fs;
382 sigset_t blocked;
384 va_start(args, name);
385 vsnprintf(current->comm, sizeof(current->comm), name, args);
386 va_end(args);
389 * If we were started as result of loading a module, close all of the
390 * user space pages. We don't need them, and if we didn't close them
391 * they would be locked into memory.
393 exit_mm(current);
395 set_special_pids(1, 1);
396 mutex_lock(&tty_mutex);
397 current->signal->tty = NULL;
398 mutex_unlock(&tty_mutex);
400 /* Block and flush all signals */
401 sigfillset(&blocked);
402 sigprocmask(SIG_BLOCK, &blocked, NULL);
403 flush_signals(current);
405 /* Become as one with the init task */
407 exit_fs(current); /* current->fs->count--; */
408 fs = init_task.fs;
409 current->fs = fs;
410 atomic_inc(&fs->count);
411 exit_namespace(current);
412 current->namespace = init_task.namespace;
413 get_namespace(current->namespace);
414 exit_files(current);
415 current->files = init_task.files;
416 atomic_inc(&current->files->count);
418 reparent_to_init();
421 EXPORT_SYMBOL(daemonize);
423 static void close_files(struct files_struct * files)
425 int i, j;
426 struct fdtable *fdt;
428 j = 0;
431 * It is safe to dereference the fd table without RCU or
432 * ->file_lock because this is the last reference to the
433 * files structure.
435 fdt = files_fdtable(files);
436 for (;;) {
437 unsigned long set;
438 i = j * __NFDBITS;
439 if (i >= fdt->max_fdset || i >= fdt->max_fds)
440 break;
441 set = fdt->open_fds->fds_bits[j++];
442 while (set) {
443 if (set & 1) {
444 struct file * file = xchg(&fdt->fd[i], NULL);
445 if (file)
446 filp_close(file, files);
448 i++;
449 set >>= 1;
454 struct files_struct *get_files_struct(struct task_struct *task)
456 struct files_struct *files;
458 task_lock(task);
459 files = task->files;
460 if (files)
461 atomic_inc(&files->count);
462 task_unlock(task);
464 return files;
467 void fastcall put_files_struct(struct files_struct *files)
469 struct fdtable *fdt;
471 if (atomic_dec_and_test(&files->count)) {
472 close_files(files);
474 * Free the fd and fdset arrays if we expanded them.
475 * If the fdtable was embedded, pass files for freeing
476 * at the end of the RCU grace period. Otherwise,
477 * you can free files immediately.
479 fdt = files_fdtable(files);
480 if (fdt == &files->fdtab)
481 fdt->free_files = files;
482 else
483 kmem_cache_free(files_cachep, files);
484 free_fdtable(fdt);
488 EXPORT_SYMBOL(put_files_struct);
490 static inline void __exit_files(struct task_struct *tsk)
492 struct files_struct * files = tsk->files;
494 if (files) {
495 task_lock(tsk);
496 tsk->files = NULL;
497 task_unlock(tsk);
498 put_files_struct(files);
502 void exit_files(struct task_struct *tsk)
504 __exit_files(tsk);
507 static inline void __put_fs_struct(struct fs_struct *fs)
509 /* No need to hold fs->lock if we are killing it */
510 if (atomic_dec_and_test(&fs->count)) {
511 dput(fs->root);
512 mntput(fs->rootmnt);
513 dput(fs->pwd);
514 mntput(fs->pwdmnt);
515 if (fs->altroot) {
516 dput(fs->altroot);
517 mntput(fs->altrootmnt);
519 kmem_cache_free(fs_cachep, fs);
523 void put_fs_struct(struct fs_struct *fs)
525 __put_fs_struct(fs);
528 static inline void __exit_fs(struct task_struct *tsk)
530 struct fs_struct * fs = tsk->fs;
532 if (fs) {
533 task_lock(tsk);
534 tsk->fs = NULL;
535 task_unlock(tsk);
536 __put_fs_struct(fs);
540 void exit_fs(struct task_struct *tsk)
542 __exit_fs(tsk);
545 EXPORT_SYMBOL_GPL(exit_fs);
548 * Turn us into a lazy TLB process if we
549 * aren't already..
551 static void exit_mm(struct task_struct * tsk)
553 struct mm_struct *mm = tsk->mm;
555 mm_release(tsk, mm);
556 if (!mm)
557 return;
559 * Serialize with any possible pending coredump.
560 * We must hold mmap_sem around checking core_waiters
561 * and clearing tsk->mm. The core-inducing thread
562 * will increment core_waiters for each thread in the
563 * group with ->mm != NULL.
565 down_read(&mm->mmap_sem);
566 if (mm->core_waiters) {
567 up_read(&mm->mmap_sem);
568 down_write(&mm->mmap_sem);
569 if (!--mm->core_waiters)
570 complete(mm->core_startup_done);
571 up_write(&mm->mmap_sem);
573 wait_for_completion(&mm->core_done);
574 down_read(&mm->mmap_sem);
576 atomic_inc(&mm->mm_count);
577 BUG_ON(mm != tsk->active_mm);
578 /* more a memory barrier than a real lock */
579 task_lock(tsk);
580 tsk->mm = NULL;
581 up_read(&mm->mmap_sem);
582 enter_lazy_tlb(mm, current);
583 task_unlock(tsk);
584 mmput(mm);
587 static inline void
588 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
591 * Make sure we're not reparenting to ourselves and that
592 * the parent is not a zombie.
594 BUG_ON(p == reaper || reaper->exit_state);
595 p->real_parent = reaper;
598 static void
599 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
601 /* We don't want people slaying init. */
602 if (p->exit_signal != -1)
603 p->exit_signal = SIGCHLD;
605 if (p->pdeath_signal)
606 /* We already hold the tasklist_lock here. */
607 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
609 /* Move the child from its dying parent to the new one. */
610 if (unlikely(traced)) {
611 /* Preserve ptrace links if someone else is tracing this child. */
612 list_del_init(&p->ptrace_list);
613 if (p->parent != p->real_parent)
614 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
615 } else {
616 /* If this child is being traced, then we're the one tracing it
617 * anyway, so let go of it.
619 p->ptrace = 0;
620 remove_parent(p);
621 p->parent = p->real_parent;
622 add_parent(p);
624 /* If we'd notified the old parent about this child's death,
625 * also notify the new parent.
627 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
628 thread_group_empty(p))
629 do_notify_parent(p, p->exit_signal);
630 else if (p->state == TASK_TRACED) {
632 * If it was at a trace stop, turn it into
633 * a normal stop since it's no longer being
634 * traced.
636 ptrace_untrace(p);
641 * process group orphan check
642 * Case ii: Our child is in a different pgrp
643 * than we are, and it was the only connection
644 * outside, so the child pgrp is now orphaned.
646 if ((process_group(p) != process_group(father)) &&
647 (p->signal->session == father->signal->session)) {
648 int pgrp = process_group(p);
650 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
651 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
652 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
658 * When we die, we re-parent all our children.
659 * Try to give them to another thread in our thread
660 * group, and if no such member exists, give it to
661 * the global child reaper process (ie "init")
663 static void
664 forget_original_parent(struct task_struct *father, struct list_head *to_release)
666 struct task_struct *p, *reaper = father;
667 struct list_head *_p, *_n;
669 do {
670 reaper = next_thread(reaper);
671 if (reaper == father) {
672 reaper = child_reaper;
673 break;
675 } while (reaper->exit_state);
678 * There are only two places where our children can be:
680 * - in our child list
681 * - in our ptraced child list
683 * Search them and reparent children.
685 list_for_each_safe(_p, _n, &father->children) {
686 int ptrace;
687 p = list_entry(_p, struct task_struct, sibling);
689 ptrace = p->ptrace;
691 /* if father isn't the real parent, then ptrace must be enabled */
692 BUG_ON(father != p->real_parent && !ptrace);
694 if (father == p->real_parent) {
695 /* reparent with a reaper, real father it's us */
696 choose_new_parent(p, reaper);
697 reparent_thread(p, father, 0);
698 } else {
699 /* reparent ptraced task to its real parent */
700 __ptrace_unlink (p);
701 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
702 thread_group_empty(p))
703 do_notify_parent(p, p->exit_signal);
707 * if the ptraced child is a zombie with exit_signal == -1
708 * we must collect it before we exit, or it will remain
709 * zombie forever since we prevented it from self-reap itself
710 * while it was being traced by us, to be able to see it in wait4.
712 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
713 list_add(&p->ptrace_list, to_release);
715 list_for_each_safe(_p, _n, &father->ptrace_children) {
716 p = list_entry(_p, struct task_struct, ptrace_list);
717 choose_new_parent(p, reaper);
718 reparent_thread(p, father, 1);
723 * Send signals to all our closest relatives so that they know
724 * to properly mourn us..
726 static void exit_notify(struct task_struct *tsk)
728 int state;
729 struct task_struct *t;
730 struct list_head ptrace_dead, *_p, *_n;
732 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
733 && !thread_group_empty(tsk)) {
735 * This occurs when there was a race between our exit
736 * syscall and a group signal choosing us as the one to
737 * wake up. It could be that we are the only thread
738 * alerted to check for pending signals, but another thread
739 * should be woken now to take the signal since we will not.
740 * Now we'll wake all the threads in the group just to make
741 * sure someone gets all the pending signals.
743 read_lock(&tasklist_lock);
744 spin_lock_irq(&tsk->sighand->siglock);
745 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
746 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
747 recalc_sigpending_tsk(t);
748 if (signal_pending(t))
749 signal_wake_up(t, 0);
751 spin_unlock_irq(&tsk->sighand->siglock);
752 read_unlock(&tasklist_lock);
755 write_lock_irq(&tasklist_lock);
758 * This does two things:
760 * A. Make init inherit all the child processes
761 * B. Check to see if any process groups have become orphaned
762 * as a result of our exiting, and if they have any stopped
763 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
766 INIT_LIST_HEAD(&ptrace_dead);
767 forget_original_parent(tsk, &ptrace_dead);
768 BUG_ON(!list_empty(&tsk->children));
769 BUG_ON(!list_empty(&tsk->ptrace_children));
772 * Check to see if any process groups have become orphaned
773 * as a result of our exiting, and if they have any stopped
774 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
776 * Case i: Our father is in a different pgrp than we are
777 * and we were the only connection outside, so our pgrp
778 * is about to become orphaned.
781 t = tsk->real_parent;
783 if ((process_group(t) != process_group(tsk)) &&
784 (t->signal->session == tsk->signal->session) &&
785 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
786 has_stopped_jobs(process_group(tsk))) {
787 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
788 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
791 /* Let father know we died
793 * Thread signals are configurable, but you aren't going to use
794 * that to send signals to arbitary processes.
795 * That stops right now.
797 * If the parent exec id doesn't match the exec id we saved
798 * when we started then we know the parent has changed security
799 * domain.
801 * If our self_exec id doesn't match our parent_exec_id then
802 * we have changed execution domain as these two values started
803 * the same after a fork.
807 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
808 ( tsk->parent_exec_id != t->self_exec_id ||
809 tsk->self_exec_id != tsk->parent_exec_id)
810 && !capable(CAP_KILL))
811 tsk->exit_signal = SIGCHLD;
814 /* If something other than our normal parent is ptracing us, then
815 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
816 * only has special meaning to our real parent.
818 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
819 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
820 do_notify_parent(tsk, signal);
821 } else if (tsk->ptrace) {
822 do_notify_parent(tsk, SIGCHLD);
825 state = EXIT_ZOMBIE;
826 if (tsk->exit_signal == -1 &&
827 (likely(tsk->ptrace == 0) ||
828 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
829 state = EXIT_DEAD;
830 tsk->exit_state = state;
832 write_unlock_irq(&tasklist_lock);
834 list_for_each_safe(_p, _n, &ptrace_dead) {
835 list_del_init(_p);
836 t = list_entry(_p, struct task_struct, ptrace_list);
837 release_task(t);
840 /* If the process is dead, release it - nobody will wait for it */
841 if (state == EXIT_DEAD)
842 release_task(tsk);
845 fastcall NORET_TYPE void do_exit(long code)
847 struct task_struct *tsk = current;
848 struct taskstats *tidstats;
849 int group_dead;
850 unsigned int mycpu;
852 profile_task_exit(tsk);
854 WARN_ON(atomic_read(&tsk->fs_excl));
856 if (unlikely(in_interrupt()))
857 panic("Aiee, killing interrupt handler!");
858 if (unlikely(!tsk->pid))
859 panic("Attempted to kill the idle task!");
860 if (unlikely(tsk == child_reaper))
861 panic("Attempted to kill init!");
863 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
864 current->ptrace_message = code;
865 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
869 * We're taking recursive faults here in do_exit. Safest is to just
870 * leave this task alone and wait for reboot.
872 if (unlikely(tsk->flags & PF_EXITING)) {
873 printk(KERN_ALERT
874 "Fixing recursive fault but reboot is needed!\n");
875 if (tsk->io_context)
876 exit_io_context();
877 set_current_state(TASK_UNINTERRUPTIBLE);
878 schedule();
881 tsk->flags |= PF_EXITING;
883 if (unlikely(in_atomic()))
884 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
885 current->comm, current->pid,
886 preempt_count());
888 taskstats_exit_alloc(&tidstats, &mycpu);
890 acct_update_integrals(tsk);
891 if (tsk->mm) {
892 update_hiwater_rss(tsk->mm);
893 update_hiwater_vm(tsk->mm);
895 group_dead = atomic_dec_and_test(&tsk->signal->live);
896 if (group_dead) {
897 hrtimer_cancel(&tsk->signal->real_timer);
898 exit_itimers(tsk->signal);
900 acct_collect(code, group_dead);
901 if (unlikely(tsk->robust_list))
902 exit_robust_list(tsk);
903 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
904 if (unlikely(tsk->compat_robust_list))
905 compat_exit_robust_list(tsk);
906 #endif
907 if (unlikely(tsk->audit_context))
908 audit_free(tsk);
909 taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
910 taskstats_exit_free(tidstats);
911 delayacct_tsk_exit(tsk);
913 exit_mm(tsk);
915 if (group_dead)
916 acct_process();
917 exit_sem(tsk);
918 __exit_files(tsk);
919 __exit_fs(tsk);
920 exit_namespace(tsk);
921 exit_thread();
922 cpuset_exit(tsk);
923 exit_keys(tsk);
925 if (group_dead && tsk->signal->leader)
926 disassociate_ctty(1);
928 module_put(task_thread_info(tsk)->exec_domain->module);
929 if (tsk->binfmt)
930 module_put(tsk->binfmt->module);
932 tsk->exit_code = code;
933 proc_exit_connector(tsk);
934 exit_notify(tsk);
935 #ifdef CONFIG_NUMA
936 mpol_free(tsk->mempolicy);
937 tsk->mempolicy = NULL;
938 #endif
940 * This must happen late, after the PID is not
941 * hashed anymore:
943 if (unlikely(!list_empty(&tsk->pi_state_list)))
944 exit_pi_state_list(tsk);
945 if (unlikely(current->pi_state_cache))
946 kfree(current->pi_state_cache);
948 * Make sure we are holding no locks:
950 debug_check_no_locks_held(tsk);
952 if (tsk->io_context)
953 exit_io_context();
955 if (tsk->splice_pipe)
956 __free_pipe_info(tsk->splice_pipe);
958 /* PF_DEAD causes final put_task_struct after we schedule. */
959 preempt_disable();
960 BUG_ON(tsk->flags & PF_DEAD);
961 tsk->flags |= PF_DEAD;
963 schedule();
964 BUG();
965 /* Avoid "noreturn function does return". */
966 for (;;) ;
969 EXPORT_SYMBOL_GPL(do_exit);
971 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
973 if (comp)
974 complete(comp);
976 do_exit(code);
979 EXPORT_SYMBOL(complete_and_exit);
981 asmlinkage long sys_exit(int error_code)
983 do_exit((error_code&0xff)<<8);
987 * Take down every thread in the group. This is called by fatal signals
988 * as well as by sys_exit_group (below).
990 NORET_TYPE void
991 do_group_exit(int exit_code)
993 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
995 if (current->signal->flags & SIGNAL_GROUP_EXIT)
996 exit_code = current->signal->group_exit_code;
997 else if (!thread_group_empty(current)) {
998 struct signal_struct *const sig = current->signal;
999 struct sighand_struct *const sighand = current->sighand;
1000 spin_lock_irq(&sighand->siglock);
1001 if (sig->flags & SIGNAL_GROUP_EXIT)
1002 /* Another thread got here before we took the lock. */
1003 exit_code = sig->group_exit_code;
1004 else {
1005 sig->group_exit_code = exit_code;
1006 zap_other_threads(current);
1008 spin_unlock_irq(&sighand->siglock);
1011 do_exit(exit_code);
1012 /* NOTREACHED */
1016 * this kills every thread in the thread group. Note that any externally
1017 * wait4()-ing process will get the correct exit code - even if this
1018 * thread is not the thread group leader.
1020 asmlinkage void sys_exit_group(int error_code)
1022 do_group_exit((error_code & 0xff) << 8);
1025 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1027 if (pid > 0) {
1028 if (p->pid != pid)
1029 return 0;
1030 } else if (!pid) {
1031 if (process_group(p) != process_group(current))
1032 return 0;
1033 } else if (pid != -1) {
1034 if (process_group(p) != -pid)
1035 return 0;
1039 * Do not consider detached threads that are
1040 * not ptraced:
1042 if (p->exit_signal == -1 && !p->ptrace)
1043 return 0;
1045 /* Wait for all children (clone and not) if __WALL is set;
1046 * otherwise, wait for clone children *only* if __WCLONE is
1047 * set; otherwise, wait for non-clone children *only*. (Note:
1048 * A "clone" child here is one that reports to its parent
1049 * using a signal other than SIGCHLD.) */
1050 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1051 && !(options & __WALL))
1052 return 0;
1054 * Do not consider thread group leaders that are
1055 * in a non-empty thread group:
1057 if (current->tgid != p->tgid && delay_group_leader(p))
1058 return 2;
1060 if (security_task_wait(p))
1061 return 0;
1063 return 1;
1066 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1067 int why, int status,
1068 struct siginfo __user *infop,
1069 struct rusage __user *rusagep)
1071 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1073 put_task_struct(p);
1074 if (!retval)
1075 retval = put_user(SIGCHLD, &infop->si_signo);
1076 if (!retval)
1077 retval = put_user(0, &infop->si_errno);
1078 if (!retval)
1079 retval = put_user((short)why, &infop->si_code);
1080 if (!retval)
1081 retval = put_user(pid, &infop->si_pid);
1082 if (!retval)
1083 retval = put_user(uid, &infop->si_uid);
1084 if (!retval)
1085 retval = put_user(status, &infop->si_status);
1086 if (!retval)
1087 retval = pid;
1088 return retval;
1092 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1093 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1094 * the lock and this task is uninteresting. If we return nonzero, we have
1095 * released the lock and the system call should return.
1097 static int wait_task_zombie(struct task_struct *p, int noreap,
1098 struct siginfo __user *infop,
1099 int __user *stat_addr, struct rusage __user *ru)
1101 unsigned long state;
1102 int retval;
1103 int status;
1105 if (unlikely(noreap)) {
1106 pid_t pid = p->pid;
1107 uid_t uid = p->uid;
1108 int exit_code = p->exit_code;
1109 int why, status;
1111 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1112 return 0;
1113 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1114 return 0;
1115 get_task_struct(p);
1116 read_unlock(&tasklist_lock);
1117 if ((exit_code & 0x7f) == 0) {
1118 why = CLD_EXITED;
1119 status = exit_code >> 8;
1120 } else {
1121 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1122 status = exit_code & 0x7f;
1124 return wait_noreap_copyout(p, pid, uid, why,
1125 status, infop, ru);
1129 * Try to move the task's state to DEAD
1130 * only one thread is allowed to do this:
1132 state = xchg(&p->exit_state, EXIT_DEAD);
1133 if (state != EXIT_ZOMBIE) {
1134 BUG_ON(state != EXIT_DEAD);
1135 return 0;
1137 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1139 * This can only happen in a race with a ptraced thread
1140 * dying on another processor.
1142 return 0;
1145 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1146 struct signal_struct *psig;
1147 struct signal_struct *sig;
1150 * The resource counters for the group leader are in its
1151 * own task_struct. Those for dead threads in the group
1152 * are in its signal_struct, as are those for the child
1153 * processes it has previously reaped. All these
1154 * accumulate in the parent's signal_struct c* fields.
1156 * We don't bother to take a lock here to protect these
1157 * p->signal fields, because they are only touched by
1158 * __exit_signal, which runs with tasklist_lock
1159 * write-locked anyway, and so is excluded here. We do
1160 * need to protect the access to p->parent->signal fields,
1161 * as other threads in the parent group can be right
1162 * here reaping other children at the same time.
1164 spin_lock_irq(&p->parent->sighand->siglock);
1165 psig = p->parent->signal;
1166 sig = p->signal;
1167 psig->cutime =
1168 cputime_add(psig->cutime,
1169 cputime_add(p->utime,
1170 cputime_add(sig->utime,
1171 sig->cutime)));
1172 psig->cstime =
1173 cputime_add(psig->cstime,
1174 cputime_add(p->stime,
1175 cputime_add(sig->stime,
1176 sig->cstime)));
1177 psig->cmin_flt +=
1178 p->min_flt + sig->min_flt + sig->cmin_flt;
1179 psig->cmaj_flt +=
1180 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1181 psig->cnvcsw +=
1182 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1183 psig->cnivcsw +=
1184 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1185 spin_unlock_irq(&p->parent->sighand->siglock);
1189 * Now we are sure this task is interesting, and no other
1190 * thread can reap it because we set its state to EXIT_DEAD.
1192 read_unlock(&tasklist_lock);
1194 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1195 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1196 ? p->signal->group_exit_code : p->exit_code;
1197 if (!retval && stat_addr)
1198 retval = put_user(status, stat_addr);
1199 if (!retval && infop)
1200 retval = put_user(SIGCHLD, &infop->si_signo);
1201 if (!retval && infop)
1202 retval = put_user(0, &infop->si_errno);
1203 if (!retval && infop) {
1204 int why;
1206 if ((status & 0x7f) == 0) {
1207 why = CLD_EXITED;
1208 status >>= 8;
1209 } else {
1210 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1211 status &= 0x7f;
1213 retval = put_user((short)why, &infop->si_code);
1214 if (!retval)
1215 retval = put_user(status, &infop->si_status);
1217 if (!retval && infop)
1218 retval = put_user(p->pid, &infop->si_pid);
1219 if (!retval && infop)
1220 retval = put_user(p->uid, &infop->si_uid);
1221 if (retval) {
1222 // TODO: is this safe?
1223 p->exit_state = EXIT_ZOMBIE;
1224 return retval;
1226 retval = p->pid;
1227 if (p->real_parent != p->parent) {
1228 write_lock_irq(&tasklist_lock);
1229 /* Double-check with lock held. */
1230 if (p->real_parent != p->parent) {
1231 __ptrace_unlink(p);
1232 // TODO: is this safe?
1233 p->exit_state = EXIT_ZOMBIE;
1235 * If this is not a detached task, notify the parent.
1236 * If it's still not detached after that, don't release
1237 * it now.
1239 if (p->exit_signal != -1) {
1240 do_notify_parent(p, p->exit_signal);
1241 if (p->exit_signal != -1)
1242 p = NULL;
1245 write_unlock_irq(&tasklist_lock);
1247 if (p != NULL)
1248 release_task(p);
1249 BUG_ON(!retval);
1250 return retval;
1254 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1255 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1256 * the lock and this task is uninteresting. If we return nonzero, we have
1257 * released the lock and the system call should return.
1259 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1260 int noreap, struct siginfo __user *infop,
1261 int __user *stat_addr, struct rusage __user *ru)
1263 int retval, exit_code;
1265 if (!p->exit_code)
1266 return 0;
1267 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1268 p->signal && p->signal->group_stop_count > 0)
1270 * A group stop is in progress and this is the group leader.
1271 * We won't report until all threads have stopped.
1273 return 0;
1276 * Now we are pretty sure this task is interesting.
1277 * Make sure it doesn't get reaped out from under us while we
1278 * give up the lock and then examine it below. We don't want to
1279 * keep holding onto the tasklist_lock while we call getrusage and
1280 * possibly take page faults for user memory.
1282 get_task_struct(p);
1283 read_unlock(&tasklist_lock);
1285 if (unlikely(noreap)) {
1286 pid_t pid = p->pid;
1287 uid_t uid = p->uid;
1288 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1290 exit_code = p->exit_code;
1291 if (unlikely(!exit_code) ||
1292 unlikely(p->state & TASK_TRACED))
1293 goto bail_ref;
1294 return wait_noreap_copyout(p, pid, uid,
1295 why, (exit_code << 8) | 0x7f,
1296 infop, ru);
1299 write_lock_irq(&tasklist_lock);
1302 * This uses xchg to be atomic with the thread resuming and setting
1303 * it. It must also be done with the write lock held to prevent a
1304 * race with the EXIT_ZOMBIE case.
1306 exit_code = xchg(&p->exit_code, 0);
1307 if (unlikely(p->exit_state)) {
1309 * The task resumed and then died. Let the next iteration
1310 * catch it in EXIT_ZOMBIE. Note that exit_code might
1311 * already be zero here if it resumed and did _exit(0).
1312 * The task itself is dead and won't touch exit_code again;
1313 * other processors in this function are locked out.
1315 p->exit_code = exit_code;
1316 exit_code = 0;
1318 if (unlikely(exit_code == 0)) {
1320 * Another thread in this function got to it first, or it
1321 * resumed, or it resumed and then died.
1323 write_unlock_irq(&tasklist_lock);
1324 bail_ref:
1325 put_task_struct(p);
1327 * We are returning to the wait loop without having successfully
1328 * removed the process and having released the lock. We cannot
1329 * continue, since the "p" task pointer is potentially stale.
1331 * Return -EAGAIN, and do_wait() will restart the loop from the
1332 * beginning. Do _not_ re-acquire the lock.
1334 return -EAGAIN;
1337 /* move to end of parent's list to avoid starvation */
1338 remove_parent(p);
1339 add_parent(p);
1341 write_unlock_irq(&tasklist_lock);
1343 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1344 if (!retval && stat_addr)
1345 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1346 if (!retval && infop)
1347 retval = put_user(SIGCHLD, &infop->si_signo);
1348 if (!retval && infop)
1349 retval = put_user(0, &infop->si_errno);
1350 if (!retval && infop)
1351 retval = put_user((short)((p->ptrace & PT_PTRACED)
1352 ? CLD_TRAPPED : CLD_STOPPED),
1353 &infop->si_code);
1354 if (!retval && infop)
1355 retval = put_user(exit_code, &infop->si_status);
1356 if (!retval && infop)
1357 retval = put_user(p->pid, &infop->si_pid);
1358 if (!retval && infop)
1359 retval = put_user(p->uid, &infop->si_uid);
1360 if (!retval)
1361 retval = p->pid;
1362 put_task_struct(p);
1364 BUG_ON(!retval);
1365 return retval;
1369 * Handle do_wait work for one task in a live, non-stopped state.
1370 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1371 * the lock and this task is uninteresting. If we return nonzero, we have
1372 * released the lock and the system call should return.
1374 static int wait_task_continued(struct task_struct *p, int noreap,
1375 struct siginfo __user *infop,
1376 int __user *stat_addr, struct rusage __user *ru)
1378 int retval;
1379 pid_t pid;
1380 uid_t uid;
1382 if (unlikely(!p->signal))
1383 return 0;
1385 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1386 return 0;
1388 spin_lock_irq(&p->sighand->siglock);
1389 /* Re-check with the lock held. */
1390 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1391 spin_unlock_irq(&p->sighand->siglock);
1392 return 0;
1394 if (!noreap)
1395 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1396 spin_unlock_irq(&p->sighand->siglock);
1398 pid = p->pid;
1399 uid = p->uid;
1400 get_task_struct(p);
1401 read_unlock(&tasklist_lock);
1403 if (!infop) {
1404 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1405 put_task_struct(p);
1406 if (!retval && stat_addr)
1407 retval = put_user(0xffff, stat_addr);
1408 if (!retval)
1409 retval = p->pid;
1410 } else {
1411 retval = wait_noreap_copyout(p, pid, uid,
1412 CLD_CONTINUED, SIGCONT,
1413 infop, ru);
1414 BUG_ON(retval == 0);
1417 return retval;
1421 static inline int my_ptrace_child(struct task_struct *p)
1423 if (!(p->ptrace & PT_PTRACED))
1424 return 0;
1425 if (!(p->ptrace & PT_ATTACHED))
1426 return 1;
1428 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1429 * we are the attacher. If we are the real parent, this is a race
1430 * inside ptrace_attach. It is waiting for the tasklist_lock,
1431 * which we have to switch the parent links, but has already set
1432 * the flags in p->ptrace.
1434 return (p->parent != p->real_parent);
1437 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1438 int __user *stat_addr, struct rusage __user *ru)
1440 DECLARE_WAITQUEUE(wait, current);
1441 struct task_struct *tsk;
1442 int flag, retval;
1444 add_wait_queue(&current->signal->wait_chldexit,&wait);
1445 repeat:
1447 * We will set this flag if we see any child that might later
1448 * match our criteria, even if we are not able to reap it yet.
1450 flag = 0;
1451 current->state = TASK_INTERRUPTIBLE;
1452 read_lock(&tasklist_lock);
1453 tsk = current;
1454 do {
1455 struct task_struct *p;
1456 struct list_head *_p;
1457 int ret;
1459 list_for_each(_p,&tsk->children) {
1460 p = list_entry(_p, struct task_struct, sibling);
1462 ret = eligible_child(pid, options, p);
1463 if (!ret)
1464 continue;
1466 switch (p->state) {
1467 case TASK_TRACED:
1469 * When we hit the race with PTRACE_ATTACH,
1470 * we will not report this child. But the
1471 * race means it has not yet been moved to
1472 * our ptrace_children list, so we need to
1473 * set the flag here to avoid a spurious ECHILD
1474 * when the race happens with the only child.
1476 flag = 1;
1477 if (!my_ptrace_child(p))
1478 continue;
1479 /*FALLTHROUGH*/
1480 case TASK_STOPPED:
1482 * It's stopped now, so it might later
1483 * continue, exit, or stop again.
1485 flag = 1;
1486 if (!(options & WUNTRACED) &&
1487 !my_ptrace_child(p))
1488 continue;
1489 retval = wait_task_stopped(p, ret == 2,
1490 (options & WNOWAIT),
1491 infop,
1492 stat_addr, ru);
1493 if (retval == -EAGAIN)
1494 goto repeat;
1495 if (retval != 0) /* He released the lock. */
1496 goto end;
1497 break;
1498 default:
1499 // case EXIT_DEAD:
1500 if (p->exit_state == EXIT_DEAD)
1501 continue;
1502 // case EXIT_ZOMBIE:
1503 if (p->exit_state == EXIT_ZOMBIE) {
1505 * Eligible but we cannot release
1506 * it yet:
1508 if (ret == 2)
1509 goto check_continued;
1510 if (!likely(options & WEXITED))
1511 continue;
1512 retval = wait_task_zombie(
1513 p, (options & WNOWAIT),
1514 infop, stat_addr, ru);
1515 /* He released the lock. */
1516 if (retval != 0)
1517 goto end;
1518 break;
1520 check_continued:
1522 * It's running now, so it might later
1523 * exit, stop, or stop and then continue.
1525 flag = 1;
1526 if (!unlikely(options & WCONTINUED))
1527 continue;
1528 retval = wait_task_continued(
1529 p, (options & WNOWAIT),
1530 infop, stat_addr, ru);
1531 if (retval != 0) /* He released the lock. */
1532 goto end;
1533 break;
1536 if (!flag) {
1537 list_for_each(_p, &tsk->ptrace_children) {
1538 p = list_entry(_p, struct task_struct,
1539 ptrace_list);
1540 if (!eligible_child(pid, options, p))
1541 continue;
1542 flag = 1;
1543 break;
1546 if (options & __WNOTHREAD)
1547 break;
1548 tsk = next_thread(tsk);
1549 BUG_ON(tsk->signal != current->signal);
1550 } while (tsk != current);
1552 read_unlock(&tasklist_lock);
1553 if (flag) {
1554 retval = 0;
1555 if (options & WNOHANG)
1556 goto end;
1557 retval = -ERESTARTSYS;
1558 if (signal_pending(current))
1559 goto end;
1560 schedule();
1561 goto repeat;
1563 retval = -ECHILD;
1564 end:
1565 current->state = TASK_RUNNING;
1566 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1567 if (infop) {
1568 if (retval > 0)
1569 retval = 0;
1570 else {
1572 * For a WNOHANG return, clear out all the fields
1573 * we would set so the user can easily tell the
1574 * difference.
1576 if (!retval)
1577 retval = put_user(0, &infop->si_signo);
1578 if (!retval)
1579 retval = put_user(0, &infop->si_errno);
1580 if (!retval)
1581 retval = put_user(0, &infop->si_code);
1582 if (!retval)
1583 retval = put_user(0, &infop->si_pid);
1584 if (!retval)
1585 retval = put_user(0, &infop->si_uid);
1586 if (!retval)
1587 retval = put_user(0, &infop->si_status);
1590 return retval;
1593 asmlinkage long sys_waitid(int which, pid_t pid,
1594 struct siginfo __user *infop, int options,
1595 struct rusage __user *ru)
1597 long ret;
1599 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1600 return -EINVAL;
1601 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1602 return -EINVAL;
1604 switch (which) {
1605 case P_ALL:
1606 pid = -1;
1607 break;
1608 case P_PID:
1609 if (pid <= 0)
1610 return -EINVAL;
1611 break;
1612 case P_PGID:
1613 if (pid <= 0)
1614 return -EINVAL;
1615 pid = -pid;
1616 break;
1617 default:
1618 return -EINVAL;
1621 ret = do_wait(pid, options, infop, NULL, ru);
1623 /* avoid REGPARM breakage on x86: */
1624 prevent_tail_call(ret);
1625 return ret;
1628 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1629 int options, struct rusage __user *ru)
1631 long ret;
1633 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1634 __WNOTHREAD|__WCLONE|__WALL))
1635 return -EINVAL;
1636 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1638 /* avoid REGPARM breakage on x86: */
1639 prevent_tail_call(ret);
1640 return ret;
1643 #ifdef __ARCH_WANT_SYS_WAITPID
1646 * sys_waitpid() remains for compatibility. waitpid() should be
1647 * implemented by calling sys_wait4() from libc.a.
1649 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1651 return sys_wait4(pid, stat_addr, options, NULL);
1654 #endif