[PATCH] mm: init_mm without ptlock
[linux-2.6.22.y-op.git] / arch / ppc64 / mm / init.c
bloba45584b3440c850ab288a16c69fbe893afe0f334
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
23 #include <linux/config.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
43 #include <asm/pgalloc.h>
44 #include <asm/page.h>
45 #include <asm/prom.h>
46 #include <asm/lmb.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu.h>
52 #include <asm/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/ppcdebug.h>
61 #include <asm/sections.h>
62 #include <asm/system.h>
63 #include <asm/iommu.h>
64 #include <asm/abs_addr.h>
65 #include <asm/vdso.h>
66 #include <asm/imalloc.h>
68 #if PGTABLE_RANGE > USER_VSID_RANGE
69 #warning Limited user VSID range means pagetable space is wasted
70 #endif
72 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
73 #warning TASK_SIZE is smaller than it needs to be.
74 #endif
76 int mem_init_done;
77 unsigned long ioremap_bot = IMALLOC_BASE;
78 static unsigned long phbs_io_bot = PHBS_IO_BASE;
80 extern pgd_t swapper_pg_dir[];
81 extern struct task_struct *current_set[NR_CPUS];
83 unsigned long klimit = (unsigned long)_end;
85 unsigned long _SDR1=0;
86 unsigned long _ASR=0;
88 /* max amount of RAM to use */
89 unsigned long __max_memory;
91 /* info on what we think the IO hole is */
92 unsigned long io_hole_start;
93 unsigned long io_hole_size;
95 void show_mem(void)
97 unsigned long total = 0, reserved = 0;
98 unsigned long shared = 0, cached = 0;
99 struct page *page;
100 pg_data_t *pgdat;
101 unsigned long i;
103 printk("Mem-info:\n");
104 show_free_areas();
105 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
106 for_each_pgdat(pgdat) {
107 for (i = 0; i < pgdat->node_spanned_pages; i++) {
108 page = pgdat_page_nr(pgdat, i);
109 total++;
110 if (PageReserved(page))
111 reserved++;
112 else if (PageSwapCache(page))
113 cached++;
114 else if (page_count(page))
115 shared += page_count(page) - 1;
118 printk("%ld pages of RAM\n", total);
119 printk("%ld reserved pages\n", reserved);
120 printk("%ld pages shared\n", shared);
121 printk("%ld pages swap cached\n", cached);
124 #ifdef CONFIG_PPC_ISERIES
126 void __iomem *ioremap(unsigned long addr, unsigned long size)
128 return (void __iomem *)addr;
131 extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
132 unsigned long flags)
134 return (void __iomem *)addr;
137 void iounmap(volatile void __iomem *addr)
139 return;
142 #else
145 * map_io_page currently only called by __ioremap
146 * map_io_page adds an entry to the ioremap page table
147 * and adds an entry to the HPT, possibly bolting it
149 static int map_io_page(unsigned long ea, unsigned long pa, int flags)
151 pgd_t *pgdp;
152 pud_t *pudp;
153 pmd_t *pmdp;
154 pte_t *ptep;
155 unsigned long vsid;
157 if (mem_init_done) {
158 pgdp = pgd_offset_k(ea);
159 pudp = pud_alloc(&init_mm, pgdp, ea);
160 if (!pudp)
161 return -ENOMEM;
162 pmdp = pmd_alloc(&init_mm, pudp, ea);
163 if (!pmdp)
164 return -ENOMEM;
165 ptep = pte_alloc_kernel(pmdp, ea);
166 if (!ptep)
167 return -ENOMEM;
168 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
169 __pgprot(flags)));
170 } else {
171 unsigned long va, vpn, hash, hpteg;
174 * If the mm subsystem is not fully up, we cannot create a
175 * linux page table entry for this mapping. Simply bolt an
176 * entry in the hardware page table.
178 vsid = get_kernel_vsid(ea);
179 va = (vsid << 28) | (ea & 0xFFFFFFF);
180 vpn = va >> PAGE_SHIFT;
182 hash = hpt_hash(vpn, 0);
184 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
186 /* Panic if a pte grpup is full */
187 if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT,
188 HPTE_V_BOLTED,
189 _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX)
190 == -1) {
191 panic("map_io_page: could not insert mapping");
194 return 0;
198 static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
199 unsigned long ea, unsigned long size,
200 unsigned long flags)
202 unsigned long i;
204 if ((flags & _PAGE_PRESENT) == 0)
205 flags |= pgprot_val(PAGE_KERNEL);
207 for (i = 0; i < size; i += PAGE_SIZE)
208 if (map_io_page(ea+i, pa+i, flags))
209 return NULL;
211 return (void __iomem *) (ea + (addr & ~PAGE_MASK));
215 void __iomem *
216 ioremap(unsigned long addr, unsigned long size)
218 return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
221 void __iomem * __ioremap(unsigned long addr, unsigned long size,
222 unsigned long flags)
224 unsigned long pa, ea;
225 void __iomem *ret;
228 * Choose an address to map it to.
229 * Once the imalloc system is running, we use it.
230 * Before that, we map using addresses going
231 * up from ioremap_bot. imalloc will use
232 * the addresses from ioremap_bot through
233 * IMALLOC_END
236 pa = addr & PAGE_MASK;
237 size = PAGE_ALIGN(addr + size) - pa;
239 if (size == 0)
240 return NULL;
242 if (mem_init_done) {
243 struct vm_struct *area;
244 area = im_get_free_area(size);
245 if (area == NULL)
246 return NULL;
247 ea = (unsigned long)(area->addr);
248 ret = __ioremap_com(addr, pa, ea, size, flags);
249 if (!ret)
250 im_free(area->addr);
251 } else {
252 ea = ioremap_bot;
253 ret = __ioremap_com(addr, pa, ea, size, flags);
254 if (ret)
255 ioremap_bot += size;
257 return ret;
260 #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
262 int __ioremap_explicit(unsigned long pa, unsigned long ea,
263 unsigned long size, unsigned long flags)
265 struct vm_struct *area;
266 void __iomem *ret;
268 /* For now, require page-aligned values for pa, ea, and size */
269 if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
270 !IS_PAGE_ALIGNED(size)) {
271 printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
272 return 1;
275 if (!mem_init_done) {
276 /* Two things to consider in this case:
277 * 1) No records will be kept (imalloc, etc) that the region
278 * has been remapped
279 * 2) It won't be easy to iounmap() the region later (because
280 * of 1)
283 } else {
284 area = im_get_area(ea, size,
285 IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
286 if (area == NULL) {
287 /* Expected when PHB-dlpar is in play */
288 return 1;
290 if (ea != (unsigned long) area->addr) {
291 printk(KERN_ERR "unexpected addr return from "
292 "im_get_area\n");
293 return 1;
297 ret = __ioremap_com(pa, pa, ea, size, flags);
298 if (ret == NULL) {
299 printk(KERN_ERR "ioremap_explicit() allocation failure !\n");
300 return 1;
302 if (ret != (void *) ea) {
303 printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
304 return 1;
307 return 0;
311 * Unmap an IO region and remove it from imalloc'd list.
312 * Access to IO memory should be serialized by driver.
313 * This code is modeled after vmalloc code - unmap_vm_area()
315 * XXX what about calls before mem_init_done (ie python_countermeasures())
317 void iounmap(volatile void __iomem *token)
319 void *addr;
321 if (!mem_init_done)
322 return;
324 addr = (void *) ((unsigned long __force) token & PAGE_MASK);
326 im_free(addr);
329 static int iounmap_subset_regions(unsigned long addr, unsigned long size)
331 struct vm_struct *area;
333 /* Check whether subsets of this region exist */
334 area = im_get_area(addr, size, IM_REGION_SUPERSET);
335 if (area == NULL)
336 return 1;
338 while (area) {
339 iounmap((void __iomem *) area->addr);
340 area = im_get_area(addr, size,
341 IM_REGION_SUPERSET);
344 return 0;
347 int iounmap_explicit(volatile void __iomem *start, unsigned long size)
349 struct vm_struct *area;
350 unsigned long addr;
351 int rc;
353 addr = (unsigned long __force) start & PAGE_MASK;
355 /* Verify that the region either exists or is a subset of an existing
356 * region. In the latter case, split the parent region to create
357 * the exact region
359 area = im_get_area(addr, size,
360 IM_REGION_EXISTS | IM_REGION_SUBSET);
361 if (area == NULL) {
362 /* Determine whether subset regions exist. If so, unmap */
363 rc = iounmap_subset_regions(addr, size);
364 if (rc) {
365 printk(KERN_ERR
366 "%s() cannot unmap nonexistent range 0x%lx\n",
367 __FUNCTION__, addr);
368 return 1;
370 } else {
371 iounmap((void __iomem *) area->addr);
374 * FIXME! This can't be right:
375 iounmap(area->addr);
376 * Maybe it should be "iounmap(area);"
378 return 0;
381 #endif
383 EXPORT_SYMBOL(ioremap);
384 EXPORT_SYMBOL(__ioremap);
385 EXPORT_SYMBOL(iounmap);
387 void free_initmem(void)
389 unsigned long addr;
391 addr = (unsigned long)__init_begin;
392 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
393 memset((void *)addr, 0xcc, PAGE_SIZE);
394 ClearPageReserved(virt_to_page(addr));
395 set_page_count(virt_to_page(addr), 1);
396 free_page(addr);
397 totalram_pages++;
399 printk ("Freeing unused kernel memory: %luk freed\n",
400 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
403 #ifdef CONFIG_BLK_DEV_INITRD
404 void free_initrd_mem(unsigned long start, unsigned long end)
406 if (start < end)
407 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
408 for (; start < end; start += PAGE_SIZE) {
409 ClearPageReserved(virt_to_page(start));
410 set_page_count(virt_to_page(start), 1);
411 free_page(start);
412 totalram_pages++;
415 #endif
417 static DEFINE_SPINLOCK(mmu_context_lock);
418 static DEFINE_IDR(mmu_context_idr);
420 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
422 int index;
423 int err;
425 again:
426 if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
427 return -ENOMEM;
429 spin_lock(&mmu_context_lock);
430 err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
431 spin_unlock(&mmu_context_lock);
433 if (err == -EAGAIN)
434 goto again;
435 else if (err)
436 return err;
438 if (index > MAX_CONTEXT) {
439 idr_remove(&mmu_context_idr, index);
440 return -ENOMEM;
443 mm->context.id = index;
445 return 0;
448 void destroy_context(struct mm_struct *mm)
450 spin_lock(&mmu_context_lock);
451 idr_remove(&mmu_context_idr, mm->context.id);
452 spin_unlock(&mmu_context_lock);
454 mm->context.id = NO_CONTEXT;
458 * Do very early mm setup.
460 void __init mm_init_ppc64(void)
462 #ifndef CONFIG_PPC_ISERIES
463 unsigned long i;
464 #endif
466 ppc64_boot_msg(0x100, "MM Init");
468 /* This is the story of the IO hole... please, keep seated,
469 * unfortunately, we are out of oxygen masks at the moment.
470 * So we need some rough way to tell where your big IO hole
471 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
472 * that area as well, on POWER4 we don't have one, etc...
473 * We need that as a "hint" when sizing the TCE table on POWER3
474 * So far, the simplest way that seem work well enough for us it
475 * to just assume that the first discontinuity in our physical
476 * RAM layout is the IO hole. That may not be correct in the future
477 * (and isn't on iSeries but then we don't care ;)
480 #ifndef CONFIG_PPC_ISERIES
481 for (i = 1; i < lmb.memory.cnt; i++) {
482 unsigned long base, prevbase, prevsize;
484 prevbase = lmb.memory.region[i-1].base;
485 prevsize = lmb.memory.region[i-1].size;
486 base = lmb.memory.region[i].base;
487 if (base > (prevbase + prevsize)) {
488 io_hole_start = prevbase + prevsize;
489 io_hole_size = base - (prevbase + prevsize);
490 break;
493 #endif /* CONFIG_PPC_ISERIES */
494 if (io_hole_start)
495 printk("IO Hole assumed to be %lx -> %lx\n",
496 io_hole_start, io_hole_start + io_hole_size - 1);
498 ppc64_boot_msg(0x100, "MM Init Done");
502 * This is called by /dev/mem to know if a given address has to
503 * be mapped non-cacheable or not
505 int page_is_ram(unsigned long pfn)
507 int i;
508 unsigned long paddr = (pfn << PAGE_SHIFT);
510 for (i=0; i < lmb.memory.cnt; i++) {
511 unsigned long base;
513 base = lmb.memory.region[i].base;
515 if ((paddr >= base) &&
516 (paddr < (base + lmb.memory.region[i].size))) {
517 return 1;
521 return 0;
523 EXPORT_SYMBOL(page_is_ram);
526 * Initialize the bootmem system and give it all the memory we
527 * have available.
529 #ifndef CONFIG_NEED_MULTIPLE_NODES
530 void __init do_init_bootmem(void)
532 unsigned long i;
533 unsigned long start, bootmap_pages;
534 unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
535 int boot_mapsize;
538 * Find an area to use for the bootmem bitmap. Calculate the size of
539 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
540 * Add 1 additional page in case the address isn't page-aligned.
542 bootmap_pages = bootmem_bootmap_pages(total_pages);
544 start = lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
545 BUG_ON(!start);
547 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
549 max_pfn = max_low_pfn;
551 /* Add all physical memory to the bootmem map, mark each area
552 * present.
554 for (i=0; i < lmb.memory.cnt; i++)
555 free_bootmem(lmb.memory.region[i].base,
556 lmb_size_bytes(&lmb.memory, i));
558 /* reserve the sections we're already using */
559 for (i=0; i < lmb.reserved.cnt; i++)
560 reserve_bootmem(lmb.reserved.region[i].base,
561 lmb_size_bytes(&lmb.reserved, i));
563 for (i=0; i < lmb.memory.cnt; i++)
564 memory_present(0, lmb_start_pfn(&lmb.memory, i),
565 lmb_end_pfn(&lmb.memory, i));
569 * paging_init() sets up the page tables - in fact we've already done this.
571 void __init paging_init(void)
573 unsigned long zones_size[MAX_NR_ZONES];
574 unsigned long zholes_size[MAX_NR_ZONES];
575 unsigned long total_ram = lmb_phys_mem_size();
576 unsigned long top_of_ram = lmb_end_of_DRAM();
578 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
579 top_of_ram, total_ram);
580 printk(KERN_INFO "Memory hole size: %ldMB\n",
581 (top_of_ram - total_ram) >> 20);
583 * All pages are DMA-able so we put them all in the DMA zone.
585 memset(zones_size, 0, sizeof(zones_size));
586 memset(zholes_size, 0, sizeof(zholes_size));
588 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
589 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
591 free_area_init_node(0, NODE_DATA(0), zones_size,
592 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
594 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
596 static struct kcore_list kcore_vmem;
598 static int __init setup_kcore(void)
600 int i;
602 for (i=0; i < lmb.memory.cnt; i++) {
603 unsigned long base, size;
604 struct kcore_list *kcore_mem;
606 base = lmb.memory.region[i].base;
607 size = lmb.memory.region[i].size;
609 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
610 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
611 if (!kcore_mem)
612 panic("mem_init: kmalloc failed\n");
614 kclist_add(kcore_mem, __va(base), size);
617 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
619 return 0;
621 module_init(setup_kcore);
623 void __init mem_init(void)
625 #ifdef CONFIG_NEED_MULTIPLE_NODES
626 int nid;
627 #endif
628 pg_data_t *pgdat;
629 unsigned long i;
630 struct page *page;
631 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
633 num_physpages = max_low_pfn; /* RAM is assumed contiguous */
634 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
636 #ifdef CONFIG_NEED_MULTIPLE_NODES
637 for_each_online_node(nid) {
638 if (NODE_DATA(nid)->node_spanned_pages != 0) {
639 printk("freeing bootmem node %x\n", nid);
640 totalram_pages +=
641 free_all_bootmem_node(NODE_DATA(nid));
644 #else
645 max_mapnr = num_physpages;
646 totalram_pages += free_all_bootmem();
647 #endif
649 for_each_pgdat(pgdat) {
650 for (i = 0; i < pgdat->node_spanned_pages; i++) {
651 page = pgdat_page_nr(pgdat, i);
652 if (PageReserved(page))
653 reservedpages++;
657 codesize = (unsigned long)&_etext - (unsigned long)&_stext;
658 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
659 datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
660 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
662 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
663 "%luk reserved, %luk data, %luk bss, %luk init)\n",
664 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
665 num_physpages << (PAGE_SHIFT-10),
666 codesize >> 10,
667 reservedpages << (PAGE_SHIFT-10),
668 datasize >> 10,
669 bsssize >> 10,
670 initsize >> 10);
672 mem_init_done = 1;
674 /* Initialize the vDSO */
675 vdso_init();
679 * This is called when a page has been modified by the kernel.
680 * It just marks the page as not i-cache clean. We do the i-cache
681 * flush later when the page is given to a user process, if necessary.
683 void flush_dcache_page(struct page *page)
685 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
686 return;
687 /* avoid an atomic op if possible */
688 if (test_bit(PG_arch_1, &page->flags))
689 clear_bit(PG_arch_1, &page->flags);
691 EXPORT_SYMBOL(flush_dcache_page);
693 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
695 clear_page(page);
697 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
698 return;
700 * We shouldnt have to do this, but some versions of glibc
701 * require it (ld.so assumes zero filled pages are icache clean)
702 * - Anton
705 /* avoid an atomic op if possible */
706 if (test_bit(PG_arch_1, &pg->flags))
707 clear_bit(PG_arch_1, &pg->flags);
709 EXPORT_SYMBOL(clear_user_page);
711 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
712 struct page *pg)
714 copy_page(vto, vfrom);
717 * We should be able to use the following optimisation, however
718 * there are two problems.
719 * Firstly a bug in some versions of binutils meant PLT sections
720 * were not marked executable.
721 * Secondly the first word in the GOT section is blrl, used
722 * to establish the GOT address. Until recently the GOT was
723 * not marked executable.
724 * - Anton
726 #if 0
727 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
728 return;
729 #endif
731 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
732 return;
734 /* avoid an atomic op if possible */
735 if (test_bit(PG_arch_1, &pg->flags))
736 clear_bit(PG_arch_1, &pg->flags);
739 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
740 unsigned long addr, int len)
742 unsigned long maddr;
744 maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
745 flush_icache_range(maddr, maddr + len);
747 EXPORT_SYMBOL(flush_icache_user_range);
750 * This is called at the end of handling a user page fault, when the
751 * fault has been handled by updating a PTE in the linux page tables.
752 * We use it to preload an HPTE into the hash table corresponding to
753 * the updated linux PTE.
755 * This must always be called with the mm->page_table_lock held
757 void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
758 pte_t pte)
760 unsigned long vsid;
761 void *pgdir;
762 pte_t *ptep;
763 int local = 0;
764 cpumask_t tmp;
765 unsigned long flags;
767 /* handle i-cache coherency */
768 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
769 !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
770 unsigned long pfn = pte_pfn(pte);
771 if (pfn_valid(pfn)) {
772 struct page *page = pfn_to_page(pfn);
773 if (!PageReserved(page)
774 && !test_bit(PG_arch_1, &page->flags)) {
775 __flush_dcache_icache(page_address(page));
776 set_bit(PG_arch_1, &page->flags);
781 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
782 if (!pte_young(pte))
783 return;
785 pgdir = vma->vm_mm->pgd;
786 if (pgdir == NULL)
787 return;
789 ptep = find_linux_pte(pgdir, ea);
790 if (!ptep)
791 return;
793 vsid = get_vsid(vma->vm_mm->context.id, ea);
795 local_irq_save(flags);
796 tmp = cpumask_of_cpu(smp_processor_id());
797 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
798 local = 1;
800 __hash_page(ea, 0, vsid, ptep, 0x300, local);
801 local_irq_restore(flags);
804 void __iomem * reserve_phb_iospace(unsigned long size)
806 void __iomem *virt_addr;
808 if (phbs_io_bot >= IMALLOC_BASE)
809 panic("reserve_phb_iospace(): phb io space overflow\n");
811 virt_addr = (void __iomem *) phbs_io_bot;
812 phbs_io_bot += size;
814 return virt_addr;
817 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
819 memset(addr, 0, kmem_cache_size(cache));
822 static const int pgtable_cache_size[2] = {
823 PTE_TABLE_SIZE, PMD_TABLE_SIZE
825 static const char *pgtable_cache_name[ARRAY_SIZE(pgtable_cache_size)] = {
826 "pgd_pte_cache", "pud_pmd_cache",
829 kmem_cache_t *pgtable_cache[ARRAY_SIZE(pgtable_cache_size)];
831 void pgtable_cache_init(void)
833 int i;
835 BUILD_BUG_ON(PTE_TABLE_SIZE != pgtable_cache_size[PTE_CACHE_NUM]);
836 BUILD_BUG_ON(PMD_TABLE_SIZE != pgtable_cache_size[PMD_CACHE_NUM]);
837 BUILD_BUG_ON(PUD_TABLE_SIZE != pgtable_cache_size[PUD_CACHE_NUM]);
838 BUILD_BUG_ON(PGD_TABLE_SIZE != pgtable_cache_size[PGD_CACHE_NUM]);
840 for (i = 0; i < ARRAY_SIZE(pgtable_cache_size); i++) {
841 int size = pgtable_cache_size[i];
842 const char *name = pgtable_cache_name[i];
844 pgtable_cache[i] = kmem_cache_create(name,
845 size, size,
846 SLAB_HWCACHE_ALIGN
847 | SLAB_MUST_HWCACHE_ALIGN,
848 zero_ctor,
849 NULL);
850 if (! pgtable_cache[i])
851 panic("pgtable_cache_init(): could not create %s!\n",
852 name);
856 pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
857 unsigned long size, pgprot_t vma_prot)
859 if (ppc_md.phys_mem_access_prot)
860 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
862 if (!page_is_ram(addr >> PAGE_SHIFT))
863 vma_prot = __pgprot(pgprot_val(vma_prot)
864 | _PAGE_GUARDED | _PAGE_NO_CACHE);
865 return vma_prot;
867 EXPORT_SYMBOL(phys_mem_access_prot);