4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr
;
66 EXPORT_SYMBOL(max_mapnr
);
67 EXPORT_SYMBOL(mem_map
);
70 unsigned long num_physpages
;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 unsigned long vmalloc_earlyreserve
;
81 EXPORT_SYMBOL(num_physpages
);
82 EXPORT_SYMBOL(high_memory
);
83 EXPORT_SYMBOL(vmalloc_earlyreserve
);
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
91 void pgd_clear_bad(pgd_t
*pgd
)
97 void pud_clear_bad(pud_t
*pud
)
103 void pmd_clear_bad(pmd_t
*pmd
)
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
113 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
115 struct page
*page
= pmd_page(*pmd
);
117 pte_free_tlb(tlb
, page
);
118 dec_page_state(nr_page_table_pages
);
122 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
123 unsigned long addr
, unsigned long end
,
124 unsigned long floor
, unsigned long ceiling
)
131 pmd
= pmd_offset(pud
, addr
);
133 next
= pmd_addr_end(addr
, end
);
134 if (pmd_none_or_clear_bad(pmd
))
136 free_pte_range(tlb
, pmd
);
137 } while (pmd
++, addr
= next
, addr
!= end
);
147 if (end
- 1 > ceiling
- 1)
150 pmd
= pmd_offset(pud
, start
);
152 pmd_free_tlb(tlb
, pmd
);
155 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
156 unsigned long addr
, unsigned long end
,
157 unsigned long floor
, unsigned long ceiling
)
164 pud
= pud_offset(pgd
, addr
);
166 next
= pud_addr_end(addr
, end
);
167 if (pud_none_or_clear_bad(pud
))
169 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
170 } while (pud
++, addr
= next
, addr
!= end
);
176 ceiling
&= PGDIR_MASK
;
180 if (end
- 1 > ceiling
- 1)
183 pud
= pud_offset(pgd
, start
);
185 pud_free_tlb(tlb
, pud
);
189 * This function frees user-level page tables of a process.
191 * Must be called with pagetable lock held.
193 void free_pgd_range(struct mmu_gather
**tlb
,
194 unsigned long addr
, unsigned long end
,
195 unsigned long floor
, unsigned long ceiling
)
202 * The next few lines have given us lots of grief...
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
238 if (end
- 1 > ceiling
- 1)
244 pgd
= pgd_offset((*tlb
)->mm
, addr
);
246 next
= pgd_addr_end(addr
, end
);
247 if (pgd_none_or_clear_bad(pgd
))
249 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
250 } while (pgd
++, addr
= next
, addr
!= end
);
253 flush_tlb_pgtables((*tlb
)->mm
, start
, end
);
256 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
257 unsigned long floor
, unsigned long ceiling
)
260 struct vm_area_struct
*next
= vma
->vm_next
;
261 unsigned long addr
= vma
->vm_start
;
263 if (is_hugepage_only_range(vma
->vm_mm
, addr
, HPAGE_SIZE
)) {
264 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
265 floor
, next
? next
->vm_start
: ceiling
);
268 * Optimization: gather nearby vmas into one call down
270 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
271 && !is_hugepage_only_range(vma
->vm_mm
, next
->vm_start
,
276 free_pgd_range(tlb
, addr
, vma
->vm_end
,
277 floor
, next
? next
->vm_start
: ceiling
);
283 pte_t fastcall
*pte_alloc_map(struct mm_struct
*mm
, pmd_t
*pmd
,
284 unsigned long address
)
286 if (!pmd_present(*pmd
)) {
289 spin_unlock(&mm
->page_table_lock
);
290 new = pte_alloc_one(mm
, address
);
291 spin_lock(&mm
->page_table_lock
);
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
298 if (pmd_present(*pmd
)) {
303 inc_page_state(nr_page_table_pages
);
304 pmd_populate(mm
, pmd
, new);
307 return pte_offset_map(pmd
, address
);
310 pte_t fastcall
* pte_alloc_kernel(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
312 if (!pmd_present(*pmd
)) {
315 spin_unlock(&mm
->page_table_lock
);
316 new = pte_alloc_one_kernel(mm
, address
);
317 spin_lock(&mm
->page_table_lock
);
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
325 if (pmd_present(*pmd
)) {
326 pte_free_kernel(new);
329 pmd_populate_kernel(mm
, pmd
, new);
332 return pte_offset_kernel(pmd
, address
);
335 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
338 add_mm_counter(mm
, file_rss
, file_rss
);
340 add_mm_counter(mm
, anon_rss
, anon_rss
);
344 * This function is called to print an error when a pte in a
345 * !VM_RESERVED region is found pointing to an invalid pfn (which
348 * The calling function must still handle the error.
350 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
352 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
353 "vm_flags = %lx, vaddr = %lx\n",
354 (long long)pte_val(pte
),
355 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
356 vma
->vm_flags
, vaddr
);
361 * copy one vm_area from one task to the other. Assumes the page tables
362 * already present in the new task to be cleared in the whole range
363 * covered by this vma.
365 * dst->page_table_lock is held on entry and exit,
366 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
370 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
371 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
372 unsigned long addr
, int *rss
)
374 unsigned long vm_flags
= vma
->vm_flags
;
375 pte_t pte
= *src_pte
;
379 /* pte contains position in swap or file, so copy. */
380 if (unlikely(!pte_present(pte
))) {
381 if (!pte_file(pte
)) {
382 swap_duplicate(pte_to_swp_entry(pte
));
383 /* make sure dst_mm is on swapoff's mmlist. */
384 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
385 spin_lock(&mmlist_lock
);
386 list_add(&dst_mm
->mmlist
, &src_mm
->mmlist
);
387 spin_unlock(&mmlist_lock
);
393 /* If the region is VM_RESERVED, the mapping is not
394 * mapped via rmap - duplicate the pte as is.
396 if (vm_flags
& VM_RESERVED
)
400 /* If the pte points outside of valid memory but
401 * the region is not VM_RESERVED, we have a problem.
403 if (unlikely(!pfn_valid(pfn
))) {
404 print_bad_pte(vma
, pte
, addr
);
405 goto out_set_pte
; /* try to do something sane */
408 page
= pfn_to_page(pfn
);
411 * If it's a COW mapping, write protect it both
412 * in the parent and the child
414 if ((vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
) {
415 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
420 * If it's a shared mapping, mark it clean in
423 if (vm_flags
& VM_SHARED
)
424 pte
= pte_mkclean(pte
);
425 pte
= pte_mkold(pte
);
428 rss
[!!PageAnon(page
)]++;
431 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
434 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
435 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
436 unsigned long addr
, unsigned long end
)
438 pte_t
*src_pte
, *dst_pte
;
444 dst_pte
= pte_alloc_map(dst_mm
, dst_pmd
, addr
);
447 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
449 spin_lock(&src_mm
->page_table_lock
);
452 * We are holding two locks at this point - either of them
453 * could generate latencies in another task on another CPU.
455 if (progress
>= 32) {
457 if (need_resched() ||
458 need_lockbreak(&src_mm
->page_table_lock
) ||
459 need_lockbreak(&dst_mm
->page_table_lock
))
462 if (pte_none(*src_pte
)) {
466 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
468 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
469 spin_unlock(&src_mm
->page_table_lock
);
471 pte_unmap_nested(src_pte
- 1);
472 pte_unmap(dst_pte
- 1);
473 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
474 cond_resched_lock(&dst_mm
->page_table_lock
);
480 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
481 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
482 unsigned long addr
, unsigned long end
)
484 pmd_t
*src_pmd
, *dst_pmd
;
487 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
490 src_pmd
= pmd_offset(src_pud
, addr
);
492 next
= pmd_addr_end(addr
, end
);
493 if (pmd_none_or_clear_bad(src_pmd
))
495 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
498 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
502 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
503 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
504 unsigned long addr
, unsigned long end
)
506 pud_t
*src_pud
, *dst_pud
;
509 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
512 src_pud
= pud_offset(src_pgd
, addr
);
514 next
= pud_addr_end(addr
, end
);
515 if (pud_none_or_clear_bad(src_pud
))
517 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
520 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
524 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
525 struct vm_area_struct
*vma
)
527 pgd_t
*src_pgd
, *dst_pgd
;
529 unsigned long addr
= vma
->vm_start
;
530 unsigned long end
= vma
->vm_end
;
533 * Don't copy ptes where a page fault will fill them correctly.
534 * Fork becomes much lighter when there are big shared or private
535 * readonly mappings. The tradeoff is that copy_page_range is more
536 * efficient than faulting.
538 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_RESERVED
))) {
543 if (is_vm_hugetlb_page(vma
))
544 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
546 dst_pgd
= pgd_offset(dst_mm
, addr
);
547 src_pgd
= pgd_offset(src_mm
, addr
);
549 next
= pgd_addr_end(addr
, end
);
550 if (pgd_none_or_clear_bad(src_pgd
))
552 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
555 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
559 static void zap_pte_range(struct mmu_gather
*tlb
,
560 struct vm_area_struct
*vma
, pmd_t
*pmd
,
561 unsigned long addr
, unsigned long end
,
562 struct zap_details
*details
)
564 struct mm_struct
*mm
= tlb
->mm
;
569 pte
= pte_offset_map(pmd
, addr
);
574 if (pte_present(ptent
)) {
575 struct page
*page
= NULL
;
576 if (!(vma
->vm_flags
& VM_RESERVED
)) {
577 unsigned long pfn
= pte_pfn(ptent
);
578 if (unlikely(!pfn_valid(pfn
)))
579 print_bad_pte(vma
, ptent
, addr
);
581 page
= pfn_to_page(pfn
);
583 if (unlikely(details
) && page
) {
585 * unmap_shared_mapping_pages() wants to
586 * invalidate cache without truncating:
587 * unmap shared but keep private pages.
589 if (details
->check_mapping
&&
590 details
->check_mapping
!= page
->mapping
)
593 * Each page->index must be checked when
594 * invalidating or truncating nonlinear.
596 if (details
->nonlinear_vma
&&
597 (page
->index
< details
->first_index
||
598 page
->index
> details
->last_index
))
601 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
603 tlb_remove_tlb_entry(tlb
, pte
, addr
);
606 if (unlikely(details
) && details
->nonlinear_vma
607 && linear_page_index(details
->nonlinear_vma
,
608 addr
) != page
->index
)
609 set_pte_at(mm
, addr
, pte
,
610 pgoff_to_pte(page
->index
));
614 if (pte_dirty(ptent
))
615 set_page_dirty(page
);
616 if (pte_young(ptent
))
617 mark_page_accessed(page
);
620 page_remove_rmap(page
);
621 tlb_remove_page(tlb
, page
);
625 * If details->check_mapping, we leave swap entries;
626 * if details->nonlinear_vma, we leave file entries.
628 if (unlikely(details
))
630 if (!pte_file(ptent
))
631 free_swap_and_cache(pte_to_swp_entry(ptent
));
632 pte_clear_full(mm
, addr
, pte
, tlb
->fullmm
);
633 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
635 add_mm_rss(mm
, file_rss
, anon_rss
);
639 static inline void zap_pmd_range(struct mmu_gather
*tlb
,
640 struct vm_area_struct
*vma
, pud_t
*pud
,
641 unsigned long addr
, unsigned long end
,
642 struct zap_details
*details
)
647 pmd
= pmd_offset(pud
, addr
);
649 next
= pmd_addr_end(addr
, end
);
650 if (pmd_none_or_clear_bad(pmd
))
652 zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
653 } while (pmd
++, addr
= next
, addr
!= end
);
656 static inline void zap_pud_range(struct mmu_gather
*tlb
,
657 struct vm_area_struct
*vma
, pgd_t
*pgd
,
658 unsigned long addr
, unsigned long end
,
659 struct zap_details
*details
)
664 pud
= pud_offset(pgd
, addr
);
666 next
= pud_addr_end(addr
, end
);
667 if (pud_none_or_clear_bad(pud
))
669 zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
670 } while (pud
++, addr
= next
, addr
!= end
);
673 static void unmap_page_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
674 unsigned long addr
, unsigned long end
,
675 struct zap_details
*details
)
680 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
684 tlb_start_vma(tlb
, vma
);
685 pgd
= pgd_offset(vma
->vm_mm
, addr
);
687 next
= pgd_addr_end(addr
, end
);
688 if (pgd_none_or_clear_bad(pgd
))
690 zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
691 } while (pgd
++, addr
= next
, addr
!= end
);
692 tlb_end_vma(tlb
, vma
);
695 #ifdef CONFIG_PREEMPT
696 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
698 /* No preempt: go for improved straight-line efficiency */
699 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
703 * unmap_vmas - unmap a range of memory covered by a list of vma's
704 * @tlbp: address of the caller's struct mmu_gather
705 * @mm: the controlling mm_struct
706 * @vma: the starting vma
707 * @start_addr: virtual address at which to start unmapping
708 * @end_addr: virtual address at which to end unmapping
709 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
710 * @details: details of nonlinear truncation or shared cache invalidation
712 * Returns the end address of the unmapping (restart addr if interrupted).
714 * Unmap all pages in the vma list. Called under page_table_lock.
716 * We aim to not hold page_table_lock for too long (for scheduling latency
717 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
718 * return the ending mmu_gather to the caller.
720 * Only addresses between `start' and `end' will be unmapped.
722 * The VMA list must be sorted in ascending virtual address order.
724 * unmap_vmas() assumes that the caller will flush the whole unmapped address
725 * range after unmap_vmas() returns. So the only responsibility here is to
726 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
727 * drops the lock and schedules.
729 unsigned long unmap_vmas(struct mmu_gather
**tlbp
, struct mm_struct
*mm
,
730 struct vm_area_struct
*vma
, unsigned long start_addr
,
731 unsigned long end_addr
, unsigned long *nr_accounted
,
732 struct zap_details
*details
)
734 unsigned long zap_bytes
= ZAP_BLOCK_SIZE
;
735 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
736 int tlb_start_valid
= 0;
737 unsigned long start
= start_addr
;
738 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
739 int fullmm
= (*tlbp
)->fullmm
;
741 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
744 start
= max(vma
->vm_start
, start_addr
);
745 if (start
>= vma
->vm_end
)
747 end
= min(vma
->vm_end
, end_addr
);
748 if (end
<= vma
->vm_start
)
751 if (vma
->vm_flags
& VM_ACCOUNT
)
752 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
754 while (start
!= end
) {
757 if (!tlb_start_valid
) {
762 if (is_vm_hugetlb_page(vma
)) {
764 unmap_hugepage_range(vma
, start
, end
);
766 block
= min(zap_bytes
, end
- start
);
767 unmap_page_range(*tlbp
, vma
, start
,
768 start
+ block
, details
);
773 if ((long)zap_bytes
> 0)
776 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
778 if (need_resched() ||
779 need_lockbreak(&mm
->page_table_lock
) ||
780 (i_mmap_lock
&& need_lockbreak(i_mmap_lock
))) {
782 /* must reset count of rss freed */
783 *tlbp
= tlb_gather_mmu(mm
, fullmm
);
786 spin_unlock(&mm
->page_table_lock
);
788 spin_lock(&mm
->page_table_lock
);
791 *tlbp
= tlb_gather_mmu(mm
, fullmm
);
793 zap_bytes
= ZAP_BLOCK_SIZE
;
797 return start
; /* which is now the end (or restart) address */
801 * zap_page_range - remove user pages in a given range
802 * @vma: vm_area_struct holding the applicable pages
803 * @address: starting address of pages to zap
804 * @size: number of bytes to zap
805 * @details: details of nonlinear truncation or shared cache invalidation
807 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
808 unsigned long size
, struct zap_details
*details
)
810 struct mm_struct
*mm
= vma
->vm_mm
;
811 struct mmu_gather
*tlb
;
812 unsigned long end
= address
+ size
;
813 unsigned long nr_accounted
= 0;
815 if (is_vm_hugetlb_page(vma
)) {
816 zap_hugepage_range(vma
, address
, size
);
821 spin_lock(&mm
->page_table_lock
);
822 tlb
= tlb_gather_mmu(mm
, 0);
823 end
= unmap_vmas(&tlb
, mm
, vma
, address
, end
, &nr_accounted
, details
);
824 tlb_finish_mmu(tlb
, address
, end
);
825 spin_unlock(&mm
->page_table_lock
);
830 * Do a quick page-table lookup for a single page.
831 * mm->page_table_lock must be held.
833 static struct page
*__follow_page(struct mm_struct
*mm
, unsigned long address
,
834 int read
, int write
, int accessed
)
843 page
= follow_huge_addr(mm
, address
, write
);
847 pgd
= pgd_offset(mm
, address
);
848 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
851 pud
= pud_offset(pgd
, address
);
852 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
855 pmd
= pmd_offset(pud
, address
);
856 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
859 return follow_huge_pmd(mm
, address
, pmd
, write
);
861 ptep
= pte_offset_map(pmd
, address
);
867 if (pte_present(pte
)) {
868 if (write
&& !pte_write(pte
))
870 if (read
&& !pte_read(pte
))
873 if (pfn_valid(pfn
)) {
874 page
= pfn_to_page(pfn
);
876 if (write
&& !pte_dirty(pte
) &&!PageDirty(page
))
877 set_page_dirty(page
);
878 mark_page_accessed(page
);
889 follow_page(struct mm_struct
*mm
, unsigned long address
, int write
)
891 return __follow_page(mm
, address
, 0, write
, 1);
895 * check_user_page_readable() can be called frm niterrupt context by oprofile,
896 * so we need to avoid taking any non-irq-safe locks
898 int check_user_page_readable(struct mm_struct
*mm
, unsigned long address
)
900 return __follow_page(mm
, address
, 1, 0, 0) != NULL
;
902 EXPORT_SYMBOL(check_user_page_readable
);
905 untouched_anonymous_page(struct mm_struct
* mm
, struct vm_area_struct
*vma
,
906 unsigned long address
)
912 /* Check if the vma is for an anonymous mapping. */
913 if (vma
->vm_ops
&& vma
->vm_ops
->nopage
)
916 /* Check if page directory entry exists. */
917 pgd
= pgd_offset(mm
, address
);
918 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
921 pud
= pud_offset(pgd
, address
);
922 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
925 /* Check if page middle directory entry exists. */
926 pmd
= pmd_offset(pud
, address
);
927 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
930 /* There is a pte slot for 'address' in 'mm'. */
934 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
935 unsigned long start
, int len
, int write
, int force
,
936 struct page
**pages
, struct vm_area_struct
**vmas
)
942 * Require read or write permissions.
943 * If 'force' is set, we only require the "MAY" flags.
945 flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
946 flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
950 struct vm_area_struct
* vma
;
952 vma
= find_extend_vma(mm
, start
);
953 if (!vma
&& in_gate_area(tsk
, start
)) {
954 unsigned long pg
= start
& PAGE_MASK
;
955 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
960 if (write
) /* user gate pages are read-only */
961 return i
? : -EFAULT
;
963 pgd
= pgd_offset_k(pg
);
965 pgd
= pgd_offset_gate(mm
, pg
);
966 BUG_ON(pgd_none(*pgd
));
967 pud
= pud_offset(pgd
, pg
);
968 BUG_ON(pud_none(*pud
));
969 pmd
= pmd_offset(pud
, pg
);
971 return i
? : -EFAULT
;
972 pte
= pte_offset_map(pmd
, pg
);
973 if (pte_none(*pte
)) {
975 return i
? : -EFAULT
;
978 pages
[i
] = pte_page(*pte
);
990 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_RESERVED
))
991 || !(flags
& vma
->vm_flags
))
992 return i
? : -EFAULT
;
994 if (is_vm_hugetlb_page(vma
)) {
995 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
999 spin_lock(&mm
->page_table_lock
);
1001 int write_access
= write
;
1004 cond_resched_lock(&mm
->page_table_lock
);
1005 while (!(page
= follow_page(mm
, start
, write_access
))) {
1009 * Shortcut for anonymous pages. We don't want
1010 * to force the creation of pages tables for
1011 * insanely big anonymously mapped areas that
1012 * nobody touched so far. This is important
1013 * for doing a core dump for these mappings.
1015 if (!write
&& untouched_anonymous_page(mm
,vma
,start
)) {
1016 page
= ZERO_PAGE(start
);
1019 spin_unlock(&mm
->page_table_lock
);
1020 ret
= __handle_mm_fault(mm
, vma
, start
, write_access
);
1023 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1024 * broken COW when necessary, even if maybe_mkwrite
1025 * decided not to set pte_write. We can thus safely do
1026 * subsequent page lookups as if they were reads.
1028 if (ret
& VM_FAULT_WRITE
)
1031 switch (ret
& ~VM_FAULT_WRITE
) {
1032 case VM_FAULT_MINOR
:
1035 case VM_FAULT_MAJOR
:
1038 case VM_FAULT_SIGBUS
:
1039 return i
? i
: -EFAULT
;
1041 return i
? i
: -ENOMEM
;
1045 spin_lock(&mm
->page_table_lock
);
1049 flush_dcache_page(page
);
1050 page_cache_get(page
);
1057 } while (len
&& start
< vma
->vm_end
);
1058 spin_unlock(&mm
->page_table_lock
);
1062 EXPORT_SYMBOL(get_user_pages
);
1064 static int zeromap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1065 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1069 pte
= pte_alloc_map(mm
, pmd
, addr
);
1073 struct page
*page
= ZERO_PAGE(addr
);
1074 pte_t zero_pte
= pte_wrprotect(mk_pte(page
, prot
));
1075 page_cache_get(page
);
1076 page_add_file_rmap(page
);
1077 inc_mm_counter(mm
, file_rss
);
1078 BUG_ON(!pte_none(*pte
));
1079 set_pte_at(mm
, addr
, pte
, zero_pte
);
1080 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1085 static inline int zeromap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1086 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1091 pmd
= pmd_alloc(mm
, pud
, addr
);
1095 next
= pmd_addr_end(addr
, end
);
1096 if (zeromap_pte_range(mm
, pmd
, addr
, next
, prot
))
1098 } while (pmd
++, addr
= next
, addr
!= end
);
1102 static inline int zeromap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1103 unsigned long addr
, unsigned long end
, pgprot_t prot
)
1108 pud
= pud_alloc(mm
, pgd
, addr
);
1112 next
= pud_addr_end(addr
, end
);
1113 if (zeromap_pmd_range(mm
, pud
, addr
, next
, prot
))
1115 } while (pud
++, addr
= next
, addr
!= end
);
1119 int zeromap_page_range(struct vm_area_struct
*vma
,
1120 unsigned long addr
, unsigned long size
, pgprot_t prot
)
1124 unsigned long end
= addr
+ size
;
1125 struct mm_struct
*mm
= vma
->vm_mm
;
1128 BUG_ON(addr
>= end
);
1129 pgd
= pgd_offset(mm
, addr
);
1130 flush_cache_range(vma
, addr
, end
);
1131 spin_lock(&mm
->page_table_lock
);
1133 next
= pgd_addr_end(addr
, end
);
1134 err
= zeromap_pud_range(mm
, pgd
, addr
, next
, prot
);
1137 } while (pgd
++, addr
= next
, addr
!= end
);
1138 spin_unlock(&mm
->page_table_lock
);
1143 * maps a range of physical memory into the requested pages. the old
1144 * mappings are removed. any references to nonexistent pages results
1145 * in null mappings (currently treated as "copy-on-access")
1147 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1148 unsigned long addr
, unsigned long end
,
1149 unsigned long pfn
, pgprot_t prot
)
1153 pte
= pte_alloc_map(mm
, pmd
, addr
);
1157 BUG_ON(!pte_none(*pte
));
1158 set_pte_at(mm
, addr
, pte
, pfn_pte(pfn
, prot
));
1160 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1165 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1166 unsigned long addr
, unsigned long end
,
1167 unsigned long pfn
, pgprot_t prot
)
1172 pfn
-= addr
>> PAGE_SHIFT
;
1173 pmd
= pmd_alloc(mm
, pud
, addr
);
1177 next
= pmd_addr_end(addr
, end
);
1178 if (remap_pte_range(mm
, pmd
, addr
, next
,
1179 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1181 } while (pmd
++, addr
= next
, addr
!= end
);
1185 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1186 unsigned long addr
, unsigned long end
,
1187 unsigned long pfn
, pgprot_t prot
)
1192 pfn
-= addr
>> PAGE_SHIFT
;
1193 pud
= pud_alloc(mm
, pgd
, addr
);
1197 next
= pud_addr_end(addr
, end
);
1198 if (remap_pmd_range(mm
, pud
, addr
, next
,
1199 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1201 } while (pud
++, addr
= next
, addr
!= end
);
1205 /* Note: this is only safe if the mm semaphore is held when called. */
1206 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1207 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1211 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1212 struct mm_struct
*mm
= vma
->vm_mm
;
1216 * Physically remapped pages are special. Tell the
1217 * rest of the world about it:
1218 * VM_IO tells people not to look at these pages
1219 * (accesses can have side effects).
1220 * VM_RESERVED tells the core MM not to "manage" these pages
1221 * (e.g. refcount, mapcount, try to swap them out).
1223 vma
->vm_flags
|= VM_IO
| VM_RESERVED
;
1225 BUG_ON(addr
>= end
);
1226 pfn
-= addr
>> PAGE_SHIFT
;
1227 pgd
= pgd_offset(mm
, addr
);
1228 flush_cache_range(vma
, addr
, end
);
1229 spin_lock(&mm
->page_table_lock
);
1231 next
= pgd_addr_end(addr
, end
);
1232 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1233 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1236 } while (pgd
++, addr
= next
, addr
!= end
);
1237 spin_unlock(&mm
->page_table_lock
);
1240 EXPORT_SYMBOL(remap_pfn_range
);
1243 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1244 * servicing faults for write access. In the normal case, do always want
1245 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1246 * that do not have writing enabled, when used by access_process_vm.
1248 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1250 if (likely(vma
->vm_flags
& VM_WRITE
))
1251 pte
= pte_mkwrite(pte
);
1256 * This routine handles present pages, when users try to write
1257 * to a shared page. It is done by copying the page to a new address
1258 * and decrementing the shared-page counter for the old page.
1260 * Note that this routine assumes that the protection checks have been
1261 * done by the caller (the low-level page fault routine in most cases).
1262 * Thus we can safely just mark it writable once we've done any necessary
1265 * We also mark the page dirty at this point even though the page will
1266 * change only once the write actually happens. This avoids a few races,
1267 * and potentially makes it more efficient.
1269 * We hold the mm semaphore and the page_table_lock on entry and exit
1270 * with the page_table_lock released.
1272 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1273 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1276 struct page
*old_page
, *new_page
;
1277 unsigned long pfn
= pte_pfn(orig_pte
);
1279 int ret
= VM_FAULT_MINOR
;
1281 BUG_ON(vma
->vm_flags
& VM_RESERVED
);
1283 if (unlikely(!pfn_valid(pfn
))) {
1285 * Page table corrupted: show pte and kill process.
1287 print_bad_pte(vma
, orig_pte
, address
);
1291 old_page
= pfn_to_page(pfn
);
1293 if (PageAnon(old_page
) && !TestSetPageLocked(old_page
)) {
1294 int reuse
= can_share_swap_page(old_page
);
1295 unlock_page(old_page
);
1297 flush_cache_page(vma
, address
, pfn
);
1298 entry
= pte_mkyoung(orig_pte
);
1299 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1300 ptep_set_access_flags(vma
, address
, page_table
, entry
, 1);
1301 update_mmu_cache(vma
, address
, entry
);
1302 lazy_mmu_prot_update(entry
);
1303 ret
|= VM_FAULT_WRITE
;
1309 * Ok, we need to copy. Oh, well..
1311 page_cache_get(old_page
);
1312 pte_unmap(page_table
);
1313 spin_unlock(&mm
->page_table_lock
);
1315 if (unlikely(anon_vma_prepare(vma
)))
1317 if (old_page
== ZERO_PAGE(address
)) {
1318 new_page
= alloc_zeroed_user_highpage(vma
, address
);
1322 new_page
= alloc_page_vma(GFP_HIGHUSER
, vma
, address
);
1325 copy_user_highpage(new_page
, old_page
, address
);
1329 * Re-check the pte - we dropped the lock
1331 spin_lock(&mm
->page_table_lock
);
1332 page_table
= pte_offset_map(pmd
, address
);
1333 if (likely(pte_same(*page_table
, orig_pte
))) {
1334 page_remove_rmap(old_page
);
1335 if (!PageAnon(old_page
)) {
1336 inc_mm_counter(mm
, anon_rss
);
1337 dec_mm_counter(mm
, file_rss
);
1339 flush_cache_page(vma
, address
, pfn
);
1340 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1341 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1342 ptep_establish(vma
, address
, page_table
, entry
);
1343 update_mmu_cache(vma
, address
, entry
);
1344 lazy_mmu_prot_update(entry
);
1346 lru_cache_add_active(new_page
);
1347 page_add_anon_rmap(new_page
, vma
, address
);
1349 /* Free the old page.. */
1350 new_page
= old_page
;
1351 ret
|= VM_FAULT_WRITE
;
1353 page_cache_release(new_page
);
1354 page_cache_release(old_page
);
1356 pte_unmap(page_table
);
1357 spin_unlock(&mm
->page_table_lock
);
1360 page_cache_release(old_page
);
1361 return VM_FAULT_OOM
;
1365 * Helper functions for unmap_mapping_range().
1367 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1369 * We have to restart searching the prio_tree whenever we drop the lock,
1370 * since the iterator is only valid while the lock is held, and anyway
1371 * a later vma might be split and reinserted earlier while lock dropped.
1373 * The list of nonlinear vmas could be handled more efficiently, using
1374 * a placeholder, but handle it in the same way until a need is shown.
1375 * It is important to search the prio_tree before nonlinear list: a vma
1376 * may become nonlinear and be shifted from prio_tree to nonlinear list
1377 * while the lock is dropped; but never shifted from list to prio_tree.
1379 * In order to make forward progress despite restarting the search,
1380 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1381 * quickly skip it next time around. Since the prio_tree search only
1382 * shows us those vmas affected by unmapping the range in question, we
1383 * can't efficiently keep all vmas in step with mapping->truncate_count:
1384 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1385 * mapping->truncate_count and vma->vm_truncate_count are protected by
1388 * In order to make forward progress despite repeatedly restarting some
1389 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1390 * and restart from that address when we reach that vma again. It might
1391 * have been split or merged, shrunk or extended, but never shifted: so
1392 * restart_addr remains valid so long as it remains in the vma's range.
1393 * unmap_mapping_range forces truncate_count to leap over page-aligned
1394 * values so we can save vma's restart_addr in its truncate_count field.
1396 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1398 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1400 struct vm_area_struct
*vma
;
1401 struct prio_tree_iter iter
;
1403 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1404 vma
->vm_truncate_count
= 0;
1405 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1406 vma
->vm_truncate_count
= 0;
1409 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1410 unsigned long start_addr
, unsigned long end_addr
,
1411 struct zap_details
*details
)
1413 unsigned long restart_addr
;
1417 restart_addr
= vma
->vm_truncate_count
;
1418 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1419 start_addr
= restart_addr
;
1420 if (start_addr
>= end_addr
) {
1421 /* Top of vma has been split off since last time */
1422 vma
->vm_truncate_count
= details
->truncate_count
;
1427 restart_addr
= zap_page_range(vma
, start_addr
,
1428 end_addr
- start_addr
, details
);
1431 * We cannot rely on the break test in unmap_vmas:
1432 * on the one hand, we don't want to restart our loop
1433 * just because that broke out for the page_table_lock;
1434 * on the other hand, it does no test when vma is small.
1436 need_break
= need_resched() ||
1437 need_lockbreak(details
->i_mmap_lock
);
1439 if (restart_addr
>= end_addr
) {
1440 /* We have now completed this vma: mark it so */
1441 vma
->vm_truncate_count
= details
->truncate_count
;
1445 /* Note restart_addr in vma's truncate_count field */
1446 vma
->vm_truncate_count
= restart_addr
;
1451 spin_unlock(details
->i_mmap_lock
);
1453 spin_lock(details
->i_mmap_lock
);
1457 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1458 struct zap_details
*details
)
1460 struct vm_area_struct
*vma
;
1461 struct prio_tree_iter iter
;
1462 pgoff_t vba
, vea
, zba
, zea
;
1465 vma_prio_tree_foreach(vma
, &iter
, root
,
1466 details
->first_index
, details
->last_index
) {
1467 /* Skip quickly over those we have already dealt with */
1468 if (vma
->vm_truncate_count
== details
->truncate_count
)
1471 vba
= vma
->vm_pgoff
;
1472 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1473 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1474 zba
= details
->first_index
;
1477 zea
= details
->last_index
;
1481 if (unmap_mapping_range_vma(vma
,
1482 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1483 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1489 static inline void unmap_mapping_range_list(struct list_head
*head
,
1490 struct zap_details
*details
)
1492 struct vm_area_struct
*vma
;
1495 * In nonlinear VMAs there is no correspondence between virtual address
1496 * offset and file offset. So we must perform an exhaustive search
1497 * across *all* the pages in each nonlinear VMA, not just the pages
1498 * whose virtual address lies outside the file truncation point.
1501 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1502 /* Skip quickly over those we have already dealt with */
1503 if (vma
->vm_truncate_count
== details
->truncate_count
)
1505 details
->nonlinear_vma
= vma
;
1506 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1507 vma
->vm_end
, details
) < 0)
1513 * unmap_mapping_range - unmap the portion of all mmaps
1514 * in the specified address_space corresponding to the specified
1515 * page range in the underlying file.
1516 * @mapping: the address space containing mmaps to be unmapped.
1517 * @holebegin: byte in first page to unmap, relative to the start of
1518 * the underlying file. This will be rounded down to a PAGE_SIZE
1519 * boundary. Note that this is different from vmtruncate(), which
1520 * must keep the partial page. In contrast, we must get rid of
1522 * @holelen: size of prospective hole in bytes. This will be rounded
1523 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1525 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1526 * but 0 when invalidating pagecache, don't throw away private data.
1528 void unmap_mapping_range(struct address_space
*mapping
,
1529 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1531 struct zap_details details
;
1532 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1533 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1535 /* Check for overflow. */
1536 if (sizeof(holelen
) > sizeof(hlen
)) {
1538 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1539 if (holeend
& ~(long long)ULONG_MAX
)
1540 hlen
= ULONG_MAX
- hba
+ 1;
1543 details
.check_mapping
= even_cows
? NULL
: mapping
;
1544 details
.nonlinear_vma
= NULL
;
1545 details
.first_index
= hba
;
1546 details
.last_index
= hba
+ hlen
- 1;
1547 if (details
.last_index
< details
.first_index
)
1548 details
.last_index
= ULONG_MAX
;
1549 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
1551 spin_lock(&mapping
->i_mmap_lock
);
1553 /* serialize i_size write against truncate_count write */
1555 /* Protect against page faults, and endless unmapping loops */
1556 mapping
->truncate_count
++;
1558 * For archs where spin_lock has inclusive semantics like ia64
1559 * this smp_mb() will prevent to read pagetable contents
1560 * before the truncate_count increment is visible to
1564 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
1565 if (mapping
->truncate_count
== 0)
1566 reset_vma_truncate_counts(mapping
);
1567 mapping
->truncate_count
++;
1569 details
.truncate_count
= mapping
->truncate_count
;
1571 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
1572 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
1573 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
1574 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
1575 spin_unlock(&mapping
->i_mmap_lock
);
1577 EXPORT_SYMBOL(unmap_mapping_range
);
1580 * Handle all mappings that got truncated by a "truncate()"
1583 * NOTE! We have to be ready to update the memory sharing
1584 * between the file and the memory map for a potential last
1585 * incomplete page. Ugly, but necessary.
1587 int vmtruncate(struct inode
* inode
, loff_t offset
)
1589 struct address_space
*mapping
= inode
->i_mapping
;
1590 unsigned long limit
;
1592 if (inode
->i_size
< offset
)
1595 * truncation of in-use swapfiles is disallowed - it would cause
1596 * subsequent swapout to scribble on the now-freed blocks.
1598 if (IS_SWAPFILE(inode
))
1600 i_size_write(inode
, offset
);
1601 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1602 truncate_inode_pages(mapping
, offset
);
1606 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1607 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
1609 if (offset
> inode
->i_sb
->s_maxbytes
)
1611 i_size_write(inode
, offset
);
1614 if (inode
->i_op
&& inode
->i_op
->truncate
)
1615 inode
->i_op
->truncate(inode
);
1618 send_sig(SIGXFSZ
, current
, 0);
1625 EXPORT_SYMBOL(vmtruncate
);
1628 * Primitive swap readahead code. We simply read an aligned block of
1629 * (1 << page_cluster) entries in the swap area. This method is chosen
1630 * because it doesn't cost us any seek time. We also make sure to queue
1631 * the 'original' request together with the readahead ones...
1633 * This has been extended to use the NUMA policies from the mm triggering
1636 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1638 void swapin_readahead(swp_entry_t entry
, unsigned long addr
,struct vm_area_struct
*vma
)
1641 struct vm_area_struct
*next_vma
= vma
? vma
->vm_next
: NULL
;
1644 struct page
*new_page
;
1645 unsigned long offset
;
1648 * Get the number of handles we should do readahead io to.
1650 num
= valid_swaphandles(entry
, &offset
);
1651 for (i
= 0; i
< num
; offset
++, i
++) {
1652 /* Ok, do the async read-ahead now */
1653 new_page
= read_swap_cache_async(swp_entry(swp_type(entry
),
1654 offset
), vma
, addr
);
1657 page_cache_release(new_page
);
1660 * Find the next applicable VMA for the NUMA policy.
1666 if (addr
>= vma
->vm_end
) {
1668 next_vma
= vma
? vma
->vm_next
: NULL
;
1670 if (vma
&& addr
< vma
->vm_start
)
1673 if (next_vma
&& addr
>= next_vma
->vm_start
) {
1675 next_vma
= vma
->vm_next
;
1680 lru_add_drain(); /* Push any new pages onto the LRU now */
1684 * We hold the mm semaphore and the page_table_lock on entry and
1685 * should release the pagetable lock on exit..
1687 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1688 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1689 int write_access
, pte_t orig_pte
)
1694 int ret
= VM_FAULT_MINOR
;
1696 pte_unmap(page_table
);
1697 spin_unlock(&mm
->page_table_lock
);
1699 entry
= pte_to_swp_entry(orig_pte
);
1700 page
= lookup_swap_cache(entry
);
1702 swapin_readahead(entry
, address
, vma
);
1703 page
= read_swap_cache_async(entry
, vma
, address
);
1706 * Back out if somebody else faulted in this pte while
1707 * we released the page table lock.
1709 spin_lock(&mm
->page_table_lock
);
1710 page_table
= pte_offset_map(pmd
, address
);
1711 if (likely(pte_same(*page_table
, orig_pte
)))
1716 /* Had to read the page from swap area: Major fault */
1717 ret
= VM_FAULT_MAJOR
;
1718 inc_page_state(pgmajfault
);
1722 mark_page_accessed(page
);
1726 * Back out if somebody else faulted in this pte while we
1727 * released the page table lock.
1729 spin_lock(&mm
->page_table_lock
);
1730 page_table
= pte_offset_map(pmd
, address
);
1731 if (unlikely(!pte_same(*page_table
, orig_pte
))) {
1732 ret
= VM_FAULT_MINOR
;
1736 if (unlikely(!PageUptodate(page
))) {
1737 ret
= VM_FAULT_SIGBUS
;
1741 /* The page isn't present yet, go ahead with the fault. */
1743 inc_mm_counter(mm
, anon_rss
);
1744 pte
= mk_pte(page
, vma
->vm_page_prot
);
1745 if (write_access
&& can_share_swap_page(page
)) {
1746 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
1750 flush_icache_page(vma
, page
);
1751 set_pte_at(mm
, address
, page_table
, pte
);
1752 page_add_anon_rmap(page
, vma
, address
);
1756 remove_exclusive_swap_page(page
);
1760 if (do_wp_page(mm
, vma
, address
,
1761 page_table
, pmd
, pte
) == VM_FAULT_OOM
)
1766 /* No need to invalidate - it was non-present before */
1767 update_mmu_cache(vma
, address
, pte
);
1768 lazy_mmu_prot_update(pte
);
1770 pte_unmap(page_table
);
1771 spin_unlock(&mm
->page_table_lock
);
1775 pte_unmap(page_table
);
1776 spin_unlock(&mm
->page_table_lock
);
1778 page_cache_release(page
);
1783 * We are called with the MM semaphore and page_table_lock
1784 * spinlock held to protect against concurrent faults in
1785 * multithreaded programs.
1787 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1788 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1791 struct page
*page
= ZERO_PAGE(addr
);
1794 /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1795 entry
= mk_pte(page
, vma
->vm_page_prot
);
1798 /* Allocate our own private page. */
1799 pte_unmap(page_table
);
1800 spin_unlock(&mm
->page_table_lock
);
1802 if (unlikely(anon_vma_prepare(vma
)))
1804 page
= alloc_zeroed_user_highpage(vma
, address
);
1808 spin_lock(&mm
->page_table_lock
);
1809 page_table
= pte_offset_map(pmd
, address
);
1811 if (!pte_none(*page_table
)) {
1812 page_cache_release(page
);
1815 inc_mm_counter(mm
, anon_rss
);
1816 entry
= mk_pte(page
, vma
->vm_page_prot
);
1817 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1818 lru_cache_add_active(page
);
1819 SetPageReferenced(page
);
1820 page_add_anon_rmap(page
, vma
, address
);
1822 inc_mm_counter(mm
, file_rss
);
1823 page_add_file_rmap(page
);
1824 page_cache_get(page
);
1827 set_pte_at(mm
, address
, page_table
, entry
);
1829 /* No need to invalidate - it was non-present before */
1830 update_mmu_cache(vma
, address
, entry
);
1831 lazy_mmu_prot_update(entry
);
1833 pte_unmap(page_table
);
1834 spin_unlock(&mm
->page_table_lock
);
1835 return VM_FAULT_MINOR
;
1837 return VM_FAULT_OOM
;
1841 * do_no_page() tries to create a new page mapping. It aggressively
1842 * tries to share with existing pages, but makes a separate copy if
1843 * the "write_access" parameter is true in order to avoid the next
1846 * As this is called only for pages that do not currently exist, we
1847 * do not need to flush old virtual caches or the TLB.
1849 * This is called with the MM semaphore held and the page table
1850 * spinlock held. Exit with the spinlock released.
1852 static int do_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1853 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1856 struct page
*new_page
;
1857 struct address_space
*mapping
= NULL
;
1859 unsigned int sequence
= 0;
1860 int ret
= VM_FAULT_MINOR
;
1863 pte_unmap(page_table
);
1864 spin_unlock(&mm
->page_table_lock
);
1867 mapping
= vma
->vm_file
->f_mapping
;
1868 sequence
= mapping
->truncate_count
;
1869 smp_rmb(); /* serializes i_size against truncate_count */
1872 new_page
= vma
->vm_ops
->nopage(vma
, address
& PAGE_MASK
, &ret
);
1874 * No smp_rmb is needed here as long as there's a full
1875 * spin_lock/unlock sequence inside the ->nopage callback
1876 * (for the pagecache lookup) that acts as an implicit
1877 * smp_mb() and prevents the i_size read to happen
1878 * after the next truncate_count read.
1881 /* no page was available -- either SIGBUS or OOM */
1882 if (new_page
== NOPAGE_SIGBUS
)
1883 return VM_FAULT_SIGBUS
;
1884 if (new_page
== NOPAGE_OOM
)
1885 return VM_FAULT_OOM
;
1888 * Should we do an early C-O-W break?
1890 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
1893 if (unlikely(anon_vma_prepare(vma
)))
1895 page
= alloc_page_vma(GFP_HIGHUSER
, vma
, address
);
1898 copy_user_highpage(page
, new_page
, address
);
1899 page_cache_release(new_page
);
1904 spin_lock(&mm
->page_table_lock
);
1906 * For a file-backed vma, someone could have truncated or otherwise
1907 * invalidated this page. If unmap_mapping_range got called,
1908 * retry getting the page.
1910 if (mapping
&& unlikely(sequence
!= mapping
->truncate_count
)) {
1911 spin_unlock(&mm
->page_table_lock
);
1912 page_cache_release(new_page
);
1914 sequence
= mapping
->truncate_count
;
1918 page_table
= pte_offset_map(pmd
, address
);
1921 * This silly early PAGE_DIRTY setting removes a race
1922 * due to the bad i386 page protection. But it's valid
1923 * for other architectures too.
1925 * Note that if write_access is true, we either now have
1926 * an exclusive copy of the page, or this is a shared mapping,
1927 * so we can make it writable and dirty to avoid having to
1928 * handle that later.
1930 /* Only go through if we didn't race with anybody else... */
1931 if (pte_none(*page_table
)) {
1932 flush_icache_page(vma
, new_page
);
1933 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1935 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1936 set_pte_at(mm
, address
, page_table
, entry
);
1938 inc_mm_counter(mm
, anon_rss
);
1939 lru_cache_add_active(new_page
);
1940 page_add_anon_rmap(new_page
, vma
, address
);
1941 } else if (!(vma
->vm_flags
& VM_RESERVED
)) {
1942 inc_mm_counter(mm
, file_rss
);
1943 page_add_file_rmap(new_page
);
1946 /* One of our sibling threads was faster, back out. */
1947 page_cache_release(new_page
);
1951 /* no need to invalidate: a not-present page shouldn't be cached */
1952 update_mmu_cache(vma
, address
, entry
);
1953 lazy_mmu_prot_update(entry
);
1955 pte_unmap(page_table
);
1956 spin_unlock(&mm
->page_table_lock
);
1959 page_cache_release(new_page
);
1960 return VM_FAULT_OOM
;
1964 * Fault of a previously existing named mapping. Repopulate the pte
1965 * from the encoded file_pte if possible. This enables swappable
1968 static int do_file_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1969 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1970 int write_access
, pte_t orig_pte
)
1975 pte_unmap(page_table
);
1976 spin_unlock(&mm
->page_table_lock
);
1978 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
1980 * Page table corrupted: show pte and kill process.
1982 print_bad_pte(vma
, orig_pte
, address
);
1983 return VM_FAULT_OOM
;
1985 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1987 pgoff
= pte_to_pgoff(orig_pte
);
1988 err
= vma
->vm_ops
->populate(vma
, address
& PAGE_MASK
, PAGE_SIZE
,
1989 vma
->vm_page_prot
, pgoff
, 0);
1991 return VM_FAULT_OOM
;
1993 return VM_FAULT_SIGBUS
;
1994 return VM_FAULT_MAJOR
;
1998 * These routines also need to handle stuff like marking pages dirty
1999 * and/or accessed for architectures that don't do it in hardware (most
2000 * RISC architectures). The early dirtying is also good on the i386.
2002 * There is also a hook called "update_mmu_cache()" that architectures
2003 * with external mmu caches can use to update those (ie the Sparc or
2004 * PowerPC hashed page tables that act as extended TLBs).
2006 * Note the "page_table_lock". It is to protect against kswapd removing
2007 * pages from under us. Note that kswapd only ever _removes_ pages, never
2008 * adds them. As such, once we have noticed that the page is not present,
2009 * we can drop the lock early.
2011 * The adding of pages is protected by the MM semaphore (which we hold),
2012 * so we don't need to worry about a page being suddenly been added into
2015 * We enter with the pagetable spinlock held, we are supposed to
2016 * release it when done.
2018 static inline int handle_pte_fault(struct mm_struct
*mm
,
2019 struct vm_area_struct
*vma
, unsigned long address
,
2020 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2025 if (!pte_present(entry
)) {
2026 if (pte_none(entry
)) {
2027 if (!vma
->vm_ops
|| !vma
->vm_ops
->nopage
)
2028 return do_anonymous_page(mm
, vma
, address
,
2029 pte
, pmd
, write_access
);
2030 return do_no_page(mm
, vma
, address
,
2031 pte
, pmd
, write_access
);
2033 if (pte_file(entry
))
2034 return do_file_page(mm
, vma
, address
,
2035 pte
, pmd
, write_access
, entry
);
2036 return do_swap_page(mm
, vma
, address
,
2037 pte
, pmd
, write_access
, entry
);
2041 if (!pte_write(entry
))
2042 return do_wp_page(mm
, vma
, address
, pte
, pmd
, entry
);
2043 entry
= pte_mkdirty(entry
);
2045 entry
= pte_mkyoung(entry
);
2046 ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
);
2047 update_mmu_cache(vma
, address
, entry
);
2048 lazy_mmu_prot_update(entry
);
2050 spin_unlock(&mm
->page_table_lock
);
2051 return VM_FAULT_MINOR
;
2055 * By the time we get here, we already hold the mm semaphore
2057 int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2058 unsigned long address
, int write_access
)
2065 __set_current_state(TASK_RUNNING
);
2067 inc_page_state(pgfault
);
2069 if (unlikely(is_vm_hugetlb_page(vma
)))
2070 return hugetlb_fault(mm
, vma
, address
, write_access
);
2073 * We need the page table lock to synchronize with kswapd
2074 * and the SMP-safe atomic PTE updates.
2076 pgd
= pgd_offset(mm
, address
);
2077 spin_lock(&mm
->page_table_lock
);
2079 pud
= pud_alloc(mm
, pgd
, address
);
2083 pmd
= pmd_alloc(mm
, pud
, address
);
2087 pte
= pte_alloc_map(mm
, pmd
, address
);
2091 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2094 spin_unlock(&mm
->page_table_lock
);
2095 return VM_FAULT_OOM
;
2098 #ifndef __PAGETABLE_PUD_FOLDED
2100 * Allocate page upper directory.
2102 * We've already handled the fast-path in-line, and we own the
2105 pud_t fastcall
*__pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2109 spin_unlock(&mm
->page_table_lock
);
2110 new = pud_alloc_one(mm
, address
);
2111 spin_lock(&mm
->page_table_lock
);
2116 * Because we dropped the lock, we should re-check the
2117 * entry, as somebody else could have populated it..
2119 if (pgd_present(*pgd
)) {
2123 pgd_populate(mm
, pgd
, new);
2125 return pud_offset(pgd
, address
);
2127 #endif /* __PAGETABLE_PUD_FOLDED */
2129 #ifndef __PAGETABLE_PMD_FOLDED
2131 * Allocate page middle directory.
2133 * We've already handled the fast-path in-line, and we own the
2136 pmd_t fastcall
*__pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2140 spin_unlock(&mm
->page_table_lock
);
2141 new = pmd_alloc_one(mm
, address
);
2142 spin_lock(&mm
->page_table_lock
);
2147 * Because we dropped the lock, we should re-check the
2148 * entry, as somebody else could have populated it..
2150 #ifndef __ARCH_HAS_4LEVEL_HACK
2151 if (pud_present(*pud
)) {
2155 pud_populate(mm
, pud
, new);
2157 if (pgd_present(*pud
)) {
2161 pgd_populate(mm
, pud
, new);
2162 #endif /* __ARCH_HAS_4LEVEL_HACK */
2165 return pmd_offset(pud
, address
);
2167 #endif /* __PAGETABLE_PMD_FOLDED */
2169 int make_pages_present(unsigned long addr
, unsigned long end
)
2171 int ret
, len
, write
;
2172 struct vm_area_struct
* vma
;
2174 vma
= find_vma(current
->mm
, addr
);
2177 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2180 if (end
> vma
->vm_end
)
2182 len
= (end
+PAGE_SIZE
-1)/PAGE_SIZE
-addr
/PAGE_SIZE
;
2183 ret
= get_user_pages(current
, current
->mm
, addr
,
2184 len
, write
, 0, NULL
, NULL
);
2187 return ret
== len
? 0 : -1;
2191 * Map a vmalloc()-space virtual address to the physical page.
2193 struct page
* vmalloc_to_page(void * vmalloc_addr
)
2195 unsigned long addr
= (unsigned long) vmalloc_addr
;
2196 struct page
*page
= NULL
;
2197 pgd_t
*pgd
= pgd_offset_k(addr
);
2202 if (!pgd_none(*pgd
)) {
2203 pud
= pud_offset(pgd
, addr
);
2204 if (!pud_none(*pud
)) {
2205 pmd
= pmd_offset(pud
, addr
);
2206 if (!pmd_none(*pmd
)) {
2207 ptep
= pte_offset_map(pmd
, addr
);
2209 if (pte_present(pte
))
2210 page
= pte_page(pte
);
2218 EXPORT_SYMBOL(vmalloc_to_page
);
2221 * Map a vmalloc()-space virtual address to the physical page frame number.
2223 unsigned long vmalloc_to_pfn(void * vmalloc_addr
)
2225 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
2228 EXPORT_SYMBOL(vmalloc_to_pfn
);
2231 * update_mem_hiwater
2232 * - update per process rss and vm high water data
2234 void update_mem_hiwater(struct task_struct
*tsk
)
2237 unsigned long rss
= get_mm_rss(tsk
->mm
);
2239 if (tsk
->mm
->hiwater_rss
< rss
)
2240 tsk
->mm
->hiwater_rss
= rss
;
2241 if (tsk
->mm
->hiwater_vm
< tsk
->mm
->total_vm
)
2242 tsk
->mm
->hiwater_vm
= tsk
->mm
->total_vm
;
2246 #if !defined(__HAVE_ARCH_GATE_AREA)
2248 #if defined(AT_SYSINFO_EHDR)
2249 static struct vm_area_struct gate_vma
;
2251 static int __init
gate_vma_init(void)
2253 gate_vma
.vm_mm
= NULL
;
2254 gate_vma
.vm_start
= FIXADDR_USER_START
;
2255 gate_vma
.vm_end
= FIXADDR_USER_END
;
2256 gate_vma
.vm_page_prot
= PAGE_READONLY
;
2257 gate_vma
.vm_flags
= VM_RESERVED
;
2260 __initcall(gate_vma_init
);
2263 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2265 #ifdef AT_SYSINFO_EHDR
2272 int in_gate_area_no_task(unsigned long addr
)
2274 #ifdef AT_SYSINFO_EHDR
2275 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2281 #endif /* __HAVE_ARCH_GATE_AREA */