[PATCH] mm: zap_pte_range dec rss
[linux-2.6.22.y-op.git] / mm / memory.c
blobbc6296398f8bd44650bbf71b08de35c4c1d3aab8
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
70 unsigned long num_physpages;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
91 void pgd_clear_bad(pgd_t *pgd)
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
97 void pud_clear_bad(pud_t *pud)
99 pud_ERROR(*pud);
100 pud_clear(pud);
103 void pmd_clear_bad(pmd_t *pmd)
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
126 pmd_t *pmd;
127 unsigned long next;
128 unsigned long start;
130 start = addr;
131 pmd = pmd_offset(pud, addr);
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
136 free_pte_range(tlb, pmd);
137 } while (pmd++, addr = next, addr != end);
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
147 if (end - 1 > ceiling - 1)
148 return;
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
159 pud_t *pud;
160 unsigned long next;
161 unsigned long start;
163 start = addr;
164 pud = pud_offset(pgd, addr);
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170 } while (pud++, addr = next, addr != end);
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
180 if (end - 1 > ceiling - 1)
181 return;
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
189 * This function frees user-level page tables of a process.
191 * Must be called with pagetable lock held.
193 void free_pgd_range(struct mmu_gather **tlb,
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
197 pgd_t *pgd;
198 unsigned long next;
199 unsigned long start;
202 * The next few lines have given us lots of grief...
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
243 start = addr;
244 pgd = pgd_offset((*tlb)->mm, addr);
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250 } while (pgd++, addr = next, addr != end);
252 if (!(*tlb)->fullmm)
253 flush_tlb_pgtables((*tlb)->mm, start, end);
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257 unsigned long floor, unsigned long ceiling)
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265 floor, next? next->vm_start: ceiling);
266 } else {
268 * Optimization: gather nearby vmas into one call down
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
279 vma = next;
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
286 if (!pmd_present(*pmd)) {
287 struct page *new;
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
306 out:
307 return pte_offset_map(pmd, address);
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
329 pmd_populate_kernel(mm, pmd, new);
331 out:
332 return pte_offset_kernel(pmd, address);
335 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337 if (file_rss)
338 add_mm_counter(mm, file_rss, file_rss);
339 if (anon_rss)
340 add_mm_counter(mm, anon_rss, anon_rss);
344 * This function is called to print an error when a pte in a
345 * !VM_RESERVED region is found pointing to an invalid pfn (which
346 * is an error.
348 * The calling function must still handle the error.
350 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
353 "vm_flags = %lx, vaddr = %lx\n",
354 (long long)pte_val(pte),
355 (vma->vm_mm == current->mm ? current->comm : "???"),
356 vma->vm_flags, vaddr);
357 dump_stack();
361 * copy one vm_area from one task to the other. Assumes the page tables
362 * already present in the new task to be cleared in the whole range
363 * covered by this vma.
365 * dst->page_table_lock is held on entry and exit,
366 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
369 static inline void
370 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
371 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
372 unsigned long addr, int *rss)
374 unsigned long vm_flags = vma->vm_flags;
375 pte_t pte = *src_pte;
376 struct page *page;
377 unsigned long pfn;
379 /* pte contains position in swap or file, so copy. */
380 if (unlikely(!pte_present(pte))) {
381 if (!pte_file(pte)) {
382 swap_duplicate(pte_to_swp_entry(pte));
383 /* make sure dst_mm is on swapoff's mmlist. */
384 if (unlikely(list_empty(&dst_mm->mmlist))) {
385 spin_lock(&mmlist_lock);
386 list_add(&dst_mm->mmlist, &src_mm->mmlist);
387 spin_unlock(&mmlist_lock);
390 goto out_set_pte;
393 /* If the region is VM_RESERVED, the mapping is not
394 * mapped via rmap - duplicate the pte as is.
396 if (vm_flags & VM_RESERVED)
397 goto out_set_pte;
399 pfn = pte_pfn(pte);
400 /* If the pte points outside of valid memory but
401 * the region is not VM_RESERVED, we have a problem.
403 if (unlikely(!pfn_valid(pfn))) {
404 print_bad_pte(vma, pte, addr);
405 goto out_set_pte; /* try to do something sane */
408 page = pfn_to_page(pfn);
411 * If it's a COW mapping, write protect it both
412 * in the parent and the child
414 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
415 ptep_set_wrprotect(src_mm, addr, src_pte);
416 pte = *src_pte;
420 * If it's a shared mapping, mark it clean in
421 * the child
423 if (vm_flags & VM_SHARED)
424 pte = pte_mkclean(pte);
425 pte = pte_mkold(pte);
426 get_page(page);
427 page_dup_rmap(page);
428 rss[!!PageAnon(page)]++;
430 out_set_pte:
431 set_pte_at(dst_mm, addr, dst_pte, pte);
434 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
435 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
436 unsigned long addr, unsigned long end)
438 pte_t *src_pte, *dst_pte;
439 int progress = 0;
440 int rss[2];
442 again:
443 rss[1] = rss[0] = 0;
444 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
445 if (!dst_pte)
446 return -ENOMEM;
447 src_pte = pte_offset_map_nested(src_pmd, addr);
449 spin_lock(&src_mm->page_table_lock);
450 do {
452 * We are holding two locks at this point - either of them
453 * could generate latencies in another task on another CPU.
455 if (progress >= 32) {
456 progress = 0;
457 if (need_resched() ||
458 need_lockbreak(&src_mm->page_table_lock) ||
459 need_lockbreak(&dst_mm->page_table_lock))
460 break;
462 if (pte_none(*src_pte)) {
463 progress++;
464 continue;
466 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
467 progress += 8;
468 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
469 spin_unlock(&src_mm->page_table_lock);
471 pte_unmap_nested(src_pte - 1);
472 pte_unmap(dst_pte - 1);
473 add_mm_rss(dst_mm, rss[0], rss[1]);
474 cond_resched_lock(&dst_mm->page_table_lock);
475 if (addr != end)
476 goto again;
477 return 0;
480 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
481 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
482 unsigned long addr, unsigned long end)
484 pmd_t *src_pmd, *dst_pmd;
485 unsigned long next;
487 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
488 if (!dst_pmd)
489 return -ENOMEM;
490 src_pmd = pmd_offset(src_pud, addr);
491 do {
492 next = pmd_addr_end(addr, end);
493 if (pmd_none_or_clear_bad(src_pmd))
494 continue;
495 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
496 vma, addr, next))
497 return -ENOMEM;
498 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
499 return 0;
502 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
503 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
504 unsigned long addr, unsigned long end)
506 pud_t *src_pud, *dst_pud;
507 unsigned long next;
509 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
510 if (!dst_pud)
511 return -ENOMEM;
512 src_pud = pud_offset(src_pgd, addr);
513 do {
514 next = pud_addr_end(addr, end);
515 if (pud_none_or_clear_bad(src_pud))
516 continue;
517 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
518 vma, addr, next))
519 return -ENOMEM;
520 } while (dst_pud++, src_pud++, addr = next, addr != end);
521 return 0;
524 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
525 struct vm_area_struct *vma)
527 pgd_t *src_pgd, *dst_pgd;
528 unsigned long next;
529 unsigned long addr = vma->vm_start;
530 unsigned long end = vma->vm_end;
533 * Don't copy ptes where a page fault will fill them correctly.
534 * Fork becomes much lighter when there are big shared or private
535 * readonly mappings. The tradeoff is that copy_page_range is more
536 * efficient than faulting.
538 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
539 if (!vma->anon_vma)
540 return 0;
543 if (is_vm_hugetlb_page(vma))
544 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
546 dst_pgd = pgd_offset(dst_mm, addr);
547 src_pgd = pgd_offset(src_mm, addr);
548 do {
549 next = pgd_addr_end(addr, end);
550 if (pgd_none_or_clear_bad(src_pgd))
551 continue;
552 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
553 vma, addr, next))
554 return -ENOMEM;
555 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
556 return 0;
559 static void zap_pte_range(struct mmu_gather *tlb,
560 struct vm_area_struct *vma, pmd_t *pmd,
561 unsigned long addr, unsigned long end,
562 struct zap_details *details)
564 struct mm_struct *mm = tlb->mm;
565 pte_t *pte;
566 int file_rss = 0;
567 int anon_rss = 0;
569 pte = pte_offset_map(pmd, addr);
570 do {
571 pte_t ptent = *pte;
572 if (pte_none(ptent))
573 continue;
574 if (pte_present(ptent)) {
575 struct page *page = NULL;
576 if (!(vma->vm_flags & VM_RESERVED)) {
577 unsigned long pfn = pte_pfn(ptent);
578 if (unlikely(!pfn_valid(pfn)))
579 print_bad_pte(vma, ptent, addr);
580 else
581 page = pfn_to_page(pfn);
583 if (unlikely(details) && page) {
585 * unmap_shared_mapping_pages() wants to
586 * invalidate cache without truncating:
587 * unmap shared but keep private pages.
589 if (details->check_mapping &&
590 details->check_mapping != page->mapping)
591 continue;
593 * Each page->index must be checked when
594 * invalidating or truncating nonlinear.
596 if (details->nonlinear_vma &&
597 (page->index < details->first_index ||
598 page->index > details->last_index))
599 continue;
601 ptent = ptep_get_and_clear_full(mm, addr, pte,
602 tlb->fullmm);
603 tlb_remove_tlb_entry(tlb, pte, addr);
604 if (unlikely(!page))
605 continue;
606 if (unlikely(details) && details->nonlinear_vma
607 && linear_page_index(details->nonlinear_vma,
608 addr) != page->index)
609 set_pte_at(mm, addr, pte,
610 pgoff_to_pte(page->index));
611 if (PageAnon(page))
612 anon_rss--;
613 else {
614 if (pte_dirty(ptent))
615 set_page_dirty(page);
616 if (pte_young(ptent))
617 mark_page_accessed(page);
618 file_rss--;
620 page_remove_rmap(page);
621 tlb_remove_page(tlb, page);
622 continue;
625 * If details->check_mapping, we leave swap entries;
626 * if details->nonlinear_vma, we leave file entries.
628 if (unlikely(details))
629 continue;
630 if (!pte_file(ptent))
631 free_swap_and_cache(pte_to_swp_entry(ptent));
632 pte_clear_full(mm, addr, pte, tlb->fullmm);
633 } while (pte++, addr += PAGE_SIZE, addr != end);
635 add_mm_rss(mm, file_rss, anon_rss);
636 pte_unmap(pte - 1);
639 static inline void zap_pmd_range(struct mmu_gather *tlb,
640 struct vm_area_struct *vma, pud_t *pud,
641 unsigned long addr, unsigned long end,
642 struct zap_details *details)
644 pmd_t *pmd;
645 unsigned long next;
647 pmd = pmd_offset(pud, addr);
648 do {
649 next = pmd_addr_end(addr, end);
650 if (pmd_none_or_clear_bad(pmd))
651 continue;
652 zap_pte_range(tlb, vma, pmd, addr, next, details);
653 } while (pmd++, addr = next, addr != end);
656 static inline void zap_pud_range(struct mmu_gather *tlb,
657 struct vm_area_struct *vma, pgd_t *pgd,
658 unsigned long addr, unsigned long end,
659 struct zap_details *details)
661 pud_t *pud;
662 unsigned long next;
664 pud = pud_offset(pgd, addr);
665 do {
666 next = pud_addr_end(addr, end);
667 if (pud_none_or_clear_bad(pud))
668 continue;
669 zap_pmd_range(tlb, vma, pud, addr, next, details);
670 } while (pud++, addr = next, addr != end);
673 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
674 unsigned long addr, unsigned long end,
675 struct zap_details *details)
677 pgd_t *pgd;
678 unsigned long next;
680 if (details && !details->check_mapping && !details->nonlinear_vma)
681 details = NULL;
683 BUG_ON(addr >= end);
684 tlb_start_vma(tlb, vma);
685 pgd = pgd_offset(vma->vm_mm, addr);
686 do {
687 next = pgd_addr_end(addr, end);
688 if (pgd_none_or_clear_bad(pgd))
689 continue;
690 zap_pud_range(tlb, vma, pgd, addr, next, details);
691 } while (pgd++, addr = next, addr != end);
692 tlb_end_vma(tlb, vma);
695 #ifdef CONFIG_PREEMPT
696 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
697 #else
698 /* No preempt: go for improved straight-line efficiency */
699 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
700 #endif
703 * unmap_vmas - unmap a range of memory covered by a list of vma's
704 * @tlbp: address of the caller's struct mmu_gather
705 * @mm: the controlling mm_struct
706 * @vma: the starting vma
707 * @start_addr: virtual address at which to start unmapping
708 * @end_addr: virtual address at which to end unmapping
709 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
710 * @details: details of nonlinear truncation or shared cache invalidation
712 * Returns the end address of the unmapping (restart addr if interrupted).
714 * Unmap all pages in the vma list. Called under page_table_lock.
716 * We aim to not hold page_table_lock for too long (for scheduling latency
717 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
718 * return the ending mmu_gather to the caller.
720 * Only addresses between `start' and `end' will be unmapped.
722 * The VMA list must be sorted in ascending virtual address order.
724 * unmap_vmas() assumes that the caller will flush the whole unmapped address
725 * range after unmap_vmas() returns. So the only responsibility here is to
726 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
727 * drops the lock and schedules.
729 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
730 struct vm_area_struct *vma, unsigned long start_addr,
731 unsigned long end_addr, unsigned long *nr_accounted,
732 struct zap_details *details)
734 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
735 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
736 int tlb_start_valid = 0;
737 unsigned long start = start_addr;
738 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
739 int fullmm = (*tlbp)->fullmm;
741 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
742 unsigned long end;
744 start = max(vma->vm_start, start_addr);
745 if (start >= vma->vm_end)
746 continue;
747 end = min(vma->vm_end, end_addr);
748 if (end <= vma->vm_start)
749 continue;
751 if (vma->vm_flags & VM_ACCOUNT)
752 *nr_accounted += (end - start) >> PAGE_SHIFT;
754 while (start != end) {
755 unsigned long block;
757 if (!tlb_start_valid) {
758 tlb_start = start;
759 tlb_start_valid = 1;
762 if (is_vm_hugetlb_page(vma)) {
763 block = end - start;
764 unmap_hugepage_range(vma, start, end);
765 } else {
766 block = min(zap_bytes, end - start);
767 unmap_page_range(*tlbp, vma, start,
768 start + block, details);
771 start += block;
772 zap_bytes -= block;
773 if ((long)zap_bytes > 0)
774 continue;
776 tlb_finish_mmu(*tlbp, tlb_start, start);
778 if (need_resched() ||
779 need_lockbreak(&mm->page_table_lock) ||
780 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
781 if (i_mmap_lock) {
782 /* must reset count of rss freed */
783 *tlbp = tlb_gather_mmu(mm, fullmm);
784 goto out;
786 spin_unlock(&mm->page_table_lock);
787 cond_resched();
788 spin_lock(&mm->page_table_lock);
791 *tlbp = tlb_gather_mmu(mm, fullmm);
792 tlb_start_valid = 0;
793 zap_bytes = ZAP_BLOCK_SIZE;
796 out:
797 return start; /* which is now the end (or restart) address */
801 * zap_page_range - remove user pages in a given range
802 * @vma: vm_area_struct holding the applicable pages
803 * @address: starting address of pages to zap
804 * @size: number of bytes to zap
805 * @details: details of nonlinear truncation or shared cache invalidation
807 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
808 unsigned long size, struct zap_details *details)
810 struct mm_struct *mm = vma->vm_mm;
811 struct mmu_gather *tlb;
812 unsigned long end = address + size;
813 unsigned long nr_accounted = 0;
815 if (is_vm_hugetlb_page(vma)) {
816 zap_hugepage_range(vma, address, size);
817 return end;
820 lru_add_drain();
821 spin_lock(&mm->page_table_lock);
822 tlb = tlb_gather_mmu(mm, 0);
823 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
824 tlb_finish_mmu(tlb, address, end);
825 spin_unlock(&mm->page_table_lock);
826 return end;
830 * Do a quick page-table lookup for a single page.
831 * mm->page_table_lock must be held.
833 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
834 int read, int write, int accessed)
836 pgd_t *pgd;
837 pud_t *pud;
838 pmd_t *pmd;
839 pte_t *ptep, pte;
840 unsigned long pfn;
841 struct page *page;
843 page = follow_huge_addr(mm, address, write);
844 if (! IS_ERR(page))
845 return page;
847 pgd = pgd_offset(mm, address);
848 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
849 goto out;
851 pud = pud_offset(pgd, address);
852 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
853 goto out;
855 pmd = pmd_offset(pud, address);
856 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
857 goto out;
858 if (pmd_huge(*pmd))
859 return follow_huge_pmd(mm, address, pmd, write);
861 ptep = pte_offset_map(pmd, address);
862 if (!ptep)
863 goto out;
865 pte = *ptep;
866 pte_unmap(ptep);
867 if (pte_present(pte)) {
868 if (write && !pte_write(pte))
869 goto out;
870 if (read && !pte_read(pte))
871 goto out;
872 pfn = pte_pfn(pte);
873 if (pfn_valid(pfn)) {
874 page = pfn_to_page(pfn);
875 if (accessed) {
876 if (write && !pte_dirty(pte) &&!PageDirty(page))
877 set_page_dirty(page);
878 mark_page_accessed(page);
880 return page;
884 out:
885 return NULL;
888 inline struct page *
889 follow_page(struct mm_struct *mm, unsigned long address, int write)
891 return __follow_page(mm, address, 0, write, 1);
895 * check_user_page_readable() can be called frm niterrupt context by oprofile,
896 * so we need to avoid taking any non-irq-safe locks
898 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
900 return __follow_page(mm, address, 1, 0, 0) != NULL;
902 EXPORT_SYMBOL(check_user_page_readable);
904 static inline int
905 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
906 unsigned long address)
908 pgd_t *pgd;
909 pud_t *pud;
910 pmd_t *pmd;
912 /* Check if the vma is for an anonymous mapping. */
913 if (vma->vm_ops && vma->vm_ops->nopage)
914 return 0;
916 /* Check if page directory entry exists. */
917 pgd = pgd_offset(mm, address);
918 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
919 return 1;
921 pud = pud_offset(pgd, address);
922 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
923 return 1;
925 /* Check if page middle directory entry exists. */
926 pmd = pmd_offset(pud, address);
927 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
928 return 1;
930 /* There is a pte slot for 'address' in 'mm'. */
931 return 0;
934 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
935 unsigned long start, int len, int write, int force,
936 struct page **pages, struct vm_area_struct **vmas)
938 int i;
939 unsigned int flags;
942 * Require read or write permissions.
943 * If 'force' is set, we only require the "MAY" flags.
945 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
946 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
947 i = 0;
949 do {
950 struct vm_area_struct * vma;
952 vma = find_extend_vma(mm, start);
953 if (!vma && in_gate_area(tsk, start)) {
954 unsigned long pg = start & PAGE_MASK;
955 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
956 pgd_t *pgd;
957 pud_t *pud;
958 pmd_t *pmd;
959 pte_t *pte;
960 if (write) /* user gate pages are read-only */
961 return i ? : -EFAULT;
962 if (pg > TASK_SIZE)
963 pgd = pgd_offset_k(pg);
964 else
965 pgd = pgd_offset_gate(mm, pg);
966 BUG_ON(pgd_none(*pgd));
967 pud = pud_offset(pgd, pg);
968 BUG_ON(pud_none(*pud));
969 pmd = pmd_offset(pud, pg);
970 if (pmd_none(*pmd))
971 return i ? : -EFAULT;
972 pte = pte_offset_map(pmd, pg);
973 if (pte_none(*pte)) {
974 pte_unmap(pte);
975 return i ? : -EFAULT;
977 if (pages) {
978 pages[i] = pte_page(*pte);
979 get_page(pages[i]);
981 pte_unmap(pte);
982 if (vmas)
983 vmas[i] = gate_vma;
984 i++;
985 start += PAGE_SIZE;
986 len--;
987 continue;
990 if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
991 || !(flags & vma->vm_flags))
992 return i ? : -EFAULT;
994 if (is_vm_hugetlb_page(vma)) {
995 i = follow_hugetlb_page(mm, vma, pages, vmas,
996 &start, &len, i);
997 continue;
999 spin_lock(&mm->page_table_lock);
1000 do {
1001 int write_access = write;
1002 struct page *page;
1004 cond_resched_lock(&mm->page_table_lock);
1005 while (!(page = follow_page(mm, start, write_access))) {
1006 int ret;
1009 * Shortcut for anonymous pages. We don't want
1010 * to force the creation of pages tables for
1011 * insanely big anonymously mapped areas that
1012 * nobody touched so far. This is important
1013 * for doing a core dump for these mappings.
1015 if (!write && untouched_anonymous_page(mm,vma,start)) {
1016 page = ZERO_PAGE(start);
1017 break;
1019 spin_unlock(&mm->page_table_lock);
1020 ret = __handle_mm_fault(mm, vma, start, write_access);
1023 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1024 * broken COW when necessary, even if maybe_mkwrite
1025 * decided not to set pte_write. We can thus safely do
1026 * subsequent page lookups as if they were reads.
1028 if (ret & VM_FAULT_WRITE)
1029 write_access = 0;
1031 switch (ret & ~VM_FAULT_WRITE) {
1032 case VM_FAULT_MINOR:
1033 tsk->min_flt++;
1034 break;
1035 case VM_FAULT_MAJOR:
1036 tsk->maj_flt++;
1037 break;
1038 case VM_FAULT_SIGBUS:
1039 return i ? i : -EFAULT;
1040 case VM_FAULT_OOM:
1041 return i ? i : -ENOMEM;
1042 default:
1043 BUG();
1045 spin_lock(&mm->page_table_lock);
1047 if (pages) {
1048 pages[i] = page;
1049 flush_dcache_page(page);
1050 page_cache_get(page);
1052 if (vmas)
1053 vmas[i] = vma;
1054 i++;
1055 start += PAGE_SIZE;
1056 len--;
1057 } while (len && start < vma->vm_end);
1058 spin_unlock(&mm->page_table_lock);
1059 } while (len);
1060 return i;
1062 EXPORT_SYMBOL(get_user_pages);
1064 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1065 unsigned long addr, unsigned long end, pgprot_t prot)
1067 pte_t *pte;
1069 pte = pte_alloc_map(mm, pmd, addr);
1070 if (!pte)
1071 return -ENOMEM;
1072 do {
1073 struct page *page = ZERO_PAGE(addr);
1074 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1075 page_cache_get(page);
1076 page_add_file_rmap(page);
1077 inc_mm_counter(mm, file_rss);
1078 BUG_ON(!pte_none(*pte));
1079 set_pte_at(mm, addr, pte, zero_pte);
1080 } while (pte++, addr += PAGE_SIZE, addr != end);
1081 pte_unmap(pte - 1);
1082 return 0;
1085 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1086 unsigned long addr, unsigned long end, pgprot_t prot)
1088 pmd_t *pmd;
1089 unsigned long next;
1091 pmd = pmd_alloc(mm, pud, addr);
1092 if (!pmd)
1093 return -ENOMEM;
1094 do {
1095 next = pmd_addr_end(addr, end);
1096 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1097 return -ENOMEM;
1098 } while (pmd++, addr = next, addr != end);
1099 return 0;
1102 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1103 unsigned long addr, unsigned long end, pgprot_t prot)
1105 pud_t *pud;
1106 unsigned long next;
1108 pud = pud_alloc(mm, pgd, addr);
1109 if (!pud)
1110 return -ENOMEM;
1111 do {
1112 next = pud_addr_end(addr, end);
1113 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1114 return -ENOMEM;
1115 } while (pud++, addr = next, addr != end);
1116 return 0;
1119 int zeromap_page_range(struct vm_area_struct *vma,
1120 unsigned long addr, unsigned long size, pgprot_t prot)
1122 pgd_t *pgd;
1123 unsigned long next;
1124 unsigned long end = addr + size;
1125 struct mm_struct *mm = vma->vm_mm;
1126 int err;
1128 BUG_ON(addr >= end);
1129 pgd = pgd_offset(mm, addr);
1130 flush_cache_range(vma, addr, end);
1131 spin_lock(&mm->page_table_lock);
1132 do {
1133 next = pgd_addr_end(addr, end);
1134 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1135 if (err)
1136 break;
1137 } while (pgd++, addr = next, addr != end);
1138 spin_unlock(&mm->page_table_lock);
1139 return err;
1143 * maps a range of physical memory into the requested pages. the old
1144 * mappings are removed. any references to nonexistent pages results
1145 * in null mappings (currently treated as "copy-on-access")
1147 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1148 unsigned long addr, unsigned long end,
1149 unsigned long pfn, pgprot_t prot)
1151 pte_t *pte;
1153 pte = pte_alloc_map(mm, pmd, addr);
1154 if (!pte)
1155 return -ENOMEM;
1156 do {
1157 BUG_ON(!pte_none(*pte));
1158 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1159 pfn++;
1160 } while (pte++, addr += PAGE_SIZE, addr != end);
1161 pte_unmap(pte - 1);
1162 return 0;
1165 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1166 unsigned long addr, unsigned long end,
1167 unsigned long pfn, pgprot_t prot)
1169 pmd_t *pmd;
1170 unsigned long next;
1172 pfn -= addr >> PAGE_SHIFT;
1173 pmd = pmd_alloc(mm, pud, addr);
1174 if (!pmd)
1175 return -ENOMEM;
1176 do {
1177 next = pmd_addr_end(addr, end);
1178 if (remap_pte_range(mm, pmd, addr, next,
1179 pfn + (addr >> PAGE_SHIFT), prot))
1180 return -ENOMEM;
1181 } while (pmd++, addr = next, addr != end);
1182 return 0;
1185 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1186 unsigned long addr, unsigned long end,
1187 unsigned long pfn, pgprot_t prot)
1189 pud_t *pud;
1190 unsigned long next;
1192 pfn -= addr >> PAGE_SHIFT;
1193 pud = pud_alloc(mm, pgd, addr);
1194 if (!pud)
1195 return -ENOMEM;
1196 do {
1197 next = pud_addr_end(addr, end);
1198 if (remap_pmd_range(mm, pud, addr, next,
1199 pfn + (addr >> PAGE_SHIFT), prot))
1200 return -ENOMEM;
1201 } while (pud++, addr = next, addr != end);
1202 return 0;
1205 /* Note: this is only safe if the mm semaphore is held when called. */
1206 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1207 unsigned long pfn, unsigned long size, pgprot_t prot)
1209 pgd_t *pgd;
1210 unsigned long next;
1211 unsigned long end = addr + PAGE_ALIGN(size);
1212 struct mm_struct *mm = vma->vm_mm;
1213 int err;
1216 * Physically remapped pages are special. Tell the
1217 * rest of the world about it:
1218 * VM_IO tells people not to look at these pages
1219 * (accesses can have side effects).
1220 * VM_RESERVED tells the core MM not to "manage" these pages
1221 * (e.g. refcount, mapcount, try to swap them out).
1223 vma->vm_flags |= VM_IO | VM_RESERVED;
1225 BUG_ON(addr >= end);
1226 pfn -= addr >> PAGE_SHIFT;
1227 pgd = pgd_offset(mm, addr);
1228 flush_cache_range(vma, addr, end);
1229 spin_lock(&mm->page_table_lock);
1230 do {
1231 next = pgd_addr_end(addr, end);
1232 err = remap_pud_range(mm, pgd, addr, next,
1233 pfn + (addr >> PAGE_SHIFT), prot);
1234 if (err)
1235 break;
1236 } while (pgd++, addr = next, addr != end);
1237 spin_unlock(&mm->page_table_lock);
1238 return err;
1240 EXPORT_SYMBOL(remap_pfn_range);
1243 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1244 * servicing faults for write access. In the normal case, do always want
1245 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1246 * that do not have writing enabled, when used by access_process_vm.
1248 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1250 if (likely(vma->vm_flags & VM_WRITE))
1251 pte = pte_mkwrite(pte);
1252 return pte;
1256 * This routine handles present pages, when users try to write
1257 * to a shared page. It is done by copying the page to a new address
1258 * and decrementing the shared-page counter for the old page.
1260 * Note that this routine assumes that the protection checks have been
1261 * done by the caller (the low-level page fault routine in most cases).
1262 * Thus we can safely just mark it writable once we've done any necessary
1263 * COW.
1265 * We also mark the page dirty at this point even though the page will
1266 * change only once the write actually happens. This avoids a few races,
1267 * and potentially makes it more efficient.
1269 * We hold the mm semaphore and the page_table_lock on entry and exit
1270 * with the page_table_lock released.
1272 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1273 unsigned long address, pte_t *page_table, pmd_t *pmd,
1274 pte_t orig_pte)
1276 struct page *old_page, *new_page;
1277 unsigned long pfn = pte_pfn(orig_pte);
1278 pte_t entry;
1279 int ret = VM_FAULT_MINOR;
1281 BUG_ON(vma->vm_flags & VM_RESERVED);
1283 if (unlikely(!pfn_valid(pfn))) {
1285 * Page table corrupted: show pte and kill process.
1287 print_bad_pte(vma, orig_pte, address);
1288 ret = VM_FAULT_OOM;
1289 goto unlock;
1291 old_page = pfn_to_page(pfn);
1293 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1294 int reuse = can_share_swap_page(old_page);
1295 unlock_page(old_page);
1296 if (reuse) {
1297 flush_cache_page(vma, address, pfn);
1298 entry = pte_mkyoung(orig_pte);
1299 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1300 ptep_set_access_flags(vma, address, page_table, entry, 1);
1301 update_mmu_cache(vma, address, entry);
1302 lazy_mmu_prot_update(entry);
1303 ret |= VM_FAULT_WRITE;
1304 goto unlock;
1309 * Ok, we need to copy. Oh, well..
1311 page_cache_get(old_page);
1312 pte_unmap(page_table);
1313 spin_unlock(&mm->page_table_lock);
1315 if (unlikely(anon_vma_prepare(vma)))
1316 goto oom;
1317 if (old_page == ZERO_PAGE(address)) {
1318 new_page = alloc_zeroed_user_highpage(vma, address);
1319 if (!new_page)
1320 goto oom;
1321 } else {
1322 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1323 if (!new_page)
1324 goto oom;
1325 copy_user_highpage(new_page, old_page, address);
1329 * Re-check the pte - we dropped the lock
1331 spin_lock(&mm->page_table_lock);
1332 page_table = pte_offset_map(pmd, address);
1333 if (likely(pte_same(*page_table, orig_pte))) {
1334 page_remove_rmap(old_page);
1335 if (!PageAnon(old_page)) {
1336 inc_mm_counter(mm, anon_rss);
1337 dec_mm_counter(mm, file_rss);
1339 flush_cache_page(vma, address, pfn);
1340 entry = mk_pte(new_page, vma->vm_page_prot);
1341 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1342 ptep_establish(vma, address, page_table, entry);
1343 update_mmu_cache(vma, address, entry);
1344 lazy_mmu_prot_update(entry);
1346 lru_cache_add_active(new_page);
1347 page_add_anon_rmap(new_page, vma, address);
1349 /* Free the old page.. */
1350 new_page = old_page;
1351 ret |= VM_FAULT_WRITE;
1353 page_cache_release(new_page);
1354 page_cache_release(old_page);
1355 unlock:
1356 pte_unmap(page_table);
1357 spin_unlock(&mm->page_table_lock);
1358 return ret;
1359 oom:
1360 page_cache_release(old_page);
1361 return VM_FAULT_OOM;
1365 * Helper functions for unmap_mapping_range().
1367 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1369 * We have to restart searching the prio_tree whenever we drop the lock,
1370 * since the iterator is only valid while the lock is held, and anyway
1371 * a later vma might be split and reinserted earlier while lock dropped.
1373 * The list of nonlinear vmas could be handled more efficiently, using
1374 * a placeholder, but handle it in the same way until a need is shown.
1375 * It is important to search the prio_tree before nonlinear list: a vma
1376 * may become nonlinear and be shifted from prio_tree to nonlinear list
1377 * while the lock is dropped; but never shifted from list to prio_tree.
1379 * In order to make forward progress despite restarting the search,
1380 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1381 * quickly skip it next time around. Since the prio_tree search only
1382 * shows us those vmas affected by unmapping the range in question, we
1383 * can't efficiently keep all vmas in step with mapping->truncate_count:
1384 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1385 * mapping->truncate_count and vma->vm_truncate_count are protected by
1386 * i_mmap_lock.
1388 * In order to make forward progress despite repeatedly restarting some
1389 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1390 * and restart from that address when we reach that vma again. It might
1391 * have been split or merged, shrunk or extended, but never shifted: so
1392 * restart_addr remains valid so long as it remains in the vma's range.
1393 * unmap_mapping_range forces truncate_count to leap over page-aligned
1394 * values so we can save vma's restart_addr in its truncate_count field.
1396 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1398 static void reset_vma_truncate_counts(struct address_space *mapping)
1400 struct vm_area_struct *vma;
1401 struct prio_tree_iter iter;
1403 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1404 vma->vm_truncate_count = 0;
1405 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1406 vma->vm_truncate_count = 0;
1409 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1410 unsigned long start_addr, unsigned long end_addr,
1411 struct zap_details *details)
1413 unsigned long restart_addr;
1414 int need_break;
1416 again:
1417 restart_addr = vma->vm_truncate_count;
1418 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1419 start_addr = restart_addr;
1420 if (start_addr >= end_addr) {
1421 /* Top of vma has been split off since last time */
1422 vma->vm_truncate_count = details->truncate_count;
1423 return 0;
1427 restart_addr = zap_page_range(vma, start_addr,
1428 end_addr - start_addr, details);
1431 * We cannot rely on the break test in unmap_vmas:
1432 * on the one hand, we don't want to restart our loop
1433 * just because that broke out for the page_table_lock;
1434 * on the other hand, it does no test when vma is small.
1436 need_break = need_resched() ||
1437 need_lockbreak(details->i_mmap_lock);
1439 if (restart_addr >= end_addr) {
1440 /* We have now completed this vma: mark it so */
1441 vma->vm_truncate_count = details->truncate_count;
1442 if (!need_break)
1443 return 0;
1444 } else {
1445 /* Note restart_addr in vma's truncate_count field */
1446 vma->vm_truncate_count = restart_addr;
1447 if (!need_break)
1448 goto again;
1451 spin_unlock(details->i_mmap_lock);
1452 cond_resched();
1453 spin_lock(details->i_mmap_lock);
1454 return -EINTR;
1457 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1458 struct zap_details *details)
1460 struct vm_area_struct *vma;
1461 struct prio_tree_iter iter;
1462 pgoff_t vba, vea, zba, zea;
1464 restart:
1465 vma_prio_tree_foreach(vma, &iter, root,
1466 details->first_index, details->last_index) {
1467 /* Skip quickly over those we have already dealt with */
1468 if (vma->vm_truncate_count == details->truncate_count)
1469 continue;
1471 vba = vma->vm_pgoff;
1472 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1473 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1474 zba = details->first_index;
1475 if (zba < vba)
1476 zba = vba;
1477 zea = details->last_index;
1478 if (zea > vea)
1479 zea = vea;
1481 if (unmap_mapping_range_vma(vma,
1482 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1483 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1484 details) < 0)
1485 goto restart;
1489 static inline void unmap_mapping_range_list(struct list_head *head,
1490 struct zap_details *details)
1492 struct vm_area_struct *vma;
1495 * In nonlinear VMAs there is no correspondence between virtual address
1496 * offset and file offset. So we must perform an exhaustive search
1497 * across *all* the pages in each nonlinear VMA, not just the pages
1498 * whose virtual address lies outside the file truncation point.
1500 restart:
1501 list_for_each_entry(vma, head, shared.vm_set.list) {
1502 /* Skip quickly over those we have already dealt with */
1503 if (vma->vm_truncate_count == details->truncate_count)
1504 continue;
1505 details->nonlinear_vma = vma;
1506 if (unmap_mapping_range_vma(vma, vma->vm_start,
1507 vma->vm_end, details) < 0)
1508 goto restart;
1513 * unmap_mapping_range - unmap the portion of all mmaps
1514 * in the specified address_space corresponding to the specified
1515 * page range in the underlying file.
1516 * @mapping: the address space containing mmaps to be unmapped.
1517 * @holebegin: byte in first page to unmap, relative to the start of
1518 * the underlying file. This will be rounded down to a PAGE_SIZE
1519 * boundary. Note that this is different from vmtruncate(), which
1520 * must keep the partial page. In contrast, we must get rid of
1521 * partial pages.
1522 * @holelen: size of prospective hole in bytes. This will be rounded
1523 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1524 * end of the file.
1525 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1526 * but 0 when invalidating pagecache, don't throw away private data.
1528 void unmap_mapping_range(struct address_space *mapping,
1529 loff_t const holebegin, loff_t const holelen, int even_cows)
1531 struct zap_details details;
1532 pgoff_t hba = holebegin >> PAGE_SHIFT;
1533 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1535 /* Check for overflow. */
1536 if (sizeof(holelen) > sizeof(hlen)) {
1537 long long holeend =
1538 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1539 if (holeend & ~(long long)ULONG_MAX)
1540 hlen = ULONG_MAX - hba + 1;
1543 details.check_mapping = even_cows? NULL: mapping;
1544 details.nonlinear_vma = NULL;
1545 details.first_index = hba;
1546 details.last_index = hba + hlen - 1;
1547 if (details.last_index < details.first_index)
1548 details.last_index = ULONG_MAX;
1549 details.i_mmap_lock = &mapping->i_mmap_lock;
1551 spin_lock(&mapping->i_mmap_lock);
1553 /* serialize i_size write against truncate_count write */
1554 smp_wmb();
1555 /* Protect against page faults, and endless unmapping loops */
1556 mapping->truncate_count++;
1558 * For archs where spin_lock has inclusive semantics like ia64
1559 * this smp_mb() will prevent to read pagetable contents
1560 * before the truncate_count increment is visible to
1561 * other cpus.
1563 smp_mb();
1564 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1565 if (mapping->truncate_count == 0)
1566 reset_vma_truncate_counts(mapping);
1567 mapping->truncate_count++;
1569 details.truncate_count = mapping->truncate_count;
1571 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1572 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1573 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1574 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1575 spin_unlock(&mapping->i_mmap_lock);
1577 EXPORT_SYMBOL(unmap_mapping_range);
1580 * Handle all mappings that got truncated by a "truncate()"
1581 * system call.
1583 * NOTE! We have to be ready to update the memory sharing
1584 * between the file and the memory map for a potential last
1585 * incomplete page. Ugly, but necessary.
1587 int vmtruncate(struct inode * inode, loff_t offset)
1589 struct address_space *mapping = inode->i_mapping;
1590 unsigned long limit;
1592 if (inode->i_size < offset)
1593 goto do_expand;
1595 * truncation of in-use swapfiles is disallowed - it would cause
1596 * subsequent swapout to scribble on the now-freed blocks.
1598 if (IS_SWAPFILE(inode))
1599 goto out_busy;
1600 i_size_write(inode, offset);
1601 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1602 truncate_inode_pages(mapping, offset);
1603 goto out_truncate;
1605 do_expand:
1606 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1607 if (limit != RLIM_INFINITY && offset > limit)
1608 goto out_sig;
1609 if (offset > inode->i_sb->s_maxbytes)
1610 goto out_big;
1611 i_size_write(inode, offset);
1613 out_truncate:
1614 if (inode->i_op && inode->i_op->truncate)
1615 inode->i_op->truncate(inode);
1616 return 0;
1617 out_sig:
1618 send_sig(SIGXFSZ, current, 0);
1619 out_big:
1620 return -EFBIG;
1621 out_busy:
1622 return -ETXTBSY;
1625 EXPORT_SYMBOL(vmtruncate);
1628 * Primitive swap readahead code. We simply read an aligned block of
1629 * (1 << page_cluster) entries in the swap area. This method is chosen
1630 * because it doesn't cost us any seek time. We also make sure to queue
1631 * the 'original' request together with the readahead ones...
1633 * This has been extended to use the NUMA policies from the mm triggering
1634 * the readahead.
1636 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1638 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1640 #ifdef CONFIG_NUMA
1641 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1642 #endif
1643 int i, num;
1644 struct page *new_page;
1645 unsigned long offset;
1648 * Get the number of handles we should do readahead io to.
1650 num = valid_swaphandles(entry, &offset);
1651 for (i = 0; i < num; offset++, i++) {
1652 /* Ok, do the async read-ahead now */
1653 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1654 offset), vma, addr);
1655 if (!new_page)
1656 break;
1657 page_cache_release(new_page);
1658 #ifdef CONFIG_NUMA
1660 * Find the next applicable VMA for the NUMA policy.
1662 addr += PAGE_SIZE;
1663 if (addr == 0)
1664 vma = NULL;
1665 if (vma) {
1666 if (addr >= vma->vm_end) {
1667 vma = next_vma;
1668 next_vma = vma ? vma->vm_next : NULL;
1670 if (vma && addr < vma->vm_start)
1671 vma = NULL;
1672 } else {
1673 if (next_vma && addr >= next_vma->vm_start) {
1674 vma = next_vma;
1675 next_vma = vma->vm_next;
1678 #endif
1680 lru_add_drain(); /* Push any new pages onto the LRU now */
1684 * We hold the mm semaphore and the page_table_lock on entry and
1685 * should release the pagetable lock on exit..
1687 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1688 unsigned long address, pte_t *page_table, pmd_t *pmd,
1689 int write_access, pte_t orig_pte)
1691 struct page *page;
1692 swp_entry_t entry;
1693 pte_t pte;
1694 int ret = VM_FAULT_MINOR;
1696 pte_unmap(page_table);
1697 spin_unlock(&mm->page_table_lock);
1699 entry = pte_to_swp_entry(orig_pte);
1700 page = lookup_swap_cache(entry);
1701 if (!page) {
1702 swapin_readahead(entry, address, vma);
1703 page = read_swap_cache_async(entry, vma, address);
1704 if (!page) {
1706 * Back out if somebody else faulted in this pte while
1707 * we released the page table lock.
1709 spin_lock(&mm->page_table_lock);
1710 page_table = pte_offset_map(pmd, address);
1711 if (likely(pte_same(*page_table, orig_pte)))
1712 ret = VM_FAULT_OOM;
1713 goto unlock;
1716 /* Had to read the page from swap area: Major fault */
1717 ret = VM_FAULT_MAJOR;
1718 inc_page_state(pgmajfault);
1719 grab_swap_token();
1722 mark_page_accessed(page);
1723 lock_page(page);
1726 * Back out if somebody else faulted in this pte while we
1727 * released the page table lock.
1729 spin_lock(&mm->page_table_lock);
1730 page_table = pte_offset_map(pmd, address);
1731 if (unlikely(!pte_same(*page_table, orig_pte))) {
1732 ret = VM_FAULT_MINOR;
1733 goto out_nomap;
1736 if (unlikely(!PageUptodate(page))) {
1737 ret = VM_FAULT_SIGBUS;
1738 goto out_nomap;
1741 /* The page isn't present yet, go ahead with the fault. */
1743 inc_mm_counter(mm, anon_rss);
1744 pte = mk_pte(page, vma->vm_page_prot);
1745 if (write_access && can_share_swap_page(page)) {
1746 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1747 write_access = 0;
1750 flush_icache_page(vma, page);
1751 set_pte_at(mm, address, page_table, pte);
1752 page_add_anon_rmap(page, vma, address);
1754 swap_free(entry);
1755 if (vm_swap_full())
1756 remove_exclusive_swap_page(page);
1757 unlock_page(page);
1759 if (write_access) {
1760 if (do_wp_page(mm, vma, address,
1761 page_table, pmd, pte) == VM_FAULT_OOM)
1762 ret = VM_FAULT_OOM;
1763 goto out;
1766 /* No need to invalidate - it was non-present before */
1767 update_mmu_cache(vma, address, pte);
1768 lazy_mmu_prot_update(pte);
1769 unlock:
1770 pte_unmap(page_table);
1771 spin_unlock(&mm->page_table_lock);
1772 out:
1773 return ret;
1774 out_nomap:
1775 pte_unmap(page_table);
1776 spin_unlock(&mm->page_table_lock);
1777 unlock_page(page);
1778 page_cache_release(page);
1779 return ret;
1783 * We are called with the MM semaphore and page_table_lock
1784 * spinlock held to protect against concurrent faults in
1785 * multithreaded programs.
1787 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1788 unsigned long address, pte_t *page_table, pmd_t *pmd,
1789 int write_access)
1791 struct page *page = ZERO_PAGE(addr);
1792 pte_t entry;
1794 /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1795 entry = mk_pte(page, vma->vm_page_prot);
1797 if (write_access) {
1798 /* Allocate our own private page. */
1799 pte_unmap(page_table);
1800 spin_unlock(&mm->page_table_lock);
1802 if (unlikely(anon_vma_prepare(vma)))
1803 goto oom;
1804 page = alloc_zeroed_user_highpage(vma, address);
1805 if (!page)
1806 goto oom;
1808 spin_lock(&mm->page_table_lock);
1809 page_table = pte_offset_map(pmd, address);
1811 if (!pte_none(*page_table)) {
1812 page_cache_release(page);
1813 goto unlock;
1815 inc_mm_counter(mm, anon_rss);
1816 entry = mk_pte(page, vma->vm_page_prot);
1817 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1818 lru_cache_add_active(page);
1819 SetPageReferenced(page);
1820 page_add_anon_rmap(page, vma, address);
1821 } else {
1822 inc_mm_counter(mm, file_rss);
1823 page_add_file_rmap(page);
1824 page_cache_get(page);
1827 set_pte_at(mm, address, page_table, entry);
1829 /* No need to invalidate - it was non-present before */
1830 update_mmu_cache(vma, address, entry);
1831 lazy_mmu_prot_update(entry);
1832 unlock:
1833 pte_unmap(page_table);
1834 spin_unlock(&mm->page_table_lock);
1835 return VM_FAULT_MINOR;
1836 oom:
1837 return VM_FAULT_OOM;
1841 * do_no_page() tries to create a new page mapping. It aggressively
1842 * tries to share with existing pages, but makes a separate copy if
1843 * the "write_access" parameter is true in order to avoid the next
1844 * page fault.
1846 * As this is called only for pages that do not currently exist, we
1847 * do not need to flush old virtual caches or the TLB.
1849 * This is called with the MM semaphore held and the page table
1850 * spinlock held. Exit with the spinlock released.
1852 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1853 unsigned long address, pte_t *page_table, pmd_t *pmd,
1854 int write_access)
1856 struct page *new_page;
1857 struct address_space *mapping = NULL;
1858 pte_t entry;
1859 unsigned int sequence = 0;
1860 int ret = VM_FAULT_MINOR;
1861 int anon = 0;
1863 pte_unmap(page_table);
1864 spin_unlock(&mm->page_table_lock);
1866 if (vma->vm_file) {
1867 mapping = vma->vm_file->f_mapping;
1868 sequence = mapping->truncate_count;
1869 smp_rmb(); /* serializes i_size against truncate_count */
1871 retry:
1872 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1874 * No smp_rmb is needed here as long as there's a full
1875 * spin_lock/unlock sequence inside the ->nopage callback
1876 * (for the pagecache lookup) that acts as an implicit
1877 * smp_mb() and prevents the i_size read to happen
1878 * after the next truncate_count read.
1881 /* no page was available -- either SIGBUS or OOM */
1882 if (new_page == NOPAGE_SIGBUS)
1883 return VM_FAULT_SIGBUS;
1884 if (new_page == NOPAGE_OOM)
1885 return VM_FAULT_OOM;
1888 * Should we do an early C-O-W break?
1890 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1891 struct page *page;
1893 if (unlikely(anon_vma_prepare(vma)))
1894 goto oom;
1895 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1896 if (!page)
1897 goto oom;
1898 copy_user_highpage(page, new_page, address);
1899 page_cache_release(new_page);
1900 new_page = page;
1901 anon = 1;
1904 spin_lock(&mm->page_table_lock);
1906 * For a file-backed vma, someone could have truncated or otherwise
1907 * invalidated this page. If unmap_mapping_range got called,
1908 * retry getting the page.
1910 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1911 spin_unlock(&mm->page_table_lock);
1912 page_cache_release(new_page);
1913 cond_resched();
1914 sequence = mapping->truncate_count;
1915 smp_rmb();
1916 goto retry;
1918 page_table = pte_offset_map(pmd, address);
1921 * This silly early PAGE_DIRTY setting removes a race
1922 * due to the bad i386 page protection. But it's valid
1923 * for other architectures too.
1925 * Note that if write_access is true, we either now have
1926 * an exclusive copy of the page, or this is a shared mapping,
1927 * so we can make it writable and dirty to avoid having to
1928 * handle that later.
1930 /* Only go through if we didn't race with anybody else... */
1931 if (pte_none(*page_table)) {
1932 flush_icache_page(vma, new_page);
1933 entry = mk_pte(new_page, vma->vm_page_prot);
1934 if (write_access)
1935 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1936 set_pte_at(mm, address, page_table, entry);
1937 if (anon) {
1938 inc_mm_counter(mm, anon_rss);
1939 lru_cache_add_active(new_page);
1940 page_add_anon_rmap(new_page, vma, address);
1941 } else if (!(vma->vm_flags & VM_RESERVED)) {
1942 inc_mm_counter(mm, file_rss);
1943 page_add_file_rmap(new_page);
1945 } else {
1946 /* One of our sibling threads was faster, back out. */
1947 page_cache_release(new_page);
1948 goto unlock;
1951 /* no need to invalidate: a not-present page shouldn't be cached */
1952 update_mmu_cache(vma, address, entry);
1953 lazy_mmu_prot_update(entry);
1954 unlock:
1955 pte_unmap(page_table);
1956 spin_unlock(&mm->page_table_lock);
1957 return ret;
1958 oom:
1959 page_cache_release(new_page);
1960 return VM_FAULT_OOM;
1964 * Fault of a previously existing named mapping. Repopulate the pte
1965 * from the encoded file_pte if possible. This enables swappable
1966 * nonlinear vmas.
1968 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1969 unsigned long address, pte_t *page_table, pmd_t *pmd,
1970 int write_access, pte_t orig_pte)
1972 pgoff_t pgoff;
1973 int err;
1975 pte_unmap(page_table);
1976 spin_unlock(&mm->page_table_lock);
1978 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1980 * Page table corrupted: show pte and kill process.
1982 print_bad_pte(vma, orig_pte, address);
1983 return VM_FAULT_OOM;
1985 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1987 pgoff = pte_to_pgoff(orig_pte);
1988 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1989 vma->vm_page_prot, pgoff, 0);
1990 if (err == -ENOMEM)
1991 return VM_FAULT_OOM;
1992 if (err)
1993 return VM_FAULT_SIGBUS;
1994 return VM_FAULT_MAJOR;
1998 * These routines also need to handle stuff like marking pages dirty
1999 * and/or accessed for architectures that don't do it in hardware (most
2000 * RISC architectures). The early dirtying is also good on the i386.
2002 * There is also a hook called "update_mmu_cache()" that architectures
2003 * with external mmu caches can use to update those (ie the Sparc or
2004 * PowerPC hashed page tables that act as extended TLBs).
2006 * Note the "page_table_lock". It is to protect against kswapd removing
2007 * pages from under us. Note that kswapd only ever _removes_ pages, never
2008 * adds them. As such, once we have noticed that the page is not present,
2009 * we can drop the lock early.
2011 * The adding of pages is protected by the MM semaphore (which we hold),
2012 * so we don't need to worry about a page being suddenly been added into
2013 * our VM.
2015 * We enter with the pagetable spinlock held, we are supposed to
2016 * release it when done.
2018 static inline int handle_pte_fault(struct mm_struct *mm,
2019 struct vm_area_struct *vma, unsigned long address,
2020 pte_t *pte, pmd_t *pmd, int write_access)
2022 pte_t entry;
2024 entry = *pte;
2025 if (!pte_present(entry)) {
2026 if (pte_none(entry)) {
2027 if (!vma->vm_ops || !vma->vm_ops->nopage)
2028 return do_anonymous_page(mm, vma, address,
2029 pte, pmd, write_access);
2030 return do_no_page(mm, vma, address,
2031 pte, pmd, write_access);
2033 if (pte_file(entry))
2034 return do_file_page(mm, vma, address,
2035 pte, pmd, write_access, entry);
2036 return do_swap_page(mm, vma, address,
2037 pte, pmd, write_access, entry);
2040 if (write_access) {
2041 if (!pte_write(entry))
2042 return do_wp_page(mm, vma, address, pte, pmd, entry);
2043 entry = pte_mkdirty(entry);
2045 entry = pte_mkyoung(entry);
2046 ptep_set_access_flags(vma, address, pte, entry, write_access);
2047 update_mmu_cache(vma, address, entry);
2048 lazy_mmu_prot_update(entry);
2049 pte_unmap(pte);
2050 spin_unlock(&mm->page_table_lock);
2051 return VM_FAULT_MINOR;
2055 * By the time we get here, we already hold the mm semaphore
2057 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2058 unsigned long address, int write_access)
2060 pgd_t *pgd;
2061 pud_t *pud;
2062 pmd_t *pmd;
2063 pte_t *pte;
2065 __set_current_state(TASK_RUNNING);
2067 inc_page_state(pgfault);
2069 if (unlikely(is_vm_hugetlb_page(vma)))
2070 return hugetlb_fault(mm, vma, address, write_access);
2073 * We need the page table lock to synchronize with kswapd
2074 * and the SMP-safe atomic PTE updates.
2076 pgd = pgd_offset(mm, address);
2077 spin_lock(&mm->page_table_lock);
2079 pud = pud_alloc(mm, pgd, address);
2080 if (!pud)
2081 goto oom;
2083 pmd = pmd_alloc(mm, pud, address);
2084 if (!pmd)
2085 goto oom;
2087 pte = pte_alloc_map(mm, pmd, address);
2088 if (!pte)
2089 goto oom;
2091 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2093 oom:
2094 spin_unlock(&mm->page_table_lock);
2095 return VM_FAULT_OOM;
2098 #ifndef __PAGETABLE_PUD_FOLDED
2100 * Allocate page upper directory.
2102 * We've already handled the fast-path in-line, and we own the
2103 * page table lock.
2105 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2107 pud_t *new;
2109 spin_unlock(&mm->page_table_lock);
2110 new = pud_alloc_one(mm, address);
2111 spin_lock(&mm->page_table_lock);
2112 if (!new)
2113 return NULL;
2116 * Because we dropped the lock, we should re-check the
2117 * entry, as somebody else could have populated it..
2119 if (pgd_present(*pgd)) {
2120 pud_free(new);
2121 goto out;
2123 pgd_populate(mm, pgd, new);
2124 out:
2125 return pud_offset(pgd, address);
2127 #endif /* __PAGETABLE_PUD_FOLDED */
2129 #ifndef __PAGETABLE_PMD_FOLDED
2131 * Allocate page middle directory.
2133 * We've already handled the fast-path in-line, and we own the
2134 * page table lock.
2136 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2138 pmd_t *new;
2140 spin_unlock(&mm->page_table_lock);
2141 new = pmd_alloc_one(mm, address);
2142 spin_lock(&mm->page_table_lock);
2143 if (!new)
2144 return NULL;
2147 * Because we dropped the lock, we should re-check the
2148 * entry, as somebody else could have populated it..
2150 #ifndef __ARCH_HAS_4LEVEL_HACK
2151 if (pud_present(*pud)) {
2152 pmd_free(new);
2153 goto out;
2155 pud_populate(mm, pud, new);
2156 #else
2157 if (pgd_present(*pud)) {
2158 pmd_free(new);
2159 goto out;
2161 pgd_populate(mm, pud, new);
2162 #endif /* __ARCH_HAS_4LEVEL_HACK */
2164 out:
2165 return pmd_offset(pud, address);
2167 #endif /* __PAGETABLE_PMD_FOLDED */
2169 int make_pages_present(unsigned long addr, unsigned long end)
2171 int ret, len, write;
2172 struct vm_area_struct * vma;
2174 vma = find_vma(current->mm, addr);
2175 if (!vma)
2176 return -1;
2177 write = (vma->vm_flags & VM_WRITE) != 0;
2178 if (addr >= end)
2179 BUG();
2180 if (end > vma->vm_end)
2181 BUG();
2182 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2183 ret = get_user_pages(current, current->mm, addr,
2184 len, write, 0, NULL, NULL);
2185 if (ret < 0)
2186 return ret;
2187 return ret == len ? 0 : -1;
2191 * Map a vmalloc()-space virtual address to the physical page.
2193 struct page * vmalloc_to_page(void * vmalloc_addr)
2195 unsigned long addr = (unsigned long) vmalloc_addr;
2196 struct page *page = NULL;
2197 pgd_t *pgd = pgd_offset_k(addr);
2198 pud_t *pud;
2199 pmd_t *pmd;
2200 pte_t *ptep, pte;
2202 if (!pgd_none(*pgd)) {
2203 pud = pud_offset(pgd, addr);
2204 if (!pud_none(*pud)) {
2205 pmd = pmd_offset(pud, addr);
2206 if (!pmd_none(*pmd)) {
2207 ptep = pte_offset_map(pmd, addr);
2208 pte = *ptep;
2209 if (pte_present(pte))
2210 page = pte_page(pte);
2211 pte_unmap(ptep);
2215 return page;
2218 EXPORT_SYMBOL(vmalloc_to_page);
2221 * Map a vmalloc()-space virtual address to the physical page frame number.
2223 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2225 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2228 EXPORT_SYMBOL(vmalloc_to_pfn);
2231 * update_mem_hiwater
2232 * - update per process rss and vm high water data
2234 void update_mem_hiwater(struct task_struct *tsk)
2236 if (tsk->mm) {
2237 unsigned long rss = get_mm_rss(tsk->mm);
2239 if (tsk->mm->hiwater_rss < rss)
2240 tsk->mm->hiwater_rss = rss;
2241 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2242 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2246 #if !defined(__HAVE_ARCH_GATE_AREA)
2248 #if defined(AT_SYSINFO_EHDR)
2249 static struct vm_area_struct gate_vma;
2251 static int __init gate_vma_init(void)
2253 gate_vma.vm_mm = NULL;
2254 gate_vma.vm_start = FIXADDR_USER_START;
2255 gate_vma.vm_end = FIXADDR_USER_END;
2256 gate_vma.vm_page_prot = PAGE_READONLY;
2257 gate_vma.vm_flags = VM_RESERVED;
2258 return 0;
2260 __initcall(gate_vma_init);
2261 #endif
2263 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2265 #ifdef AT_SYSINFO_EHDR
2266 return &gate_vma;
2267 #else
2268 return NULL;
2269 #endif
2272 int in_gate_area_no_task(unsigned long addr)
2274 #ifdef AT_SYSINFO_EHDR
2275 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2276 return 1;
2277 #endif
2278 return 0;
2281 #endif /* __HAVE_ARCH_GATE_AREA */