[Bluetooth] Correct SCO buffer for Broadcom based Dell laptops
[linux-2.6.22.y-op.git] / fs / aio.c
blobee20fc4240e0684bdb84485139ada96cb3925c09
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
20 #define DEBUG 0
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
38 #if DEBUG > 1
39 #define dprintk printk
40 #else
41 #define dprintk(x...) do { ; } while (0)
42 #endif
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock);
46 unsigned long aio_nr; /* current system wide number of aio requests */
47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
50 static struct kmem_cache *kiocb_cachep;
51 static struct kmem_cache *kioctx_cachep;
53 static struct workqueue_struct *aio_wq;
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(struct work_struct *);
57 static DECLARE_WORK(fput_work, aio_fput_routine);
59 static DEFINE_SPINLOCK(fput_lock);
60 static LIST_HEAD(fput_head);
62 static void aio_kick_handler(struct work_struct *);
63 static void aio_queue_work(struct kioctx *);
65 /* aio_setup
66 * Creates the slab caches used by the aio routines, panic on
67 * failure as this is done early during the boot sequence.
69 static int __init aio_setup(void)
71 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
76 aio_wq = create_workqueue("aio");
78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
80 return 0;
83 static void aio_free_ring(struct kioctx *ctx)
85 struct aio_ring_info *info = &ctx->ring_info;
86 long i;
88 for (i=0; i<info->nr_pages; i++)
89 put_page(info->ring_pages[i]);
91 if (info->mmap_size) {
92 down_write(&ctx->mm->mmap_sem);
93 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 up_write(&ctx->mm->mmap_sem);
97 if (info->ring_pages && info->ring_pages != info->internal_pages)
98 kfree(info->ring_pages);
99 info->ring_pages = NULL;
100 info->nr = 0;
103 static int aio_setup_ring(struct kioctx *ctx)
105 struct aio_ring *ring;
106 struct aio_ring_info *info = &ctx->ring_info;
107 unsigned nr_events = ctx->max_reqs;
108 unsigned long size;
109 int nr_pages;
111 /* Compensate for the ring buffer's head/tail overlap entry */
112 nr_events += 2; /* 1 is required, 2 for good luck */
114 size = sizeof(struct aio_ring);
115 size += sizeof(struct io_event) * nr_events;
116 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
118 if (nr_pages < 0)
119 return -EINVAL;
121 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
123 info->nr = 0;
124 info->ring_pages = info->internal_pages;
125 if (nr_pages > AIO_RING_PAGES) {
126 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
127 if (!info->ring_pages)
128 return -ENOMEM;
131 info->mmap_size = nr_pages * PAGE_SIZE;
132 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 down_write(&ctx->mm->mmap_sem);
134 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
137 if (IS_ERR((void *)info->mmap_base)) {
138 up_write(&ctx->mm->mmap_sem);
139 printk("mmap err: %ld\n", -info->mmap_base);
140 info->mmap_size = 0;
141 aio_free_ring(ctx);
142 return -EAGAIN;
145 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
146 info->nr_pages = get_user_pages(current, ctx->mm,
147 info->mmap_base, nr_pages,
148 1, 0, info->ring_pages, NULL);
149 up_write(&ctx->mm->mmap_sem);
151 if (unlikely(info->nr_pages != nr_pages)) {
152 aio_free_ring(ctx);
153 return -EAGAIN;
156 ctx->user_id = info->mmap_base;
158 info->nr = nr_events; /* trusted copy */
160 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
161 ring->nr = nr_events; /* user copy */
162 ring->id = ctx->user_id;
163 ring->head = ring->tail = 0;
164 ring->magic = AIO_RING_MAGIC;
165 ring->compat_features = AIO_RING_COMPAT_FEATURES;
166 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
167 ring->header_length = sizeof(struct aio_ring);
168 kunmap_atomic(ring, KM_USER0);
170 return 0;
174 /* aio_ring_event: returns a pointer to the event at the given index from
175 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
177 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 #define aio_ring_event(info, nr, km) ({ \
182 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
183 struct io_event *__event; \
184 __event = kmap_atomic( \
185 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 __event += pos % AIO_EVENTS_PER_PAGE; \
187 __event; \
190 #define put_aio_ring_event(event, km) do { \
191 struct io_event *__event = (event); \
192 (void)__event; \
193 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
194 } while(0)
196 /* ioctx_alloc
197 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
199 static struct kioctx *ioctx_alloc(unsigned nr_events)
201 struct mm_struct *mm;
202 struct kioctx *ctx;
204 /* Prevent overflows */
205 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
206 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
207 pr_debug("ENOMEM: nr_events too high\n");
208 return ERR_PTR(-EINVAL);
211 if ((unsigned long)nr_events > aio_max_nr)
212 return ERR_PTR(-EAGAIN);
214 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
215 if (!ctx)
216 return ERR_PTR(-ENOMEM);
218 memset(ctx, 0, sizeof(*ctx));
219 ctx->max_reqs = nr_events;
220 mm = ctx->mm = current->mm;
221 atomic_inc(&mm->mm_count);
223 atomic_set(&ctx->users, 1);
224 spin_lock_init(&ctx->ctx_lock);
225 spin_lock_init(&ctx->ring_info.ring_lock);
226 init_waitqueue_head(&ctx->wait);
228 INIT_LIST_HEAD(&ctx->active_reqs);
229 INIT_LIST_HEAD(&ctx->run_list);
230 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
232 if (aio_setup_ring(ctx) < 0)
233 goto out_freectx;
235 /* limit the number of system wide aios */
236 spin_lock(&aio_nr_lock);
237 if (aio_nr + ctx->max_reqs > aio_max_nr ||
238 aio_nr + ctx->max_reqs < aio_nr)
239 ctx->max_reqs = 0;
240 else
241 aio_nr += ctx->max_reqs;
242 spin_unlock(&aio_nr_lock);
243 if (ctx->max_reqs == 0)
244 goto out_cleanup;
246 /* now link into global list. kludge. FIXME */
247 write_lock(&mm->ioctx_list_lock);
248 ctx->next = mm->ioctx_list;
249 mm->ioctx_list = ctx;
250 write_unlock(&mm->ioctx_list_lock);
252 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
253 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
254 return ctx;
256 out_cleanup:
257 __put_ioctx(ctx);
258 return ERR_PTR(-EAGAIN);
260 out_freectx:
261 mmdrop(mm);
262 kmem_cache_free(kioctx_cachep, ctx);
263 ctx = ERR_PTR(-ENOMEM);
265 dprintk("aio: error allocating ioctx %p\n", ctx);
266 return ctx;
269 /* aio_cancel_all
270 * Cancels all outstanding aio requests on an aio context. Used
271 * when the processes owning a context have all exited to encourage
272 * the rapid destruction of the kioctx.
274 static void aio_cancel_all(struct kioctx *ctx)
276 int (*cancel)(struct kiocb *, struct io_event *);
277 struct io_event res;
278 spin_lock_irq(&ctx->ctx_lock);
279 ctx->dead = 1;
280 while (!list_empty(&ctx->active_reqs)) {
281 struct list_head *pos = ctx->active_reqs.next;
282 struct kiocb *iocb = list_kiocb(pos);
283 list_del_init(&iocb->ki_list);
284 cancel = iocb->ki_cancel;
285 kiocbSetCancelled(iocb);
286 if (cancel) {
287 iocb->ki_users++;
288 spin_unlock_irq(&ctx->ctx_lock);
289 cancel(iocb, &res);
290 spin_lock_irq(&ctx->ctx_lock);
293 spin_unlock_irq(&ctx->ctx_lock);
296 static void wait_for_all_aios(struct kioctx *ctx)
298 struct task_struct *tsk = current;
299 DECLARE_WAITQUEUE(wait, tsk);
301 if (!ctx->reqs_active)
302 return;
304 add_wait_queue(&ctx->wait, &wait);
305 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 while (ctx->reqs_active) {
307 schedule();
308 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
310 __set_task_state(tsk, TASK_RUNNING);
311 remove_wait_queue(&ctx->wait, &wait);
314 /* wait_on_sync_kiocb:
315 * Waits on the given sync kiocb to complete.
317 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
319 while (iocb->ki_users) {
320 set_current_state(TASK_UNINTERRUPTIBLE);
321 if (!iocb->ki_users)
322 break;
323 schedule();
325 __set_current_state(TASK_RUNNING);
326 return iocb->ki_user_data;
329 /* exit_aio: called when the last user of mm goes away. At this point,
330 * there is no way for any new requests to be submited or any of the
331 * io_* syscalls to be called on the context. However, there may be
332 * outstanding requests which hold references to the context; as they
333 * go away, they will call put_ioctx and release any pinned memory
334 * associated with the request (held via struct page * references).
336 void fastcall exit_aio(struct mm_struct *mm)
338 struct kioctx *ctx = mm->ioctx_list;
339 mm->ioctx_list = NULL;
340 while (ctx) {
341 struct kioctx *next = ctx->next;
342 ctx->next = NULL;
343 aio_cancel_all(ctx);
345 wait_for_all_aios(ctx);
347 * this is an overkill, but ensures we don't leave
348 * the ctx on the aio_wq
350 flush_workqueue(aio_wq);
352 if (1 != atomic_read(&ctx->users))
353 printk(KERN_DEBUG
354 "exit_aio:ioctx still alive: %d %d %d\n",
355 atomic_read(&ctx->users), ctx->dead,
356 ctx->reqs_active);
357 put_ioctx(ctx);
358 ctx = next;
362 /* __put_ioctx
363 * Called when the last user of an aio context has gone away,
364 * and the struct needs to be freed.
366 void fastcall __put_ioctx(struct kioctx *ctx)
368 unsigned nr_events = ctx->max_reqs;
370 BUG_ON(ctx->reqs_active);
372 cancel_delayed_work(&ctx->wq);
373 flush_workqueue(aio_wq);
374 aio_free_ring(ctx);
375 mmdrop(ctx->mm);
376 ctx->mm = NULL;
377 pr_debug("__put_ioctx: freeing %p\n", ctx);
378 kmem_cache_free(kioctx_cachep, ctx);
380 if (nr_events) {
381 spin_lock(&aio_nr_lock);
382 BUG_ON(aio_nr - nr_events > aio_nr);
383 aio_nr -= nr_events;
384 spin_unlock(&aio_nr_lock);
388 /* aio_get_req
389 * Allocate a slot for an aio request. Increments the users count
390 * of the kioctx so that the kioctx stays around until all requests are
391 * complete. Returns NULL if no requests are free.
393 * Returns with kiocb->users set to 2. The io submit code path holds
394 * an extra reference while submitting the i/o.
395 * This prevents races between the aio code path referencing the
396 * req (after submitting it) and aio_complete() freeing the req.
398 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
399 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
401 struct kiocb *req = NULL;
402 struct aio_ring *ring;
403 int okay = 0;
405 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
406 if (unlikely(!req))
407 return NULL;
409 req->ki_flags = 0;
410 req->ki_users = 2;
411 req->ki_key = 0;
412 req->ki_ctx = ctx;
413 req->ki_cancel = NULL;
414 req->ki_retry = NULL;
415 req->ki_dtor = NULL;
416 req->private = NULL;
417 req->ki_iovec = NULL;
418 INIT_LIST_HEAD(&req->ki_run_list);
420 /* Check if the completion queue has enough free space to
421 * accept an event from this io.
423 spin_lock_irq(&ctx->ctx_lock);
424 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
425 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
426 list_add(&req->ki_list, &ctx->active_reqs);
427 get_ioctx(ctx);
428 ctx->reqs_active++;
429 okay = 1;
431 kunmap_atomic(ring, KM_USER0);
432 spin_unlock_irq(&ctx->ctx_lock);
434 if (!okay) {
435 kmem_cache_free(kiocb_cachep, req);
436 req = NULL;
439 return req;
442 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
444 struct kiocb *req;
445 /* Handle a potential starvation case -- should be exceedingly rare as
446 * requests will be stuck on fput_head only if the aio_fput_routine is
447 * delayed and the requests were the last user of the struct file.
449 req = __aio_get_req(ctx);
450 if (unlikely(NULL == req)) {
451 aio_fput_routine(NULL);
452 req = __aio_get_req(ctx);
454 return req;
457 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
459 assert_spin_locked(&ctx->ctx_lock);
461 if (req->ki_dtor)
462 req->ki_dtor(req);
463 if (req->ki_iovec != &req->ki_inline_vec)
464 kfree(req->ki_iovec);
465 kmem_cache_free(kiocb_cachep, req);
466 ctx->reqs_active--;
468 if (unlikely(!ctx->reqs_active && ctx->dead))
469 wake_up(&ctx->wait);
472 static void aio_fput_routine(struct work_struct *data)
474 spin_lock_irq(&fput_lock);
475 while (likely(!list_empty(&fput_head))) {
476 struct kiocb *req = list_kiocb(fput_head.next);
477 struct kioctx *ctx = req->ki_ctx;
479 list_del(&req->ki_list);
480 spin_unlock_irq(&fput_lock);
482 /* Complete the fput */
483 __fput(req->ki_filp);
485 /* Link the iocb into the context's free list */
486 spin_lock_irq(&ctx->ctx_lock);
487 really_put_req(ctx, req);
488 spin_unlock_irq(&ctx->ctx_lock);
490 put_ioctx(ctx);
491 spin_lock_irq(&fput_lock);
493 spin_unlock_irq(&fput_lock);
496 /* __aio_put_req
497 * Returns true if this put was the last user of the request.
499 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
501 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
502 req, atomic_read(&req->ki_filp->f_count));
504 assert_spin_locked(&ctx->ctx_lock);
506 req->ki_users --;
507 BUG_ON(req->ki_users < 0);
508 if (likely(req->ki_users))
509 return 0;
510 list_del(&req->ki_list); /* remove from active_reqs */
511 req->ki_cancel = NULL;
512 req->ki_retry = NULL;
514 /* Must be done under the lock to serialise against cancellation.
515 * Call this aio_fput as it duplicates fput via the fput_work.
517 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
518 get_ioctx(ctx);
519 spin_lock(&fput_lock);
520 list_add(&req->ki_list, &fput_head);
521 spin_unlock(&fput_lock);
522 queue_work(aio_wq, &fput_work);
523 } else
524 really_put_req(ctx, req);
525 return 1;
528 /* aio_put_req
529 * Returns true if this put was the last user of the kiocb,
530 * false if the request is still in use.
532 int fastcall aio_put_req(struct kiocb *req)
534 struct kioctx *ctx = req->ki_ctx;
535 int ret;
536 spin_lock_irq(&ctx->ctx_lock);
537 ret = __aio_put_req(ctx, req);
538 spin_unlock_irq(&ctx->ctx_lock);
539 if (ret)
540 put_ioctx(ctx);
541 return ret;
544 /* Lookup an ioctx id. ioctx_list is lockless for reads.
545 * FIXME: this is O(n) and is only suitable for development.
547 struct kioctx *lookup_ioctx(unsigned long ctx_id)
549 struct kioctx *ioctx;
550 struct mm_struct *mm;
552 mm = current->mm;
553 read_lock(&mm->ioctx_list_lock);
554 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
555 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
556 get_ioctx(ioctx);
557 break;
559 read_unlock(&mm->ioctx_list_lock);
561 return ioctx;
565 * use_mm
566 * Makes the calling kernel thread take on the specified
567 * mm context.
568 * Called by the retry thread execute retries within the
569 * iocb issuer's mm context, so that copy_from/to_user
570 * operations work seamlessly for aio.
571 * (Note: this routine is intended to be called only
572 * from a kernel thread context)
574 static void use_mm(struct mm_struct *mm)
576 struct mm_struct *active_mm;
577 struct task_struct *tsk = current;
579 task_lock(tsk);
580 tsk->flags |= PF_BORROWED_MM;
581 active_mm = tsk->active_mm;
582 atomic_inc(&mm->mm_count);
583 tsk->mm = mm;
584 tsk->active_mm = mm;
586 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
587 * it won't work. Update it accordingly if you change it here
589 switch_mm(active_mm, mm, tsk);
590 task_unlock(tsk);
592 mmdrop(active_mm);
596 * unuse_mm
597 * Reverses the effect of use_mm, i.e. releases the
598 * specified mm context which was earlier taken on
599 * by the calling kernel thread
600 * (Note: this routine is intended to be called only
601 * from a kernel thread context)
603 static void unuse_mm(struct mm_struct *mm)
605 struct task_struct *tsk = current;
607 task_lock(tsk);
608 tsk->flags &= ~PF_BORROWED_MM;
609 tsk->mm = NULL;
610 /* active_mm is still 'mm' */
611 enter_lazy_tlb(mm, tsk);
612 task_unlock(tsk);
616 * Queue up a kiocb to be retried. Assumes that the kiocb
617 * has already been marked as kicked, and places it on
618 * the retry run list for the corresponding ioctx, if it
619 * isn't already queued. Returns 1 if it actually queued
620 * the kiocb (to tell the caller to activate the work
621 * queue to process it), or 0, if it found that it was
622 * already queued.
624 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 struct kioctx *ctx = iocb->ki_ctx;
628 assert_spin_locked(&ctx->ctx_lock);
630 if (list_empty(&iocb->ki_run_list)) {
631 list_add_tail(&iocb->ki_run_list,
632 &ctx->run_list);
633 return 1;
635 return 0;
638 /* aio_run_iocb
639 * This is the core aio execution routine. It is
640 * invoked both for initial i/o submission and
641 * subsequent retries via the aio_kick_handler.
642 * Expects to be invoked with iocb->ki_ctx->lock
643 * already held. The lock is released and reacquired
644 * as needed during processing.
646 * Calls the iocb retry method (already setup for the
647 * iocb on initial submission) for operation specific
648 * handling, but takes care of most of common retry
649 * execution details for a given iocb. The retry method
650 * needs to be non-blocking as far as possible, to avoid
651 * holding up other iocbs waiting to be serviced by the
652 * retry kernel thread.
654 * The trickier parts in this code have to do with
655 * ensuring that only one retry instance is in progress
656 * for a given iocb at any time. Providing that guarantee
657 * simplifies the coding of individual aio operations as
658 * it avoids various potential races.
660 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 struct kioctx *ctx = iocb->ki_ctx;
663 ssize_t (*retry)(struct kiocb *);
664 ssize_t ret;
666 if (!(retry = iocb->ki_retry)) {
667 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668 return 0;
672 * We don't want the next retry iteration for this
673 * operation to start until this one has returned and
674 * updated the iocb state. However, wait_queue functions
675 * can trigger a kick_iocb from interrupt context in the
676 * meantime, indicating that data is available for the next
677 * iteration. We want to remember that and enable the
678 * next retry iteration _after_ we are through with
679 * this one.
681 * So, in order to be able to register a "kick", but
682 * prevent it from being queued now, we clear the kick
683 * flag, but make the kick code *think* that the iocb is
684 * still on the run list until we are actually done.
685 * When we are done with this iteration, we check if
686 * the iocb was kicked in the meantime and if so, queue
687 * it up afresh.
690 kiocbClearKicked(iocb);
693 * This is so that aio_complete knows it doesn't need to
694 * pull the iocb off the run list (We can't just call
695 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 * queue this on the run list yet)
698 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
699 spin_unlock_irq(&ctx->ctx_lock);
701 /* Quit retrying if the i/o has been cancelled */
702 if (kiocbIsCancelled(iocb)) {
703 ret = -EINTR;
704 aio_complete(iocb, ret, 0);
705 /* must not access the iocb after this */
706 goto out;
710 * Now we are all set to call the retry method in async
711 * context. By setting this thread's io_wait context
712 * to point to the wait queue entry inside the currently
713 * running iocb for the duration of the retry, we ensure
714 * that async notification wakeups are queued by the
715 * operation instead of blocking waits, and when notified,
716 * cause the iocb to be kicked for continuation (through
717 * the aio_wake_function callback).
719 BUG_ON(current->io_wait != NULL);
720 current->io_wait = &iocb->ki_wait;
721 ret = retry(iocb);
722 current->io_wait = NULL;
724 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
725 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
726 aio_complete(iocb, ret, 0);
728 out:
729 spin_lock_irq(&ctx->ctx_lock);
731 if (-EIOCBRETRY == ret) {
733 * OK, now that we are done with this iteration
734 * and know that there is more left to go,
735 * this is where we let go so that a subsequent
736 * "kick" can start the next iteration
739 /* will make __queue_kicked_iocb succeed from here on */
740 INIT_LIST_HEAD(&iocb->ki_run_list);
741 /* we must queue the next iteration ourselves, if it
742 * has already been kicked */
743 if (kiocbIsKicked(iocb)) {
744 __queue_kicked_iocb(iocb);
747 * __queue_kicked_iocb will always return 1 here, because
748 * iocb->ki_run_list is empty at this point so it should
749 * be safe to unconditionally queue the context into the
750 * work queue.
752 aio_queue_work(ctx);
755 return ret;
759 * __aio_run_iocbs:
760 * Process all pending retries queued on the ioctx
761 * run list.
762 * Assumes it is operating within the aio issuer's mm
763 * context.
765 static int __aio_run_iocbs(struct kioctx *ctx)
767 struct kiocb *iocb;
768 struct list_head run_list;
770 assert_spin_locked(&ctx->ctx_lock);
772 list_replace_init(&ctx->run_list, &run_list);
773 while (!list_empty(&run_list)) {
774 iocb = list_entry(run_list.next, struct kiocb,
775 ki_run_list);
776 list_del(&iocb->ki_run_list);
778 * Hold an extra reference while retrying i/o.
780 iocb->ki_users++; /* grab extra reference */
781 aio_run_iocb(iocb);
782 if (__aio_put_req(ctx, iocb)) /* drop extra ref */
783 put_ioctx(ctx);
785 if (!list_empty(&ctx->run_list))
786 return 1;
787 return 0;
790 static void aio_queue_work(struct kioctx * ctx)
792 unsigned long timeout;
794 * if someone is waiting, get the work started right
795 * away, otherwise, use a longer delay
797 smp_mb();
798 if (waitqueue_active(&ctx->wait))
799 timeout = 1;
800 else
801 timeout = HZ/10;
802 queue_delayed_work(aio_wq, &ctx->wq, timeout);
807 * aio_run_iocbs:
808 * Process all pending retries queued on the ioctx
809 * run list.
810 * Assumes it is operating within the aio issuer's mm
811 * context.
813 static inline void aio_run_iocbs(struct kioctx *ctx)
815 int requeue;
817 spin_lock_irq(&ctx->ctx_lock);
819 requeue = __aio_run_iocbs(ctx);
820 spin_unlock_irq(&ctx->ctx_lock);
821 if (requeue)
822 aio_queue_work(ctx);
826 * just like aio_run_iocbs, but keeps running them until
827 * the list stays empty
829 static inline void aio_run_all_iocbs(struct kioctx *ctx)
831 spin_lock_irq(&ctx->ctx_lock);
832 while (__aio_run_iocbs(ctx))
834 spin_unlock_irq(&ctx->ctx_lock);
838 * aio_kick_handler:
839 * Work queue handler triggered to process pending
840 * retries on an ioctx. Takes on the aio issuer's
841 * mm context before running the iocbs, so that
842 * copy_xxx_user operates on the issuer's address
843 * space.
844 * Run on aiod's context.
846 static void aio_kick_handler(struct work_struct *work)
848 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
849 mm_segment_t oldfs = get_fs();
850 struct mm_struct *mm;
851 int requeue;
853 set_fs(USER_DS);
854 use_mm(ctx->mm);
855 spin_lock_irq(&ctx->ctx_lock);
856 requeue =__aio_run_iocbs(ctx);
857 mm = ctx->mm;
858 spin_unlock_irq(&ctx->ctx_lock);
859 unuse_mm(mm);
860 set_fs(oldfs);
862 * we're in a worker thread already, don't use queue_delayed_work,
864 if (requeue)
865 queue_delayed_work(aio_wq, &ctx->wq, 0);
870 * Called by kick_iocb to queue the kiocb for retry
871 * and if required activate the aio work queue to process
872 * it
874 static void try_queue_kicked_iocb(struct kiocb *iocb)
876 struct kioctx *ctx = iocb->ki_ctx;
877 unsigned long flags;
878 int run = 0;
880 /* We're supposed to be the only path putting the iocb back on the run
881 * list. If we find that the iocb is *back* on a wait queue already
882 * than retry has happened before we could queue the iocb. This also
883 * means that the retry could have completed and freed our iocb, no
884 * good. */
885 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
887 spin_lock_irqsave(&ctx->ctx_lock, flags);
888 /* set this inside the lock so that we can't race with aio_run_iocb()
889 * testing it and putting the iocb on the run list under the lock */
890 if (!kiocbTryKick(iocb))
891 run = __queue_kicked_iocb(iocb);
892 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
893 if (run)
894 aio_queue_work(ctx);
898 * kick_iocb:
899 * Called typically from a wait queue callback context
900 * (aio_wake_function) to trigger a retry of the iocb.
901 * The retry is usually executed by aio workqueue
902 * threads (See aio_kick_handler).
904 void fastcall kick_iocb(struct kiocb *iocb)
906 /* sync iocbs are easy: they can only ever be executing from a
907 * single context. */
908 if (is_sync_kiocb(iocb)) {
909 kiocbSetKicked(iocb);
910 wake_up_process(iocb->ki_obj.tsk);
911 return;
914 try_queue_kicked_iocb(iocb);
916 EXPORT_SYMBOL(kick_iocb);
918 /* aio_complete
919 * Called when the io request on the given iocb is complete.
920 * Returns true if this is the last user of the request. The
921 * only other user of the request can be the cancellation code.
923 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
925 struct kioctx *ctx = iocb->ki_ctx;
926 struct aio_ring_info *info;
927 struct aio_ring *ring;
928 struct io_event *event;
929 unsigned long flags;
930 unsigned long tail;
931 int ret;
934 * Special case handling for sync iocbs:
935 * - events go directly into the iocb for fast handling
936 * - the sync task with the iocb in its stack holds the single iocb
937 * ref, no other paths have a way to get another ref
938 * - the sync task helpfully left a reference to itself in the iocb
940 if (is_sync_kiocb(iocb)) {
941 BUG_ON(iocb->ki_users != 1);
942 iocb->ki_user_data = res;
943 iocb->ki_users = 0;
944 wake_up_process(iocb->ki_obj.tsk);
945 return 1;
948 info = &ctx->ring_info;
950 /* add a completion event to the ring buffer.
951 * must be done holding ctx->ctx_lock to prevent
952 * other code from messing with the tail
953 * pointer since we might be called from irq
954 * context.
956 spin_lock_irqsave(&ctx->ctx_lock, flags);
958 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
959 list_del_init(&iocb->ki_run_list);
962 * cancelled requests don't get events, userland was given one
963 * when the event got cancelled.
965 if (kiocbIsCancelled(iocb))
966 goto put_rq;
968 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
970 tail = info->tail;
971 event = aio_ring_event(info, tail, KM_IRQ0);
972 if (++tail >= info->nr)
973 tail = 0;
975 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
976 event->data = iocb->ki_user_data;
977 event->res = res;
978 event->res2 = res2;
980 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
981 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
982 res, res2);
984 /* after flagging the request as done, we
985 * must never even look at it again
987 smp_wmb(); /* make event visible before updating tail */
989 info->tail = tail;
990 ring->tail = tail;
992 put_aio_ring_event(event, KM_IRQ0);
993 kunmap_atomic(ring, KM_IRQ1);
995 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
996 put_rq:
997 /* everything turned out well, dispose of the aiocb. */
998 ret = __aio_put_req(ctx, iocb);
1000 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1002 if (waitqueue_active(&ctx->wait))
1003 wake_up(&ctx->wait);
1005 if (ret)
1006 put_ioctx(ctx);
1008 return ret;
1011 /* aio_read_evt
1012 * Pull an event off of the ioctx's event ring. Returns the number of
1013 * events fetched (0 or 1 ;-)
1014 * FIXME: make this use cmpxchg.
1015 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1017 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1019 struct aio_ring_info *info = &ioctx->ring_info;
1020 struct aio_ring *ring;
1021 unsigned long head;
1022 int ret = 0;
1024 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1025 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1026 (unsigned long)ring->head, (unsigned long)ring->tail,
1027 (unsigned long)ring->nr);
1029 if (ring->head == ring->tail)
1030 goto out;
1032 spin_lock(&info->ring_lock);
1034 head = ring->head % info->nr;
1035 if (head != ring->tail) {
1036 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1037 *ent = *evp;
1038 head = (head + 1) % info->nr;
1039 smp_mb(); /* finish reading the event before updatng the head */
1040 ring->head = head;
1041 ret = 1;
1042 put_aio_ring_event(evp, KM_USER1);
1044 spin_unlock(&info->ring_lock);
1046 out:
1047 kunmap_atomic(ring, KM_USER0);
1048 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1049 (unsigned long)ring->head, (unsigned long)ring->tail);
1050 return ret;
1053 struct aio_timeout {
1054 struct timer_list timer;
1055 int timed_out;
1056 struct task_struct *p;
1059 static void timeout_func(unsigned long data)
1061 struct aio_timeout *to = (struct aio_timeout *)data;
1063 to->timed_out = 1;
1064 wake_up_process(to->p);
1067 static inline void init_timeout(struct aio_timeout *to)
1069 init_timer(&to->timer);
1070 to->timer.data = (unsigned long)to;
1071 to->timer.function = timeout_func;
1072 to->timed_out = 0;
1073 to->p = current;
1076 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1077 const struct timespec *ts)
1079 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1080 if (time_after(to->timer.expires, jiffies))
1081 add_timer(&to->timer);
1082 else
1083 to->timed_out = 1;
1086 static inline void clear_timeout(struct aio_timeout *to)
1088 del_singleshot_timer_sync(&to->timer);
1091 static int read_events(struct kioctx *ctx,
1092 long min_nr, long nr,
1093 struct io_event __user *event,
1094 struct timespec __user *timeout)
1096 long start_jiffies = jiffies;
1097 struct task_struct *tsk = current;
1098 DECLARE_WAITQUEUE(wait, tsk);
1099 int ret;
1100 int i = 0;
1101 struct io_event ent;
1102 struct aio_timeout to;
1103 int retry = 0;
1105 /* needed to zero any padding within an entry (there shouldn't be
1106 * any, but C is fun!
1108 memset(&ent, 0, sizeof(ent));
1109 retry:
1110 ret = 0;
1111 while (likely(i < nr)) {
1112 ret = aio_read_evt(ctx, &ent);
1113 if (unlikely(ret <= 0))
1114 break;
1116 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1117 ent.data, ent.obj, ent.res, ent.res2);
1119 /* Could we split the check in two? */
1120 ret = -EFAULT;
1121 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1122 dprintk("aio: lost an event due to EFAULT.\n");
1123 break;
1125 ret = 0;
1127 /* Good, event copied to userland, update counts. */
1128 event ++;
1129 i ++;
1132 if (min_nr <= i)
1133 return i;
1134 if (ret)
1135 return ret;
1137 /* End fast path */
1139 /* racey check, but it gets redone */
1140 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1141 retry = 1;
1142 aio_run_all_iocbs(ctx);
1143 goto retry;
1146 init_timeout(&to);
1147 if (timeout) {
1148 struct timespec ts;
1149 ret = -EFAULT;
1150 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1151 goto out;
1153 set_timeout(start_jiffies, &to, &ts);
1156 while (likely(i < nr)) {
1157 add_wait_queue_exclusive(&ctx->wait, &wait);
1158 do {
1159 set_task_state(tsk, TASK_INTERRUPTIBLE);
1160 ret = aio_read_evt(ctx, &ent);
1161 if (ret)
1162 break;
1163 if (min_nr <= i)
1164 break;
1165 ret = 0;
1166 if (to.timed_out) /* Only check after read evt */
1167 break;
1168 schedule();
1169 if (signal_pending(tsk)) {
1170 ret = -EINTR;
1171 break;
1173 /*ret = aio_read_evt(ctx, &ent);*/
1174 } while (1) ;
1176 set_task_state(tsk, TASK_RUNNING);
1177 remove_wait_queue(&ctx->wait, &wait);
1179 if (unlikely(ret <= 0))
1180 break;
1182 ret = -EFAULT;
1183 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1184 dprintk("aio: lost an event due to EFAULT.\n");
1185 break;
1188 /* Good, event copied to userland, update counts. */
1189 event ++;
1190 i ++;
1193 if (timeout)
1194 clear_timeout(&to);
1195 out:
1196 return i ? i : ret;
1199 /* Take an ioctx and remove it from the list of ioctx's. Protects
1200 * against races with itself via ->dead.
1202 static void io_destroy(struct kioctx *ioctx)
1204 struct mm_struct *mm = current->mm;
1205 struct kioctx **tmp;
1206 int was_dead;
1208 /* delete the entry from the list is someone else hasn't already */
1209 write_lock(&mm->ioctx_list_lock);
1210 was_dead = ioctx->dead;
1211 ioctx->dead = 1;
1212 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1213 tmp = &(*tmp)->next)
1215 if (*tmp)
1216 *tmp = ioctx->next;
1217 write_unlock(&mm->ioctx_list_lock);
1219 dprintk("aio_release(%p)\n", ioctx);
1220 if (likely(!was_dead))
1221 put_ioctx(ioctx); /* twice for the list */
1223 aio_cancel_all(ioctx);
1224 wait_for_all_aios(ioctx);
1225 put_ioctx(ioctx); /* once for the lookup */
1228 /* sys_io_setup:
1229 * Create an aio_context capable of receiving at least nr_events.
1230 * ctxp must not point to an aio_context that already exists, and
1231 * must be initialized to 0 prior to the call. On successful
1232 * creation of the aio_context, *ctxp is filled in with the resulting
1233 * handle. May fail with -EINVAL if *ctxp is not initialized,
1234 * if the specified nr_events exceeds internal limits. May fail
1235 * with -EAGAIN if the specified nr_events exceeds the user's limit
1236 * of available events. May fail with -ENOMEM if insufficient kernel
1237 * resources are available. May fail with -EFAULT if an invalid
1238 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1239 * implemented.
1241 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1243 struct kioctx *ioctx = NULL;
1244 unsigned long ctx;
1245 long ret;
1247 ret = get_user(ctx, ctxp);
1248 if (unlikely(ret))
1249 goto out;
1251 ret = -EINVAL;
1252 if (unlikely(ctx || nr_events == 0)) {
1253 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1254 ctx, nr_events);
1255 goto out;
1258 ioctx = ioctx_alloc(nr_events);
1259 ret = PTR_ERR(ioctx);
1260 if (!IS_ERR(ioctx)) {
1261 ret = put_user(ioctx->user_id, ctxp);
1262 if (!ret)
1263 return 0;
1265 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1266 io_destroy(ioctx);
1269 out:
1270 return ret;
1273 /* sys_io_destroy:
1274 * Destroy the aio_context specified. May cancel any outstanding
1275 * AIOs and block on completion. Will fail with -ENOSYS if not
1276 * implemented. May fail with -EFAULT if the context pointed to
1277 * is invalid.
1279 asmlinkage long sys_io_destroy(aio_context_t ctx)
1281 struct kioctx *ioctx = lookup_ioctx(ctx);
1282 if (likely(NULL != ioctx)) {
1283 io_destroy(ioctx);
1284 return 0;
1286 pr_debug("EINVAL: io_destroy: invalid context id\n");
1287 return -EINVAL;
1290 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1292 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1294 BUG_ON(ret <= 0);
1296 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1297 ssize_t this = min((ssize_t)iov->iov_len, ret);
1298 iov->iov_base += this;
1299 iov->iov_len -= this;
1300 iocb->ki_left -= this;
1301 ret -= this;
1302 if (iov->iov_len == 0) {
1303 iocb->ki_cur_seg++;
1304 iov++;
1308 /* the caller should not have done more io than what fit in
1309 * the remaining iovecs */
1310 BUG_ON(ret > 0 && iocb->ki_left == 0);
1313 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1315 struct file *file = iocb->ki_filp;
1316 struct address_space *mapping = file->f_mapping;
1317 struct inode *inode = mapping->host;
1318 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1319 unsigned long, loff_t);
1320 ssize_t ret = 0;
1321 unsigned short opcode;
1323 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1324 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1325 rw_op = file->f_op->aio_read;
1326 opcode = IOCB_CMD_PREADV;
1327 } else {
1328 rw_op = file->f_op->aio_write;
1329 opcode = IOCB_CMD_PWRITEV;
1332 do {
1333 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1334 iocb->ki_nr_segs - iocb->ki_cur_seg,
1335 iocb->ki_pos);
1336 if (ret > 0)
1337 aio_advance_iovec(iocb, ret);
1339 /* retry all partial writes. retry partial reads as long as its a
1340 * regular file. */
1341 } while (ret > 0 && iocb->ki_left > 0 &&
1342 (opcode == IOCB_CMD_PWRITEV ||
1343 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1345 /* This means we must have transferred all that we could */
1346 /* No need to retry anymore */
1347 if ((ret == 0) || (iocb->ki_left == 0))
1348 ret = iocb->ki_nbytes - iocb->ki_left;
1350 return ret;
1353 static ssize_t aio_fdsync(struct kiocb *iocb)
1355 struct file *file = iocb->ki_filp;
1356 ssize_t ret = -EINVAL;
1358 if (file->f_op->aio_fsync)
1359 ret = file->f_op->aio_fsync(iocb, 1);
1360 return ret;
1363 static ssize_t aio_fsync(struct kiocb *iocb)
1365 struct file *file = iocb->ki_filp;
1366 ssize_t ret = -EINVAL;
1368 if (file->f_op->aio_fsync)
1369 ret = file->f_op->aio_fsync(iocb, 0);
1370 return ret;
1373 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1375 ssize_t ret;
1377 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1378 kiocb->ki_nbytes, 1,
1379 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1380 if (ret < 0)
1381 goto out;
1383 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1384 kiocb->ki_cur_seg = 0;
1385 /* ki_nbytes/left now reflect bytes instead of segs */
1386 kiocb->ki_nbytes = ret;
1387 kiocb->ki_left = ret;
1389 ret = 0;
1390 out:
1391 return ret;
1394 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1396 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1397 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1398 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1399 kiocb->ki_nr_segs = 1;
1400 kiocb->ki_cur_seg = 0;
1401 return 0;
1405 * aio_setup_iocb:
1406 * Performs the initial checks and aio retry method
1407 * setup for the kiocb at the time of io submission.
1409 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1411 struct file *file = kiocb->ki_filp;
1412 ssize_t ret = 0;
1414 switch (kiocb->ki_opcode) {
1415 case IOCB_CMD_PREAD:
1416 ret = -EBADF;
1417 if (unlikely(!(file->f_mode & FMODE_READ)))
1418 break;
1419 ret = -EFAULT;
1420 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1421 kiocb->ki_left)))
1422 break;
1423 ret = security_file_permission(file, MAY_READ);
1424 if (unlikely(ret))
1425 break;
1426 ret = aio_setup_single_vector(kiocb);
1427 if (ret)
1428 break;
1429 ret = -EINVAL;
1430 if (file->f_op->aio_read)
1431 kiocb->ki_retry = aio_rw_vect_retry;
1432 break;
1433 case IOCB_CMD_PWRITE:
1434 ret = -EBADF;
1435 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1436 break;
1437 ret = -EFAULT;
1438 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1439 kiocb->ki_left)))
1440 break;
1441 ret = security_file_permission(file, MAY_WRITE);
1442 if (unlikely(ret))
1443 break;
1444 ret = aio_setup_single_vector(kiocb);
1445 if (ret)
1446 break;
1447 ret = -EINVAL;
1448 if (file->f_op->aio_write)
1449 kiocb->ki_retry = aio_rw_vect_retry;
1450 break;
1451 case IOCB_CMD_PREADV:
1452 ret = -EBADF;
1453 if (unlikely(!(file->f_mode & FMODE_READ)))
1454 break;
1455 ret = security_file_permission(file, MAY_READ);
1456 if (unlikely(ret))
1457 break;
1458 ret = aio_setup_vectored_rw(READ, kiocb);
1459 if (ret)
1460 break;
1461 ret = -EINVAL;
1462 if (file->f_op->aio_read)
1463 kiocb->ki_retry = aio_rw_vect_retry;
1464 break;
1465 case IOCB_CMD_PWRITEV:
1466 ret = -EBADF;
1467 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1468 break;
1469 ret = security_file_permission(file, MAY_WRITE);
1470 if (unlikely(ret))
1471 break;
1472 ret = aio_setup_vectored_rw(WRITE, kiocb);
1473 if (ret)
1474 break;
1475 ret = -EINVAL;
1476 if (file->f_op->aio_write)
1477 kiocb->ki_retry = aio_rw_vect_retry;
1478 break;
1479 case IOCB_CMD_FDSYNC:
1480 ret = -EINVAL;
1481 if (file->f_op->aio_fsync)
1482 kiocb->ki_retry = aio_fdsync;
1483 break;
1484 case IOCB_CMD_FSYNC:
1485 ret = -EINVAL;
1486 if (file->f_op->aio_fsync)
1487 kiocb->ki_retry = aio_fsync;
1488 break;
1489 default:
1490 dprintk("EINVAL: io_submit: no operation provided\n");
1491 ret = -EINVAL;
1494 if (!kiocb->ki_retry)
1495 return ret;
1497 return 0;
1501 * aio_wake_function:
1502 * wait queue callback function for aio notification,
1503 * Simply triggers a retry of the operation via kick_iocb.
1505 * This callback is specified in the wait queue entry in
1506 * a kiocb (current->io_wait points to this wait queue
1507 * entry when an aio operation executes; it is used
1508 * instead of a synchronous wait when an i/o blocking
1509 * condition is encountered during aio).
1511 * Note:
1512 * This routine is executed with the wait queue lock held.
1513 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1514 * the ioctx lock inside the wait queue lock. This is safe
1515 * because this callback isn't used for wait queues which
1516 * are nested inside ioctx lock (i.e. ctx->wait)
1518 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1519 int sync, void *key)
1521 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1523 list_del_init(&wait->task_list);
1524 kick_iocb(iocb);
1525 return 1;
1528 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1529 struct iocb *iocb)
1531 struct kiocb *req;
1532 struct file *file;
1533 ssize_t ret;
1535 /* enforce forwards compatibility on users */
1536 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1537 iocb->aio_reserved3)) {
1538 pr_debug("EINVAL: io_submit: reserve field set\n");
1539 return -EINVAL;
1542 /* prevent overflows */
1543 if (unlikely(
1544 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1545 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1546 ((ssize_t)iocb->aio_nbytes < 0)
1547 )) {
1548 pr_debug("EINVAL: io_submit: overflow check\n");
1549 return -EINVAL;
1552 file = fget(iocb->aio_fildes);
1553 if (unlikely(!file))
1554 return -EBADF;
1556 req = aio_get_req(ctx); /* returns with 2 references to req */
1557 if (unlikely(!req)) {
1558 fput(file);
1559 return -EAGAIN;
1562 req->ki_filp = file;
1563 ret = put_user(req->ki_key, &user_iocb->aio_key);
1564 if (unlikely(ret)) {
1565 dprintk("EFAULT: aio_key\n");
1566 goto out_put_req;
1569 req->ki_obj.user = user_iocb;
1570 req->ki_user_data = iocb->aio_data;
1571 req->ki_pos = iocb->aio_offset;
1573 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1574 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1575 req->ki_opcode = iocb->aio_lio_opcode;
1576 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1577 INIT_LIST_HEAD(&req->ki_wait.task_list);
1579 ret = aio_setup_iocb(req);
1581 if (ret)
1582 goto out_put_req;
1584 spin_lock_irq(&ctx->ctx_lock);
1585 aio_run_iocb(req);
1586 if (!list_empty(&ctx->run_list)) {
1587 /* drain the run list */
1588 while (__aio_run_iocbs(ctx))
1591 spin_unlock_irq(&ctx->ctx_lock);
1592 aio_put_req(req); /* drop extra ref to req */
1593 return 0;
1595 out_put_req:
1596 aio_put_req(req); /* drop extra ref to req */
1597 aio_put_req(req); /* drop i/o ref to req */
1598 return ret;
1601 /* sys_io_submit:
1602 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1603 * the number of iocbs queued. May return -EINVAL if the aio_context
1604 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1605 * *iocbpp[0] is not properly initialized, if the operation specified
1606 * is invalid for the file descriptor in the iocb. May fail with
1607 * -EFAULT if any of the data structures point to invalid data. May
1608 * fail with -EBADF if the file descriptor specified in the first
1609 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1610 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1611 * fail with -ENOSYS if not implemented.
1613 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1614 struct iocb __user * __user *iocbpp)
1616 struct kioctx *ctx;
1617 long ret = 0;
1618 int i;
1620 if (unlikely(nr < 0))
1621 return -EINVAL;
1623 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1624 return -EFAULT;
1626 ctx = lookup_ioctx(ctx_id);
1627 if (unlikely(!ctx)) {
1628 pr_debug("EINVAL: io_submit: invalid context id\n");
1629 return -EINVAL;
1633 * AKPM: should this return a partial result if some of the IOs were
1634 * successfully submitted?
1636 for (i=0; i<nr; i++) {
1637 struct iocb __user *user_iocb;
1638 struct iocb tmp;
1640 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1641 ret = -EFAULT;
1642 break;
1645 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1646 ret = -EFAULT;
1647 break;
1650 ret = io_submit_one(ctx, user_iocb, &tmp);
1651 if (ret)
1652 break;
1655 put_ioctx(ctx);
1656 return i ? i : ret;
1659 /* lookup_kiocb
1660 * Finds a given iocb for cancellation.
1662 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1663 u32 key)
1665 struct list_head *pos;
1667 assert_spin_locked(&ctx->ctx_lock);
1669 /* TODO: use a hash or array, this sucks. */
1670 list_for_each(pos, &ctx->active_reqs) {
1671 struct kiocb *kiocb = list_kiocb(pos);
1672 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1673 return kiocb;
1675 return NULL;
1678 /* sys_io_cancel:
1679 * Attempts to cancel an iocb previously passed to io_submit. If
1680 * the operation is successfully cancelled, the resulting event is
1681 * copied into the memory pointed to by result without being placed
1682 * into the completion queue and 0 is returned. May fail with
1683 * -EFAULT if any of the data structures pointed to are invalid.
1684 * May fail with -EINVAL if aio_context specified by ctx_id is
1685 * invalid. May fail with -EAGAIN if the iocb specified was not
1686 * cancelled. Will fail with -ENOSYS if not implemented.
1688 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1689 struct io_event __user *result)
1691 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1692 struct kioctx *ctx;
1693 struct kiocb *kiocb;
1694 u32 key;
1695 int ret;
1697 ret = get_user(key, &iocb->aio_key);
1698 if (unlikely(ret))
1699 return -EFAULT;
1701 ctx = lookup_ioctx(ctx_id);
1702 if (unlikely(!ctx))
1703 return -EINVAL;
1705 spin_lock_irq(&ctx->ctx_lock);
1706 ret = -EAGAIN;
1707 kiocb = lookup_kiocb(ctx, iocb, key);
1708 if (kiocb && kiocb->ki_cancel) {
1709 cancel = kiocb->ki_cancel;
1710 kiocb->ki_users ++;
1711 kiocbSetCancelled(kiocb);
1712 } else
1713 cancel = NULL;
1714 spin_unlock_irq(&ctx->ctx_lock);
1716 if (NULL != cancel) {
1717 struct io_event tmp;
1718 pr_debug("calling cancel\n");
1719 memset(&tmp, 0, sizeof(tmp));
1720 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1721 tmp.data = kiocb->ki_user_data;
1722 ret = cancel(kiocb, &tmp);
1723 if (!ret) {
1724 /* Cancellation succeeded -- copy the result
1725 * into the user's buffer.
1727 if (copy_to_user(result, &tmp, sizeof(tmp)))
1728 ret = -EFAULT;
1730 } else
1731 ret = -EINVAL;
1733 put_ioctx(ctx);
1735 return ret;
1738 /* io_getevents:
1739 * Attempts to read at least min_nr events and up to nr events from
1740 * the completion queue for the aio_context specified by ctx_id. May
1741 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1742 * if nr is out of range, if when is out of range. May fail with
1743 * -EFAULT if any of the memory specified to is invalid. May return
1744 * 0 or < min_nr if no events are available and the timeout specified
1745 * by when has elapsed, where when == NULL specifies an infinite
1746 * timeout. Note that the timeout pointed to by when is relative and
1747 * will be updated if not NULL and the operation blocks. Will fail
1748 * with -ENOSYS if not implemented.
1750 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1751 long min_nr,
1752 long nr,
1753 struct io_event __user *events,
1754 struct timespec __user *timeout)
1756 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1757 long ret = -EINVAL;
1759 if (likely(ioctx)) {
1760 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1761 ret = read_events(ioctx, min_nr, nr, events, timeout);
1762 put_ioctx(ioctx);
1765 return ret;
1768 __initcall(aio_setup);
1770 EXPORT_SYMBOL(aio_complete);
1771 EXPORT_SYMBOL(aio_put_req);
1772 EXPORT_SYMBOL(wait_on_sync_kiocb);