2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
19 static const int cfq_quantum
= 4; /* max queue in one round of service */
20 static const int cfq_queued
= 8; /* minimum rq allocate limit per-queue*/
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
23 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
25 static const int cfq_slice_sync
= HZ
/ 10;
26 static int cfq_slice_async
= HZ
/ 25;
27 static const int cfq_slice_async_rq
= 2;
28 static int cfq_slice_idle
= HZ
/ 125;
30 #define CFQ_IDLE_GRACE (HZ / 10)
31 #define CFQ_SLICE_SCALE (5)
33 #define CFQ_KEY_ASYNC (0)
35 static DEFINE_SPINLOCK(cfq_exit_lock
);
38 * for the hash of cfqq inside the cfqd
40 #define CFQ_QHASH_SHIFT 6
41 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
42 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
45 * for the hash of crq inside the cfqq
47 #define CFQ_MHASH_SHIFT 6
48 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
49 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
50 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
51 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
52 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
54 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
55 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
57 #define RQ_DATA(rq) (rq)->elevator_private
62 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
63 #define rq_rb_key(rq) (rq)->sector
65 static kmem_cache_t
*crq_pool
;
66 static kmem_cache_t
*cfq_pool
;
67 static kmem_cache_t
*cfq_ioc_pool
;
69 static atomic_t ioc_count
= ATOMIC_INIT(0);
70 static struct completion
*ioc_gone
;
72 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
73 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
74 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
75 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
80 #define cfq_cfqq_dispatched(cfqq) \
81 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
83 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
85 #define cfq_cfqq_sync(cfqq) \
86 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
88 #define sample_valid(samples) ((samples) > 80)
91 * Per block device queue structure
94 request_queue_t
*queue
;
97 * rr list of queues with requests and the count of them
99 struct list_head rr_list
[CFQ_PRIO_LISTS
];
100 struct list_head busy_rr
;
101 struct list_head cur_rr
;
102 struct list_head idle_rr
;
103 unsigned int busy_queues
;
106 * non-ordered list of empty cfqq's
108 struct list_head empty_list
;
113 struct hlist_head
*cfq_hash
;
116 * global crq hash for all queues
118 struct hlist_head
*crq_hash
;
126 * schedule slice state info
129 * idle window management
131 struct timer_list idle_slice_timer
;
132 struct work_struct unplug_work
;
134 struct cfq_queue
*active_queue
;
135 struct cfq_io_context
*active_cic
;
136 int cur_prio
, cur_end_prio
;
137 unsigned int dispatch_slice
;
139 struct timer_list idle_class_timer
;
141 sector_t last_sector
;
142 unsigned long last_end_request
;
144 unsigned int rq_starved
;
147 * tunables, see top of file
149 unsigned int cfq_quantum
;
150 unsigned int cfq_queued
;
151 unsigned int cfq_fifo_expire
[2];
152 unsigned int cfq_back_penalty
;
153 unsigned int cfq_back_max
;
154 unsigned int cfq_slice
[2];
155 unsigned int cfq_slice_async_rq
;
156 unsigned int cfq_slice_idle
;
158 struct list_head cic_list
;
162 * Per process-grouping structure
165 /* reference count */
167 /* parent cfq_data */
168 struct cfq_data
*cfqd
;
169 /* cfqq lookup hash */
170 struct hlist_node cfq_hash
;
173 /* on either rr or empty list of cfqd */
174 struct list_head cfq_list
;
175 /* sorted list of pending requests */
176 struct rb_root sort_list
;
177 /* if fifo isn't expired, next request to serve */
178 struct cfq_rq
*next_crq
;
179 /* requests queued in sort_list */
181 /* currently allocated requests */
183 /* fifo list of requests in sort_list */
184 struct list_head fifo
;
186 unsigned long slice_start
;
187 unsigned long slice_end
;
188 unsigned long slice_left
;
189 unsigned long service_last
;
191 /* number of requests that are on the dispatch list */
194 /* io prio of this group */
195 unsigned short ioprio
, org_ioprio
;
196 unsigned short ioprio_class
, org_ioprio_class
;
198 /* various state flags, see below */
203 struct rb_node rb_node
;
205 struct request
*request
;
206 struct hlist_node hash
;
208 struct cfq_queue
*cfq_queue
;
209 struct cfq_io_context
*io_context
;
211 unsigned int crq_flags
;
214 enum cfqq_state_flags
{
215 CFQ_CFQQ_FLAG_on_rr
= 0,
216 CFQ_CFQQ_FLAG_wait_request
,
217 CFQ_CFQQ_FLAG_must_alloc
,
218 CFQ_CFQQ_FLAG_must_alloc_slice
,
219 CFQ_CFQQ_FLAG_must_dispatch
,
220 CFQ_CFQQ_FLAG_fifo_expire
,
221 CFQ_CFQQ_FLAG_idle_window
,
222 CFQ_CFQQ_FLAG_prio_changed
,
225 #define CFQ_CFQQ_FNS(name) \
226 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
228 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
230 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
232 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
234 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
236 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
240 CFQ_CFQQ_FNS(wait_request
);
241 CFQ_CFQQ_FNS(must_alloc
);
242 CFQ_CFQQ_FNS(must_alloc_slice
);
243 CFQ_CFQQ_FNS(must_dispatch
);
244 CFQ_CFQQ_FNS(fifo_expire
);
245 CFQ_CFQQ_FNS(idle_window
);
246 CFQ_CFQQ_FNS(prio_changed
);
249 enum cfq_rq_state_flags
{
250 CFQ_CRQ_FLAG_is_sync
= 0,
253 #define CFQ_CRQ_FNS(name) \
254 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
256 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
258 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
260 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
262 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
264 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
267 CFQ_CRQ_FNS(is_sync
);
270 static struct cfq_queue
*cfq_find_cfq_hash(struct cfq_data
*, unsigned int, unsigned short);
271 static void cfq_dispatch_insert(request_queue_t
*, struct cfq_rq
*);
272 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
, gfp_t gfp_mask
);
275 * lots of deadline iosched dupes, can be abstracted later...
277 static inline void cfq_del_crq_hash(struct cfq_rq
*crq
)
279 hlist_del_init(&crq
->hash
);
282 static inline void cfq_add_crq_hash(struct cfq_data
*cfqd
, struct cfq_rq
*crq
)
284 const int hash_idx
= CFQ_MHASH_FN(rq_hash_key(crq
->request
));
286 hlist_add_head(&crq
->hash
, &cfqd
->crq_hash
[hash_idx
]);
289 static struct request
*cfq_find_rq_hash(struct cfq_data
*cfqd
, sector_t offset
)
291 struct hlist_head
*hash_list
= &cfqd
->crq_hash
[CFQ_MHASH_FN(offset
)];
292 struct hlist_node
*entry
, *next
;
294 hlist_for_each_safe(entry
, next
, hash_list
) {
295 struct cfq_rq
*crq
= list_entry_hash(entry
);
296 struct request
*__rq
= crq
->request
;
298 if (!rq_mergeable(__rq
)) {
299 cfq_del_crq_hash(crq
);
303 if (rq_hash_key(__rq
) == offset
)
311 * scheduler run of queue, if there are requests pending and no one in the
312 * driver that will restart queueing
314 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
316 if (cfqd
->busy_queues
)
317 kblockd_schedule_work(&cfqd
->unplug_work
);
320 static int cfq_queue_empty(request_queue_t
*q
)
322 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
324 return !cfqd
->busy_queues
;
327 static inline pid_t
cfq_queue_pid(struct task_struct
*task
, int rw
)
329 if (rw
== READ
|| rw
== WRITE_SYNC
)
332 return CFQ_KEY_ASYNC
;
336 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
337 * We choose the request that is closest to the head right now. Distance
338 * behind the head is penalized and only allowed to a certain extent.
340 static struct cfq_rq
*
341 cfq_choose_req(struct cfq_data
*cfqd
, struct cfq_rq
*crq1
, struct cfq_rq
*crq2
)
343 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
344 unsigned long back_max
;
345 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
346 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
347 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
349 if (crq1
== NULL
|| crq1
== crq2
)
354 if (cfq_crq_is_sync(crq1
) && !cfq_crq_is_sync(crq2
))
356 else if (cfq_crq_is_sync(crq2
) && !cfq_crq_is_sync(crq1
))
359 s1
= crq1
->request
->sector
;
360 s2
= crq2
->request
->sector
;
362 last
= cfqd
->last_sector
;
365 * by definition, 1KiB is 2 sectors
367 back_max
= cfqd
->cfq_back_max
* 2;
370 * Strict one way elevator _except_ in the case where we allow
371 * short backward seeks which are biased as twice the cost of a
372 * similar forward seek.
376 else if (s1
+ back_max
>= last
)
377 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
379 wrap
|= CFQ_RQ1_WRAP
;
383 else if (s2
+ back_max
>= last
)
384 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
386 wrap
|= CFQ_RQ2_WRAP
;
388 /* Found required data */
391 * By doing switch() on the bit mask "wrap" we avoid having to
392 * check two variables for all permutations: --> faster!
395 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
411 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both crqs wrapped */
414 * Since both rqs are wrapped,
415 * start with the one that's further behind head
416 * (--> only *one* back seek required),
417 * since back seek takes more time than forward.
427 * would be nice to take fifo expire time into account as well
429 static struct cfq_rq
*
430 cfq_find_next_crq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
433 struct cfq_rq
*crq_next
= NULL
, *crq_prev
= NULL
;
434 struct rb_node
*rbnext
, *rbprev
;
436 if (!(rbnext
= rb_next(&last
->rb_node
))) {
437 rbnext
= rb_first(&cfqq
->sort_list
);
438 if (rbnext
== &last
->rb_node
)
442 rbprev
= rb_prev(&last
->rb_node
);
445 crq_prev
= rb_entry_crq(rbprev
);
447 crq_next
= rb_entry_crq(rbnext
);
449 return cfq_choose_req(cfqd
, crq_next
, crq_prev
);
452 static void cfq_update_next_crq(struct cfq_rq
*crq
)
454 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
456 if (cfqq
->next_crq
== crq
)
457 cfqq
->next_crq
= cfq_find_next_crq(cfqq
->cfqd
, cfqq
, crq
);
460 static void cfq_resort_rr_list(struct cfq_queue
*cfqq
, int preempted
)
462 struct cfq_data
*cfqd
= cfqq
->cfqd
;
463 struct list_head
*list
, *entry
;
465 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
467 list_del(&cfqq
->cfq_list
);
469 if (cfq_class_rt(cfqq
))
470 list
= &cfqd
->cur_rr
;
471 else if (cfq_class_idle(cfqq
))
472 list
= &cfqd
->idle_rr
;
475 * if cfqq has requests in flight, don't allow it to be
476 * found in cfq_set_active_queue before it has finished them.
477 * this is done to increase fairness between a process that
478 * has lots of io pending vs one that only generates one
479 * sporadically or synchronously
481 if (cfq_cfqq_dispatched(cfqq
))
482 list
= &cfqd
->busy_rr
;
484 list
= &cfqd
->rr_list
[cfqq
->ioprio
];
488 * if queue was preempted, just add to front to be fair. busy_rr
489 * isn't sorted, but insert at the back for fairness.
491 if (preempted
|| list
== &cfqd
->busy_rr
) {
495 list_add_tail(&cfqq
->cfq_list
, list
);
500 * sort by when queue was last serviced
503 while ((entry
= entry
->prev
) != list
) {
504 struct cfq_queue
*__cfqq
= list_entry_cfqq(entry
);
506 if (!__cfqq
->service_last
)
508 if (time_before(__cfqq
->service_last
, cfqq
->service_last
))
512 list_add(&cfqq
->cfq_list
, entry
);
516 * add to busy list of queues for service, trying to be fair in ordering
517 * the pending list according to last request service
520 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
522 BUG_ON(cfq_cfqq_on_rr(cfqq
));
523 cfq_mark_cfqq_on_rr(cfqq
);
526 cfq_resort_rr_list(cfqq
, 0);
530 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
532 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
533 cfq_clear_cfqq_on_rr(cfqq
);
534 list_move(&cfqq
->cfq_list
, &cfqd
->empty_list
);
536 BUG_ON(!cfqd
->busy_queues
);
541 * rb tree support functions
543 static inline void cfq_del_crq_rb(struct cfq_rq
*crq
)
545 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
546 struct cfq_data
*cfqd
= cfqq
->cfqd
;
547 const int sync
= cfq_crq_is_sync(crq
);
549 BUG_ON(!cfqq
->queued
[sync
]);
550 cfqq
->queued
[sync
]--;
552 cfq_update_next_crq(crq
);
554 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
556 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
557 cfq_del_cfqq_rr(cfqd
, cfqq
);
560 static struct cfq_rq
*
561 __cfq_add_crq_rb(struct cfq_rq
*crq
)
563 struct rb_node
**p
= &crq
->cfq_queue
->sort_list
.rb_node
;
564 struct rb_node
*parent
= NULL
;
565 struct cfq_rq
*__crq
;
569 __crq
= rb_entry_crq(parent
);
571 if (crq
->rb_key
< __crq
->rb_key
)
573 else if (crq
->rb_key
> __crq
->rb_key
)
579 rb_link_node(&crq
->rb_node
, parent
, p
);
583 static void cfq_add_crq_rb(struct cfq_rq
*crq
)
585 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
586 struct cfq_data
*cfqd
= cfqq
->cfqd
;
587 struct request
*rq
= crq
->request
;
588 struct cfq_rq
*__alias
;
590 crq
->rb_key
= rq_rb_key(rq
);
591 cfqq
->queued
[cfq_crq_is_sync(crq
)]++;
594 * looks a little odd, but the first insert might return an alias.
595 * if that happens, put the alias on the dispatch list
597 while ((__alias
= __cfq_add_crq_rb(crq
)) != NULL
)
598 cfq_dispatch_insert(cfqd
->queue
, __alias
);
600 rb_insert_color(&crq
->rb_node
, &cfqq
->sort_list
);
602 if (!cfq_cfqq_on_rr(cfqq
))
603 cfq_add_cfqq_rr(cfqd
, cfqq
);
606 * check if this request is a better next-serve candidate
608 cfqq
->next_crq
= cfq_choose_req(cfqd
, cfqq
->next_crq
, crq
);
612 cfq_reposition_crq_rb(struct cfq_queue
*cfqq
, struct cfq_rq
*crq
)
614 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
615 cfqq
->queued
[cfq_crq_is_sync(crq
)]--;
620 static struct request
*
621 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
623 struct task_struct
*tsk
= current
;
624 pid_t key
= cfq_queue_pid(tsk
, bio_data_dir(bio
));
625 struct cfq_queue
*cfqq
;
629 cfqq
= cfq_find_cfq_hash(cfqd
, key
, tsk
->ioprio
);
633 sector
= bio
->bi_sector
+ bio_sectors(bio
);
634 n
= cfqq
->sort_list
.rb_node
;
636 struct cfq_rq
*crq
= rb_entry_crq(n
);
638 if (sector
< crq
->rb_key
)
640 else if (sector
> crq
->rb_key
)
650 static void cfq_activate_request(request_queue_t
*q
, struct request
*rq
)
652 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
654 cfqd
->rq_in_driver
++;
657 * If the depth is larger 1, it really could be queueing. But lets
658 * make the mark a little higher - idling could still be good for
659 * low queueing, and a low queueing number could also just indicate
660 * a SCSI mid layer like behaviour where limit+1 is often seen.
662 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
666 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
668 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
670 WARN_ON(!cfqd
->rq_in_driver
);
671 cfqd
->rq_in_driver
--;
674 static void cfq_remove_request(struct request
*rq
)
676 struct cfq_rq
*crq
= RQ_DATA(rq
);
678 list_del_init(&rq
->queuelist
);
680 cfq_del_crq_hash(crq
);
684 cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
686 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
687 struct request
*__rq
;
690 __rq
= cfq_find_rq_hash(cfqd
, bio
->bi_sector
);
691 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
692 ret
= ELEVATOR_BACK_MERGE
;
696 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
697 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
698 ret
= ELEVATOR_FRONT_MERGE
;
702 return ELEVATOR_NO_MERGE
;
708 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
)
710 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
711 struct cfq_rq
*crq
= RQ_DATA(req
);
713 cfq_del_crq_hash(crq
);
714 cfq_add_crq_hash(cfqd
, crq
);
716 if (rq_rb_key(req
) != crq
->rb_key
) {
717 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
719 cfq_update_next_crq(crq
);
720 cfq_reposition_crq_rb(cfqq
, crq
);
725 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
726 struct request
*next
)
728 cfq_merged_request(q
, rq
);
731 * reposition in fifo if next is older than rq
733 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
734 time_before(next
->start_time
, rq
->start_time
))
735 list_move(&rq
->queuelist
, &next
->queuelist
);
737 cfq_remove_request(next
);
741 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
745 * stop potential idle class queues waiting service
747 del_timer(&cfqd
->idle_class_timer
);
749 cfqq
->slice_start
= jiffies
;
751 cfqq
->slice_left
= 0;
752 cfq_clear_cfqq_must_alloc_slice(cfqq
);
753 cfq_clear_cfqq_fifo_expire(cfqq
);
756 cfqd
->active_queue
= cfqq
;
760 * current cfqq expired its slice (or was too idle), select new one
763 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
766 unsigned long now
= jiffies
;
768 if (cfq_cfqq_wait_request(cfqq
))
769 del_timer(&cfqd
->idle_slice_timer
);
771 if (!preempted
&& !cfq_cfqq_dispatched(cfqq
)) {
772 cfqq
->service_last
= now
;
773 cfq_schedule_dispatch(cfqd
);
776 cfq_clear_cfqq_must_dispatch(cfqq
);
777 cfq_clear_cfqq_wait_request(cfqq
);
780 * store what was left of this slice, if the queue idled out
783 if (time_after(cfqq
->slice_end
, now
))
784 cfqq
->slice_left
= cfqq
->slice_end
- now
;
786 cfqq
->slice_left
= 0;
788 if (cfq_cfqq_on_rr(cfqq
))
789 cfq_resort_rr_list(cfqq
, preempted
);
791 if (cfqq
== cfqd
->active_queue
)
792 cfqd
->active_queue
= NULL
;
794 if (cfqd
->active_cic
) {
795 put_io_context(cfqd
->active_cic
->ioc
);
796 cfqd
->active_cic
= NULL
;
799 cfqd
->dispatch_slice
= 0;
802 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int preempted
)
804 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
807 __cfq_slice_expired(cfqd
, cfqq
, preempted
);
820 static int cfq_get_next_prio_level(struct cfq_data
*cfqd
)
829 for (p
= cfqd
->cur_prio
; p
<= cfqd
->cur_end_prio
; p
++) {
830 if (!list_empty(&cfqd
->rr_list
[p
])) {
839 if (++cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
840 cfqd
->cur_end_prio
= 0;
847 if (unlikely(prio
== -1))
850 BUG_ON(prio
>= CFQ_PRIO_LISTS
);
852 list_splice_init(&cfqd
->rr_list
[prio
], &cfqd
->cur_rr
);
854 cfqd
->cur_prio
= prio
+ 1;
855 if (cfqd
->cur_prio
> cfqd
->cur_end_prio
) {
856 cfqd
->cur_end_prio
= cfqd
->cur_prio
;
859 if (cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
861 cfqd
->cur_end_prio
= 0;
867 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
869 struct cfq_queue
*cfqq
= NULL
;
872 * if current list is non-empty, grab first entry. if it is empty,
873 * get next prio level and grab first entry then if any are spliced
875 if (!list_empty(&cfqd
->cur_rr
) || cfq_get_next_prio_level(cfqd
) != -1)
876 cfqq
= list_entry_cfqq(cfqd
->cur_rr
.next
);
879 * If no new queues are available, check if the busy list has some
880 * before falling back to idle io.
882 if (!cfqq
&& !list_empty(&cfqd
->busy_rr
))
883 cfqq
= list_entry_cfqq(cfqd
->busy_rr
.next
);
886 * if we have idle queues and no rt or be queues had pending
887 * requests, either allow immediate service if the grace period
888 * has passed or arm the idle grace timer
890 if (!cfqq
&& !list_empty(&cfqd
->idle_rr
)) {
891 unsigned long end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
893 if (time_after_eq(jiffies
, end
))
894 cfqq
= list_entry_cfqq(cfqd
->idle_rr
.next
);
896 mod_timer(&cfqd
->idle_class_timer
, end
);
899 __cfq_set_active_queue(cfqd
, cfqq
);
903 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
905 static int cfq_arm_slice_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
908 struct cfq_io_context
*cic
;
911 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
912 WARN_ON(cfqq
!= cfqd
->active_queue
);
915 * idle is disabled, either manually or by past process history
917 if (!cfqd
->cfq_slice_idle
)
919 if (!cfq_cfqq_idle_window(cfqq
))
922 * task has exited, don't wait
924 cic
= cfqd
->active_cic
;
925 if (!cic
|| !cic
->ioc
->task
)
928 cfq_mark_cfqq_must_dispatch(cfqq
);
929 cfq_mark_cfqq_wait_request(cfqq
);
931 sl
= min(cfqq
->slice_end
- 1, (unsigned long) cfqd
->cfq_slice_idle
);
934 * we don't want to idle for seeks, but we do want to allow
935 * fair distribution of slice time for a process doing back-to-back
936 * seeks. so allow a little bit of time for him to submit a new rq
938 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
939 sl
= min(sl
, msecs_to_jiffies(2));
941 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
945 static void cfq_dispatch_insert(request_queue_t
*q
, struct cfq_rq
*crq
)
947 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
948 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
951 cfqq
->next_crq
= cfq_find_next_crq(cfqd
, cfqq
, crq
);
952 cfq_remove_request(crq
->request
);
953 cfqq
->on_dispatch
[cfq_crq_is_sync(crq
)]++;
954 elv_dispatch_sort(q
, crq
->request
);
956 rq
= list_entry(q
->queue_head
.prev
, struct request
, queuelist
);
957 cfqd
->last_sector
= rq
->sector
+ rq
->nr_sectors
;
961 * return expired entry, or NULL to just start from scratch in rbtree
963 static inline struct cfq_rq
*cfq_check_fifo(struct cfq_queue
*cfqq
)
965 struct cfq_data
*cfqd
= cfqq
->cfqd
;
969 if (cfq_cfqq_fifo_expire(cfqq
))
972 if (!list_empty(&cfqq
->fifo
)) {
973 int fifo
= cfq_cfqq_class_sync(cfqq
);
975 crq
= RQ_DATA(list_entry_fifo(cfqq
->fifo
.next
));
977 if (time_after(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
])) {
978 cfq_mark_cfqq_fifo_expire(cfqq
);
987 * Scale schedule slice based on io priority. Use the sync time slice only
988 * if a queue is marked sync and has sync io queued. A sync queue with async
989 * io only, should not get full sync slice length.
992 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
994 const int base_slice
= cfqd
->cfq_slice
[cfq_cfqq_sync(cfqq
)];
996 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
998 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - cfqq
->ioprio
));
1002 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1004 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
1008 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1010 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1012 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1014 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1018 * get next queue for service
1020 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1022 unsigned long now
= jiffies
;
1023 struct cfq_queue
*cfqq
;
1025 cfqq
= cfqd
->active_queue
;
1032 if (!cfq_cfqq_must_dispatch(cfqq
) && time_after(now
, cfqq
->slice_end
))
1036 * if queue has requests, dispatch one. if not, check if
1037 * enough slice is left to wait for one
1039 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1041 else if (cfq_cfqq_dispatched(cfqq
)) {
1044 } else if (cfq_cfqq_class_sync(cfqq
)) {
1045 if (cfq_arm_slice_timer(cfqd
, cfqq
))
1050 cfq_slice_expired(cfqd
, 0);
1052 cfqq
= cfq_set_active_queue(cfqd
);
1058 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1063 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1069 * follow expired path, else get first next available
1071 if ((crq
= cfq_check_fifo(cfqq
)) == NULL
)
1072 crq
= cfqq
->next_crq
;
1075 * finally, insert request into driver dispatch list
1077 cfq_dispatch_insert(cfqd
->queue
, crq
);
1079 cfqd
->dispatch_slice
++;
1082 if (!cfqd
->active_cic
) {
1083 atomic_inc(&crq
->io_context
->ioc
->refcount
);
1084 cfqd
->active_cic
= crq
->io_context
;
1087 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1090 } while (dispatched
< max_dispatch
);
1093 * if slice end isn't set yet, set it.
1095 if (!cfqq
->slice_end
)
1096 cfq_set_prio_slice(cfqd
, cfqq
);
1099 * expire an async queue immediately if it has used up its slice. idle
1100 * queue always expire after 1 dispatch round.
1102 if ((!cfq_cfqq_sync(cfqq
) &&
1103 cfqd
->dispatch_slice
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1104 cfq_class_idle(cfqq
) ||
1105 !cfq_cfqq_idle_window(cfqq
))
1106 cfq_slice_expired(cfqd
, 0);
1112 cfq_forced_dispatch_cfqqs(struct list_head
*list
)
1114 struct cfq_queue
*cfqq
, *next
;
1119 list_for_each_entry_safe(cfqq
, next
, list
, cfq_list
) {
1120 while ((crq
= cfqq
->next_crq
)) {
1121 cfq_dispatch_insert(cfqq
->cfqd
->queue
, crq
);
1124 BUG_ON(!list_empty(&cfqq
->fifo
));
1131 cfq_forced_dispatch(struct cfq_data
*cfqd
)
1133 int i
, dispatched
= 0;
1135 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
1136 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->rr_list
[i
]);
1138 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->busy_rr
);
1139 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->cur_rr
);
1140 dispatched
+= cfq_forced_dispatch_cfqqs(&cfqd
->idle_rr
);
1142 cfq_slice_expired(cfqd
, 0);
1144 BUG_ON(cfqd
->busy_queues
);
1150 cfq_dispatch_requests(request_queue_t
*q
, int force
)
1152 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1153 struct cfq_queue
*cfqq
, *prev_cfqq
;
1156 if (!cfqd
->busy_queues
)
1159 if (unlikely(force
))
1160 return cfq_forced_dispatch(cfqd
);
1164 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1168 * Don't repeat dispatch from the previous queue.
1170 if (prev_cfqq
== cfqq
)
1173 cfq_clear_cfqq_must_dispatch(cfqq
);
1174 cfq_clear_cfqq_wait_request(cfqq
);
1175 del_timer(&cfqd
->idle_slice_timer
);
1177 max_dispatch
= cfqd
->cfq_quantum
;
1178 if (cfq_class_idle(cfqq
))
1181 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1184 * If the dispatch cfqq has idling enabled and is still
1185 * the active queue, break out.
1187 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->active_queue
)
1197 * task holds one reference to the queue, dropped when task exits. each crq
1198 * in-flight on this queue also holds a reference, dropped when crq is freed.
1200 * queue lock must be held here.
1202 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1204 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1206 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1208 if (!atomic_dec_and_test(&cfqq
->ref
))
1211 BUG_ON(rb_first(&cfqq
->sort_list
));
1212 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1213 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1215 if (unlikely(cfqd
->active_queue
== cfqq
))
1216 __cfq_slice_expired(cfqd
, cfqq
, 0);
1219 * it's on the empty list and still hashed
1221 list_del(&cfqq
->cfq_list
);
1222 hlist_del(&cfqq
->cfq_hash
);
1223 kmem_cache_free(cfq_pool
, cfqq
);
1226 static inline struct cfq_queue
*
1227 __cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned int prio
,
1230 struct hlist_head
*hash_list
= &cfqd
->cfq_hash
[hashval
];
1231 struct hlist_node
*entry
;
1232 struct cfq_queue
*__cfqq
;
1234 hlist_for_each_entry(__cfqq
, entry
, hash_list
, cfq_hash
) {
1235 const unsigned short __p
= IOPRIO_PRIO_VALUE(__cfqq
->org_ioprio_class
, __cfqq
->org_ioprio
);
1237 if (__cfqq
->key
== key
&& (__p
== prio
|| !prio
))
1244 static struct cfq_queue
*
1245 cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned short prio
)
1247 return __cfq_find_cfq_hash(cfqd
, key
, prio
, hash_long(key
, CFQ_QHASH_SHIFT
));
1250 static void cfq_free_io_context(struct io_context
*ioc
)
1252 struct cfq_io_context
*__cic
;
1256 while ((n
= rb_first(&ioc
->cic_root
)) != NULL
) {
1257 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1258 rb_erase(&__cic
->rb_node
, &ioc
->cic_root
);
1259 kmem_cache_free(cfq_ioc_pool
, __cic
);
1263 if (atomic_sub_and_test(freed
, &ioc_count
) && ioc_gone
)
1267 static void cfq_trim(struct io_context
*ioc
)
1269 ioc
->set_ioprio
= NULL
;
1270 cfq_free_io_context(ioc
);
1274 * Called with interrupts disabled
1276 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1278 struct cfq_data
*cfqd
= cic
->key
;
1286 WARN_ON(!irqs_disabled());
1288 spin_lock(q
->queue_lock
);
1290 if (cic
->cfqq
[ASYNC
]) {
1291 if (unlikely(cic
->cfqq
[ASYNC
] == cfqd
->active_queue
))
1292 __cfq_slice_expired(cfqd
, cic
->cfqq
[ASYNC
], 0);
1293 cfq_put_queue(cic
->cfqq
[ASYNC
]);
1294 cic
->cfqq
[ASYNC
] = NULL
;
1297 if (cic
->cfqq
[SYNC
]) {
1298 if (unlikely(cic
->cfqq
[SYNC
] == cfqd
->active_queue
))
1299 __cfq_slice_expired(cfqd
, cic
->cfqq
[SYNC
], 0);
1300 cfq_put_queue(cic
->cfqq
[SYNC
]);
1301 cic
->cfqq
[SYNC
] = NULL
;
1305 list_del_init(&cic
->queue_list
);
1306 spin_unlock(q
->queue_lock
);
1309 static void cfq_exit_io_context(struct io_context
*ioc
)
1311 struct cfq_io_context
*__cic
;
1312 unsigned long flags
;
1316 * put the reference this task is holding to the various queues
1318 spin_lock_irqsave(&cfq_exit_lock
, flags
);
1320 n
= rb_first(&ioc
->cic_root
);
1322 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1324 cfq_exit_single_io_context(__cic
);
1328 spin_unlock_irqrestore(&cfq_exit_lock
, flags
);
1331 static struct cfq_io_context
*
1332 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1334 struct cfq_io_context
*cic
= kmem_cache_alloc(cfq_ioc_pool
, gfp_mask
);
1337 memset(cic
, 0, sizeof(*cic
));
1338 cic
->last_end_request
= jiffies
;
1339 INIT_LIST_HEAD(&cic
->queue_list
);
1340 cic
->dtor
= cfq_free_io_context
;
1341 cic
->exit
= cfq_exit_io_context
;
1342 atomic_inc(&ioc_count
);
1348 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1350 struct task_struct
*tsk
= current
;
1353 if (!cfq_cfqq_prio_changed(cfqq
))
1356 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1357 switch (ioprio_class
) {
1359 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1360 case IOPRIO_CLASS_NONE
:
1362 * no prio set, place us in the middle of the BE classes
1364 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1365 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1367 case IOPRIO_CLASS_RT
:
1368 cfqq
->ioprio
= task_ioprio(tsk
);
1369 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1371 case IOPRIO_CLASS_BE
:
1372 cfqq
->ioprio
= task_ioprio(tsk
);
1373 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1375 case IOPRIO_CLASS_IDLE
:
1376 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1378 cfq_clear_cfqq_idle_window(cfqq
);
1383 * keep track of original prio settings in case we have to temporarily
1384 * elevate the priority of this queue
1386 cfqq
->org_ioprio
= cfqq
->ioprio
;
1387 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1389 if (cfq_cfqq_on_rr(cfqq
))
1390 cfq_resort_rr_list(cfqq
, 0);
1392 cfq_clear_cfqq_prio_changed(cfqq
);
1395 static inline void changed_ioprio(struct cfq_io_context
*cic
)
1397 struct cfq_data
*cfqd
= cic
->key
;
1398 struct cfq_queue
*cfqq
;
1400 if (unlikely(!cfqd
))
1403 spin_lock(cfqd
->queue
->queue_lock
);
1405 cfqq
= cic
->cfqq
[ASYNC
];
1407 struct cfq_queue
*new_cfqq
;
1408 new_cfqq
= cfq_get_queue(cfqd
, CFQ_KEY_ASYNC
, cic
->ioc
->task
,
1411 cic
->cfqq
[ASYNC
] = new_cfqq
;
1412 cfq_put_queue(cfqq
);
1416 cfqq
= cic
->cfqq
[SYNC
];
1418 cfq_mark_cfqq_prio_changed(cfqq
);
1420 spin_unlock(cfqd
->queue
->queue_lock
);
1424 * callback from sys_ioprio_set, irqs are disabled
1426 static int cfq_ioc_set_ioprio(struct io_context
*ioc
, unsigned int ioprio
)
1428 struct cfq_io_context
*cic
;
1431 spin_lock(&cfq_exit_lock
);
1433 n
= rb_first(&ioc
->cic_root
);
1435 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1437 changed_ioprio(cic
);
1441 spin_unlock(&cfq_exit_lock
);
1446 static struct cfq_queue
*
1447 cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, struct task_struct
*tsk
,
1450 const int hashval
= hash_long(key
, CFQ_QHASH_SHIFT
);
1451 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1452 unsigned short ioprio
;
1455 ioprio
= tsk
->ioprio
;
1456 cfqq
= __cfq_find_cfq_hash(cfqd
, key
, ioprio
, hashval
);
1462 } else if (gfp_mask
& __GFP_WAIT
) {
1463 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1464 new_cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1465 spin_lock_irq(cfqd
->queue
->queue_lock
);
1468 cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1473 memset(cfqq
, 0, sizeof(*cfqq
));
1475 INIT_HLIST_NODE(&cfqq
->cfq_hash
);
1476 INIT_LIST_HEAD(&cfqq
->cfq_list
);
1477 INIT_LIST_HEAD(&cfqq
->fifo
);
1480 hlist_add_head(&cfqq
->cfq_hash
, &cfqd
->cfq_hash
[hashval
]);
1481 atomic_set(&cfqq
->ref
, 0);
1483 cfqq
->service_last
= 0;
1485 * set ->slice_left to allow preemption for a new process
1487 cfqq
->slice_left
= 2 * cfqd
->cfq_slice_idle
;
1488 cfq_mark_cfqq_idle_window(cfqq
);
1489 cfq_mark_cfqq_prio_changed(cfqq
);
1490 cfq_init_prio_data(cfqq
);
1494 kmem_cache_free(cfq_pool
, new_cfqq
);
1496 atomic_inc(&cfqq
->ref
);
1498 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1503 cfq_drop_dead_cic(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1505 spin_lock(&cfq_exit_lock
);
1506 rb_erase(&cic
->rb_node
, &ioc
->cic_root
);
1507 list_del_init(&cic
->queue_list
);
1508 spin_unlock(&cfq_exit_lock
);
1509 kmem_cache_free(cfq_ioc_pool
, cic
);
1510 atomic_dec(&ioc_count
);
1513 static struct cfq_io_context
*
1514 cfq_cic_rb_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1517 struct cfq_io_context
*cic
;
1518 void *k
, *key
= cfqd
;
1521 n
= ioc
->cic_root
.rb_node
;
1523 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1524 /* ->key must be copied to avoid race with cfq_exit_queue() */
1527 cfq_drop_dead_cic(ioc
, cic
);
1543 cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1544 struct cfq_io_context
*cic
)
1547 struct rb_node
*parent
;
1548 struct cfq_io_context
*__cic
;
1554 ioc
->set_ioprio
= cfq_ioc_set_ioprio
;
1557 p
= &ioc
->cic_root
.rb_node
;
1560 __cic
= rb_entry(parent
, struct cfq_io_context
, rb_node
);
1561 /* ->key must be copied to avoid race with cfq_exit_queue() */
1564 cfq_drop_dead_cic(ioc
, cic
);
1570 else if (cic
->key
> k
)
1571 p
= &(*p
)->rb_right
;
1576 spin_lock(&cfq_exit_lock
);
1577 rb_link_node(&cic
->rb_node
, parent
, p
);
1578 rb_insert_color(&cic
->rb_node
, &ioc
->cic_root
);
1579 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1580 spin_unlock(&cfq_exit_lock
);
1584 * Setup general io context and cfq io context. There can be several cfq
1585 * io contexts per general io context, if this process is doing io to more
1586 * than one device managed by cfq.
1588 static struct cfq_io_context
*
1589 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1591 struct io_context
*ioc
= NULL
;
1592 struct cfq_io_context
*cic
;
1594 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1596 ioc
= get_io_context(gfp_mask
);
1600 cic
= cfq_cic_rb_lookup(cfqd
, ioc
);
1604 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1608 cfq_cic_link(cfqd
, ioc
, cic
);
1612 put_io_context(ioc
);
1617 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1619 unsigned long elapsed
, ttime
;
1622 * if this context already has stuff queued, thinktime is from
1623 * last queue not last end
1626 if (time_after(cic
->last_end_request
, cic
->last_queue
))
1627 elapsed
= jiffies
- cic
->last_end_request
;
1629 elapsed
= jiffies
- cic
->last_queue
;
1631 elapsed
= jiffies
- cic
->last_end_request
;
1634 ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1636 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1637 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1638 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1642 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1648 if (cic
->last_request_pos
< crq
->request
->sector
)
1649 sdist
= crq
->request
->sector
- cic
->last_request_pos
;
1651 sdist
= cic
->last_request_pos
- crq
->request
->sector
;
1654 * Don't allow the seek distance to get too large from the
1655 * odd fragment, pagein, etc
1657 if (cic
->seek_samples
<= 60) /* second&third seek */
1658 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1660 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1662 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1663 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1664 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1665 do_div(total
, cic
->seek_samples
);
1666 cic
->seek_mean
= (sector_t
)total
;
1670 * Disable idle window if the process thinks too long or seeks so much that
1674 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1675 struct cfq_io_context
*cic
)
1677 int enable_idle
= cfq_cfqq_idle_window(cfqq
);
1679 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
||
1680 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1682 else if (sample_valid(cic
->ttime_samples
)) {
1683 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1690 cfq_mark_cfqq_idle_window(cfqq
);
1692 cfq_clear_cfqq_idle_window(cfqq
);
1697 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1698 * no or if we aren't sure, a 1 will cause a preempt.
1701 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1704 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1706 if (cfq_class_idle(new_cfqq
))
1712 if (cfq_class_idle(cfqq
))
1714 if (!cfq_cfqq_wait_request(new_cfqq
))
1717 * if it doesn't have slice left, forget it
1719 if (new_cfqq
->slice_left
< cfqd
->cfq_slice_idle
)
1721 if (cfq_crq_is_sync(crq
) && !cfq_cfqq_sync(cfqq
))
1728 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1729 * let it have half of its nominal slice.
1731 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1733 struct cfq_queue
*__cfqq
, *next
;
1735 list_for_each_entry_safe(__cfqq
, next
, &cfqd
->cur_rr
, cfq_list
)
1736 cfq_resort_rr_list(__cfqq
, 1);
1738 if (!cfqq
->slice_left
)
1739 cfqq
->slice_left
= cfq_prio_to_slice(cfqd
, cfqq
) / 2;
1741 cfqq
->slice_end
= cfqq
->slice_left
+ jiffies
;
1742 cfq_slice_expired(cfqd
, 1);
1743 __cfq_set_active_queue(cfqd
, cfqq
);
1747 * should really be a ll_rw_blk.c helper
1749 static void cfq_start_queueing(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1751 request_queue_t
*q
= cfqd
->queue
;
1753 if (!blk_queue_plugged(q
))
1756 __generic_unplug_device(q
);
1760 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1761 * something we should do about it
1764 cfq_crq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1767 struct cfq_io_context
*cic
= crq
->io_context
;
1770 * we never wait for an async request and we don't allow preemption
1771 * of an async request. so just return early
1773 if (!cfq_crq_is_sync(crq
)) {
1775 * sync process issued an async request, if it's waiting
1776 * then expire it and kick rq handling.
1778 if (cic
== cfqd
->active_cic
&&
1779 del_timer(&cfqd
->idle_slice_timer
)) {
1780 cfq_slice_expired(cfqd
, 0);
1781 cfq_start_queueing(cfqd
, cfqq
);
1786 cfq_update_io_thinktime(cfqd
, cic
);
1787 cfq_update_io_seektime(cfqd
, cic
, crq
);
1788 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1790 cic
->last_queue
= jiffies
;
1791 cic
->last_request_pos
= crq
->request
->sector
+ crq
->request
->nr_sectors
;
1793 if (cfqq
== cfqd
->active_queue
) {
1795 * if we are waiting for a request for this queue, let it rip
1796 * immediately and flag that we must not expire this queue
1799 if (cfq_cfqq_wait_request(cfqq
)) {
1800 cfq_mark_cfqq_must_dispatch(cfqq
);
1801 del_timer(&cfqd
->idle_slice_timer
);
1802 cfq_start_queueing(cfqd
, cfqq
);
1804 } else if (cfq_should_preempt(cfqd
, cfqq
, crq
)) {
1806 * not the active queue - expire current slice if it is
1807 * idle and has expired it's mean thinktime or this new queue
1808 * has some old slice time left and is of higher priority
1810 cfq_preempt_queue(cfqd
, cfqq
);
1811 cfq_mark_cfqq_must_dispatch(cfqq
);
1812 cfq_start_queueing(cfqd
, cfqq
);
1816 static void cfq_insert_request(request_queue_t
*q
, struct request
*rq
)
1818 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1819 struct cfq_rq
*crq
= RQ_DATA(rq
);
1820 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1822 cfq_init_prio_data(cfqq
);
1824 cfq_add_crq_rb(crq
);
1826 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1828 if (rq_mergeable(rq
))
1829 cfq_add_crq_hash(cfqd
, crq
);
1831 cfq_crq_enqueued(cfqd
, cfqq
, crq
);
1834 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1836 struct cfq_rq
*crq
= RQ_DATA(rq
);
1837 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1838 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1839 const int sync
= cfq_crq_is_sync(crq
);
1844 WARN_ON(!cfqd
->rq_in_driver
);
1845 WARN_ON(!cfqq
->on_dispatch
[sync
]);
1846 cfqd
->rq_in_driver
--;
1847 cfqq
->on_dispatch
[sync
]--;
1849 if (!cfq_class_idle(cfqq
))
1850 cfqd
->last_end_request
= now
;
1852 if (!cfq_cfqq_dispatched(cfqq
)) {
1853 if (cfq_cfqq_on_rr(cfqq
)) {
1854 cfqq
->service_last
= now
;
1855 cfq_resort_rr_list(cfqq
, 0);
1860 crq
->io_context
->last_end_request
= now
;
1863 * If this is the active queue, check if it needs to be expired,
1864 * or if we want to idle in case it has no pending requests.
1866 if (cfqd
->active_queue
== cfqq
) {
1867 if (time_after(now
, cfqq
->slice_end
))
1868 cfq_slice_expired(cfqd
, 0);
1869 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1870 if (!cfq_arm_slice_timer(cfqd
, cfqq
))
1871 cfq_schedule_dispatch(cfqd
);
1876 static struct request
*
1877 cfq_former_request(request_queue_t
*q
, struct request
*rq
)
1879 struct cfq_rq
*crq
= RQ_DATA(rq
);
1880 struct rb_node
*rbprev
= rb_prev(&crq
->rb_node
);
1883 return rb_entry_crq(rbprev
)->request
;
1888 static struct request
*
1889 cfq_latter_request(request_queue_t
*q
, struct request
*rq
)
1891 struct cfq_rq
*crq
= RQ_DATA(rq
);
1892 struct rb_node
*rbnext
= rb_next(&crq
->rb_node
);
1895 return rb_entry_crq(rbnext
)->request
;
1901 * we temporarily boost lower priority queues if they are holding fs exclusive
1902 * resources. they are boosted to normal prio (CLASS_BE/4)
1904 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1906 const int ioprio_class
= cfqq
->ioprio_class
;
1907 const int ioprio
= cfqq
->ioprio
;
1909 if (has_fs_excl()) {
1911 * boost idle prio on transactions that would lock out other
1912 * users of the filesystem
1914 if (cfq_class_idle(cfqq
))
1915 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1916 if (cfqq
->ioprio
> IOPRIO_NORM
)
1917 cfqq
->ioprio
= IOPRIO_NORM
;
1920 * check if we need to unboost the queue
1922 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1923 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1924 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1925 cfqq
->ioprio
= cfqq
->org_ioprio
;
1929 * refile between round-robin lists if we moved the priority class
1931 if ((ioprio_class
!= cfqq
->ioprio_class
|| ioprio
!= cfqq
->ioprio
) &&
1932 cfq_cfqq_on_rr(cfqq
))
1933 cfq_resort_rr_list(cfqq
, 0);
1937 __cfq_may_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1938 struct task_struct
*task
, int rw
)
1940 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1941 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1942 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1943 return ELV_MQUEUE_MUST
;
1946 return ELV_MQUEUE_MAY
;
1949 static int cfq_may_queue(request_queue_t
*q
, int rw
, struct bio
*bio
)
1951 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1952 struct task_struct
*tsk
= current
;
1953 struct cfq_queue
*cfqq
;
1956 * don't force setup of a queue from here, as a call to may_queue
1957 * does not necessarily imply that a request actually will be queued.
1958 * so just lookup a possibly existing queue, or return 'may queue'
1961 cfqq
= cfq_find_cfq_hash(cfqd
, cfq_queue_pid(tsk
, rw
), tsk
->ioprio
);
1963 cfq_init_prio_data(cfqq
);
1964 cfq_prio_boost(cfqq
);
1966 return __cfq_may_queue(cfqd
, cfqq
, tsk
, rw
);
1969 return ELV_MQUEUE_MAY
;
1972 static void cfq_check_waiters(request_queue_t
*q
, struct cfq_queue
*cfqq
)
1974 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1976 if (unlikely(cfqd
->rq_starved
)) {
1977 struct request_list
*rl
= &q
->rq
;
1980 if (waitqueue_active(&rl
->wait
[READ
]))
1981 wake_up(&rl
->wait
[READ
]);
1982 if (waitqueue_active(&rl
->wait
[WRITE
]))
1983 wake_up(&rl
->wait
[WRITE
]);
1988 * queue lock held here
1990 static void cfq_put_request(request_queue_t
*q
, struct request
*rq
)
1992 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1993 struct cfq_rq
*crq
= RQ_DATA(rq
);
1996 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1997 const int rw
= rq_data_dir(rq
);
1999 BUG_ON(!cfqq
->allocated
[rw
]);
2000 cfqq
->allocated
[rw
]--;
2002 put_io_context(crq
->io_context
->ioc
);
2004 mempool_free(crq
, cfqd
->crq_pool
);
2005 rq
->elevator_private
= NULL
;
2007 cfq_check_waiters(q
, cfqq
);
2008 cfq_put_queue(cfqq
);
2013 * Allocate cfq data structures associated with this request.
2016 cfq_set_request(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
,
2019 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2020 struct task_struct
*tsk
= current
;
2021 struct cfq_io_context
*cic
;
2022 const int rw
= rq_data_dir(rq
);
2023 pid_t key
= cfq_queue_pid(tsk
, rw
);
2024 struct cfq_queue
*cfqq
;
2026 unsigned long flags
;
2027 int is_sync
= key
!= CFQ_KEY_ASYNC
;
2029 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2031 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2033 spin_lock_irqsave(q
->queue_lock
, flags
);
2038 if (!cic
->cfqq
[is_sync
]) {
2039 cfqq
= cfq_get_queue(cfqd
, key
, tsk
, gfp_mask
);
2043 cic
->cfqq
[is_sync
] = cfqq
;
2045 cfqq
= cic
->cfqq
[is_sync
];
2047 cfqq
->allocated
[rw
]++;
2048 cfq_clear_cfqq_must_alloc(cfqq
);
2049 cfqd
->rq_starved
= 0;
2050 atomic_inc(&cfqq
->ref
);
2051 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2053 crq
= mempool_alloc(cfqd
->crq_pool
, gfp_mask
);
2055 RB_CLEAR_NODE(&crq
->rb_node
);
2058 INIT_HLIST_NODE(&crq
->hash
);
2059 crq
->cfq_queue
= cfqq
;
2060 crq
->io_context
= cic
;
2063 cfq_mark_crq_is_sync(crq
);
2065 cfq_clear_crq_is_sync(crq
);
2067 rq
->elevator_private
= crq
;
2071 spin_lock_irqsave(q
->queue_lock
, flags
);
2072 cfqq
->allocated
[rw
]--;
2073 if (!(cfqq
->allocated
[0] + cfqq
->allocated
[1]))
2074 cfq_mark_cfqq_must_alloc(cfqq
);
2075 cfq_put_queue(cfqq
);
2078 put_io_context(cic
->ioc
);
2080 * mark us rq allocation starved. we need to kickstart the process
2081 * ourselves if there are no pending requests that can do it for us.
2082 * that would be an extremely rare OOM situation
2084 cfqd
->rq_starved
= 1;
2085 cfq_schedule_dispatch(cfqd
);
2086 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2090 static void cfq_kick_queue(void *data
)
2092 request_queue_t
*q
= data
;
2093 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2094 unsigned long flags
;
2096 spin_lock_irqsave(q
->queue_lock
, flags
);
2098 if (cfqd
->rq_starved
) {
2099 struct request_list
*rl
= &q
->rq
;
2102 * we aren't guaranteed to get a request after this, but we
2103 * have to be opportunistic
2106 if (waitqueue_active(&rl
->wait
[READ
]))
2107 wake_up(&rl
->wait
[READ
]);
2108 if (waitqueue_active(&rl
->wait
[WRITE
]))
2109 wake_up(&rl
->wait
[WRITE
]);
2114 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2118 * Timer running if the active_queue is currently idling inside its time slice
2120 static void cfq_idle_slice_timer(unsigned long data
)
2122 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2123 struct cfq_queue
*cfqq
;
2124 unsigned long flags
;
2126 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2128 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
2129 unsigned long now
= jiffies
;
2134 if (time_after(now
, cfqq
->slice_end
))
2138 * only expire and reinvoke request handler, if there are
2139 * other queues with pending requests
2141 if (!cfqd
->busy_queues
)
2145 * not expired and it has a request pending, let it dispatch
2147 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2148 cfq_mark_cfqq_must_dispatch(cfqq
);
2153 cfq_slice_expired(cfqd
, 0);
2155 cfq_schedule_dispatch(cfqd
);
2157 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2161 * Timer running if an idle class queue is waiting for service
2163 static void cfq_idle_class_timer(unsigned long data
)
2165 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2166 unsigned long flags
, end
;
2168 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2171 * race with a non-idle queue, reset timer
2173 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
2174 if (!time_after_eq(jiffies
, end
))
2175 mod_timer(&cfqd
->idle_class_timer
, end
);
2177 cfq_schedule_dispatch(cfqd
);
2179 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2182 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2184 del_timer_sync(&cfqd
->idle_slice_timer
);
2185 del_timer_sync(&cfqd
->idle_class_timer
);
2186 blk_sync_queue(cfqd
->queue
);
2189 static void cfq_exit_queue(elevator_t
*e
)
2191 struct cfq_data
*cfqd
= e
->elevator_data
;
2192 request_queue_t
*q
= cfqd
->queue
;
2194 cfq_shutdown_timer_wq(cfqd
);
2196 spin_lock(&cfq_exit_lock
);
2197 spin_lock_irq(q
->queue_lock
);
2199 if (cfqd
->active_queue
)
2200 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2202 while (!list_empty(&cfqd
->cic_list
)) {
2203 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2204 struct cfq_io_context
,
2206 if (cic
->cfqq
[ASYNC
]) {
2207 cfq_put_queue(cic
->cfqq
[ASYNC
]);
2208 cic
->cfqq
[ASYNC
] = NULL
;
2210 if (cic
->cfqq
[SYNC
]) {
2211 cfq_put_queue(cic
->cfqq
[SYNC
]);
2212 cic
->cfqq
[SYNC
] = NULL
;
2215 list_del_init(&cic
->queue_list
);
2218 spin_unlock_irq(q
->queue_lock
);
2219 spin_unlock(&cfq_exit_lock
);
2221 cfq_shutdown_timer_wq(cfqd
);
2223 mempool_destroy(cfqd
->crq_pool
);
2224 kfree(cfqd
->crq_hash
);
2225 kfree(cfqd
->cfq_hash
);
2229 static void *cfq_init_queue(request_queue_t
*q
, elevator_t
*e
)
2231 struct cfq_data
*cfqd
;
2234 cfqd
= kmalloc(sizeof(*cfqd
), GFP_KERNEL
);
2238 memset(cfqd
, 0, sizeof(*cfqd
));
2240 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2241 INIT_LIST_HEAD(&cfqd
->rr_list
[i
]);
2243 INIT_LIST_HEAD(&cfqd
->busy_rr
);
2244 INIT_LIST_HEAD(&cfqd
->cur_rr
);
2245 INIT_LIST_HEAD(&cfqd
->idle_rr
);
2246 INIT_LIST_HEAD(&cfqd
->empty_list
);
2247 INIT_LIST_HEAD(&cfqd
->cic_list
);
2249 cfqd
->crq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_MHASH_ENTRIES
, GFP_KERNEL
);
2250 if (!cfqd
->crq_hash
)
2253 cfqd
->cfq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_QHASH_ENTRIES
, GFP_KERNEL
);
2254 if (!cfqd
->cfq_hash
)
2257 cfqd
->crq_pool
= mempool_create_slab_pool(BLKDEV_MIN_RQ
, crq_pool
);
2258 if (!cfqd
->crq_pool
)
2261 for (i
= 0; i
< CFQ_MHASH_ENTRIES
; i
++)
2262 INIT_HLIST_HEAD(&cfqd
->crq_hash
[i
]);
2263 for (i
= 0; i
< CFQ_QHASH_ENTRIES
; i
++)
2264 INIT_HLIST_HEAD(&cfqd
->cfq_hash
[i
]);
2268 init_timer(&cfqd
->idle_slice_timer
);
2269 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2270 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2272 init_timer(&cfqd
->idle_class_timer
);
2273 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
2274 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
2276 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
, q
);
2278 cfqd
->cfq_queued
= cfq_queued
;
2279 cfqd
->cfq_quantum
= cfq_quantum
;
2280 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2281 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2282 cfqd
->cfq_back_max
= cfq_back_max
;
2283 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2284 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2285 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2286 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2287 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2291 kfree(cfqd
->cfq_hash
);
2293 kfree(cfqd
->crq_hash
);
2299 static void cfq_slab_kill(void)
2302 kmem_cache_destroy(crq_pool
);
2304 kmem_cache_destroy(cfq_pool
);
2306 kmem_cache_destroy(cfq_ioc_pool
);
2309 static int __init
cfq_slab_setup(void)
2311 crq_pool
= kmem_cache_create("crq_pool", sizeof(struct cfq_rq
), 0, 0,
2316 cfq_pool
= kmem_cache_create("cfq_pool", sizeof(struct cfq_queue
), 0, 0,
2321 cfq_ioc_pool
= kmem_cache_create("cfq_ioc_pool",
2322 sizeof(struct cfq_io_context
), 0, 0, NULL
, NULL
);
2333 * sysfs parts below -->
2337 cfq_var_show(unsigned int var
, char *page
)
2339 return sprintf(page
, "%d\n", var
);
2343 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2345 char *p
= (char *) page
;
2347 *var
= simple_strtoul(p
, &p
, 10);
2351 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2352 static ssize_t __FUNC(elevator_t *e, char *page) \
2354 struct cfq_data *cfqd = e->elevator_data; \
2355 unsigned int __data = __VAR; \
2357 __data = jiffies_to_msecs(__data); \
2358 return cfq_var_show(__data, (page)); \
2360 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2361 SHOW_FUNCTION(cfq_queued_show
, cfqd
->cfq_queued
, 0);
2362 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2363 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2364 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2365 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2366 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2367 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2368 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2369 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2370 #undef SHOW_FUNCTION
2372 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2373 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2375 struct cfq_data *cfqd = e->elevator_data; \
2376 unsigned int __data; \
2377 int ret = cfq_var_store(&__data, (page), count); \
2378 if (__data < (MIN)) \
2380 else if (__data > (MAX)) \
2383 *(__PTR) = msecs_to_jiffies(__data); \
2385 *(__PTR) = __data; \
2388 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2389 STORE_FUNCTION(cfq_queued_store
, &cfqd
->cfq_queued
, 1, UINT_MAX
, 0);
2390 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2391 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2392 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2393 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2394 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2395 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2396 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2397 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2398 #undef STORE_FUNCTION
2400 #define CFQ_ATTR(name) \
2401 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2403 static struct elv_fs_entry cfq_attrs
[] = {
2406 CFQ_ATTR(fifo_expire_sync
),
2407 CFQ_ATTR(fifo_expire_async
),
2408 CFQ_ATTR(back_seek_max
),
2409 CFQ_ATTR(back_seek_penalty
),
2410 CFQ_ATTR(slice_sync
),
2411 CFQ_ATTR(slice_async
),
2412 CFQ_ATTR(slice_async_rq
),
2413 CFQ_ATTR(slice_idle
),
2417 static struct elevator_type iosched_cfq
= {
2419 .elevator_merge_fn
= cfq_merge
,
2420 .elevator_merged_fn
= cfq_merged_request
,
2421 .elevator_merge_req_fn
= cfq_merged_requests
,
2422 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2423 .elevator_add_req_fn
= cfq_insert_request
,
2424 .elevator_activate_req_fn
= cfq_activate_request
,
2425 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2426 .elevator_queue_empty_fn
= cfq_queue_empty
,
2427 .elevator_completed_req_fn
= cfq_completed_request
,
2428 .elevator_former_req_fn
= cfq_former_request
,
2429 .elevator_latter_req_fn
= cfq_latter_request
,
2430 .elevator_set_req_fn
= cfq_set_request
,
2431 .elevator_put_req_fn
= cfq_put_request
,
2432 .elevator_may_queue_fn
= cfq_may_queue
,
2433 .elevator_init_fn
= cfq_init_queue
,
2434 .elevator_exit_fn
= cfq_exit_queue
,
2437 .elevator_attrs
= cfq_attrs
,
2438 .elevator_name
= "cfq",
2439 .elevator_owner
= THIS_MODULE
,
2442 static int __init
cfq_init(void)
2447 * could be 0 on HZ < 1000 setups
2449 if (!cfq_slice_async
)
2450 cfq_slice_async
= 1;
2451 if (!cfq_slice_idle
)
2454 if (cfq_slab_setup())
2457 ret
= elv_register(&iosched_cfq
);
2464 static void __exit
cfq_exit(void)
2466 DECLARE_COMPLETION(all_gone
);
2467 elv_unregister(&iosched_cfq
);
2468 ioc_gone
= &all_gone
;
2469 /* ioc_gone's update must be visible before reading ioc_count */
2471 if (atomic_read(&ioc_count
))
2472 wait_for_completion(ioc_gone
);
2477 module_init(cfq_init
);
2478 module_exit(cfq_exit
);
2480 MODULE_AUTHOR("Jens Axboe");
2481 MODULE_LICENSE("GPL");
2482 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");