[PARISC] Allow overriding personality with sys_personality
[linux-2.6.22.y-op.git] / mm / filemap.c
blobec469235985d6e2cd89d39bf8bd40405f133e142
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 #include <asm/mman.h>
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->mmap_sem
79 * ->i_mutex (msync)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
125 void remove_from_page_cache(struct page *page)
127 struct address_space *mapping = page->mapping;
129 BUG_ON(!PageLocked(page));
131 write_lock_irq(&mapping->tree_lock);
132 __remove_from_page_cache(page);
133 write_unlock_irq(&mapping->tree_lock);
136 static int sync_page(void *word)
138 struct address_space *mapping;
139 struct page *page;
141 page = container_of((unsigned long *)word, struct page, flags);
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
162 * -- wli
164 smp_mb();
165 mapping = page_mapping(page);
166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 mapping->a_ops->sync_page(page);
168 io_schedule();
169 return 0;
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 loff_t end, int sync_mode)
190 int ret;
191 struct writeback_control wbc = {
192 .sync_mode = sync_mode,
193 .nr_to_write = mapping->nrpages * 2,
194 .range_start = start,
195 .range_end = end,
198 if (!mapping_cap_writeback_dirty(mapping))
199 return 0;
201 ret = do_writepages(mapping, &wbc);
202 return ret;
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 int sync_mode)
208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
211 int filemap_fdatawrite(struct address_space *mapping)
213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 EXPORT_SYMBOL(filemap_fdatawrite);
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end)
220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
230 int filemap_flush(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 EXPORT_SYMBOL(filemap_flush);
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 pgoff_t start, pgoff_t end)
248 struct pagevec pvec;
249 int nr_pages;
250 int ret = 0;
251 pgoff_t index;
253 if (end < start)
254 return 0;
256 pagevec_init(&pvec, 0);
257 index = start;
258 while ((index <= end) &&
259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 PAGECACHE_TAG_WRITEBACK,
261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 unsigned i;
264 for (i = 0; i < nr_pages; i++) {
265 struct page *page = pvec.pages[i];
267 /* until radix tree lookup accepts end_index */
268 if (page->index > end)
269 continue;
271 wait_on_page_writeback(page);
272 if (PageError(page))
273 ret = -EIO;
275 pagevec_release(&pvec);
276 cond_resched();
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 ret = -ENOSPC;
282 if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 ret = -EIO;
285 return ret;
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 loff_t pos, loff_t count)
305 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 int ret;
309 if (!mapping_cap_writeback_dirty(mapping) || !count)
310 return 0;
311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 if (ret == 0) {
313 mutex_lock(&inode->i_mutex);
314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 mutex_unlock(&inode->i_mutex);
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
321 EXPORT_SYMBOL(sync_page_range);
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
330 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 loff_t pos, loff_t count)
337 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 int ret;
341 if (!mapping_cap_writeback_dirty(mapping) || !count)
342 return 0;
343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 if (ret == 0)
345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 if (ret == 0)
347 ret = wait_on_page_writeback_range(mapping, start, end);
348 return ret;
350 EXPORT_SYMBOL(sync_page_range_nolock);
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
359 int filemap_fdatawait(struct address_space *mapping)
361 loff_t i_size = i_size_read(mapping->host);
363 if (i_size == 0)
364 return 0;
366 return wait_on_page_writeback_range(mapping, 0,
367 (i_size - 1) >> PAGE_CACHE_SHIFT);
369 EXPORT_SYMBOL(filemap_fdatawait);
371 int filemap_write_and_wait(struct address_space *mapping)
373 int err = 0;
375 if (mapping->nrpages) {
376 err = filemap_fdatawrite(mapping);
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
383 if (err != -EIO) {
384 int err2 = filemap_fdatawait(mapping);
385 if (!err)
386 err = err2;
389 return err;
391 EXPORT_SYMBOL(filemap_write_and_wait);
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
399 * Write out and wait upon file offsets lstart->lend, inclusive.
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 loff_t lstart, loff_t lend)
407 int err = 0;
409 if (mapping->nrpages) {
410 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 WB_SYNC_ALL);
412 /* See comment of filemap_write_and_wait() */
413 if (err != -EIO) {
414 int err2 = wait_on_page_writeback_range(mapping,
415 lstart >> PAGE_CACHE_SHIFT,
416 lend >> PAGE_CACHE_SHIFT);
417 if (!err)
418 err = err2;
421 return err;
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page: page to add
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
435 * This function does not add the page to the LRU. The caller must do that.
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442 if (error == 0) {
443 write_lock_irq(&mapping->tree_lock);
444 error = radix_tree_insert(&mapping->page_tree, offset, page);
445 if (!error) {
446 page_cache_get(page);
447 SetPageLocked(page);
448 page->mapping = mapping;
449 page->index = offset;
450 mapping->nrpages++;
451 __inc_zone_page_state(page, NR_FILE_PAGES);
453 write_unlock_irq(&mapping->tree_lock);
454 radix_tree_preload_end();
456 return error;
458 EXPORT_SYMBOL(add_to_page_cache);
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 pgoff_t offset, gfp_t gfp_mask)
463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0)
465 lru_cache_add(page);
466 return ret;
469 #ifdef CONFIG_NUMA
470 struct page *page_cache_alloc(struct address_space *x)
472 if (cpuset_do_page_mem_spread()) {
473 int n = cpuset_mem_spread_node();
474 return alloc_pages_node(n, mapping_gfp_mask(x), 0);
476 return alloc_pages(mapping_gfp_mask(x), 0);
478 EXPORT_SYMBOL(page_cache_alloc);
480 struct page *page_cache_alloc_cold(struct address_space *x)
482 if (cpuset_do_page_mem_spread()) {
483 int n = cpuset_mem_spread_node();
484 return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
486 return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
488 EXPORT_SYMBOL(page_cache_alloc_cold);
489 #endif
491 static int __sleep_on_page_lock(void *word)
493 io_schedule();
494 return 0;
498 * In order to wait for pages to become available there must be
499 * waitqueues associated with pages. By using a hash table of
500 * waitqueues where the bucket discipline is to maintain all
501 * waiters on the same queue and wake all when any of the pages
502 * become available, and for the woken contexts to check to be
503 * sure the appropriate page became available, this saves space
504 * at a cost of "thundering herd" phenomena during rare hash
505 * collisions.
507 static wait_queue_head_t *page_waitqueue(struct page *page)
509 const struct zone *zone = page_zone(page);
511 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
514 static inline void wake_up_page(struct page *page, int bit)
516 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
519 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
521 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
523 if (test_bit(bit_nr, &page->flags))
524 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
525 TASK_UNINTERRUPTIBLE);
527 EXPORT_SYMBOL(wait_on_page_bit);
530 * unlock_page - unlock a locked page
531 * @page: the page
533 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
534 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
535 * mechananism between PageLocked pages and PageWriteback pages is shared.
536 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
538 * The first mb is necessary to safely close the critical section opened by the
539 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
540 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
541 * parallel wait_on_page_locked()).
543 void fastcall unlock_page(struct page *page)
545 smp_mb__before_clear_bit();
546 if (!TestClearPageLocked(page))
547 BUG();
548 smp_mb__after_clear_bit();
549 wake_up_page(page, PG_locked);
551 EXPORT_SYMBOL(unlock_page);
554 * end_page_writeback - end writeback against a page
555 * @page: the page
557 void end_page_writeback(struct page *page)
559 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
560 if (!test_clear_page_writeback(page))
561 BUG();
563 smp_mb__after_clear_bit();
564 wake_up_page(page, PG_writeback);
566 EXPORT_SYMBOL(end_page_writeback);
569 * __lock_page - get a lock on the page, assuming we need to sleep to get it
570 * @page: the page to lock
572 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
573 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
574 * chances are that on the second loop, the block layer's plug list is empty,
575 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
577 void fastcall __lock_page(struct page *page)
579 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
581 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
582 TASK_UNINTERRUPTIBLE);
584 EXPORT_SYMBOL(__lock_page);
587 * Variant of lock_page that does not require the caller to hold a reference
588 * on the page's mapping.
590 void fastcall __lock_page_nosync(struct page *page)
592 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
593 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
594 TASK_UNINTERRUPTIBLE);
598 * find_get_page - find and get a page reference
599 * @mapping: the address_space to search
600 * @offset: the page index
602 * Is there a pagecache struct page at the given (mapping, offset) tuple?
603 * If yes, increment its refcount and return it; if no, return NULL.
605 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
607 struct page *page;
609 read_lock_irq(&mapping->tree_lock);
610 page = radix_tree_lookup(&mapping->page_tree, offset);
611 if (page)
612 page_cache_get(page);
613 read_unlock_irq(&mapping->tree_lock);
614 return page;
616 EXPORT_SYMBOL(find_get_page);
619 * find_trylock_page - find and lock a page
620 * @mapping: the address_space to search
621 * @offset: the page index
623 * Same as find_get_page(), but trylock it instead of incrementing the count.
625 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
627 struct page *page;
629 read_lock_irq(&mapping->tree_lock);
630 page = radix_tree_lookup(&mapping->page_tree, offset);
631 if (page && TestSetPageLocked(page))
632 page = NULL;
633 read_unlock_irq(&mapping->tree_lock);
634 return page;
636 EXPORT_SYMBOL(find_trylock_page);
639 * find_lock_page - locate, pin and lock a pagecache page
640 * @mapping: the address_space to search
641 * @offset: the page index
643 * Locates the desired pagecache page, locks it, increments its reference
644 * count and returns its address.
646 * Returns zero if the page was not present. find_lock_page() may sleep.
648 struct page *find_lock_page(struct address_space *mapping,
649 unsigned long offset)
651 struct page *page;
653 read_lock_irq(&mapping->tree_lock);
654 repeat:
655 page = radix_tree_lookup(&mapping->page_tree, offset);
656 if (page) {
657 page_cache_get(page);
658 if (TestSetPageLocked(page)) {
659 read_unlock_irq(&mapping->tree_lock);
660 __lock_page(page);
661 read_lock_irq(&mapping->tree_lock);
663 /* Has the page been truncated while we slept? */
664 if (unlikely(page->mapping != mapping ||
665 page->index != offset)) {
666 unlock_page(page);
667 page_cache_release(page);
668 goto repeat;
672 read_unlock_irq(&mapping->tree_lock);
673 return page;
675 EXPORT_SYMBOL(find_lock_page);
678 * find_or_create_page - locate or add a pagecache page
679 * @mapping: the page's address_space
680 * @index: the page's index into the mapping
681 * @gfp_mask: page allocation mode
683 * Locates a page in the pagecache. If the page is not present, a new page
684 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
685 * LRU list. The returned page is locked and has its reference count
686 * incremented.
688 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
689 * allocation!
691 * find_or_create_page() returns the desired page's address, or zero on
692 * memory exhaustion.
694 struct page *find_or_create_page(struct address_space *mapping,
695 unsigned long index, gfp_t gfp_mask)
697 struct page *page, *cached_page = NULL;
698 int err;
699 repeat:
700 page = find_lock_page(mapping, index);
701 if (!page) {
702 if (!cached_page) {
703 cached_page = alloc_page(gfp_mask);
704 if (!cached_page)
705 return NULL;
707 err = add_to_page_cache_lru(cached_page, mapping,
708 index, gfp_mask);
709 if (!err) {
710 page = cached_page;
711 cached_page = NULL;
712 } else if (err == -EEXIST)
713 goto repeat;
715 if (cached_page)
716 page_cache_release(cached_page);
717 return page;
719 EXPORT_SYMBOL(find_or_create_page);
722 * find_get_pages - gang pagecache lookup
723 * @mapping: The address_space to search
724 * @start: The starting page index
725 * @nr_pages: The maximum number of pages
726 * @pages: Where the resulting pages are placed
728 * find_get_pages() will search for and return a group of up to
729 * @nr_pages pages in the mapping. The pages are placed at @pages.
730 * find_get_pages() takes a reference against the returned pages.
732 * The search returns a group of mapping-contiguous pages with ascending
733 * indexes. There may be holes in the indices due to not-present pages.
735 * find_get_pages() returns the number of pages which were found.
737 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
738 unsigned int nr_pages, struct page **pages)
740 unsigned int i;
741 unsigned int ret;
743 read_lock_irq(&mapping->tree_lock);
744 ret = radix_tree_gang_lookup(&mapping->page_tree,
745 (void **)pages, start, nr_pages);
746 for (i = 0; i < ret; i++)
747 page_cache_get(pages[i]);
748 read_unlock_irq(&mapping->tree_lock);
749 return ret;
753 * find_get_pages_contig - gang contiguous pagecache lookup
754 * @mapping: The address_space to search
755 * @index: The starting page index
756 * @nr_pages: The maximum number of pages
757 * @pages: Where the resulting pages are placed
759 * find_get_pages_contig() works exactly like find_get_pages(), except
760 * that the returned number of pages are guaranteed to be contiguous.
762 * find_get_pages_contig() returns the number of pages which were found.
764 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
765 unsigned int nr_pages, struct page **pages)
767 unsigned int i;
768 unsigned int ret;
770 read_lock_irq(&mapping->tree_lock);
771 ret = radix_tree_gang_lookup(&mapping->page_tree,
772 (void **)pages, index, nr_pages);
773 for (i = 0; i < ret; i++) {
774 if (pages[i]->mapping == NULL || pages[i]->index != index)
775 break;
777 page_cache_get(pages[i]);
778 index++;
780 read_unlock_irq(&mapping->tree_lock);
781 return i;
785 * find_get_pages_tag - find and return pages that match @tag
786 * @mapping: the address_space to search
787 * @index: the starting page index
788 * @tag: the tag index
789 * @nr_pages: the maximum number of pages
790 * @pages: where the resulting pages are placed
792 * Like find_get_pages, except we only return pages which are tagged with
793 * @tag. We update @index to index the next page for the traversal.
795 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
796 int tag, unsigned int nr_pages, struct page **pages)
798 unsigned int i;
799 unsigned int ret;
801 read_lock_irq(&mapping->tree_lock);
802 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
803 (void **)pages, *index, nr_pages, tag);
804 for (i = 0; i < ret; i++)
805 page_cache_get(pages[i]);
806 if (ret)
807 *index = pages[ret - 1]->index + 1;
808 read_unlock_irq(&mapping->tree_lock);
809 return ret;
813 * grab_cache_page_nowait - returns locked page at given index in given cache
814 * @mapping: target address_space
815 * @index: the page index
817 * Same as grab_cache_page, but do not wait if the page is unavailable.
818 * This is intended for speculative data generators, where the data can
819 * be regenerated if the page couldn't be grabbed. This routine should
820 * be safe to call while holding the lock for another page.
822 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
823 * and deadlock against the caller's locked page.
825 struct page *
826 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
828 struct page *page = find_get_page(mapping, index);
829 gfp_t gfp_mask;
831 if (page) {
832 if (!TestSetPageLocked(page))
833 return page;
834 page_cache_release(page);
835 return NULL;
837 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
838 page = alloc_pages(gfp_mask, 0);
839 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
840 page_cache_release(page);
841 page = NULL;
843 return page;
845 EXPORT_SYMBOL(grab_cache_page_nowait);
848 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
849 * a _large_ part of the i/o request. Imagine the worst scenario:
851 * ---R__________________________________________B__________
852 * ^ reading here ^ bad block(assume 4k)
854 * read(R) => miss => readahead(R...B) => media error => frustrating retries
855 * => failing the whole request => read(R) => read(R+1) =>
856 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
857 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
858 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
860 * It is going insane. Fix it by quickly scaling down the readahead size.
862 static void shrink_readahead_size_eio(struct file *filp,
863 struct file_ra_state *ra)
865 if (!ra->ra_pages)
866 return;
868 ra->ra_pages /= 4;
872 * do_generic_mapping_read - generic file read routine
873 * @mapping: address_space to be read
874 * @_ra: file's readahead state
875 * @filp: the file to read
876 * @ppos: current file position
877 * @desc: read_descriptor
878 * @actor: read method
880 * This is a generic file read routine, and uses the
881 * mapping->a_ops->readpage() function for the actual low-level stuff.
883 * This is really ugly. But the goto's actually try to clarify some
884 * of the logic when it comes to error handling etc.
886 * Note the struct file* is only passed for the use of readpage.
887 * It may be NULL.
889 void do_generic_mapping_read(struct address_space *mapping,
890 struct file_ra_state *_ra,
891 struct file *filp,
892 loff_t *ppos,
893 read_descriptor_t *desc,
894 read_actor_t actor)
896 struct inode *inode = mapping->host;
897 unsigned long index;
898 unsigned long end_index;
899 unsigned long offset;
900 unsigned long last_index;
901 unsigned long next_index;
902 unsigned long prev_index;
903 loff_t isize;
904 struct page *cached_page;
905 int error;
906 struct file_ra_state ra = *_ra;
908 cached_page = NULL;
909 index = *ppos >> PAGE_CACHE_SHIFT;
910 next_index = index;
911 prev_index = ra.prev_page;
912 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
913 offset = *ppos & ~PAGE_CACHE_MASK;
915 isize = i_size_read(inode);
916 if (!isize)
917 goto out;
919 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
920 for (;;) {
921 struct page *page;
922 unsigned long nr, ret;
924 /* nr is the maximum number of bytes to copy from this page */
925 nr = PAGE_CACHE_SIZE;
926 if (index >= end_index) {
927 if (index > end_index)
928 goto out;
929 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
930 if (nr <= offset) {
931 goto out;
934 nr = nr - offset;
936 cond_resched();
937 if (index == next_index)
938 next_index = page_cache_readahead(mapping, &ra, filp,
939 index, last_index - index);
941 find_page:
942 page = find_get_page(mapping, index);
943 if (unlikely(page == NULL)) {
944 handle_ra_miss(mapping, &ra, index);
945 goto no_cached_page;
947 if (!PageUptodate(page))
948 goto page_not_up_to_date;
949 page_ok:
951 /* If users can be writing to this page using arbitrary
952 * virtual addresses, take care about potential aliasing
953 * before reading the page on the kernel side.
955 if (mapping_writably_mapped(mapping))
956 flush_dcache_page(page);
959 * When (part of) the same page is read multiple times
960 * in succession, only mark it as accessed the first time.
962 if (prev_index != index)
963 mark_page_accessed(page);
964 prev_index = index;
967 * Ok, we have the page, and it's up-to-date, so
968 * now we can copy it to user space...
970 * The actor routine returns how many bytes were actually used..
971 * NOTE! This may not be the same as how much of a user buffer
972 * we filled up (we may be padding etc), so we can only update
973 * "pos" here (the actor routine has to update the user buffer
974 * pointers and the remaining count).
976 ret = actor(desc, page, offset, nr);
977 offset += ret;
978 index += offset >> PAGE_CACHE_SHIFT;
979 offset &= ~PAGE_CACHE_MASK;
981 page_cache_release(page);
982 if (ret == nr && desc->count)
983 continue;
984 goto out;
986 page_not_up_to_date:
987 /* Get exclusive access to the page ... */
988 lock_page(page);
990 /* Did it get truncated before we got the lock? */
991 if (!page->mapping) {
992 unlock_page(page);
993 page_cache_release(page);
994 continue;
997 /* Did somebody else fill it already? */
998 if (PageUptodate(page)) {
999 unlock_page(page);
1000 goto page_ok;
1003 readpage:
1004 /* Start the actual read. The read will unlock the page. */
1005 error = mapping->a_ops->readpage(filp, page);
1007 if (unlikely(error)) {
1008 if (error == AOP_TRUNCATED_PAGE) {
1009 page_cache_release(page);
1010 goto find_page;
1012 goto readpage_error;
1015 if (!PageUptodate(page)) {
1016 lock_page(page);
1017 if (!PageUptodate(page)) {
1018 if (page->mapping == NULL) {
1020 * invalidate_inode_pages got it
1022 unlock_page(page);
1023 page_cache_release(page);
1024 goto find_page;
1026 unlock_page(page);
1027 error = -EIO;
1028 shrink_readahead_size_eio(filp, &ra);
1029 goto readpage_error;
1031 unlock_page(page);
1035 * i_size must be checked after we have done ->readpage.
1037 * Checking i_size after the readpage allows us to calculate
1038 * the correct value for "nr", which means the zero-filled
1039 * part of the page is not copied back to userspace (unless
1040 * another truncate extends the file - this is desired though).
1042 isize = i_size_read(inode);
1043 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1044 if (unlikely(!isize || index > end_index)) {
1045 page_cache_release(page);
1046 goto out;
1049 /* nr is the maximum number of bytes to copy from this page */
1050 nr = PAGE_CACHE_SIZE;
1051 if (index == end_index) {
1052 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1053 if (nr <= offset) {
1054 page_cache_release(page);
1055 goto out;
1058 nr = nr - offset;
1059 goto page_ok;
1061 readpage_error:
1062 /* UHHUH! A synchronous read error occurred. Report it */
1063 desc->error = error;
1064 page_cache_release(page);
1065 goto out;
1067 no_cached_page:
1069 * Ok, it wasn't cached, so we need to create a new
1070 * page..
1072 if (!cached_page) {
1073 cached_page = page_cache_alloc_cold(mapping);
1074 if (!cached_page) {
1075 desc->error = -ENOMEM;
1076 goto out;
1079 error = add_to_page_cache_lru(cached_page, mapping,
1080 index, GFP_KERNEL);
1081 if (error) {
1082 if (error == -EEXIST)
1083 goto find_page;
1084 desc->error = error;
1085 goto out;
1087 page = cached_page;
1088 cached_page = NULL;
1089 goto readpage;
1092 out:
1093 *_ra = ra;
1095 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1096 if (cached_page)
1097 page_cache_release(cached_page);
1098 if (filp)
1099 file_accessed(filp);
1101 EXPORT_SYMBOL(do_generic_mapping_read);
1103 int file_read_actor(read_descriptor_t *desc, struct page *page,
1104 unsigned long offset, unsigned long size)
1106 char *kaddr;
1107 unsigned long left, count = desc->count;
1109 if (size > count)
1110 size = count;
1113 * Faults on the destination of a read are common, so do it before
1114 * taking the kmap.
1116 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1117 kaddr = kmap_atomic(page, KM_USER0);
1118 left = __copy_to_user_inatomic(desc->arg.buf,
1119 kaddr + offset, size);
1120 kunmap_atomic(kaddr, KM_USER0);
1121 if (left == 0)
1122 goto success;
1125 /* Do it the slow way */
1126 kaddr = kmap(page);
1127 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1128 kunmap(page);
1130 if (left) {
1131 size -= left;
1132 desc->error = -EFAULT;
1134 success:
1135 desc->count = count - size;
1136 desc->written += size;
1137 desc->arg.buf += size;
1138 return size;
1142 * __generic_file_aio_read - generic filesystem read routine
1143 * @iocb: kernel I/O control block
1144 * @iov: io vector request
1145 * @nr_segs: number of segments in the iovec
1146 * @ppos: current file position
1148 * This is the "read()" routine for all filesystems
1149 * that can use the page cache directly.
1151 ssize_t
1152 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1153 unsigned long nr_segs, loff_t pos)
1155 struct file *filp = iocb->ki_filp;
1156 ssize_t retval;
1157 unsigned long seg;
1158 size_t count;
1159 loff_t *ppos = &iocb->ki_pos;
1161 count = 0;
1162 for (seg = 0; seg < nr_segs; seg++) {
1163 const struct iovec *iv = &iov[seg];
1166 * If any segment has a negative length, or the cumulative
1167 * length ever wraps negative then return -EINVAL.
1169 count += iv->iov_len;
1170 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1171 return -EINVAL;
1172 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1173 continue;
1174 if (seg == 0)
1175 return -EFAULT;
1176 nr_segs = seg;
1177 count -= iv->iov_len; /* This segment is no good */
1178 break;
1181 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1182 if (filp->f_flags & O_DIRECT) {
1183 loff_t size;
1184 struct address_space *mapping;
1185 struct inode *inode;
1187 mapping = filp->f_mapping;
1188 inode = mapping->host;
1189 retval = 0;
1190 if (!count)
1191 goto out; /* skip atime */
1192 size = i_size_read(inode);
1193 if (pos < size) {
1194 retval = generic_file_direct_IO(READ, iocb,
1195 iov, pos, nr_segs);
1196 if (retval > 0 && !is_sync_kiocb(iocb))
1197 retval = -EIOCBQUEUED;
1198 if (retval > 0)
1199 *ppos = pos + retval;
1201 file_accessed(filp);
1202 goto out;
1205 retval = 0;
1206 if (count) {
1207 for (seg = 0; seg < nr_segs; seg++) {
1208 read_descriptor_t desc;
1210 desc.written = 0;
1211 desc.arg.buf = iov[seg].iov_base;
1212 desc.count = iov[seg].iov_len;
1213 if (desc.count == 0)
1214 continue;
1215 desc.error = 0;
1216 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1217 retval += desc.written;
1218 if (desc.error) {
1219 retval = retval ?: desc.error;
1220 break;
1224 out:
1225 return retval;
1227 EXPORT_SYMBOL(generic_file_aio_read);
1229 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1231 ssize_t written;
1232 unsigned long count = desc->count;
1233 struct file *file = desc->arg.data;
1235 if (size > count)
1236 size = count;
1238 written = file->f_op->sendpage(file, page, offset,
1239 size, &file->f_pos, size<count);
1240 if (written < 0) {
1241 desc->error = written;
1242 written = 0;
1244 desc->count = count - written;
1245 desc->written += written;
1246 return written;
1249 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1250 size_t count, read_actor_t actor, void *target)
1252 read_descriptor_t desc;
1254 if (!count)
1255 return 0;
1257 desc.written = 0;
1258 desc.count = count;
1259 desc.arg.data = target;
1260 desc.error = 0;
1262 do_generic_file_read(in_file, ppos, &desc, actor);
1263 if (desc.written)
1264 return desc.written;
1265 return desc.error;
1267 EXPORT_SYMBOL(generic_file_sendfile);
1269 static ssize_t
1270 do_readahead(struct address_space *mapping, struct file *filp,
1271 unsigned long index, unsigned long nr)
1273 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1274 return -EINVAL;
1276 force_page_cache_readahead(mapping, filp, index,
1277 max_sane_readahead(nr));
1278 return 0;
1281 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1283 ssize_t ret;
1284 struct file *file;
1286 ret = -EBADF;
1287 file = fget(fd);
1288 if (file) {
1289 if (file->f_mode & FMODE_READ) {
1290 struct address_space *mapping = file->f_mapping;
1291 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1292 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1293 unsigned long len = end - start + 1;
1294 ret = do_readahead(mapping, file, start, len);
1296 fput(file);
1298 return ret;
1301 #ifdef CONFIG_MMU
1302 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1304 * page_cache_read - adds requested page to the page cache if not already there
1305 * @file: file to read
1306 * @offset: page index
1308 * This adds the requested page to the page cache if it isn't already there,
1309 * and schedules an I/O to read in its contents from disk.
1311 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1313 struct address_space *mapping = file->f_mapping;
1314 struct page *page;
1315 int ret;
1317 do {
1318 page = page_cache_alloc_cold(mapping);
1319 if (!page)
1320 return -ENOMEM;
1322 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1323 if (ret == 0)
1324 ret = mapping->a_ops->readpage(file, page);
1325 else if (ret == -EEXIST)
1326 ret = 0; /* losing race to add is OK */
1328 page_cache_release(page);
1330 } while (ret == AOP_TRUNCATED_PAGE);
1332 return ret;
1335 #define MMAP_LOTSAMISS (100)
1338 * filemap_nopage - read in file data for page fault handling
1339 * @area: the applicable vm_area
1340 * @address: target address to read in
1341 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1343 * filemap_nopage() is invoked via the vma operations vector for a
1344 * mapped memory region to read in file data during a page fault.
1346 * The goto's are kind of ugly, but this streamlines the normal case of having
1347 * it in the page cache, and handles the special cases reasonably without
1348 * having a lot of duplicated code.
1350 struct page *filemap_nopage(struct vm_area_struct *area,
1351 unsigned long address, int *type)
1353 int error;
1354 struct file *file = area->vm_file;
1355 struct address_space *mapping = file->f_mapping;
1356 struct file_ra_state *ra = &file->f_ra;
1357 struct inode *inode = mapping->host;
1358 struct page *page;
1359 unsigned long size, pgoff;
1360 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1362 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1364 retry_all:
1365 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1366 if (pgoff >= size)
1367 goto outside_data_content;
1369 /* If we don't want any read-ahead, don't bother */
1370 if (VM_RandomReadHint(area))
1371 goto no_cached_page;
1374 * The readahead code wants to be told about each and every page
1375 * so it can build and shrink its windows appropriately
1377 * For sequential accesses, we use the generic readahead logic.
1379 if (VM_SequentialReadHint(area))
1380 page_cache_readahead(mapping, ra, file, pgoff, 1);
1383 * Do we have something in the page cache already?
1385 retry_find:
1386 page = find_get_page(mapping, pgoff);
1387 if (!page) {
1388 unsigned long ra_pages;
1390 if (VM_SequentialReadHint(area)) {
1391 handle_ra_miss(mapping, ra, pgoff);
1392 goto no_cached_page;
1394 ra->mmap_miss++;
1397 * Do we miss much more than hit in this file? If so,
1398 * stop bothering with read-ahead. It will only hurt.
1400 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1401 goto no_cached_page;
1404 * To keep the pgmajfault counter straight, we need to
1405 * check did_readaround, as this is an inner loop.
1407 if (!did_readaround) {
1408 majmin = VM_FAULT_MAJOR;
1409 count_vm_event(PGMAJFAULT);
1411 did_readaround = 1;
1412 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1413 if (ra_pages) {
1414 pgoff_t start = 0;
1416 if (pgoff > ra_pages / 2)
1417 start = pgoff - ra_pages / 2;
1418 do_page_cache_readahead(mapping, file, start, ra_pages);
1420 page = find_get_page(mapping, pgoff);
1421 if (!page)
1422 goto no_cached_page;
1425 if (!did_readaround)
1426 ra->mmap_hit++;
1429 * Ok, found a page in the page cache, now we need to check
1430 * that it's up-to-date.
1432 if (!PageUptodate(page))
1433 goto page_not_uptodate;
1435 success:
1437 * Found the page and have a reference on it.
1439 mark_page_accessed(page);
1440 if (type)
1441 *type = majmin;
1442 return page;
1444 outside_data_content:
1446 * An external ptracer can access pages that normally aren't
1447 * accessible..
1449 if (area->vm_mm == current->mm)
1450 return NOPAGE_SIGBUS;
1451 /* Fall through to the non-read-ahead case */
1452 no_cached_page:
1454 * We're only likely to ever get here if MADV_RANDOM is in
1455 * effect.
1457 error = page_cache_read(file, pgoff);
1458 grab_swap_token();
1461 * The page we want has now been added to the page cache.
1462 * In the unlikely event that someone removed it in the
1463 * meantime, we'll just come back here and read it again.
1465 if (error >= 0)
1466 goto retry_find;
1469 * An error return from page_cache_read can result if the
1470 * system is low on memory, or a problem occurs while trying
1471 * to schedule I/O.
1473 if (error == -ENOMEM)
1474 return NOPAGE_OOM;
1475 return NOPAGE_SIGBUS;
1477 page_not_uptodate:
1478 if (!did_readaround) {
1479 majmin = VM_FAULT_MAJOR;
1480 count_vm_event(PGMAJFAULT);
1482 lock_page(page);
1484 /* Did it get unhashed while we waited for it? */
1485 if (!page->mapping) {
1486 unlock_page(page);
1487 page_cache_release(page);
1488 goto retry_all;
1491 /* Did somebody else get it up-to-date? */
1492 if (PageUptodate(page)) {
1493 unlock_page(page);
1494 goto success;
1497 error = mapping->a_ops->readpage(file, page);
1498 if (!error) {
1499 wait_on_page_locked(page);
1500 if (PageUptodate(page))
1501 goto success;
1502 } else if (error == AOP_TRUNCATED_PAGE) {
1503 page_cache_release(page);
1504 goto retry_find;
1508 * Umm, take care of errors if the page isn't up-to-date.
1509 * Try to re-read it _once_. We do this synchronously,
1510 * because there really aren't any performance issues here
1511 * and we need to check for errors.
1513 lock_page(page);
1515 /* Somebody truncated the page on us? */
1516 if (!page->mapping) {
1517 unlock_page(page);
1518 page_cache_release(page);
1519 goto retry_all;
1522 /* Somebody else successfully read it in? */
1523 if (PageUptodate(page)) {
1524 unlock_page(page);
1525 goto success;
1527 ClearPageError(page);
1528 error = mapping->a_ops->readpage(file, page);
1529 if (!error) {
1530 wait_on_page_locked(page);
1531 if (PageUptodate(page))
1532 goto success;
1533 } else if (error == AOP_TRUNCATED_PAGE) {
1534 page_cache_release(page);
1535 goto retry_find;
1539 * Things didn't work out. Return zero to tell the
1540 * mm layer so, possibly freeing the page cache page first.
1542 shrink_readahead_size_eio(file, ra);
1543 page_cache_release(page);
1544 return NOPAGE_SIGBUS;
1546 EXPORT_SYMBOL(filemap_nopage);
1548 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1549 int nonblock)
1551 struct address_space *mapping = file->f_mapping;
1552 struct page *page;
1553 int error;
1556 * Do we have something in the page cache already?
1558 retry_find:
1559 page = find_get_page(mapping, pgoff);
1560 if (!page) {
1561 if (nonblock)
1562 return NULL;
1563 goto no_cached_page;
1567 * Ok, found a page in the page cache, now we need to check
1568 * that it's up-to-date.
1570 if (!PageUptodate(page)) {
1571 if (nonblock) {
1572 page_cache_release(page);
1573 return NULL;
1575 goto page_not_uptodate;
1578 success:
1580 * Found the page and have a reference on it.
1582 mark_page_accessed(page);
1583 return page;
1585 no_cached_page:
1586 error = page_cache_read(file, pgoff);
1589 * The page we want has now been added to the page cache.
1590 * In the unlikely event that someone removed it in the
1591 * meantime, we'll just come back here and read it again.
1593 if (error >= 0)
1594 goto retry_find;
1597 * An error return from page_cache_read can result if the
1598 * system is low on memory, or a problem occurs while trying
1599 * to schedule I/O.
1601 return NULL;
1603 page_not_uptodate:
1604 lock_page(page);
1606 /* Did it get truncated while we waited for it? */
1607 if (!page->mapping) {
1608 unlock_page(page);
1609 goto err;
1612 /* Did somebody else get it up-to-date? */
1613 if (PageUptodate(page)) {
1614 unlock_page(page);
1615 goto success;
1618 error = mapping->a_ops->readpage(file, page);
1619 if (!error) {
1620 wait_on_page_locked(page);
1621 if (PageUptodate(page))
1622 goto success;
1623 } else if (error == AOP_TRUNCATED_PAGE) {
1624 page_cache_release(page);
1625 goto retry_find;
1629 * Umm, take care of errors if the page isn't up-to-date.
1630 * Try to re-read it _once_. We do this synchronously,
1631 * because there really aren't any performance issues here
1632 * and we need to check for errors.
1634 lock_page(page);
1636 /* Somebody truncated the page on us? */
1637 if (!page->mapping) {
1638 unlock_page(page);
1639 goto err;
1641 /* Somebody else successfully read it in? */
1642 if (PageUptodate(page)) {
1643 unlock_page(page);
1644 goto success;
1647 ClearPageError(page);
1648 error = mapping->a_ops->readpage(file, page);
1649 if (!error) {
1650 wait_on_page_locked(page);
1651 if (PageUptodate(page))
1652 goto success;
1653 } else if (error == AOP_TRUNCATED_PAGE) {
1654 page_cache_release(page);
1655 goto retry_find;
1659 * Things didn't work out. Return zero to tell the
1660 * mm layer so, possibly freeing the page cache page first.
1662 err:
1663 page_cache_release(page);
1665 return NULL;
1668 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1669 unsigned long len, pgprot_t prot, unsigned long pgoff,
1670 int nonblock)
1672 struct file *file = vma->vm_file;
1673 struct address_space *mapping = file->f_mapping;
1674 struct inode *inode = mapping->host;
1675 unsigned long size;
1676 struct mm_struct *mm = vma->vm_mm;
1677 struct page *page;
1678 int err;
1680 if (!nonblock)
1681 force_page_cache_readahead(mapping, vma->vm_file,
1682 pgoff, len >> PAGE_CACHE_SHIFT);
1684 repeat:
1685 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1686 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1687 return -EINVAL;
1689 page = filemap_getpage(file, pgoff, nonblock);
1691 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1692 * done in shmem_populate calling shmem_getpage */
1693 if (!page && !nonblock)
1694 return -ENOMEM;
1696 if (page) {
1697 err = install_page(mm, vma, addr, page, prot);
1698 if (err) {
1699 page_cache_release(page);
1700 return err;
1702 } else if (vma->vm_flags & VM_NONLINEAR) {
1703 /* No page was found just because we can't read it in now (being
1704 * here implies nonblock != 0), but the page may exist, so set
1705 * the PTE to fault it in later. */
1706 err = install_file_pte(mm, vma, addr, pgoff, prot);
1707 if (err)
1708 return err;
1711 len -= PAGE_SIZE;
1712 addr += PAGE_SIZE;
1713 pgoff++;
1714 if (len)
1715 goto repeat;
1717 return 0;
1719 EXPORT_SYMBOL(filemap_populate);
1721 struct vm_operations_struct generic_file_vm_ops = {
1722 .nopage = filemap_nopage,
1723 .populate = filemap_populate,
1726 /* This is used for a general mmap of a disk file */
1728 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1730 struct address_space *mapping = file->f_mapping;
1732 if (!mapping->a_ops->readpage)
1733 return -ENOEXEC;
1734 file_accessed(file);
1735 vma->vm_ops = &generic_file_vm_ops;
1736 return 0;
1740 * This is for filesystems which do not implement ->writepage.
1742 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1744 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1745 return -EINVAL;
1746 return generic_file_mmap(file, vma);
1748 #else
1749 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1751 return -ENOSYS;
1753 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1755 return -ENOSYS;
1757 #endif /* CONFIG_MMU */
1759 EXPORT_SYMBOL(generic_file_mmap);
1760 EXPORT_SYMBOL(generic_file_readonly_mmap);
1762 static inline struct page *__read_cache_page(struct address_space *mapping,
1763 unsigned long index,
1764 int (*filler)(void *,struct page*),
1765 void *data)
1767 struct page *page, *cached_page = NULL;
1768 int err;
1769 repeat:
1770 page = find_get_page(mapping, index);
1771 if (!page) {
1772 if (!cached_page) {
1773 cached_page = page_cache_alloc_cold(mapping);
1774 if (!cached_page)
1775 return ERR_PTR(-ENOMEM);
1777 err = add_to_page_cache_lru(cached_page, mapping,
1778 index, GFP_KERNEL);
1779 if (err == -EEXIST)
1780 goto repeat;
1781 if (err < 0) {
1782 /* Presumably ENOMEM for radix tree node */
1783 page_cache_release(cached_page);
1784 return ERR_PTR(err);
1786 page = cached_page;
1787 cached_page = NULL;
1788 err = filler(data, page);
1789 if (err < 0) {
1790 page_cache_release(page);
1791 page = ERR_PTR(err);
1794 if (cached_page)
1795 page_cache_release(cached_page);
1796 return page;
1800 * read_cache_page - read into page cache, fill it if needed
1801 * @mapping: the page's address_space
1802 * @index: the page index
1803 * @filler: function to perform the read
1804 * @data: destination for read data
1806 * Read into the page cache. If a page already exists,
1807 * and PageUptodate() is not set, try to fill the page.
1809 struct page *read_cache_page(struct address_space *mapping,
1810 unsigned long index,
1811 int (*filler)(void *,struct page*),
1812 void *data)
1814 struct page *page;
1815 int err;
1817 retry:
1818 page = __read_cache_page(mapping, index, filler, data);
1819 if (IS_ERR(page))
1820 goto out;
1821 mark_page_accessed(page);
1822 if (PageUptodate(page))
1823 goto out;
1825 lock_page(page);
1826 if (!page->mapping) {
1827 unlock_page(page);
1828 page_cache_release(page);
1829 goto retry;
1831 if (PageUptodate(page)) {
1832 unlock_page(page);
1833 goto out;
1835 err = filler(data, page);
1836 if (err < 0) {
1837 page_cache_release(page);
1838 page = ERR_PTR(err);
1840 out:
1841 return page;
1843 EXPORT_SYMBOL(read_cache_page);
1846 * If the page was newly created, increment its refcount and add it to the
1847 * caller's lru-buffering pagevec. This function is specifically for
1848 * generic_file_write().
1850 static inline struct page *
1851 __grab_cache_page(struct address_space *mapping, unsigned long index,
1852 struct page **cached_page, struct pagevec *lru_pvec)
1854 int err;
1855 struct page *page;
1856 repeat:
1857 page = find_lock_page(mapping, index);
1858 if (!page) {
1859 if (!*cached_page) {
1860 *cached_page = page_cache_alloc(mapping);
1861 if (!*cached_page)
1862 return NULL;
1864 err = add_to_page_cache(*cached_page, mapping,
1865 index, GFP_KERNEL);
1866 if (err == -EEXIST)
1867 goto repeat;
1868 if (err == 0) {
1869 page = *cached_page;
1870 page_cache_get(page);
1871 if (!pagevec_add(lru_pvec, page))
1872 __pagevec_lru_add(lru_pvec);
1873 *cached_page = NULL;
1876 return page;
1880 * The logic we want is
1882 * if suid or (sgid and xgrp)
1883 * remove privs
1885 int remove_suid(struct dentry *dentry)
1887 mode_t mode = dentry->d_inode->i_mode;
1888 int kill = 0;
1889 int result = 0;
1891 /* suid always must be killed */
1892 if (unlikely(mode & S_ISUID))
1893 kill = ATTR_KILL_SUID;
1896 * sgid without any exec bits is just a mandatory locking mark; leave
1897 * it alone. If some exec bits are set, it's a real sgid; kill it.
1899 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1900 kill |= ATTR_KILL_SGID;
1902 if (unlikely(kill && !capable(CAP_FSETID))) {
1903 struct iattr newattrs;
1905 newattrs.ia_valid = ATTR_FORCE | kill;
1906 result = notify_change(dentry, &newattrs);
1908 return result;
1910 EXPORT_SYMBOL(remove_suid);
1912 size_t
1913 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1914 const struct iovec *iov, size_t base, size_t bytes)
1916 size_t copied = 0, left = 0;
1918 while (bytes) {
1919 char __user *buf = iov->iov_base + base;
1920 int copy = min(bytes, iov->iov_len - base);
1922 base = 0;
1923 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1924 copied += copy;
1925 bytes -= copy;
1926 vaddr += copy;
1927 iov++;
1929 if (unlikely(left))
1930 break;
1932 return copied - left;
1936 * Performs necessary checks before doing a write
1938 * Can adjust writing position or amount of bytes to write.
1939 * Returns appropriate error code that caller should return or
1940 * zero in case that write should be allowed.
1942 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1944 struct inode *inode = file->f_mapping->host;
1945 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1947 if (unlikely(*pos < 0))
1948 return -EINVAL;
1950 if (!isblk) {
1951 /* FIXME: this is for backwards compatibility with 2.4 */
1952 if (file->f_flags & O_APPEND)
1953 *pos = i_size_read(inode);
1955 if (limit != RLIM_INFINITY) {
1956 if (*pos >= limit) {
1957 send_sig(SIGXFSZ, current, 0);
1958 return -EFBIG;
1960 if (*count > limit - (typeof(limit))*pos) {
1961 *count = limit - (typeof(limit))*pos;
1967 * LFS rule
1969 if (unlikely(*pos + *count > MAX_NON_LFS &&
1970 !(file->f_flags & O_LARGEFILE))) {
1971 if (*pos >= MAX_NON_LFS) {
1972 send_sig(SIGXFSZ, current, 0);
1973 return -EFBIG;
1975 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1976 *count = MAX_NON_LFS - (unsigned long)*pos;
1981 * Are we about to exceed the fs block limit ?
1983 * If we have written data it becomes a short write. If we have
1984 * exceeded without writing data we send a signal and return EFBIG.
1985 * Linus frestrict idea will clean these up nicely..
1987 if (likely(!isblk)) {
1988 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1989 if (*count || *pos > inode->i_sb->s_maxbytes) {
1990 send_sig(SIGXFSZ, current, 0);
1991 return -EFBIG;
1993 /* zero-length writes at ->s_maxbytes are OK */
1996 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1997 *count = inode->i_sb->s_maxbytes - *pos;
1998 } else {
1999 #ifdef CONFIG_BLOCK
2000 loff_t isize;
2001 if (bdev_read_only(I_BDEV(inode)))
2002 return -EPERM;
2003 isize = i_size_read(inode);
2004 if (*pos >= isize) {
2005 if (*count || *pos > isize)
2006 return -ENOSPC;
2009 if (*pos + *count > isize)
2010 *count = isize - *pos;
2011 #else
2012 return -EPERM;
2013 #endif
2015 return 0;
2017 EXPORT_SYMBOL(generic_write_checks);
2019 ssize_t
2020 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2021 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2022 size_t count, size_t ocount)
2024 struct file *file = iocb->ki_filp;
2025 struct address_space *mapping = file->f_mapping;
2026 struct inode *inode = mapping->host;
2027 ssize_t written;
2029 if (count != ocount)
2030 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2032 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2033 if (written > 0) {
2034 loff_t end = pos + written;
2035 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2036 i_size_write(inode, end);
2037 mark_inode_dirty(inode);
2039 *ppos = end;
2043 * Sync the fs metadata but not the minor inode changes and
2044 * of course not the data as we did direct DMA for the IO.
2045 * i_mutex is held, which protects generic_osync_inode() from
2046 * livelocking.
2048 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2049 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2050 if (err < 0)
2051 written = err;
2053 if (written == count && !is_sync_kiocb(iocb))
2054 written = -EIOCBQUEUED;
2055 return written;
2057 EXPORT_SYMBOL(generic_file_direct_write);
2059 ssize_t
2060 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2061 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2062 size_t count, ssize_t written)
2064 struct file *file = iocb->ki_filp;
2065 struct address_space * mapping = file->f_mapping;
2066 const struct address_space_operations *a_ops = mapping->a_ops;
2067 struct inode *inode = mapping->host;
2068 long status = 0;
2069 struct page *page;
2070 struct page *cached_page = NULL;
2071 size_t bytes;
2072 struct pagevec lru_pvec;
2073 const struct iovec *cur_iov = iov; /* current iovec */
2074 size_t iov_base = 0; /* offset in the current iovec */
2075 char __user *buf;
2077 pagevec_init(&lru_pvec, 0);
2080 * handle partial DIO write. Adjust cur_iov if needed.
2082 if (likely(nr_segs == 1))
2083 buf = iov->iov_base + written;
2084 else {
2085 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2086 buf = cur_iov->iov_base + iov_base;
2089 do {
2090 unsigned long index;
2091 unsigned long offset;
2092 size_t copied;
2094 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2095 index = pos >> PAGE_CACHE_SHIFT;
2096 bytes = PAGE_CACHE_SIZE - offset;
2098 /* Limit the size of the copy to the caller's write size */
2099 bytes = min(bytes, count);
2102 * Limit the size of the copy to that of the current segment,
2103 * because fault_in_pages_readable() doesn't know how to walk
2104 * segments.
2106 bytes = min(bytes, cur_iov->iov_len - iov_base);
2109 * Bring in the user page that we will copy from _first_.
2110 * Otherwise there's a nasty deadlock on copying from the
2111 * same page as we're writing to, without it being marked
2112 * up-to-date.
2114 fault_in_pages_readable(buf, bytes);
2116 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2117 if (!page) {
2118 status = -ENOMEM;
2119 break;
2122 if (unlikely(bytes == 0)) {
2123 status = 0;
2124 copied = 0;
2125 goto zero_length_segment;
2128 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2129 if (unlikely(status)) {
2130 loff_t isize = i_size_read(inode);
2132 if (status != AOP_TRUNCATED_PAGE)
2133 unlock_page(page);
2134 page_cache_release(page);
2135 if (status == AOP_TRUNCATED_PAGE)
2136 continue;
2138 * prepare_write() may have instantiated a few blocks
2139 * outside i_size. Trim these off again.
2141 if (pos + bytes > isize)
2142 vmtruncate(inode, isize);
2143 break;
2145 if (likely(nr_segs == 1))
2146 copied = filemap_copy_from_user(page, offset,
2147 buf, bytes);
2148 else
2149 copied = filemap_copy_from_user_iovec(page, offset,
2150 cur_iov, iov_base, bytes);
2151 flush_dcache_page(page);
2152 status = a_ops->commit_write(file, page, offset, offset+bytes);
2153 if (status == AOP_TRUNCATED_PAGE) {
2154 page_cache_release(page);
2155 continue;
2157 zero_length_segment:
2158 if (likely(copied >= 0)) {
2159 if (!status)
2160 status = copied;
2162 if (status >= 0) {
2163 written += status;
2164 count -= status;
2165 pos += status;
2166 buf += status;
2167 if (unlikely(nr_segs > 1)) {
2168 filemap_set_next_iovec(&cur_iov,
2169 &iov_base, status);
2170 if (count)
2171 buf = cur_iov->iov_base +
2172 iov_base;
2173 } else {
2174 iov_base += status;
2178 if (unlikely(copied != bytes))
2179 if (status >= 0)
2180 status = -EFAULT;
2181 unlock_page(page);
2182 mark_page_accessed(page);
2183 page_cache_release(page);
2184 if (status < 0)
2185 break;
2186 balance_dirty_pages_ratelimited(mapping);
2187 cond_resched();
2188 } while (count);
2189 *ppos = pos;
2191 if (cached_page)
2192 page_cache_release(cached_page);
2195 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2197 if (likely(status >= 0)) {
2198 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2199 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2200 status = generic_osync_inode(inode, mapping,
2201 OSYNC_METADATA|OSYNC_DATA);
2206 * If we get here for O_DIRECT writes then we must have fallen through
2207 * to buffered writes (block instantiation inside i_size). So we sync
2208 * the file data here, to try to honour O_DIRECT expectations.
2210 if (unlikely(file->f_flags & O_DIRECT) && written)
2211 status = filemap_write_and_wait(mapping);
2213 pagevec_lru_add(&lru_pvec);
2214 return written ? written : status;
2216 EXPORT_SYMBOL(generic_file_buffered_write);
2218 static ssize_t
2219 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2220 unsigned long nr_segs, loff_t *ppos)
2222 struct file *file = iocb->ki_filp;
2223 const struct address_space * mapping = file->f_mapping;
2224 size_t ocount; /* original count */
2225 size_t count; /* after file limit checks */
2226 struct inode *inode = mapping->host;
2227 unsigned long seg;
2228 loff_t pos;
2229 ssize_t written;
2230 ssize_t err;
2232 ocount = 0;
2233 for (seg = 0; seg < nr_segs; seg++) {
2234 const struct iovec *iv = &iov[seg];
2237 * If any segment has a negative length, or the cumulative
2238 * length ever wraps negative then return -EINVAL.
2240 ocount += iv->iov_len;
2241 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2242 return -EINVAL;
2243 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2244 continue;
2245 if (seg == 0)
2246 return -EFAULT;
2247 nr_segs = seg;
2248 ocount -= iv->iov_len; /* This segment is no good */
2249 break;
2252 count = ocount;
2253 pos = *ppos;
2255 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2257 /* We can write back this queue in page reclaim */
2258 current->backing_dev_info = mapping->backing_dev_info;
2259 written = 0;
2261 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2262 if (err)
2263 goto out;
2265 if (count == 0)
2266 goto out;
2268 err = remove_suid(file->f_dentry);
2269 if (err)
2270 goto out;
2272 file_update_time(file);
2274 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2275 if (unlikely(file->f_flags & O_DIRECT)) {
2276 written = generic_file_direct_write(iocb, iov,
2277 &nr_segs, pos, ppos, count, ocount);
2278 if (written < 0 || written == count)
2279 goto out;
2281 * direct-io write to a hole: fall through to buffered I/O
2282 * for completing the rest of the request.
2284 pos += written;
2285 count -= written;
2288 written = generic_file_buffered_write(iocb, iov, nr_segs,
2289 pos, ppos, count, written);
2290 out:
2291 current->backing_dev_info = NULL;
2292 return written ? written : err;
2295 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2296 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2298 struct file *file = iocb->ki_filp;
2299 struct address_space *mapping = file->f_mapping;
2300 struct inode *inode = mapping->host;
2301 ssize_t ret;
2303 BUG_ON(iocb->ki_pos != pos);
2305 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2306 &iocb->ki_pos);
2308 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2309 ssize_t err;
2311 err = sync_page_range_nolock(inode, mapping, pos, ret);
2312 if (err < 0)
2313 ret = err;
2315 return ret;
2317 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2319 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2320 unsigned long nr_segs, loff_t pos)
2322 struct file *file = iocb->ki_filp;
2323 struct address_space *mapping = file->f_mapping;
2324 struct inode *inode = mapping->host;
2325 ssize_t ret;
2327 BUG_ON(iocb->ki_pos != pos);
2329 mutex_lock(&inode->i_mutex);
2330 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2331 &iocb->ki_pos);
2332 mutex_unlock(&inode->i_mutex);
2334 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2335 ssize_t err;
2337 err = sync_page_range(inode, mapping, pos, ret);
2338 if (err < 0)
2339 ret = err;
2341 return ret;
2343 EXPORT_SYMBOL(generic_file_aio_write);
2346 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2347 * went wrong during pagecache shootdown.
2349 static ssize_t
2350 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2351 loff_t offset, unsigned long nr_segs)
2353 struct file *file = iocb->ki_filp;
2354 struct address_space *mapping = file->f_mapping;
2355 ssize_t retval;
2356 size_t write_len = 0;
2359 * If it's a write, unmap all mmappings of the file up-front. This
2360 * will cause any pte dirty bits to be propagated into the pageframes
2361 * for the subsequent filemap_write_and_wait().
2363 if (rw == WRITE) {
2364 write_len = iov_length(iov, nr_segs);
2365 if (mapping_mapped(mapping))
2366 unmap_mapping_range(mapping, offset, write_len, 0);
2369 retval = filemap_write_and_wait(mapping);
2370 if (retval == 0) {
2371 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2372 offset, nr_segs);
2373 if (rw == WRITE && mapping->nrpages) {
2374 pgoff_t end = (offset + write_len - 1)
2375 >> PAGE_CACHE_SHIFT;
2376 int err = invalidate_inode_pages2_range(mapping,
2377 offset >> PAGE_CACHE_SHIFT, end);
2378 if (err)
2379 retval = err;
2382 return retval;
2386 * try_to_release_page() - release old fs-specific metadata on a page
2388 * @page: the page which the kernel is trying to free
2389 * @gfp_mask: memory allocation flags (and I/O mode)
2391 * The address_space is to try to release any data against the page
2392 * (presumably at page->private). If the release was successful, return `1'.
2393 * Otherwise return zero.
2395 * The @gfp_mask argument specifies whether I/O may be performed to release
2396 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2398 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2400 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2402 struct address_space * const mapping = page->mapping;
2404 BUG_ON(!PageLocked(page));
2405 if (PageWriteback(page))
2406 return 0;
2408 if (mapping && mapping->a_ops->releasepage)
2409 return mapping->a_ops->releasepage(page, gfp_mask);
2410 return try_to_free_buffers(page);
2413 EXPORT_SYMBOL(try_to_release_page);