1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 2006 David S. Miller (davem@davemloft.net)
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
36 #include <linux/bitops.h>
38 #include <asm/system.h>
41 #include <asm/byteorder.h>
44 #include <asm/idprom.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
49 #include <asm/auxio.h>
51 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
57 #include <linux/pci.h>
62 #define DRV_NAME "sunhme"
63 #define DRV_VERSION "3.00"
64 #define DRV_RELDATE "June 23, 2006"
65 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
67 static char version
[] =
68 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
70 MODULE_VERSION(DRV_VERSION
);
71 MODULE_AUTHOR(DRV_AUTHOR
);
72 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
73 MODULE_LICENSE("GPL");
75 static int macaddr
[6];
77 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
78 module_param_array(macaddr
, int, NULL
, 0);
79 MODULE_PARM_DESC(macaddr
, "Happy Meal MAC address to set");
82 static struct quattro
*qfe_sbus_list
;
86 static struct quattro
*qfe_pci_list
;
96 struct hme_tx_logent
{
100 #define TXLOG_ACTION_IRQ 0x01
101 #define TXLOG_ACTION_TXMIT 0x02
102 #define TXLOG_ACTION_TBUSY 0x04
103 #define TXLOG_ACTION_NBUFS 0x08
106 #define TX_LOG_LEN 128
107 static struct hme_tx_logent tx_log
[TX_LOG_LEN
];
108 static int txlog_cur_entry
;
109 static __inline__
void tx_add_log(struct happy_meal
*hp
, unsigned int a
, unsigned int s
)
111 struct hme_tx_logent
*tlp
;
115 tlp
= &tx_log
[txlog_cur_entry
];
116 tlp
->tstamp
= (unsigned int)jiffies
;
117 tlp
->tx_new
= hp
->tx_new
;
118 tlp
->tx_old
= hp
->tx_old
;
121 txlog_cur_entry
= (txlog_cur_entry
+ 1) & (TX_LOG_LEN
- 1);
122 restore_flags(flags
);
124 static __inline__
void tx_dump_log(void)
128 this = txlog_cur_entry
;
129 for (i
= 0; i
< TX_LOG_LEN
; i
++) {
130 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i
,
132 tx_log
[this].tx_new
, tx_log
[this].tx_old
,
133 tx_log
[this].action
, tx_log
[this].status
);
134 this = (this + 1) & (TX_LOG_LEN
- 1);
137 static __inline__
void tx_dump_ring(struct happy_meal
*hp
)
139 struct hmeal_init_block
*hb
= hp
->happy_block
;
140 struct happy_meal_txd
*tp
= &hb
->happy_meal_txd
[0];
143 for (i
= 0; i
< TX_RING_SIZE
; i
+=4) {
144 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146 le32_to_cpu(tp
[i
].tx_flags
), le32_to_cpu(tp
[i
].tx_addr
),
147 le32_to_cpu(tp
[i
+ 1].tx_flags
), le32_to_cpu(tp
[i
+ 1].tx_addr
),
148 le32_to_cpu(tp
[i
+ 2].tx_flags
), le32_to_cpu(tp
[i
+ 2].tx_addr
),
149 le32_to_cpu(tp
[i
+ 3].tx_flags
), le32_to_cpu(tp
[i
+ 3].tx_addr
));
153 #define tx_add_log(hp, a, s) do { } while(0)
154 #define tx_dump_log() do { } while(0)
155 #define tx_dump_ring(hp) do { } while(0)
159 #define HMD(x) printk x
164 /* #define AUTO_SWITCH_DEBUG */
166 #ifdef AUTO_SWITCH_DEBUG
167 #define ASD(x) printk x
172 #define DEFAULT_IPG0 16 /* For lance-mode only */
173 #define DEFAULT_IPG1 8 /* For all modes */
174 #define DEFAULT_IPG2 4 /* For all modes */
175 #define DEFAULT_JAMSIZE 4 /* Toe jam */
177 /* NOTE: In the descriptor writes one _must_ write the address
178 * member _first_. The card must not be allowed to see
179 * the updated descriptor flags until the address is
180 * correct. I've added a write memory barrier between
181 * the two stores so that I can sleep well at night... -DaveM
184 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
185 static void sbus_hme_write32(void __iomem
*reg
, u32 val
)
187 sbus_writel(val
, reg
);
190 static u32
sbus_hme_read32(void __iomem
*reg
)
192 return sbus_readl(reg
);
195 static void sbus_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
199 rxd
->rx_flags
= flags
;
202 static void sbus_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
206 txd
->tx_flags
= flags
;
209 static u32
sbus_hme_read_desc32(u32
*p
)
214 static void pci_hme_write32(void __iomem
*reg
, u32 val
)
219 static u32
pci_hme_read32(void __iomem
*reg
)
224 static void pci_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
226 rxd
->rx_addr
= cpu_to_le32(addr
);
228 rxd
->rx_flags
= cpu_to_le32(flags
);
231 static void pci_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
233 txd
->tx_addr
= cpu_to_le32(addr
);
235 txd
->tx_flags
= cpu_to_le32(flags
);
238 static u32
pci_hme_read_desc32(u32
*p
)
240 return cpu_to_le32p(p
);
243 #define hme_write32(__hp, __reg, __val) \
244 ((__hp)->write32((__reg), (__val)))
245 #define hme_read32(__hp, __reg) \
246 ((__hp)->read32(__reg))
247 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
248 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
249 #define hme_write_txd(__hp, __txd, __flags, __addr) \
250 ((__hp)->write_txd((__txd), (__flags), (__addr)))
251 #define hme_read_desc32(__hp, __p) \
252 ((__hp)->read_desc32(__p))
253 #define hme_dma_map(__hp, __ptr, __size, __dir) \
254 ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
255 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
256 ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
257 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
263 /* SBUS only compilation */
264 #define hme_write32(__hp, __reg, __val) \
265 sbus_writel((__val), (__reg))
266 #define hme_read32(__hp, __reg) \
268 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
269 do { (__rxd)->rx_addr = (__addr); \
271 (__rxd)->rx_flags = (__flags); \
273 #define hme_write_txd(__hp, __txd, __flags, __addr) \
274 do { (__txd)->tx_addr = (__addr); \
276 (__txd)->tx_flags = (__flags); \
278 #define hme_read_desc32(__hp, __p) (*(__p))
279 #define hme_dma_map(__hp, __ptr, __size, __dir) \
280 sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
281 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
282 sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
283 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
284 sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
286 sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
288 /* PCI only compilation */
289 #define hme_write32(__hp, __reg, __val) \
290 writel((__val), (__reg))
291 #define hme_read32(__hp, __reg) \
293 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
294 do { (__rxd)->rx_addr = cpu_to_le32(__addr); \
296 (__rxd)->rx_flags = cpu_to_le32(__flags); \
298 #define hme_write_txd(__hp, __txd, __flags, __addr) \
299 do { (__txd)->tx_addr = cpu_to_le32(__addr); \
301 (__txd)->tx_flags = cpu_to_le32(__flags); \
303 #define hme_read_desc32(__hp, __p) cpu_to_le32p(__p)
304 #define hme_dma_map(__hp, __ptr, __size, __dir) \
305 pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
306 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
307 pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
308 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
309 pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
310 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
311 pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
316 #ifdef SBUS_DMA_BIDIRECTIONAL
317 # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL
319 # define DMA_BIDIRECTIONAL 0
322 #ifdef SBUS_DMA_FROMDEVICE
323 # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE
325 # define DMA_TODEVICE 1
328 #ifdef SBUS_DMA_TODEVICE
329 # define DMA_TODEVICE SBUS_DMA_TODEVICE
331 # define DMA_FROMDEVICE 2
335 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
336 static void BB_PUT_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int bit
)
338 hme_write32(hp
, tregs
+ TCVR_BBDATA
, bit
);
339 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
340 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
344 static u32
BB_GET_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
348 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
349 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
350 ret
= hme_read32(hp
, tregs
+ TCVR_CFG
);
352 ret
&= TCV_CFG_MDIO0
;
354 ret
&= TCV_CFG_MDIO1
;
360 static u32
BB_GET_BIT2(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
364 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
366 retval
= hme_read32(hp
, tregs
+ TCVR_CFG
);
368 retval
&= TCV_CFG_MDIO0
;
370 retval
&= TCV_CFG_MDIO1
;
371 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
376 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
378 static int happy_meal_bb_read(struct happy_meal
*hp
,
379 void __iomem
*tregs
, int reg
)
385 ASD(("happy_meal_bb_read: reg=%d ", reg
));
387 /* Enable the MIF BitBang outputs. */
388 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
390 /* Force BitBang into the idle state. */
391 for (i
= 0; i
< 32; i
++)
392 BB_PUT_BIT(hp
, tregs
, 1);
394 /* Give it the read sequence. */
395 BB_PUT_BIT(hp
, tregs
, 0);
396 BB_PUT_BIT(hp
, tregs
, 1);
397 BB_PUT_BIT(hp
, tregs
, 1);
398 BB_PUT_BIT(hp
, tregs
, 0);
400 /* Give it the PHY address. */
401 tmp
= hp
->paddr
& 0xff;
402 for (i
= 4; i
>= 0; i
--)
403 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
405 /* Tell it what register we want to read. */
407 for (i
= 4; i
>= 0; i
--)
408 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
410 /* Close down the MIF BitBang outputs. */
411 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
413 /* Now read in the value. */
414 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
415 for (i
= 15; i
>= 0; i
--)
416 retval
|= BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
417 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
418 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
419 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
420 ASD(("value=%x\n", retval
));
424 static void happy_meal_bb_write(struct happy_meal
*hp
,
425 void __iomem
*tregs
, int reg
,
426 unsigned short value
)
431 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg
, value
));
433 /* Enable the MIF BitBang outputs. */
434 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
436 /* Force BitBang into the idle state. */
437 for (i
= 0; i
< 32; i
++)
438 BB_PUT_BIT(hp
, tregs
, 1);
440 /* Give it write sequence. */
441 BB_PUT_BIT(hp
, tregs
, 0);
442 BB_PUT_BIT(hp
, tregs
, 1);
443 BB_PUT_BIT(hp
, tregs
, 0);
444 BB_PUT_BIT(hp
, tregs
, 1);
446 /* Give it the PHY address. */
447 tmp
= (hp
->paddr
& 0xff);
448 for (i
= 4; i
>= 0; i
--)
449 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
451 /* Tell it what register we will be writing. */
453 for (i
= 4; i
>= 0; i
--)
454 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
456 /* Tell it to become ready for the bits. */
457 BB_PUT_BIT(hp
, tregs
, 1);
458 BB_PUT_BIT(hp
, tregs
, 0);
460 for (i
= 15; i
>= 0; i
--)
461 BB_PUT_BIT(hp
, tregs
, ((value
>> i
) & 1));
463 /* Close down the MIF BitBang outputs. */
464 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
467 #define TCVR_READ_TRIES 16
469 static int happy_meal_tcvr_read(struct happy_meal
*hp
,
470 void __iomem
*tregs
, int reg
)
472 int tries
= TCVR_READ_TRIES
;
475 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg
));
476 if (hp
->tcvr_type
== none
) {
477 ASD(("no transceiver, value=TCVR_FAILURE\n"));
481 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
482 ASD(("doing bit bang\n"));
483 return happy_meal_bb_read(hp
, tregs
, reg
);
486 hme_write32(hp
, tregs
+ TCVR_FRAME
,
487 (FRAME_READ
| (hp
->paddr
<< 23) | ((reg
& 0xff) << 18)));
488 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
491 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF read bolixed\n");
494 retval
= hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0xffff;
495 ASD(("value=%04x\n", retval
));
499 #define TCVR_WRITE_TRIES 16
501 static void happy_meal_tcvr_write(struct happy_meal
*hp
,
502 void __iomem
*tregs
, int reg
,
503 unsigned short value
)
505 int tries
= TCVR_WRITE_TRIES
;
507 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg
, value
));
509 /* Welcome to Sun Microsystems, can I take your order please? */
510 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
511 happy_meal_bb_write(hp
, tregs
, reg
, value
);
515 /* Would you like fries with that? */
516 hme_write32(hp
, tregs
+ TCVR_FRAME
,
517 (FRAME_WRITE
| (hp
->paddr
<< 23) |
518 ((reg
& 0xff) << 18) | (value
& 0xffff)));
519 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
524 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF write bolixed\n");
526 /* Fifty-two cents is your change, have a nice day. */
529 /* Auto negotiation. The scheme is very simple. We have a timer routine
530 * that keeps watching the auto negotiation process as it progresses.
531 * The DP83840 is first told to start doing it's thing, we set up the time
532 * and place the timer state machine in it's initial state.
534 * Here the timer peeks at the DP83840 status registers at each click to see
535 * if the auto negotiation has completed, we assume here that the DP83840 PHY
536 * will time out at some point and just tell us what (didn't) happen. For
537 * complete coverage we only allow so many of the ticks at this level to run,
538 * when this has expired we print a warning message and try another strategy.
539 * This "other" strategy is to force the interface into various speed/duplex
540 * configurations and we stop when we see a link-up condition before the
541 * maximum number of "peek" ticks have occurred.
543 * Once a valid link status has been detected we configure the BigMAC and
544 * the rest of the Happy Meal to speak the most efficient protocol we could
545 * get a clean link for. The priority for link configurations, highest first
547 * 100 Base-T Full Duplex
548 * 100 Base-T Half Duplex
549 * 10 Base-T Full Duplex
550 * 10 Base-T Half Duplex
552 * We start a new timer now, after a successful auto negotiation status has
553 * been detected. This timer just waits for the link-up bit to get set in
554 * the BMCR of the DP83840. When this occurs we print a kernel log message
555 * describing the link type in use and the fact that it is up.
557 * If a fatal error of some sort is signalled and detected in the interrupt
558 * service routine, and the chip is reset, or the link is ifconfig'd down
559 * and then back up, this entire process repeats itself all over again.
561 static int try_next_permutation(struct happy_meal
*hp
, void __iomem
*tregs
)
563 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
565 /* Downgrade from full to half duplex. Only possible
568 if (hp
->sw_bmcr
& BMCR_FULLDPLX
) {
569 hp
->sw_bmcr
&= ~(BMCR_FULLDPLX
);
570 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
574 /* Downgrade from 100 to 10. */
575 if (hp
->sw_bmcr
& BMCR_SPEED100
) {
576 hp
->sw_bmcr
&= ~(BMCR_SPEED100
);
577 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
581 /* We've tried everything. */
585 static void display_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
587 printk(KERN_INFO
"%s: Link is up using ", hp
->dev
->name
);
588 if (hp
->tcvr_type
== external
)
592 printk("transceiver at ");
593 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
594 if (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) {
595 if (hp
->sw_lpa
& LPA_100FULL
)
596 printk("100Mb/s, Full Duplex.\n");
598 printk("100Mb/s, Half Duplex.\n");
600 if (hp
->sw_lpa
& LPA_10FULL
)
601 printk("10Mb/s, Full Duplex.\n");
603 printk("10Mb/s, Half Duplex.\n");
607 static void display_forced_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
609 printk(KERN_INFO
"%s: Link has been forced up using ", hp
->dev
->name
);
610 if (hp
->tcvr_type
== external
)
614 printk("transceiver at ");
615 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
616 if (hp
->sw_bmcr
& BMCR_SPEED100
)
620 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
621 printk("Full Duplex.\n");
623 printk("Half Duplex.\n");
626 static int set_happy_link_modes(struct happy_meal
*hp
, void __iomem
*tregs
)
630 /* All we care about is making sure the bigmac tx_cfg has a
631 * proper duplex setting.
633 if (hp
->timer_state
== arbwait
) {
634 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
635 if (!(hp
->sw_lpa
& (LPA_10HALF
| LPA_10FULL
| LPA_100HALF
| LPA_100FULL
)))
637 if (hp
->sw_lpa
& LPA_100FULL
)
639 else if (hp
->sw_lpa
& LPA_100HALF
)
641 else if (hp
->sw_lpa
& LPA_10FULL
)
646 /* Forcing a link mode. */
647 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
648 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
654 /* Before changing other bits in the tx_cfg register, and in
655 * general any of other the TX config registers too, you
658 * 2) Poll with reads until that bit reads back as zero
659 * 3) Make TX configuration changes
660 * 4) Set Enable once more
662 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
663 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
664 ~(BIGMAC_TXCFG_ENABLE
));
665 while (hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) & BIGMAC_TXCFG_ENABLE
)
668 hp
->happy_flags
|= HFLAG_FULL
;
669 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
670 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
671 BIGMAC_TXCFG_FULLDPLX
);
673 hp
->happy_flags
&= ~(HFLAG_FULL
);
674 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
675 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
676 ~(BIGMAC_TXCFG_FULLDPLX
));
678 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
679 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
680 BIGMAC_TXCFG_ENABLE
);
686 static int happy_meal_init(struct happy_meal
*hp
);
688 static int is_lucent_phy(struct happy_meal
*hp
)
690 void __iomem
*tregs
= hp
->tcvregs
;
691 unsigned short mr2
, mr3
;
694 mr2
= happy_meal_tcvr_read(hp
, tregs
, 2);
695 mr3
= happy_meal_tcvr_read(hp
, tregs
, 3);
696 if ((mr2
& 0xffff) == 0x0180 &&
697 ((mr3
& 0xffff) >> 10) == 0x1d)
703 static void happy_meal_timer(unsigned long data
)
705 struct happy_meal
*hp
= (struct happy_meal
*) data
;
706 void __iomem
*tregs
= hp
->tcvregs
;
707 int restart_timer
= 0;
709 spin_lock_irq(&hp
->happy_lock
);
712 switch(hp
->timer_state
) {
714 /* Only allow for 5 ticks, thats 10 seconds and much too
715 * long to wait for arbitration to complete.
717 if (hp
->timer_ticks
>= 10) {
718 /* Enter force mode. */
720 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
721 printk(KERN_NOTICE
"%s: Auto-Negotiation unsuccessful, trying force link mode\n",
723 hp
->sw_bmcr
= BMCR_SPEED100
;
724 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
726 if (!is_lucent_phy(hp
)) {
727 /* OK, seems we need do disable the transceiver for the first
728 * tick to make sure we get an accurate link state at the
731 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
732 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
733 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
, hp
->sw_csconfig
);
735 hp
->timer_state
= ltrywait
;
739 /* Anything interesting happen? */
740 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
741 if (hp
->sw_bmsr
& BMSR_ANEGCOMPLETE
) {
744 /* Just what we've been waiting for... */
745 ret
= set_happy_link_modes(hp
, tregs
);
747 /* Ooops, something bad happened, go to force
750 * XXX Broken hubs which don't support 802.3u
751 * XXX auto-negotiation make this happen as well.
756 /* Success, at least so far, advance our state engine. */
757 hp
->timer_state
= lupwait
;
766 /* Auto negotiation was successful and we are awaiting a
767 * link up status. I have decided to let this timer run
768 * forever until some sort of error is signalled, reporting
769 * a message to the user at 10 second intervals.
771 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
772 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
773 /* Wheee, it's up, display the link mode in use and put
774 * the timer to sleep.
776 display_link_mode(hp
, tregs
);
777 hp
->timer_state
= asleep
;
780 if (hp
->timer_ticks
>= 10) {
781 printk(KERN_NOTICE
"%s: Auto negotiation successful, link still "
782 "not completely up.\n", hp
->dev
->name
);
792 /* Making the timeout here too long can make it take
793 * annoyingly long to attempt all of the link mode
794 * permutations, but then again this is essentially
795 * error recovery code for the most part.
797 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
798 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
799 if (hp
->timer_ticks
== 1) {
800 if (!is_lucent_phy(hp
)) {
801 /* Re-enable transceiver, we'll re-enable the transceiver next
802 * tick, then check link state on the following tick.
804 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
805 happy_meal_tcvr_write(hp
, tregs
,
806 DP83840_CSCONFIG
, hp
->sw_csconfig
);
811 if (hp
->timer_ticks
== 2) {
812 if (!is_lucent_phy(hp
)) {
813 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
814 happy_meal_tcvr_write(hp
, tregs
,
815 DP83840_CSCONFIG
, hp
->sw_csconfig
);
820 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
821 /* Force mode selection success. */
822 display_forced_link_mode(hp
, tregs
);
823 set_happy_link_modes(hp
, tregs
); /* XXX error? then what? */
824 hp
->timer_state
= asleep
;
827 if (hp
->timer_ticks
>= 4) { /* 6 seconds or so... */
830 ret
= try_next_permutation(hp
, tregs
);
832 /* Aieee, tried them all, reset the
833 * chip and try all over again.
836 /* Let the user know... */
837 printk(KERN_NOTICE
"%s: Link down, cable problem?\n",
840 ret
= happy_meal_init(hp
);
843 printk(KERN_ERR
"%s: Error, cannot re-init the "
844 "Happy Meal.\n", hp
->dev
->name
);
848 if (!is_lucent_phy(hp
)) {
849 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
851 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
852 happy_meal_tcvr_write(hp
, tregs
,
853 DP83840_CSCONFIG
, hp
->sw_csconfig
);
865 /* Can't happens.... */
866 printk(KERN_ERR
"%s: Aieee, link timer is asleep but we got one anyways!\n",
870 hp
->timer_state
= asleep
; /* foo on you */
875 hp
->happy_timer
.expires
= jiffies
+ ((12 * HZ
)/10); /* 1.2 sec. */
876 add_timer(&hp
->happy_timer
);
880 spin_unlock_irq(&hp
->happy_lock
);
883 #define TX_RESET_TRIES 32
884 #define RX_RESET_TRIES 32
886 /* hp->happy_lock must be held */
887 static void happy_meal_tx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
889 int tries
= TX_RESET_TRIES
;
891 HMD(("happy_meal_tx_reset: reset, "));
893 /* Would you like to try our SMCC Delux? */
894 hme_write32(hp
, bregs
+ BMAC_TXSWRESET
, 0);
895 while ((hme_read32(hp
, bregs
+ BMAC_TXSWRESET
) & 1) && --tries
)
898 /* Lettuce, tomato, buggy hardware (no extra charge)? */
900 printk(KERN_ERR
"happy meal: Transceiver BigMac ATTACK!");
906 /* hp->happy_lock must be held */
907 static void happy_meal_rx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
909 int tries
= RX_RESET_TRIES
;
911 HMD(("happy_meal_rx_reset: reset, "));
913 /* We have a special on GNU/Viking hardware bugs today. */
914 hme_write32(hp
, bregs
+ BMAC_RXSWRESET
, 0);
915 while ((hme_read32(hp
, bregs
+ BMAC_RXSWRESET
) & 1) && --tries
)
918 /* Will that be all? */
920 printk(KERN_ERR
"happy meal: Receiver BigMac ATTACK!");
922 /* Don't forget your vik_1137125_wa. Have a nice day. */
926 #define STOP_TRIES 16
928 /* hp->happy_lock must be held */
929 static void happy_meal_stop(struct happy_meal
*hp
, void __iomem
*gregs
)
931 int tries
= STOP_TRIES
;
933 HMD(("happy_meal_stop: reset, "));
935 /* We're consolidating our STB products, it's your lucky day. */
936 hme_write32(hp
, gregs
+ GREG_SWRESET
, GREG_RESET_ALL
);
937 while (hme_read32(hp
, gregs
+ GREG_SWRESET
) && --tries
)
940 /* Come back next week when we are "Sun Microelectronics". */
942 printk(KERN_ERR
"happy meal: Fry guys.");
944 /* Remember: "Different name, same old buggy as shit hardware." */
948 /* hp->happy_lock must be held */
949 static void happy_meal_get_counters(struct happy_meal
*hp
, void __iomem
*bregs
)
951 struct net_device_stats
*stats
= &hp
->net_stats
;
953 stats
->rx_crc_errors
+= hme_read32(hp
, bregs
+ BMAC_RCRCECTR
);
954 hme_write32(hp
, bregs
+ BMAC_RCRCECTR
, 0);
956 stats
->rx_frame_errors
+= hme_read32(hp
, bregs
+ BMAC_UNALECTR
);
957 hme_write32(hp
, bregs
+ BMAC_UNALECTR
, 0);
959 stats
->rx_length_errors
+= hme_read32(hp
, bregs
+ BMAC_GLECTR
);
960 hme_write32(hp
, bregs
+ BMAC_GLECTR
, 0);
962 stats
->tx_aborted_errors
+= hme_read32(hp
, bregs
+ BMAC_EXCTR
);
965 (hme_read32(hp
, bregs
+ BMAC_EXCTR
) +
966 hme_read32(hp
, bregs
+ BMAC_LTCTR
));
967 hme_write32(hp
, bregs
+ BMAC_EXCTR
, 0);
968 hme_write32(hp
, bregs
+ BMAC_LTCTR
, 0);
971 /* hp->happy_lock must be held */
972 static void happy_meal_poll_stop(struct happy_meal
*hp
, void __iomem
*tregs
)
974 ASD(("happy_meal_poll_stop: "));
976 /* If polling disabled or not polling already, nothing to do. */
977 if ((hp
->happy_flags
& (HFLAG_POLLENABLE
| HFLAG_POLL
)) !=
978 (HFLAG_POLLENABLE
| HFLAG_POLL
)) {
979 HMD(("not polling, return\n"));
983 /* Shut up the MIF. */
984 ASD(("were polling, mif ints off, "));
985 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
987 /* Turn off polling. */
988 ASD(("polling off, "));
989 hme_write32(hp
, tregs
+ TCVR_CFG
,
990 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_PENABLE
));
992 /* We are no longer polling. */
993 hp
->happy_flags
&= ~(HFLAG_POLL
);
995 /* Let the bits set. */
1000 /* Only Sun can take such nice parts and fuck up the programming interface
1001 * like this. Good job guys...
1003 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
1004 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
1006 /* hp->happy_lock must be held */
1007 static int happy_meal_tcvr_reset(struct happy_meal
*hp
, void __iomem
*tregs
)
1010 int result
, tries
= TCVR_RESET_TRIES
;
1012 tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1013 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig
));
1014 if (hp
->tcvr_type
== external
) {
1016 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
& ~(TCV_CFG_PSELECT
));
1017 hp
->tcvr_type
= internal
;
1018 hp
->paddr
= TCV_PADDR_ITX
;
1020 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1021 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1022 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1023 if (result
== TCVR_FAILURE
) {
1024 ASD(("phyread_fail>\n"));
1027 ASD(("phyread_ok,PSELECT>"));
1028 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1029 hp
->tcvr_type
= external
;
1030 hp
->paddr
= TCV_PADDR_ETX
;
1032 if (tconfig
& TCV_CFG_MDIO1
) {
1033 ASD(("internal<PSELECT,"));
1034 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
| TCV_CFG_PSELECT
));
1036 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1037 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1038 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1039 if (result
== TCVR_FAILURE
) {
1040 ASD(("phyread_fail>\n"));
1043 ASD(("phyread_ok,~PSELECT>"));
1044 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
& ~(TCV_CFG_PSELECT
)));
1045 hp
->tcvr_type
= internal
;
1046 hp
->paddr
= TCV_PADDR_ITX
;
1050 ASD(("BMCR_RESET "));
1051 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, BMCR_RESET
);
1054 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1055 if (result
== TCVR_FAILURE
)
1057 hp
->sw_bmcr
= result
;
1058 if (!(result
& BMCR_RESET
))
1063 ASD(("BMCR RESET FAILED!\n"));
1066 ASD(("RESET_OK\n"));
1068 /* Get fresh copies of the PHY registers. */
1069 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1070 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1071 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1072 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1075 hp
->sw_bmcr
&= ~(BMCR_ISOLATE
);
1076 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1078 tries
= TCVR_UNISOLATE_TRIES
;
1080 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1081 if (result
== TCVR_FAILURE
)
1083 if (!(result
& BMCR_ISOLATE
))
1088 ASD((" FAILED!\n"));
1091 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1092 if (!is_lucent_phy(hp
)) {
1093 result
= happy_meal_tcvr_read(hp
, tregs
,
1095 happy_meal_tcvr_write(hp
, tregs
,
1096 DP83840_CSCONFIG
, (result
| CSCONFIG_DFBYPASS
));
1101 /* Figure out whether we have an internal or external transceiver.
1103 * hp->happy_lock must be held
1105 static void happy_meal_transceiver_check(struct happy_meal
*hp
, void __iomem
*tregs
)
1107 unsigned long tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1109 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig
));
1110 if (hp
->happy_flags
& HFLAG_POLL
) {
1111 /* If we are polling, we must stop to get the transceiver type. */
1112 ASD(("<polling> "));
1113 if (hp
->tcvr_type
== internal
) {
1114 if (tconfig
& TCV_CFG_MDIO1
) {
1115 ASD(("<internal> <poll stop> "));
1116 happy_meal_poll_stop(hp
, tregs
);
1117 hp
->paddr
= TCV_PADDR_ETX
;
1118 hp
->tcvr_type
= external
;
1119 ASD(("<external>\n"));
1120 tconfig
&= ~(TCV_CFG_PENABLE
);
1121 tconfig
|= TCV_CFG_PSELECT
;
1122 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
);
1125 if (hp
->tcvr_type
== external
) {
1126 ASD(("<external> "));
1127 if (!(hme_read32(hp
, tregs
+ TCVR_STATUS
) >> 16)) {
1128 ASD(("<poll stop> "));
1129 happy_meal_poll_stop(hp
, tregs
);
1130 hp
->paddr
= TCV_PADDR_ITX
;
1131 hp
->tcvr_type
= internal
;
1132 ASD(("<internal>\n"));
1133 hme_write32(hp
, tregs
+ TCVR_CFG
,
1134 hme_read32(hp
, tregs
+ TCVR_CFG
) &
1135 ~(TCV_CFG_PSELECT
));
1143 u32 reread
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1145 /* Else we can just work off of the MDIO bits. */
1146 ASD(("<not polling> "));
1147 if (reread
& TCV_CFG_MDIO1
) {
1148 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1149 hp
->paddr
= TCV_PADDR_ETX
;
1150 hp
->tcvr_type
= external
;
1151 ASD(("<external>\n"));
1153 if (reread
& TCV_CFG_MDIO0
) {
1154 hme_write32(hp
, tregs
+ TCVR_CFG
,
1155 tconfig
& ~(TCV_CFG_PSELECT
));
1156 hp
->paddr
= TCV_PADDR_ITX
;
1157 hp
->tcvr_type
= internal
;
1158 ASD(("<internal>\n"));
1160 printk(KERN_ERR
"happy meal: Transceiver and a coke please.");
1161 hp
->tcvr_type
= none
; /* Grrr... */
1168 /* The receive ring buffers are a bit tricky to get right. Here goes...
1170 * The buffers we dma into must be 64 byte aligned. So we use a special
1171 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1174 * We use skb_reserve() to align the data block we get in the skb. We
1175 * also program the etxregs->cfg register to use an offset of 2. This
1176 * imperical constant plus the ethernet header size will always leave
1177 * us with a nicely aligned ip header once we pass things up to the
1180 * The numbers work out to:
1182 * Max ethernet frame size 1518
1183 * Ethernet header size 14
1184 * Happy Meal base offset 2
1186 * Say a skb data area is at 0xf001b010, and its size alloced is
1187 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1189 * First our alloc_skb() routine aligns the data base to a 64 byte
1190 * boundary. We now have 0xf001b040 as our skb data address. We
1191 * plug this into the receive descriptor address.
1193 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1194 * So now the data we will end up looking at starts at 0xf001b042. When
1195 * the packet arrives, we will check out the size received and subtract
1196 * this from the skb->length. Then we just pass the packet up to the
1197 * protocols as is, and allocate a new skb to replace this slot we have
1198 * just received from.
1200 * The ethernet layer will strip the ether header from the front of the
1201 * skb we just sent to it, this leaves us with the ip header sitting
1202 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1203 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1204 * bit checksum is obtained from the low bits of the receive descriptor
1207 * skb->csum = rxd->rx_flags & 0xffff;
1208 * skb->ip_summed = CHECKSUM_COMPLETE;
1210 * before sending off the skb to the protocols, and we are good as gold.
1212 static void happy_meal_clean_rings(struct happy_meal
*hp
)
1216 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1217 if (hp
->rx_skbs
[i
] != NULL
) {
1218 struct sk_buff
*skb
= hp
->rx_skbs
[i
];
1219 struct happy_meal_rxd
*rxd
;
1222 rxd
= &hp
->happy_block
->happy_meal_rxd
[i
];
1223 dma_addr
= hme_read_desc32(hp
, &rxd
->rx_addr
);
1224 hme_dma_unmap(hp
, dma_addr
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
);
1225 dev_kfree_skb_any(skb
);
1226 hp
->rx_skbs
[i
] = NULL
;
1230 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1231 if (hp
->tx_skbs
[i
] != NULL
) {
1232 struct sk_buff
*skb
= hp
->tx_skbs
[i
];
1233 struct happy_meal_txd
*txd
;
1237 hp
->tx_skbs
[i
] = NULL
;
1239 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1240 txd
= &hp
->happy_block
->happy_meal_txd
[i
];
1241 dma_addr
= hme_read_desc32(hp
, &txd
->tx_addr
);
1242 hme_dma_unmap(hp
, dma_addr
,
1243 (hme_read_desc32(hp
, &txd
->tx_flags
)
1247 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1251 dev_kfree_skb_any(skb
);
1256 /* hp->happy_lock must be held */
1257 static void happy_meal_init_rings(struct happy_meal
*hp
)
1259 struct hmeal_init_block
*hb
= hp
->happy_block
;
1260 struct net_device
*dev
= hp
->dev
;
1263 HMD(("happy_meal_init_rings: counters to zero, "));
1264 hp
->rx_new
= hp
->rx_old
= hp
->tx_new
= hp
->tx_old
= 0;
1266 /* Free any skippy bufs left around in the rings. */
1268 happy_meal_clean_rings(hp
);
1270 /* Now get new skippy bufs for the receive ring. */
1271 HMD(("init rxring, "));
1272 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1273 struct sk_buff
*skb
;
1275 skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
1277 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
], 0, 0);
1280 hp
->rx_skbs
[i
] = skb
;
1283 /* Because we reserve afterwards. */
1284 skb_put(skb
, (ETH_FRAME_LEN
+ RX_OFFSET
));
1285 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
],
1286 (RXFLAG_OWN
| ((RX_BUF_ALLOC_SIZE
- RX_OFFSET
) << 16)),
1287 hme_dma_map(hp
, skb
->data
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
));
1288 skb_reserve(skb
, RX_OFFSET
);
1291 HMD(("init txring, "));
1292 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1293 hme_write_txd(hp
, &hb
->happy_meal_txd
[i
], 0, 0);
1298 /* hp->happy_lock must be held */
1299 static void happy_meal_begin_auto_negotiation(struct happy_meal
*hp
,
1300 void __iomem
*tregs
,
1301 struct ethtool_cmd
*ep
)
1305 /* Read all of the registers we are interested in now. */
1306 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1307 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1308 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1309 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1311 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1313 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1314 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1315 /* Advertise everything we can support. */
1316 if (hp
->sw_bmsr
& BMSR_10HALF
)
1317 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1319 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1321 if (hp
->sw_bmsr
& BMSR_10FULL
)
1322 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1324 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1325 if (hp
->sw_bmsr
& BMSR_100HALF
)
1326 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1328 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1329 if (hp
->sw_bmsr
& BMSR_100FULL
)
1330 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1332 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1333 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1335 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1336 * XXX and this is because the DP83840 does not support it, changes
1337 * XXX would need to be made to the tx/rx logic in the driver as well
1338 * XXX so I completely skip checking for it in the BMSR for now.
1341 #ifdef AUTO_SWITCH_DEBUG
1342 ASD(("%s: Advertising [ ", hp
->dev
->name
));
1343 if (hp
->sw_advertise
& ADVERTISE_10HALF
)
1345 if (hp
->sw_advertise
& ADVERTISE_10FULL
)
1347 if (hp
->sw_advertise
& ADVERTISE_100HALF
)
1349 if (hp
->sw_advertise
& ADVERTISE_100FULL
)
1353 /* Enable Auto-Negotiation, this is usually on already... */
1354 hp
->sw_bmcr
|= BMCR_ANENABLE
;
1355 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1357 /* Restart it to make sure it is going. */
1358 hp
->sw_bmcr
|= BMCR_ANRESTART
;
1359 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1361 /* BMCR_ANRESTART self clears when the process has begun. */
1363 timeout
= 64; /* More than enough. */
1365 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1366 if (!(hp
->sw_bmcr
& BMCR_ANRESTART
))
1367 break; /* got it. */
1371 printk(KERN_ERR
"%s: Happy Meal would not start auto negotiation "
1372 "BMCR=0x%04x\n", hp
->dev
->name
, hp
->sw_bmcr
);
1373 printk(KERN_NOTICE
"%s: Performing force link detection.\n",
1377 hp
->timer_state
= arbwait
;
1381 /* Force the link up, trying first a particular mode.
1382 * Either we are here at the request of ethtool or
1383 * because the Happy Meal would not start to autoneg.
1386 /* Disable auto-negotiation in BMCR, enable the duplex and
1387 * speed setting, init the timer state machine, and fire it off.
1389 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1390 hp
->sw_bmcr
= BMCR_SPEED100
;
1392 if (ep
->speed
== SPEED_100
)
1393 hp
->sw_bmcr
= BMCR_SPEED100
;
1396 if (ep
->duplex
== DUPLEX_FULL
)
1397 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1399 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1401 if (!is_lucent_phy(hp
)) {
1402 /* OK, seems we need do disable the transceiver for the first
1403 * tick to make sure we get an accurate link state at the
1406 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
1408 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
1409 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
,
1412 hp
->timer_state
= ltrywait
;
1415 hp
->timer_ticks
= 0;
1416 hp
->happy_timer
.expires
= jiffies
+ (12 * HZ
)/10; /* 1.2 sec. */
1417 hp
->happy_timer
.data
= (unsigned long) hp
;
1418 hp
->happy_timer
.function
= &happy_meal_timer
;
1419 add_timer(&hp
->happy_timer
);
1422 /* hp->happy_lock must be held */
1423 static int happy_meal_init(struct happy_meal
*hp
)
1425 void __iomem
*gregs
= hp
->gregs
;
1426 void __iomem
*etxregs
= hp
->etxregs
;
1427 void __iomem
*erxregs
= hp
->erxregs
;
1428 void __iomem
*bregs
= hp
->bigmacregs
;
1429 void __iomem
*tregs
= hp
->tcvregs
;
1431 unsigned char *e
= &hp
->dev
->dev_addr
[0];
1433 /* If auto-negotiation timer is running, kill it. */
1434 del_timer(&hp
->happy_timer
);
1436 HMD(("happy_meal_init: happy_flags[%08x] ",
1438 if (!(hp
->happy_flags
& HFLAG_INIT
)) {
1439 HMD(("set HFLAG_INIT, "));
1440 hp
->happy_flags
|= HFLAG_INIT
;
1441 happy_meal_get_counters(hp
, bregs
);
1445 HMD(("to happy_meal_poll_stop\n"));
1446 happy_meal_poll_stop(hp
, tregs
);
1448 /* Stop transmitter and receiver. */
1449 HMD(("happy_meal_init: to happy_meal_stop\n"));
1450 happy_meal_stop(hp
, gregs
);
1452 /* Alloc and reset the tx/rx descriptor chains. */
1453 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1454 happy_meal_init_rings(hp
);
1456 /* Shut up the MIF. */
1457 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1458 hme_read32(hp
, tregs
+ TCVR_IMASK
)));
1459 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1461 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1462 if (hp
->happy_flags
& HFLAG_FENABLE
) {
1463 HMD(("use frame old[%08x], ",
1464 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1465 hme_write32(hp
, tregs
+ TCVR_CFG
,
1466 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1468 HMD(("use bitbang old[%08x], ",
1469 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1470 hme_write32(hp
, tregs
+ TCVR_CFG
,
1471 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1474 /* Check the state of the transceiver. */
1475 HMD(("to happy_meal_transceiver_check\n"));
1476 happy_meal_transceiver_check(hp
, tregs
);
1478 /* Put the Big Mac into a sane state. */
1479 HMD(("happy_meal_init: "));
1480 switch(hp
->tcvr_type
) {
1482 /* Cannot operate if we don't know the transceiver type! */
1483 HMD(("AAIEEE no transceiver type, EAGAIN"));
1487 /* Using the MII buffers. */
1488 HMD(("internal, using MII, "));
1489 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1493 /* Not using the MII, disable it. */
1494 HMD(("external, disable MII, "));
1495 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1499 if (happy_meal_tcvr_reset(hp
, tregs
))
1502 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1503 HMD(("tx/rx reset, "));
1504 happy_meal_tx_reset(hp
, bregs
);
1505 happy_meal_rx_reset(hp
, bregs
);
1507 /* Set jam size and inter-packet gaps to reasonable defaults. */
1508 HMD(("jsize/ipg1/ipg2, "));
1509 hme_write32(hp
, bregs
+ BMAC_JSIZE
, DEFAULT_JAMSIZE
);
1510 hme_write32(hp
, bregs
+ BMAC_IGAP1
, DEFAULT_IPG1
);
1511 hme_write32(hp
, bregs
+ BMAC_IGAP2
, DEFAULT_IPG2
);
1513 /* Load up the MAC address and random seed. */
1514 HMD(("rseed/macaddr, "));
1516 /* The docs recommend to use the 10LSB of our MAC here. */
1517 hme_write32(hp
, bregs
+ BMAC_RSEED
, ((e
[5] | e
[4]<<8)&0x3ff));
1519 hme_write32(hp
, bregs
+ BMAC_MACADDR2
, ((e
[4] << 8) | e
[5]));
1520 hme_write32(hp
, bregs
+ BMAC_MACADDR1
, ((e
[2] << 8) | e
[3]));
1521 hme_write32(hp
, bregs
+ BMAC_MACADDR0
, ((e
[0] << 8) | e
[1]));
1524 if ((hp
->dev
->flags
& IFF_ALLMULTI
) ||
1525 (hp
->dev
->mc_count
> 64)) {
1526 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
1527 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
1528 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
1529 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
1530 } else if ((hp
->dev
->flags
& IFF_PROMISC
) == 0) {
1532 struct dev_mc_list
*dmi
= hp
->dev
->mc_list
;
1537 for (i
= 0; i
< 4; i
++)
1540 for (i
= 0; i
< hp
->dev
->mc_count
; i
++) {
1541 addrs
= dmi
->dmi_addr
;
1547 crc
= ether_crc_le(6, addrs
);
1549 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
1551 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
1552 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
1553 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
1554 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
1556 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0);
1557 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0);
1558 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0);
1559 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0);
1562 /* Set the RX and TX ring ptrs. */
1563 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1564 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)),
1565 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0))));
1566 hme_write32(hp
, erxregs
+ ERX_RING
,
1567 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)));
1568 hme_write32(hp
, etxregs
+ ETX_RING
,
1569 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0)));
1571 /* Parity issues in the ERX unit of some HME revisions can cause some
1572 * registers to not be written unless their parity is even. Detect such
1573 * lost writes and simply rewrite with a low bit set (which will be ignored
1574 * since the rxring needs to be 2K aligned).
1576 if (hme_read32(hp
, erxregs
+ ERX_RING
) !=
1577 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)))
1578 hme_write32(hp
, erxregs
+ ERX_RING
,
1579 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0))
1582 /* Set the supported burst sizes. */
1583 HMD(("happy_meal_init: old[%08x] bursts<",
1584 hme_read32(hp
, gregs
+ GREG_CFG
)));
1586 #ifndef CONFIG_SPARC
1587 /* It is always PCI and can handle 64byte bursts. */
1588 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST64
);
1590 if ((hp
->happy_bursts
& DMA_BURST64
) &&
1591 ((hp
->happy_flags
& HFLAG_PCI
) != 0
1593 || sbus_can_burst64(hp
->happy_dev
)
1596 u32 gcfg
= GREG_CFG_BURST64
;
1598 /* I have no idea if I should set the extended
1599 * transfer mode bit for Cheerio, so for now I
1603 if ((hp
->happy_flags
& HFLAG_PCI
) == 0 &&
1604 sbus_can_dma_64bit(hp
->happy_dev
)) {
1605 sbus_set_sbus64(hp
->happy_dev
,
1607 gcfg
|= GREG_CFG_64BIT
;
1612 hme_write32(hp
, gregs
+ GREG_CFG
, gcfg
);
1613 } else if (hp
->happy_bursts
& DMA_BURST32
) {
1615 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST32
);
1616 } else if (hp
->happy_bursts
& DMA_BURST16
) {
1618 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST16
);
1621 hme_write32(hp
, gregs
+ GREG_CFG
, 0);
1623 #endif /* CONFIG_SPARC */
1625 /* Turn off interrupts we do not want to hear. */
1626 HMD((", enable global interrupts, "));
1627 hme_write32(hp
, gregs
+ GREG_IMASK
,
1628 (GREG_IMASK_GOTFRAME
| GREG_IMASK_RCNTEXP
|
1629 GREG_IMASK_SENTFRAME
| GREG_IMASK_TXPERR
));
1631 /* Set the transmit ring buffer size. */
1632 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE
,
1633 hme_read32(hp
, etxregs
+ ETX_RSIZE
)));
1634 hme_write32(hp
, etxregs
+ ETX_RSIZE
, (TX_RING_SIZE
>> ETX_RSIZE_SHIFT
) - 1);
1636 /* Enable transmitter DVMA. */
1637 HMD(("tx dma enable old[%08x], ",
1638 hme_read32(hp
, etxregs
+ ETX_CFG
)));
1639 hme_write32(hp
, etxregs
+ ETX_CFG
,
1640 hme_read32(hp
, etxregs
+ ETX_CFG
) | ETX_CFG_DMAENABLE
);
1642 /* This chip really rots, for the receiver sometimes when you
1643 * write to its control registers not all the bits get there
1644 * properly. I cannot think of a sane way to provide complete
1645 * coverage for this hardware bug yet.
1647 HMD(("erx regs bug old[%08x]\n",
1648 hme_read32(hp
, erxregs
+ ERX_CFG
)));
1649 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1650 regtmp
= hme_read32(hp
, erxregs
+ ERX_CFG
);
1651 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1652 if (hme_read32(hp
, erxregs
+ ERX_CFG
) != ERX_CFG_DEFAULT(RX_OFFSET
)) {
1653 printk(KERN_ERR
"happy meal: Eieee, rx config register gets greasy fries.\n");
1654 printk(KERN_ERR
"happy meal: Trying to set %08x, reread gives %08x\n",
1655 ERX_CFG_DEFAULT(RX_OFFSET
), regtmp
);
1656 /* XXX Should return failure here... */
1659 /* Enable Big Mac hash table filter. */
1660 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1661 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1662 rxcfg
= BIGMAC_RXCFG_HENABLE
| BIGMAC_RXCFG_REJME
;
1663 if (hp
->dev
->flags
& IFF_PROMISC
)
1664 rxcfg
|= BIGMAC_RXCFG_PMISC
;
1665 hme_write32(hp
, bregs
+ BMAC_RXCFG
, rxcfg
);
1667 /* Let the bits settle in the chip. */
1670 /* Ok, configure the Big Mac transmitter. */
1671 HMD(("BIGMAC init, "));
1673 if (hp
->happy_flags
& HFLAG_FULL
)
1674 regtmp
|= BIGMAC_TXCFG_FULLDPLX
;
1676 /* Don't turn on the "don't give up" bit for now. It could cause hme
1677 * to deadlock with the PHY if a Jabber occurs.
1679 hme_write32(hp
, bregs
+ BMAC_TXCFG
, regtmp
/*| BIGMAC_TXCFG_DGIVEUP*/);
1681 /* Give up after 16 TX attempts. */
1682 hme_write32(hp
, bregs
+ BMAC_ALIMIT
, 16);
1684 /* Enable the output drivers no matter what. */
1685 regtmp
= BIGMAC_XCFG_ODENABLE
;
1687 /* If card can do lance mode, enable it. */
1688 if (hp
->happy_flags
& HFLAG_LANCE
)
1689 regtmp
|= (DEFAULT_IPG0
<< 5) | BIGMAC_XCFG_LANCE
;
1691 /* Disable the MII buffers if using external transceiver. */
1692 if (hp
->tcvr_type
== external
)
1693 regtmp
|= BIGMAC_XCFG_MIIDISAB
;
1695 HMD(("XIF config old[%08x], ",
1696 hme_read32(hp
, bregs
+ BMAC_XIFCFG
)));
1697 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, regtmp
);
1699 /* Start things up. */
1700 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1701 hme_read32(hp
, bregs
+ BMAC_TXCFG
),
1702 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1703 hme_write32(hp
, bregs
+ BMAC_TXCFG
,
1704 hme_read32(hp
, bregs
+ BMAC_TXCFG
) | BIGMAC_TXCFG_ENABLE
);
1705 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
1706 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_ENABLE
);
1708 /* Get the autonegotiation started, and the watch timer ticking. */
1709 happy_meal_begin_auto_negotiation(hp
, tregs
, NULL
);
1715 /* hp->happy_lock must be held */
1716 static void happy_meal_set_initial_advertisement(struct happy_meal
*hp
)
1718 void __iomem
*tregs
= hp
->tcvregs
;
1719 void __iomem
*bregs
= hp
->bigmacregs
;
1720 void __iomem
*gregs
= hp
->gregs
;
1722 happy_meal_stop(hp
, gregs
);
1723 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1724 if (hp
->happy_flags
& HFLAG_FENABLE
)
1725 hme_write32(hp
, tregs
+ TCVR_CFG
,
1726 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1728 hme_write32(hp
, tregs
+ TCVR_CFG
,
1729 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1730 happy_meal_transceiver_check(hp
, tregs
);
1731 switch(hp
->tcvr_type
) {
1735 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1738 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1741 if (happy_meal_tcvr_reset(hp
, tregs
))
1744 /* Latch PHY registers as of now. */
1745 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1746 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1748 /* Advertise everything we can support. */
1749 if (hp
->sw_bmsr
& BMSR_10HALF
)
1750 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1752 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1754 if (hp
->sw_bmsr
& BMSR_10FULL
)
1755 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1757 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1758 if (hp
->sw_bmsr
& BMSR_100HALF
)
1759 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1761 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1762 if (hp
->sw_bmsr
& BMSR_100FULL
)
1763 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1765 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1767 /* Update the PHY advertisement register. */
1768 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1771 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1772 * the hardware, so we cannot re-read it and get a correct value.
1774 * hp->happy_lock must be held
1776 static int happy_meal_is_not_so_happy(struct happy_meal
*hp
, u32 status
)
1780 /* Only print messages for non-counter related interrupts. */
1781 if (status
& (GREG_STAT_STSTERR
| GREG_STAT_TFIFO_UND
|
1782 GREG_STAT_MAXPKTERR
| GREG_STAT_RXERR
|
1783 GREG_STAT_RXPERR
| GREG_STAT_RXTERR
| GREG_STAT_EOPERR
|
1784 GREG_STAT_MIFIRQ
| GREG_STAT_TXEACK
| GREG_STAT_TXLERR
|
1785 GREG_STAT_TXPERR
| GREG_STAT_TXTERR
| GREG_STAT_SLVERR
|
1787 printk(KERN_ERR
"%s: Error interrupt for happy meal, status = %08x\n",
1788 hp
->dev
->name
, status
);
1790 if (status
& GREG_STAT_RFIFOVF
) {
1791 /* Receive FIFO overflow is harmless and the hardware will take
1792 care of it, just some packets are lost. Who cares. */
1793 printk(KERN_DEBUG
"%s: Happy Meal receive FIFO overflow.\n", hp
->dev
->name
);
1796 if (status
& GREG_STAT_STSTERR
) {
1797 /* BigMAC SQE link test failed. */
1798 printk(KERN_ERR
"%s: Happy Meal BigMAC SQE test failed.\n", hp
->dev
->name
);
1802 if (status
& GREG_STAT_TFIFO_UND
) {
1803 /* Transmit FIFO underrun, again DMA error likely. */
1804 printk(KERN_ERR
"%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1809 if (status
& GREG_STAT_MAXPKTERR
) {
1810 /* Driver error, tried to transmit something larger
1811 * than ethernet max mtu.
1813 printk(KERN_ERR
"%s: Happy Meal MAX Packet size error.\n", hp
->dev
->name
);
1817 if (status
& GREG_STAT_NORXD
) {
1818 /* This is harmless, it just means the system is
1819 * quite loaded and the incoming packet rate was
1820 * faster than the interrupt handler could keep up
1823 printk(KERN_INFO
"%s: Happy Meal out of receive "
1824 "descriptors, packet dropped.\n",
1828 if (status
& (GREG_STAT_RXERR
|GREG_STAT_RXPERR
|GREG_STAT_RXTERR
)) {
1829 /* All sorts of DMA receive errors. */
1830 printk(KERN_ERR
"%s: Happy Meal rx DMA errors [ ", hp
->dev
->name
);
1831 if (status
& GREG_STAT_RXERR
)
1832 printk("GenericError ");
1833 if (status
& GREG_STAT_RXPERR
)
1834 printk("ParityError ");
1835 if (status
& GREG_STAT_RXTERR
)
1836 printk("RxTagBotch ");
1841 if (status
& GREG_STAT_EOPERR
) {
1842 /* Driver bug, didn't set EOP bit in tx descriptor given
1843 * to the happy meal.
1845 printk(KERN_ERR
"%s: EOP not set in happy meal transmit descriptor!\n",
1850 if (status
& GREG_STAT_MIFIRQ
) {
1851 /* MIF signalled an interrupt, were we polling it? */
1852 printk(KERN_ERR
"%s: Happy Meal MIF interrupt.\n", hp
->dev
->name
);
1856 (GREG_STAT_TXEACK
|GREG_STAT_TXLERR
|GREG_STAT_TXPERR
|GREG_STAT_TXTERR
)) {
1857 /* All sorts of transmit DMA errors. */
1858 printk(KERN_ERR
"%s: Happy Meal tx DMA errors [ ", hp
->dev
->name
);
1859 if (status
& GREG_STAT_TXEACK
)
1860 printk("GenericError ");
1861 if (status
& GREG_STAT_TXLERR
)
1862 printk("LateError ");
1863 if (status
& GREG_STAT_TXPERR
)
1864 printk("ParityErro ");
1865 if (status
& GREG_STAT_TXTERR
)
1866 printk("TagBotch ");
1871 if (status
& (GREG_STAT_SLVERR
|GREG_STAT_SLVPERR
)) {
1872 /* Bus or parity error when cpu accessed happy meal registers
1873 * or it's internal FIFO's. Should never see this.
1875 printk(KERN_ERR
"%s: Happy Meal register access SBUS slave (%s) error.\n",
1877 (status
& GREG_STAT_SLVPERR
) ? "parity" : "generic");
1882 printk(KERN_NOTICE
"%s: Resetting...\n", hp
->dev
->name
);
1883 happy_meal_init(hp
);
1889 /* hp->happy_lock must be held */
1890 static void happy_meal_mif_interrupt(struct happy_meal
*hp
)
1892 void __iomem
*tregs
= hp
->tcvregs
;
1894 printk(KERN_INFO
"%s: Link status change.\n", hp
->dev
->name
);
1895 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1896 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
1898 /* Use the fastest transmission protocol possible. */
1899 if (hp
->sw_lpa
& LPA_100FULL
) {
1900 printk(KERN_INFO
"%s: Switching to 100Mbps at full duplex.", hp
->dev
->name
);
1901 hp
->sw_bmcr
|= (BMCR_FULLDPLX
| BMCR_SPEED100
);
1902 } else if (hp
->sw_lpa
& LPA_100HALF
) {
1903 printk(KERN_INFO
"%s: Switching to 100MBps at half duplex.", hp
->dev
->name
);
1904 hp
->sw_bmcr
|= BMCR_SPEED100
;
1905 } else if (hp
->sw_lpa
& LPA_10FULL
) {
1906 printk(KERN_INFO
"%s: Switching to 10MBps at full duplex.", hp
->dev
->name
);
1907 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1909 printk(KERN_INFO
"%s: Using 10Mbps at half duplex.", hp
->dev
->name
);
1911 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1913 /* Finally stop polling and shut up the MIF. */
1914 happy_meal_poll_stop(hp
, tregs
);
1918 #define TXD(x) printk x
1923 /* hp->happy_lock must be held */
1924 static void happy_meal_tx(struct happy_meal
*hp
)
1926 struct happy_meal_txd
*txbase
= &hp
->happy_block
->happy_meal_txd
[0];
1927 struct happy_meal_txd
*this;
1928 struct net_device
*dev
= hp
->dev
;
1933 while (elem
!= hp
->tx_new
) {
1934 struct sk_buff
*skb
;
1935 u32 flags
, dma_addr
, dma_len
;
1938 TXD(("[%d]", elem
));
1939 this = &txbase
[elem
];
1940 flags
= hme_read_desc32(hp
, &this->tx_flags
);
1941 if (flags
& TXFLAG_OWN
)
1943 skb
= hp
->tx_skbs
[elem
];
1944 if (skb_shinfo(skb
)->nr_frags
) {
1947 last
= elem
+ skb_shinfo(skb
)->nr_frags
;
1948 last
&= (TX_RING_SIZE
- 1);
1949 flags
= hme_read_desc32(hp
, &txbase
[last
].tx_flags
);
1950 if (flags
& TXFLAG_OWN
)
1953 hp
->tx_skbs
[elem
] = NULL
;
1954 hp
->net_stats
.tx_bytes
+= skb
->len
;
1956 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1957 dma_addr
= hme_read_desc32(hp
, &this->tx_addr
);
1958 dma_len
= hme_read_desc32(hp
, &this->tx_flags
);
1960 dma_len
&= TXFLAG_SIZE
;
1961 hme_dma_unmap(hp
, dma_addr
, dma_len
, DMA_TODEVICE
);
1963 elem
= NEXT_TX(elem
);
1964 this = &txbase
[elem
];
1967 dev_kfree_skb_irq(skb
);
1968 hp
->net_stats
.tx_packets
++;
1973 if (netif_queue_stopped(dev
) &&
1974 TX_BUFFS_AVAIL(hp
) > (MAX_SKB_FRAGS
+ 1))
1975 netif_wake_queue(dev
);
1979 #define RXD(x) printk x
1984 /* Originally I used to handle the allocation failure by just giving back just
1985 * that one ring buffer to the happy meal. Problem is that usually when that
1986 * condition is triggered, the happy meal expects you to do something reasonable
1987 * with all of the packets it has DMA'd in. So now I just drop the entire
1988 * ring when we cannot get a new skb and give them all back to the happy meal,
1989 * maybe things will be "happier" now.
1991 * hp->happy_lock must be held
1993 static void happy_meal_rx(struct happy_meal
*hp
, struct net_device
*dev
)
1995 struct happy_meal_rxd
*rxbase
= &hp
->happy_block
->happy_meal_rxd
[0];
1996 struct happy_meal_rxd
*this;
1997 int elem
= hp
->rx_new
, drops
= 0;
2001 this = &rxbase
[elem
];
2002 while (!((flags
= hme_read_desc32(hp
, &this->rx_flags
)) & RXFLAG_OWN
)) {
2003 struct sk_buff
*skb
;
2004 int len
= flags
>> 16;
2005 u16 csum
= flags
& RXFLAG_CSUM
;
2006 u32 dma_addr
= hme_read_desc32(hp
, &this->rx_addr
);
2008 RXD(("[%d ", elem
));
2010 /* Check for errors. */
2011 if ((len
< ETH_ZLEN
) || (flags
& RXFLAG_OVERFLOW
)) {
2012 RXD(("ERR(%08x)]", flags
));
2013 hp
->net_stats
.rx_errors
++;
2015 hp
->net_stats
.rx_length_errors
++;
2016 if (len
& (RXFLAG_OVERFLOW
>> 16)) {
2017 hp
->net_stats
.rx_over_errors
++;
2018 hp
->net_stats
.rx_fifo_errors
++;
2021 /* Return it to the Happy meal. */
2023 hp
->net_stats
.rx_dropped
++;
2024 hme_write_rxd(hp
, this,
2025 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2029 skb
= hp
->rx_skbs
[elem
];
2030 if (len
> RX_COPY_THRESHOLD
) {
2031 struct sk_buff
*new_skb
;
2033 /* Now refill the entry, if we can. */
2034 new_skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
2035 if (new_skb
== NULL
) {
2039 hme_dma_unmap(hp
, dma_addr
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
);
2040 hp
->rx_skbs
[elem
] = new_skb
;
2042 skb_put(new_skb
, (ETH_FRAME_LEN
+ RX_OFFSET
));
2043 hme_write_rxd(hp
, this,
2044 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2045 hme_dma_map(hp
, new_skb
->data
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
));
2046 skb_reserve(new_skb
, RX_OFFSET
);
2048 /* Trim the original skb for the netif. */
2051 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
2053 if (copy_skb
== NULL
) {
2058 skb_reserve(copy_skb
, 2);
2059 skb_put(copy_skb
, len
);
2060 hme_dma_sync_for_cpu(hp
, dma_addr
, len
, DMA_FROMDEVICE
);
2061 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
2062 hme_dma_sync_for_device(hp
, dma_addr
, len
, DMA_FROMDEVICE
);
2064 /* Reuse original ring buffer. */
2065 hme_write_rxd(hp
, this,
2066 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2072 /* This card is _fucking_ hot... */
2073 skb
->csum
= ntohs(csum
^ 0xffff);
2074 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2076 RXD(("len=%d csum=%4x]", len
, csum
));
2077 skb
->protocol
= eth_type_trans(skb
, dev
);
2080 dev
->last_rx
= jiffies
;
2081 hp
->net_stats
.rx_packets
++;
2082 hp
->net_stats
.rx_bytes
+= len
;
2084 elem
= NEXT_RX(elem
);
2085 this = &rxbase
[elem
];
2089 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n", hp
->dev
->name
);
2093 static irqreturn_t
happy_meal_interrupt(int irq
, void *dev_id
)
2095 struct net_device
*dev
= dev_id
;
2096 struct happy_meal
*hp
= netdev_priv(dev
);
2097 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2099 HMD(("happy_meal_interrupt: status=%08x ", happy_status
));
2101 spin_lock(&hp
->happy_lock
);
2103 if (happy_status
& GREG_STAT_ERRORS
) {
2105 if (happy_meal_is_not_so_happy(hp
, /* un- */ happy_status
))
2109 if (happy_status
& GREG_STAT_MIFIRQ
) {
2111 happy_meal_mif_interrupt(hp
);
2114 if (happy_status
& GREG_STAT_TXALL
) {
2119 if (happy_status
& GREG_STAT_RXTOHOST
) {
2121 happy_meal_rx(hp
, dev
);
2126 spin_unlock(&hp
->happy_lock
);
2132 static irqreturn_t
quattro_sbus_interrupt(int irq
, void *cookie
)
2134 struct quattro
*qp
= (struct quattro
*) cookie
;
2137 for (i
= 0; i
< 4; i
++) {
2138 struct net_device
*dev
= qp
->happy_meals
[i
];
2139 struct happy_meal
*hp
= dev
->priv
;
2140 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2142 HMD(("quattro_interrupt: status=%08x ", happy_status
));
2144 if (!(happy_status
& (GREG_STAT_ERRORS
|
2147 GREG_STAT_RXTOHOST
)))
2150 spin_lock(&hp
->happy_lock
);
2152 if (happy_status
& GREG_STAT_ERRORS
) {
2154 if (happy_meal_is_not_so_happy(hp
, happy_status
))
2158 if (happy_status
& GREG_STAT_MIFIRQ
) {
2160 happy_meal_mif_interrupt(hp
);
2163 if (happy_status
& GREG_STAT_TXALL
) {
2168 if (happy_status
& GREG_STAT_RXTOHOST
) {
2170 happy_meal_rx(hp
, dev
);
2174 spin_unlock(&hp
->happy_lock
);
2182 static int happy_meal_open(struct net_device
*dev
)
2184 struct happy_meal
*hp
= dev
->priv
;
2187 HMD(("happy_meal_open: "));
2189 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2190 * into a single source which we register handling at probe time.
2192 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
) {
2193 if (request_irq(dev
->irq
, &happy_meal_interrupt
,
2194 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2196 printk(KERN_ERR
"happy_meal(SBUS): Can't order irq %d to go.\n",
2203 HMD(("to happy_meal_init\n"));
2205 spin_lock_irq(&hp
->happy_lock
);
2206 res
= happy_meal_init(hp
);
2207 spin_unlock_irq(&hp
->happy_lock
);
2209 if (res
&& ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
))
2210 free_irq(dev
->irq
, dev
);
2214 static int happy_meal_close(struct net_device
*dev
)
2216 struct happy_meal
*hp
= dev
->priv
;
2218 spin_lock_irq(&hp
->happy_lock
);
2219 happy_meal_stop(hp
, hp
->gregs
);
2220 happy_meal_clean_rings(hp
);
2222 /* If auto-negotiation timer is running, kill it. */
2223 del_timer(&hp
->happy_timer
);
2225 spin_unlock_irq(&hp
->happy_lock
);
2227 /* On Quattro QFE cards, all hme interrupts are concentrated
2228 * into a single source which we register handling at probe
2229 * time and never unregister.
2231 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
)
2232 free_irq(dev
->irq
, dev
);
2238 #define SXD(x) printk x
2243 static void happy_meal_tx_timeout(struct net_device
*dev
)
2245 struct happy_meal
*hp
= dev
->priv
;
2247 printk (KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2249 printk (KERN_ERR
"%s: Happy Status %08x TX[%08x:%08x]\n", dev
->name
,
2250 hme_read32(hp
, hp
->gregs
+ GREG_STAT
),
2251 hme_read32(hp
, hp
->etxregs
+ ETX_CFG
),
2252 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
));
2254 spin_lock_irq(&hp
->happy_lock
);
2255 happy_meal_init(hp
);
2256 spin_unlock_irq(&hp
->happy_lock
);
2258 netif_wake_queue(dev
);
2261 static int happy_meal_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2263 struct happy_meal
*hp
= dev
->priv
;
2267 tx_flags
= TXFLAG_OWN
;
2268 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2269 const u32 csum_start_off
= skb_transport_offset(skb
);
2270 const u32 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2272 tx_flags
= (TXFLAG_OWN
| TXFLAG_CSENABLE
|
2273 ((csum_start_off
<< 14) & TXFLAG_CSBUFBEGIN
) |
2274 ((csum_stuff_off
<< 20) & TXFLAG_CSLOCATION
));
2277 spin_lock_irq(&hp
->happy_lock
);
2279 if (TX_BUFFS_AVAIL(hp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
2280 netif_stop_queue(dev
);
2281 spin_unlock_irq(&hp
->happy_lock
);
2282 printk(KERN_ERR
"%s: BUG! Tx Ring full when queue awake!\n",
2288 SXD(("SX<l[%d]e[%d]>", len
, entry
));
2289 hp
->tx_skbs
[entry
] = skb
;
2291 if (skb_shinfo(skb
)->nr_frags
== 0) {
2295 mapping
= hme_dma_map(hp
, skb
->data
, len
, DMA_TODEVICE
);
2296 tx_flags
|= (TXFLAG_SOP
| TXFLAG_EOP
);
2297 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2298 (tx_flags
| (len
& TXFLAG_SIZE
)),
2300 entry
= NEXT_TX(entry
);
2302 u32 first_len
, first_mapping
;
2303 int frag
, first_entry
= entry
;
2305 /* We must give this initial chunk to the device last.
2306 * Otherwise we could race with the device.
2308 first_len
= skb_headlen(skb
);
2309 first_mapping
= hme_dma_map(hp
, skb
->data
, first_len
, DMA_TODEVICE
);
2310 entry
= NEXT_TX(entry
);
2312 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
2313 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
2314 u32 len
, mapping
, this_txflags
;
2316 len
= this_frag
->size
;
2317 mapping
= hme_dma_map(hp
,
2318 ((void *) page_address(this_frag
->page
) +
2319 this_frag
->page_offset
),
2321 this_txflags
= tx_flags
;
2322 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
2323 this_txflags
|= TXFLAG_EOP
;
2324 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2325 (this_txflags
| (len
& TXFLAG_SIZE
)),
2327 entry
= NEXT_TX(entry
);
2329 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[first_entry
],
2330 (tx_flags
| TXFLAG_SOP
| (first_len
& TXFLAG_SIZE
)),
2336 if (TX_BUFFS_AVAIL(hp
) <= (MAX_SKB_FRAGS
+ 1))
2337 netif_stop_queue(dev
);
2340 hme_write32(hp
, hp
->etxregs
+ ETX_PENDING
, ETX_TP_DMAWAKEUP
);
2342 spin_unlock_irq(&hp
->happy_lock
);
2344 dev
->trans_start
= jiffies
;
2346 tx_add_log(hp
, TXLOG_ACTION_TXMIT
, 0);
2350 static struct net_device_stats
*happy_meal_get_stats(struct net_device
*dev
)
2352 struct happy_meal
*hp
= dev
->priv
;
2354 spin_lock_irq(&hp
->happy_lock
);
2355 happy_meal_get_counters(hp
, hp
->bigmacregs
);
2356 spin_unlock_irq(&hp
->happy_lock
);
2358 return &hp
->net_stats
;
2361 static void happy_meal_set_multicast(struct net_device
*dev
)
2363 struct happy_meal
*hp
= dev
->priv
;
2364 void __iomem
*bregs
= hp
->bigmacregs
;
2365 struct dev_mc_list
*dmi
= dev
->mc_list
;
2370 spin_lock_irq(&hp
->happy_lock
);
2372 netif_stop_queue(dev
);
2374 if ((dev
->flags
& IFF_ALLMULTI
) || (dev
->mc_count
> 64)) {
2375 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
2376 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
2377 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
2378 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
2379 } else if (dev
->flags
& IFF_PROMISC
) {
2380 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
2381 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_PMISC
);
2385 for (i
= 0; i
< 4; i
++)
2388 for (i
= 0; i
< dev
->mc_count
; i
++) {
2389 addrs
= dmi
->dmi_addr
;
2395 crc
= ether_crc_le(6, addrs
);
2397 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
2399 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
2400 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
2401 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
2402 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
2405 netif_wake_queue(dev
);
2407 spin_unlock_irq(&hp
->happy_lock
);
2410 /* Ethtool support... */
2411 static int hme_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2413 struct happy_meal
*hp
= dev
->priv
;
2416 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2417 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2418 SUPPORTED_Autoneg
| SUPPORTED_TP
| SUPPORTED_MII
);
2420 /* XXX hardcoded stuff for now */
2421 cmd
->port
= PORT_TP
; /* XXX no MII support */
2422 cmd
->transceiver
= XCVR_INTERNAL
; /* XXX no external xcvr support */
2423 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2425 /* Record PHY settings. */
2426 spin_lock_irq(&hp
->happy_lock
);
2427 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2428 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_LPA
);
2429 spin_unlock_irq(&hp
->happy_lock
);
2431 if (hp
->sw_bmcr
& BMCR_ANENABLE
) {
2432 cmd
->autoneg
= AUTONEG_ENABLE
;
2434 (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) ?
2435 SPEED_100
: SPEED_10
;
2436 if (cmd
->speed
== SPEED_100
)
2438 (hp
->sw_lpa
& (LPA_100FULL
)) ?
2439 DUPLEX_FULL
: DUPLEX_HALF
;
2442 (hp
->sw_lpa
& (LPA_10FULL
)) ?
2443 DUPLEX_FULL
: DUPLEX_HALF
;
2445 cmd
->autoneg
= AUTONEG_DISABLE
;
2447 (hp
->sw_bmcr
& BMCR_SPEED100
) ?
2448 SPEED_100
: SPEED_10
;
2450 (hp
->sw_bmcr
& BMCR_FULLDPLX
) ?
2451 DUPLEX_FULL
: DUPLEX_HALF
;
2456 static int hme_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2458 struct happy_meal
*hp
= dev
->priv
;
2460 /* Verify the settings we care about. */
2461 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2462 cmd
->autoneg
!= AUTONEG_DISABLE
)
2464 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2465 ((cmd
->speed
!= SPEED_100
&&
2466 cmd
->speed
!= SPEED_10
) ||
2467 (cmd
->duplex
!= DUPLEX_HALF
&&
2468 cmd
->duplex
!= DUPLEX_FULL
)))
2471 /* Ok, do it to it. */
2472 spin_lock_irq(&hp
->happy_lock
);
2473 del_timer(&hp
->happy_timer
);
2474 happy_meal_begin_auto_negotiation(hp
, hp
->tcvregs
, cmd
);
2475 spin_unlock_irq(&hp
->happy_lock
);
2480 static void hme_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2482 struct happy_meal
*hp
= dev
->priv
;
2484 strcpy(info
->driver
, "sunhme");
2485 strcpy(info
->version
, "2.02");
2486 if (hp
->happy_flags
& HFLAG_PCI
) {
2487 struct pci_dev
*pdev
= hp
->happy_dev
;
2488 strcpy(info
->bus_info
, pci_name(pdev
));
2492 struct sbus_dev
*sdev
= hp
->happy_dev
;
2493 sprintf(info
->bus_info
, "SBUS:%d",
2499 static u32
hme_get_link(struct net_device
*dev
)
2501 struct happy_meal
*hp
= dev
->priv
;
2503 spin_lock_irq(&hp
->happy_lock
);
2504 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2505 spin_unlock_irq(&hp
->happy_lock
);
2507 return (hp
->sw_bmsr
& BMSR_LSTATUS
);
2510 static const struct ethtool_ops hme_ethtool_ops
= {
2511 .get_settings
= hme_get_settings
,
2512 .set_settings
= hme_set_settings
,
2513 .get_drvinfo
= hme_get_drvinfo
,
2514 .get_link
= hme_get_link
,
2517 static int hme_version_printed
;
2520 void __devinit
quattro_get_ranges(struct quattro
*qp
)
2522 struct sbus_dev
*sdev
= qp
->quattro_dev
;
2525 err
= prom_getproperty(sdev
->prom_node
,
2527 (char *)&qp
->ranges
[0],
2528 sizeof(qp
->ranges
));
2529 if (err
== 0 || err
== -1) {
2533 qp
->nranges
= (err
/ sizeof(struct linux_prom_ranges
));
2536 static void __devinit
quattro_apply_ranges(struct quattro
*qp
, struct happy_meal
*hp
)
2538 struct sbus_dev
*sdev
= hp
->happy_dev
;
2541 for (rng
= 0; rng
< qp
->nranges
; rng
++) {
2542 struct linux_prom_ranges
*rngp
= &qp
->ranges
[rng
];
2545 for (reg
= 0; reg
< 5; reg
++) {
2546 if (sdev
->reg_addrs
[reg
].which_io
==
2547 rngp
->ot_child_space
)
2553 sdev
->reg_addrs
[reg
].which_io
= rngp
->ot_parent_space
;
2554 sdev
->reg_addrs
[reg
].phys_addr
+= rngp
->ot_parent_base
;
2558 /* Given a happy meal sbus device, find it's quattro parent.
2559 * If none exist, allocate and return a new one.
2561 * Return NULL on failure.
2563 static struct quattro
* __devinit
quattro_sbus_find(struct sbus_dev
*goal_sdev
)
2565 struct sbus_dev
*sdev
;
2569 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2570 for (i
= 0, sdev
= qp
->quattro_dev
;
2571 (sdev
!= NULL
) && (i
< 4);
2572 sdev
= sdev
->next
, i
++) {
2573 if (sdev
== goal_sdev
)
2578 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2582 for (i
= 0; i
< 4; i
++)
2583 qp
->happy_meals
[i
] = NULL
;
2585 qp
->quattro_dev
= goal_sdev
;
2586 qp
->next
= qfe_sbus_list
;
2588 quattro_get_ranges(qp
);
2593 /* After all quattro cards have been probed, we call these functions
2594 * to register the IRQ handlers.
2596 static void __init
quattro_sbus_register_irqs(void)
2600 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2601 struct sbus_dev
*sdev
= qp
->quattro_dev
;
2604 err
= request_irq(sdev
->irqs
[0],
2605 quattro_sbus_interrupt
,
2606 IRQF_SHARED
, "Quattro",
2609 printk(KERN_ERR
"Quattro: Fatal IRQ registery error %d.\n", err
);
2610 panic("QFE request irq");
2615 static void quattro_sbus_free_irqs(void)
2619 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2620 struct sbus_dev
*sdev
= qp
->quattro_dev
;
2622 free_irq(sdev
->irqs
[0], qp
);
2625 #endif /* CONFIG_SBUS */
2628 static struct quattro
* __init
quattro_pci_find(struct pci_dev
*pdev
)
2630 struct pci_dev
*bdev
= pdev
->bus
->self
;
2633 if (!bdev
) return NULL
;
2634 for (qp
= qfe_pci_list
; qp
!= NULL
; qp
= qp
->next
) {
2635 struct pci_dev
*qpdev
= qp
->quattro_dev
;
2640 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2644 for (i
= 0; i
< 4; i
++)
2645 qp
->happy_meals
[i
] = NULL
;
2647 qp
->quattro_dev
= bdev
;
2648 qp
->next
= qfe_pci_list
;
2651 /* No range tricks necessary on PCI. */
2656 #endif /* CONFIG_PCI */
2659 static int __devinit
happy_meal_sbus_probe_one(struct sbus_dev
*sdev
, int is_qfe
)
2661 struct device_node
*dp
= sdev
->ofdev
.node
;
2662 struct quattro
*qp
= NULL
;
2663 struct happy_meal
*hp
;
2664 struct net_device
*dev
;
2665 int i
, qfe_slot
= -1;
2669 qp
= quattro_sbus_find(sdev
);
2672 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
2673 if (qp
->happy_meals
[qfe_slot
] == NULL
)
2680 dev
= alloc_etherdev(sizeof(struct happy_meal
));
2683 SET_MODULE_OWNER(dev
);
2684 SET_NETDEV_DEV(dev
, &sdev
->ofdev
.dev
);
2686 if (hme_version_printed
++ == 0)
2687 printk(KERN_INFO
"%s", version
);
2689 /* If user did not specify a MAC address specifically, use
2690 * the Quattro local-mac-address property...
2692 for (i
= 0; i
< 6; i
++) {
2693 if (macaddr
[i
] != 0)
2696 if (i
< 6) { /* a mac address was given */
2697 for (i
= 0; i
< 6; i
++)
2698 dev
->dev_addr
[i
] = macaddr
[i
];
2701 const unsigned char *addr
;
2704 addr
= of_get_property(dp
, "local-mac-address", &len
);
2706 if (qfe_slot
!= -1 && addr
&& len
== 6)
2707 memcpy(dev
->dev_addr
, addr
, 6);
2709 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2714 hp
->happy_dev
= sdev
;
2716 spin_lock_init(&hp
->happy_lock
);
2719 if (sdev
->num_registers
!= 5) {
2720 printk(KERN_ERR
"happymeal: Device needs 5 regs, has %d.\n",
2721 sdev
->num_registers
);
2722 goto err_out_free_netdev
;
2726 hp
->qfe_parent
= qp
;
2727 hp
->qfe_ent
= qfe_slot
;
2728 qp
->happy_meals
[qfe_slot
] = dev
;
2729 quattro_apply_ranges(qp
, hp
);
2732 hp
->gregs
= sbus_ioremap(&sdev
->resource
[0], 0,
2733 GREG_REG_SIZE
, "HME Global Regs");
2735 printk(KERN_ERR
"happymeal: Cannot map global registers.\n");
2736 goto err_out_free_netdev
;
2739 hp
->etxregs
= sbus_ioremap(&sdev
->resource
[1], 0,
2740 ETX_REG_SIZE
, "HME TX Regs");
2742 printk(KERN_ERR
"happymeal: Cannot map MAC TX registers.\n");
2743 goto err_out_iounmap
;
2746 hp
->erxregs
= sbus_ioremap(&sdev
->resource
[2], 0,
2747 ERX_REG_SIZE
, "HME RX Regs");
2749 printk(KERN_ERR
"happymeal: Cannot map MAC RX registers.\n");
2750 goto err_out_iounmap
;
2753 hp
->bigmacregs
= sbus_ioremap(&sdev
->resource
[3], 0,
2754 BMAC_REG_SIZE
, "HME BIGMAC Regs");
2755 if (!hp
->bigmacregs
) {
2756 printk(KERN_ERR
"happymeal: Cannot map BIGMAC registers.\n");
2757 goto err_out_iounmap
;
2760 hp
->tcvregs
= sbus_ioremap(&sdev
->resource
[4], 0,
2761 TCVR_REG_SIZE
, "HME Tranceiver Regs");
2763 printk(KERN_ERR
"happymeal: Cannot map TCVR registers.\n");
2764 goto err_out_iounmap
;
2767 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
2768 if (hp
->hm_revision
== 0xff)
2769 hp
->hm_revision
= 0xa0;
2771 /* Now enable the feature flags we can. */
2772 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
2773 hp
->happy_flags
= HFLAG_20_21
;
2774 else if (hp
->hm_revision
!= 0xa0)
2775 hp
->happy_flags
= HFLAG_NOT_A0
;
2778 hp
->happy_flags
|= HFLAG_QUATTRO
;
2780 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2781 hp
->happy_bursts
= of_getintprop_default(sdev
->bus
->ofdev
.node
,
2782 "burst-sizes", 0x00);
2784 hp
->happy_block
= sbus_alloc_consistent(hp
->happy_dev
,
2788 if (!hp
->happy_block
) {
2789 printk(KERN_ERR
"happymeal: Cannot allocate descriptors.\n");
2790 goto err_out_iounmap
;
2793 /* Force check of the link first time we are brought up. */
2796 /* Force timer state to 'asleep' with count of zero. */
2797 hp
->timer_state
= asleep
;
2798 hp
->timer_ticks
= 0;
2800 init_timer(&hp
->happy_timer
);
2803 dev
->open
= &happy_meal_open
;
2804 dev
->stop
= &happy_meal_close
;
2805 dev
->hard_start_xmit
= &happy_meal_start_xmit
;
2806 dev
->get_stats
= &happy_meal_get_stats
;
2807 dev
->set_multicast_list
= &happy_meal_set_multicast
;
2808 dev
->tx_timeout
= &happy_meal_tx_timeout
;
2809 dev
->watchdog_timeo
= 5*HZ
;
2810 dev
->ethtool_ops
= &hme_ethtool_ops
;
2812 /* Happy Meal can do it all... except VLAN. */
2813 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_VLAN_CHALLENGED
;
2815 dev
->irq
= sdev
->irqs
[0];
2817 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2818 /* Hook up PCI register/dma accessors. */
2819 hp
->read_desc32
= sbus_hme_read_desc32
;
2820 hp
->write_txd
= sbus_hme_write_txd
;
2821 hp
->write_rxd
= sbus_hme_write_rxd
;
2822 hp
->dma_map
= (u32 (*)(void *, void *, long, int))sbus_map_single
;
2823 hp
->dma_unmap
= (void (*)(void *, u32
, long, int))sbus_unmap_single
;
2824 hp
->dma_sync_for_cpu
= (void (*)(void *, u32
, long, int))
2825 sbus_dma_sync_single_for_cpu
;
2826 hp
->dma_sync_for_device
= (void (*)(void *, u32
, long, int))
2827 sbus_dma_sync_single_for_device
;
2828 hp
->read32
= sbus_hme_read32
;
2829 hp
->write32
= sbus_hme_write32
;
2832 /* Grrr, Happy Meal comes up by default not advertising
2833 * full duplex 100baseT capabilities, fix this.
2835 spin_lock_irq(&hp
->happy_lock
);
2836 happy_meal_set_initial_advertisement(hp
);
2837 spin_unlock_irq(&hp
->happy_lock
);
2839 if (register_netdev(hp
->dev
)) {
2840 printk(KERN_ERR
"happymeal: Cannot register net device, "
2842 goto err_out_free_consistent
;
2845 dev_set_drvdata(&sdev
->ofdev
.dev
, hp
);
2848 printk(KERN_INFO
"%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2849 dev
->name
, qfe_slot
);
2851 printk(KERN_INFO
"%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2854 for (i
= 0; i
< 6; i
++)
2856 dev
->dev_addr
[i
], i
== 5 ? ' ' : ':');
2861 err_out_free_consistent
:
2862 sbus_free_consistent(hp
->happy_dev
,
2869 sbus_iounmap(hp
->gregs
, GREG_REG_SIZE
);
2871 sbus_iounmap(hp
->etxregs
, ETX_REG_SIZE
);
2873 sbus_iounmap(hp
->erxregs
, ERX_REG_SIZE
);
2875 sbus_iounmap(hp
->bigmacregs
, BMAC_REG_SIZE
);
2877 sbus_iounmap(hp
->tcvregs
, TCVR_REG_SIZE
);
2879 err_out_free_netdev
:
2888 #ifndef CONFIG_SPARC
2889 static int is_quattro_p(struct pci_dev
*pdev
)
2891 struct pci_dev
*busdev
= pdev
->bus
->self
;
2892 struct list_head
*tmp
;
2895 if (busdev
== NULL
||
2896 busdev
->vendor
!= PCI_VENDOR_ID_DEC
||
2897 busdev
->device
!= PCI_DEVICE_ID_DEC_21153
)
2901 tmp
= pdev
->bus
->devices
.next
;
2902 while (tmp
!= &pdev
->bus
->devices
) {
2903 struct pci_dev
*this_pdev
= pci_dev_b(tmp
);
2905 if (this_pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2906 this_pdev
->device
== PCI_DEVICE_ID_SUN_HAPPYMEAL
)
2918 /* Fetch MAC address from vital product data of PCI ROM. */
2919 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, int index
, unsigned char *dev_addr
)
2923 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2924 void __iomem
*p
= rom_base
+ this_offset
;
2926 if (readb(p
+ 0) != 0x90 ||
2927 readb(p
+ 1) != 0x00 ||
2928 readb(p
+ 2) != 0x09 ||
2929 readb(p
+ 3) != 0x4e ||
2930 readb(p
+ 4) != 0x41 ||
2931 readb(p
+ 5) != 0x06)
2940 for (i
= 0; i
< 6; i
++)
2941 dev_addr
[i
] = readb(p
+ i
);
2949 static void get_hme_mac_nonsparc(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2952 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2958 if (is_quattro_p(pdev
))
2959 index
= PCI_SLOT(pdev
->devfn
);
2961 found
= readb(p
) == 0x55 &&
2962 readb(p
+ 1) == 0xaa &&
2963 find_eth_addr_in_vpd(p
, (64 * 1024), index
, dev_addr
);
2964 pci_unmap_rom(pdev
, p
);
2969 /* Sun MAC prefix then 3 random bytes. */
2973 get_random_bytes(&dev_addr
[3], 3);
2976 #endif /* !(CONFIG_SPARC) */
2978 static int __devinit
happy_meal_pci_probe(struct pci_dev
*pdev
,
2979 const struct pci_device_id
*ent
)
2981 struct quattro
*qp
= NULL
;
2983 struct device_node
*dp
;
2985 struct happy_meal
*hp
;
2986 struct net_device
*dev
;
2987 void __iomem
*hpreg_base
;
2988 unsigned long hpreg_res
;
2989 int i
, qfe_slot
= -1;
2993 /* Now make sure pci_dev cookie is there. */
2995 dp
= pci_device_to_OF_node(pdev
);
2996 strcpy(prom_name
, dp
->name
);
2998 if (is_quattro_p(pdev
))
2999 strcpy(prom_name
, "SUNW,qfe");
3001 strcpy(prom_name
, "SUNW,hme");
3006 if (pci_enable_device(pdev
))
3008 pci_set_master(pdev
);
3010 if (!strcmp(prom_name
, "SUNW,qfe") || !strcmp(prom_name
, "qfe")) {
3011 qp
= quattro_pci_find(pdev
);
3014 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
3015 if (qp
->happy_meals
[qfe_slot
] == NULL
)
3021 dev
= alloc_etherdev(sizeof(struct happy_meal
));
3025 SET_MODULE_OWNER(dev
);
3026 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3028 if (hme_version_printed
++ == 0)
3029 printk(KERN_INFO
"%s", version
);
3031 dev
->base_addr
= (long) pdev
;
3033 hp
= (struct happy_meal
*)dev
->priv
;
3034 memset(hp
, 0, sizeof(*hp
));
3036 hp
->happy_dev
= pdev
;
3038 spin_lock_init(&hp
->happy_lock
);
3041 hp
->qfe_parent
= qp
;
3042 hp
->qfe_ent
= qfe_slot
;
3043 qp
->happy_meals
[qfe_slot
] = dev
;
3046 hpreg_res
= pci_resource_start(pdev
, 0);
3048 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3049 printk(KERN_ERR
"happymeal(PCI): Cannot find proper PCI device base address.\n");
3050 goto err_out_clear_quattro
;
3052 if (pci_request_regions(pdev
, DRV_NAME
)) {
3053 printk(KERN_ERR
"happymeal(PCI): Cannot obtain PCI resources, "
3055 goto err_out_clear_quattro
;
3058 if ((hpreg_base
= ioremap(hpreg_res
, 0x8000)) == 0) {
3059 printk(KERN_ERR
"happymeal(PCI): Unable to remap card memory.\n");
3060 goto err_out_free_res
;
3063 for (i
= 0; i
< 6; i
++) {
3064 if (macaddr
[i
] != 0)
3067 if (i
< 6) { /* a mac address was given */
3068 for (i
= 0; i
< 6; i
++)
3069 dev
->dev_addr
[i
] = macaddr
[i
];
3073 const unsigned char *addr
;
3076 if (qfe_slot
!= -1 &&
3077 (addr
= of_get_property(dp
,
3078 "local-mac-address", &len
)) != NULL
3080 memcpy(dev
->dev_addr
, addr
, 6);
3082 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
3085 get_hme_mac_nonsparc(pdev
, &dev
->dev_addr
[0]);
3089 /* Layout registers. */
3090 hp
->gregs
= (hpreg_base
+ 0x0000UL
);
3091 hp
->etxregs
= (hpreg_base
+ 0x2000UL
);
3092 hp
->erxregs
= (hpreg_base
+ 0x4000UL
);
3093 hp
->bigmacregs
= (hpreg_base
+ 0x6000UL
);
3094 hp
->tcvregs
= (hpreg_base
+ 0x7000UL
);
3097 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
3098 if (hp
->hm_revision
== 0xff) {
3101 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &prev
);
3102 hp
->hm_revision
= 0xc0 | (prev
& 0x0f);
3105 /* works with this on non-sparc hosts */
3106 hp
->hm_revision
= 0x20;
3109 /* Now enable the feature flags we can. */
3110 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
3111 hp
->happy_flags
= HFLAG_20_21
;
3112 else if (hp
->hm_revision
!= 0xa0 && hp
->hm_revision
!= 0xc0)
3113 hp
->happy_flags
= HFLAG_NOT_A0
;
3116 hp
->happy_flags
|= HFLAG_QUATTRO
;
3118 /* And of course, indicate this is PCI. */
3119 hp
->happy_flags
|= HFLAG_PCI
;
3122 /* Assume PCI happy meals can handle all burst sizes. */
3123 hp
->happy_bursts
= DMA_BURSTBITS
;
3126 hp
->happy_block
= (struct hmeal_init_block
*)
3127 pci_alloc_consistent(pdev
, PAGE_SIZE
, &hp
->hblock_dvma
);
3130 if (!hp
->happy_block
) {
3131 printk(KERN_ERR
"happymeal(PCI): Cannot get hme init block.\n");
3132 goto err_out_iounmap
;
3136 hp
->timer_state
= asleep
;
3137 hp
->timer_ticks
= 0;
3139 init_timer(&hp
->happy_timer
);
3142 dev
->open
= &happy_meal_open
;
3143 dev
->stop
= &happy_meal_close
;
3144 dev
->hard_start_xmit
= &happy_meal_start_xmit
;
3145 dev
->get_stats
= &happy_meal_get_stats
;
3146 dev
->set_multicast_list
= &happy_meal_set_multicast
;
3147 dev
->tx_timeout
= &happy_meal_tx_timeout
;
3148 dev
->watchdog_timeo
= 5*HZ
;
3149 dev
->ethtool_ops
= &hme_ethtool_ops
;
3150 dev
->irq
= pdev
->irq
;
3153 /* Happy Meal can do it all... */
3154 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
3156 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3157 /* Hook up PCI register/dma accessors. */
3158 hp
->read_desc32
= pci_hme_read_desc32
;
3159 hp
->write_txd
= pci_hme_write_txd
;
3160 hp
->write_rxd
= pci_hme_write_rxd
;
3161 hp
->dma_map
= (u32 (*)(void *, void *, long, int))pci_map_single
;
3162 hp
->dma_unmap
= (void (*)(void *, u32
, long, int))pci_unmap_single
;
3163 hp
->dma_sync_for_cpu
= (void (*)(void *, u32
, long, int))
3164 pci_dma_sync_single_for_cpu
;
3165 hp
->dma_sync_for_device
= (void (*)(void *, u32
, long, int))
3166 pci_dma_sync_single_for_device
;
3167 hp
->read32
= pci_hme_read32
;
3168 hp
->write32
= pci_hme_write32
;
3171 /* Grrr, Happy Meal comes up by default not advertising
3172 * full duplex 100baseT capabilities, fix this.
3174 spin_lock_irq(&hp
->happy_lock
);
3175 happy_meal_set_initial_advertisement(hp
);
3176 spin_unlock_irq(&hp
->happy_lock
);
3178 if (register_netdev(hp
->dev
)) {
3179 printk(KERN_ERR
"happymeal(PCI): Cannot register net device, "
3181 goto err_out_iounmap
;
3184 dev_set_drvdata(&pdev
->dev
, hp
);
3187 struct pci_dev
*qpdev
= qp
->quattro_dev
;
3190 if (!strncmp(dev
->name
, "eth", 3)) {
3191 int i
= simple_strtoul(dev
->name
+ 3, NULL
, 10);
3192 sprintf(prom_name
, "-%d", i
+ 3);
3194 printk(KERN_INFO
"%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev
->name
, prom_name
);
3195 if (qpdev
->vendor
== PCI_VENDOR_ID_DEC
&&
3196 qpdev
->device
== PCI_DEVICE_ID_DEC_21153
)
3197 printk("DEC 21153 PCI Bridge\n");
3199 printk("unknown bridge %04x.%04x\n",
3200 qpdev
->vendor
, qpdev
->device
);
3204 printk(KERN_INFO
"%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3205 dev
->name
, qfe_slot
);
3207 printk(KERN_INFO
"%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3210 for (i
= 0; i
< 6; i
++)
3211 printk("%2.2x%c", dev
->dev_addr
[i
], i
== 5 ? ' ' : ':');
3221 pci_release_regions(pdev
);
3223 err_out_clear_quattro
:
3225 qp
->happy_meals
[qfe_slot
] = NULL
;
3233 static void __devexit
happy_meal_pci_remove(struct pci_dev
*pdev
)
3235 struct happy_meal
*hp
= dev_get_drvdata(&pdev
->dev
);
3236 struct net_device
*net_dev
= hp
->dev
;
3238 unregister_netdev(net_dev
);
3240 pci_free_consistent(hp
->happy_dev
,
3245 pci_release_regions(hp
->happy_dev
);
3247 free_netdev(net_dev
);
3249 dev_set_drvdata(&pdev
->dev
, NULL
);
3252 static struct pci_device_id happymeal_pci_ids
[] = {
3253 { PCI_DEVICE(PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_HAPPYMEAL
) },
3254 { } /* Terminating entry */
3257 MODULE_DEVICE_TABLE(pci
, happymeal_pci_ids
);
3259 static struct pci_driver hme_pci_driver
= {
3261 .id_table
= happymeal_pci_ids
,
3262 .probe
= happy_meal_pci_probe
,
3263 .remove
= __devexit_p(happy_meal_pci_remove
),
3266 static int __init
happy_meal_pci_init(void)
3268 return pci_register_driver(&hme_pci_driver
);
3271 static void happy_meal_pci_exit(void)
3273 pci_unregister_driver(&hme_pci_driver
);
3275 while (qfe_pci_list
) {
3276 struct quattro
*qfe
= qfe_pci_list
;
3277 struct quattro
*next
= qfe
->next
;
3281 qfe_pci_list
= next
;
3288 static int __devinit
hme_sbus_probe(struct of_device
*dev
, const struct of_device_id
*match
)
3290 struct sbus_dev
*sdev
= to_sbus_device(&dev
->dev
);
3291 struct device_node
*dp
= dev
->node
;
3292 const char *model
= of_get_property(dp
, "model", NULL
);
3293 int is_qfe
= (match
->data
!= NULL
);
3295 if (!is_qfe
&& model
&& !strcmp(model
, "SUNW,sbus-qfe"))
3298 return happy_meal_sbus_probe_one(sdev
, is_qfe
);
3301 static int __devexit
hme_sbus_remove(struct of_device
*dev
)
3303 struct happy_meal
*hp
= dev_get_drvdata(&dev
->dev
);
3304 struct net_device
*net_dev
= hp
->dev
;
3306 unregister_netdev(net_dev
);
3308 /* XXX qfe parent interrupt... */
3310 sbus_iounmap(hp
->gregs
, GREG_REG_SIZE
);
3311 sbus_iounmap(hp
->etxregs
, ETX_REG_SIZE
);
3312 sbus_iounmap(hp
->erxregs
, ERX_REG_SIZE
);
3313 sbus_iounmap(hp
->bigmacregs
, BMAC_REG_SIZE
);
3314 sbus_iounmap(hp
->tcvregs
, TCVR_REG_SIZE
);
3315 sbus_free_consistent(hp
->happy_dev
,
3320 free_netdev(net_dev
);
3322 dev_set_drvdata(&dev
->dev
, NULL
);
3327 static struct of_device_id hme_sbus_match
[] = {
3342 MODULE_DEVICE_TABLE(of
, hme_sbus_match
);
3344 static struct of_platform_driver hme_sbus_driver
= {
3346 .match_table
= hme_sbus_match
,
3347 .probe
= hme_sbus_probe
,
3348 .remove
= __devexit_p(hme_sbus_remove
),
3351 static int __init
happy_meal_sbus_init(void)
3355 err
= of_register_driver(&hme_sbus_driver
, &sbus_bus_type
);
3357 quattro_sbus_register_irqs();
3362 static void happy_meal_sbus_exit(void)
3364 of_unregister_driver(&hme_sbus_driver
);
3365 quattro_sbus_free_irqs();
3367 while (qfe_sbus_list
) {
3368 struct quattro
*qfe
= qfe_sbus_list
;
3369 struct quattro
*next
= qfe
->next
;
3373 qfe_sbus_list
= next
;
3378 static int __init
happy_meal_probe(void)
3383 err
= happy_meal_sbus_init();
3387 err
= happy_meal_pci_init();
3390 happy_meal_sbus_exit();
3399 static void __exit
happy_meal_exit(void)
3402 happy_meal_sbus_exit();
3405 happy_meal_pci_exit();
3409 module_init(happy_meal_probe
);
3410 module_exit(happy_meal_exit
);