2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
82 #include <linux/platform_device.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
98 #include "gianfar_mii.h"
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
108 #define RECEIVE(x) netif_rx(x)
111 const char gfar_driver_name
[] = "Gianfar Ethernet";
112 const char gfar_driver_version
[] = "1.3";
114 static int gfar_enet_open(struct net_device
*dev
);
115 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
116 static void gfar_timeout(struct net_device
*dev
);
117 static int gfar_close(struct net_device
*dev
);
118 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
119 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
120 static int gfar_set_mac_address(struct net_device
*dev
);
121 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
122 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
123 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
124 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
125 static void adjust_link(struct net_device
*dev
);
126 static void init_registers(struct net_device
*dev
);
127 static int init_phy(struct net_device
*dev
);
128 static int gfar_probe(struct platform_device
*pdev
);
129 static int gfar_remove(struct platform_device
*pdev
);
130 static void free_skb_resources(struct gfar_private
*priv
);
131 static void gfar_set_multi(struct net_device
*dev
);
132 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
133 #ifdef CONFIG_GFAR_NAPI
134 static int gfar_poll(struct net_device
*dev
, int *budget
);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device
*dev
);
139 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
140 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
141 static void gfar_vlan_rx_register(struct net_device
*netdev
,
142 struct vlan_group
*grp
);
143 void gfar_halt(struct net_device
*dev
);
144 void gfar_start(struct net_device
*dev
);
145 static void gfar_clear_exact_match(struct net_device
*dev
);
146 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
148 extern const struct ethtool_ops gfar_ethtool_ops
;
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
154 /* Returns 1 if incoming frames use an FCB */
155 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
157 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
160 /* Set up the ethernet device structure, private data,
161 * and anything else we need before we start */
162 static int gfar_probe(struct platform_device
*pdev
)
165 struct net_device
*dev
= NULL
;
166 struct gfar_private
*priv
= NULL
;
167 struct gianfar_platform_data
*einfo
;
172 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
175 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
181 /* Create an ethernet device instance */
182 dev
= alloc_etherdev(sizeof (*priv
));
187 priv
= netdev_priv(dev
);
189 /* Set the info in the priv to the current info */
192 /* fill out IRQ fields */
193 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
194 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
195 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
196 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
197 if (priv
->interruptTransmit
< 0 || priv
->interruptReceive
< 0 || priv
->interruptError
< 0)
200 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
201 if (priv
->interruptTransmit
< 0)
205 /* get a pointer to the register memory */
206 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
207 priv
->regs
= ioremap(r
->start
, sizeof (struct gfar
));
209 if (NULL
== priv
->regs
) {
214 spin_lock_init(&priv
->txlock
);
215 spin_lock_init(&priv
->rxlock
);
217 platform_set_drvdata(pdev
, dev
);
219 /* Stop the DMA engine now, in case it was running before */
220 /* (The firmware could have used it, and left it running). */
221 /* To do this, we write Graceful Receive Stop and Graceful */
222 /* Transmit Stop, and then wait until the corresponding bits */
223 /* in IEVENT indicate the stops have completed. */
224 tempval
= gfar_read(&priv
->regs
->dmactrl
);
225 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
226 gfar_write(&priv
->regs
->dmactrl
, tempval
);
228 tempval
= gfar_read(&priv
->regs
->dmactrl
);
229 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
230 gfar_write(&priv
->regs
->dmactrl
, tempval
);
232 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
235 /* Reset MAC layer */
236 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
238 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
239 gfar_write(&priv
->regs
->maccfg1
, tempval
);
241 /* Initialize MACCFG2. */
242 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
244 /* Initialize ECNTRL */
245 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
247 /* Copy the station address into the dev structure, */
248 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
250 /* Set the dev->base_addr to the gfar reg region */
251 dev
->base_addr
= (unsigned long) (priv
->regs
);
253 SET_MODULE_OWNER(dev
);
254 SET_NETDEV_DEV(dev
, &pdev
->dev
);
256 /* Fill in the dev structure */
257 dev
->open
= gfar_enet_open
;
258 dev
->hard_start_xmit
= gfar_start_xmit
;
259 dev
->tx_timeout
= gfar_timeout
;
260 dev
->watchdog_timeo
= TX_TIMEOUT
;
261 #ifdef CONFIG_GFAR_NAPI
262 dev
->poll
= gfar_poll
;
263 dev
->weight
= GFAR_DEV_WEIGHT
;
265 #ifdef CONFIG_NET_POLL_CONTROLLER
266 dev
->poll_controller
= gfar_netpoll
;
268 dev
->stop
= gfar_close
;
269 dev
->get_stats
= gfar_get_stats
;
270 dev
->change_mtu
= gfar_change_mtu
;
272 dev
->set_multicast_list
= gfar_set_multi
;
274 dev
->ethtool_ops
= &gfar_ethtool_ops
;
276 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
277 priv
->rx_csum_enable
= 1;
278 dev
->features
|= NETIF_F_IP_CSUM
;
280 priv
->rx_csum_enable
= 0;
284 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
285 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
287 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
289 priv
->vlan_enable
= 1;
292 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
293 priv
->extended_hash
= 1;
294 priv
->hash_width
= 9;
296 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
297 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
298 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
299 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
300 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
301 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
302 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
303 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
304 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
305 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
306 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
307 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
308 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
309 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
310 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
311 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
314 priv
->extended_hash
= 0;
315 priv
->hash_width
= 8;
317 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
318 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
319 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
320 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
321 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
322 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
323 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
324 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
327 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
328 priv
->padding
= DEFAULT_PADDING
;
332 if (dev
->features
& NETIF_F_IP_CSUM
)
333 dev
->hard_header_len
+= GMAC_FCB_LEN
;
335 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
336 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
337 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
339 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
340 priv
->txcount
= DEFAULT_TXCOUNT
;
341 priv
->txtime
= DEFAULT_TXTIME
;
342 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
343 priv
->rxcount
= DEFAULT_RXCOUNT
;
344 priv
->rxtime
= DEFAULT_RXTIME
;
346 /* Enable most messages by default */
347 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
349 err
= register_netdev(dev
);
352 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
357 /* Create all the sysfs files */
358 gfar_init_sysfs(dev
);
360 /* Print out the device info */
361 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
362 for (idx
= 0; idx
< 6; idx
++)
363 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
366 /* Even more device info helps when determining which kernel */
367 /* provided which set of benchmarks. */
368 #ifdef CONFIG_GFAR_NAPI
369 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
371 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
373 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
374 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
385 static int gfar_remove(struct platform_device
*pdev
)
387 struct net_device
*dev
= platform_get_drvdata(pdev
);
388 struct gfar_private
*priv
= netdev_priv(dev
);
390 platform_set_drvdata(pdev
, NULL
);
399 /* Reads the controller's registers to determine what interface
400 * connects it to the PHY.
402 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
404 struct gfar_private
*priv
= netdev_priv(dev
);
405 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
407 if (ecntrl
& ECNTRL_SGMII_MODE
)
408 return PHY_INTERFACE_MODE_SGMII
;
410 if (ecntrl
& ECNTRL_TBI_MODE
) {
411 if (ecntrl
& ECNTRL_REDUCED_MODE
)
412 return PHY_INTERFACE_MODE_RTBI
;
414 return PHY_INTERFACE_MODE_TBI
;
417 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
418 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
419 return PHY_INTERFACE_MODE_RMII
;
421 return PHY_INTERFACE_MODE_RGMII
;
424 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
425 return PHY_INTERFACE_MODE_GMII
;
427 return PHY_INTERFACE_MODE_MII
;
431 /* Initializes driver's PHY state, and attaches to the PHY.
432 * Returns 0 on success.
434 static int init_phy(struct net_device
*dev
)
436 struct gfar_private
*priv
= netdev_priv(dev
);
437 uint gigabit_support
=
438 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
439 SUPPORTED_1000baseT_Full
: 0;
440 struct phy_device
*phydev
;
441 char phy_id
[BUS_ID_SIZE
];
442 phy_interface_t interface
;
446 priv
->oldduplex
= -1;
448 snprintf(phy_id
, BUS_ID_SIZE
, PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
450 interface
= gfar_get_interface(dev
);
452 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0, interface
);
454 if (IS_ERR(phydev
)) {
455 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
456 return PTR_ERR(phydev
);
459 /* Remove any features not supported by the controller */
460 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
461 phydev
->advertising
= phydev
->supported
;
463 priv
->phydev
= phydev
;
468 static void init_registers(struct net_device
*dev
)
470 struct gfar_private
*priv
= netdev_priv(dev
);
473 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
475 /* Initialize IMASK */
476 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
478 /* Init hash registers to zero */
479 gfar_write(&priv
->regs
->igaddr0
, 0);
480 gfar_write(&priv
->regs
->igaddr1
, 0);
481 gfar_write(&priv
->regs
->igaddr2
, 0);
482 gfar_write(&priv
->regs
->igaddr3
, 0);
483 gfar_write(&priv
->regs
->igaddr4
, 0);
484 gfar_write(&priv
->regs
->igaddr5
, 0);
485 gfar_write(&priv
->regs
->igaddr6
, 0);
486 gfar_write(&priv
->regs
->igaddr7
, 0);
488 gfar_write(&priv
->regs
->gaddr0
, 0);
489 gfar_write(&priv
->regs
->gaddr1
, 0);
490 gfar_write(&priv
->regs
->gaddr2
, 0);
491 gfar_write(&priv
->regs
->gaddr3
, 0);
492 gfar_write(&priv
->regs
->gaddr4
, 0);
493 gfar_write(&priv
->regs
->gaddr5
, 0);
494 gfar_write(&priv
->regs
->gaddr6
, 0);
495 gfar_write(&priv
->regs
->gaddr7
, 0);
497 /* Zero out the rmon mib registers if it has them */
498 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
499 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
501 /* Mask off the CAM interrupts */
502 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
503 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
506 /* Initialize the max receive buffer length */
507 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
509 /* Initialize the Minimum Frame Length Register */
510 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
512 /* Assign the TBI an address which won't conflict with the PHYs */
513 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
517 /* Halt the receive and transmit queues */
518 void gfar_halt(struct net_device
*dev
)
520 struct gfar_private
*priv
= netdev_priv(dev
);
521 struct gfar __iomem
*regs
= priv
->regs
;
524 /* Mask all interrupts */
525 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
527 /* Clear all interrupts */
528 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
530 /* Stop the DMA, and wait for it to stop */
531 tempval
= gfar_read(&priv
->regs
->dmactrl
);
532 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
533 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
534 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
535 gfar_write(&priv
->regs
->dmactrl
, tempval
);
537 while (!(gfar_read(&priv
->regs
->ievent
) &
538 (IEVENT_GRSC
| IEVENT_GTSC
)))
542 /* Disable Rx and Tx */
543 tempval
= gfar_read(®s
->maccfg1
);
544 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
545 gfar_write(®s
->maccfg1
, tempval
);
548 void stop_gfar(struct net_device
*dev
)
550 struct gfar_private
*priv
= netdev_priv(dev
);
551 struct gfar __iomem
*regs
= priv
->regs
;
554 phy_stop(priv
->phydev
);
557 spin_lock_irqsave(&priv
->txlock
, flags
);
558 spin_lock(&priv
->rxlock
);
562 spin_unlock(&priv
->rxlock
);
563 spin_unlock_irqrestore(&priv
->txlock
, flags
);
566 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
567 free_irq(priv
->interruptError
, dev
);
568 free_irq(priv
->interruptTransmit
, dev
);
569 free_irq(priv
->interruptReceive
, dev
);
571 free_irq(priv
->interruptTransmit
, dev
);
574 free_skb_resources(priv
);
576 dma_free_coherent(NULL
,
577 sizeof(struct txbd8
)*priv
->tx_ring_size
578 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
580 gfar_read(®s
->tbase0
));
583 /* If there are any tx skbs or rx skbs still around, free them.
584 * Then free tx_skbuff and rx_skbuff */
585 static void free_skb_resources(struct gfar_private
*priv
)
591 /* Go through all the buffer descriptors and free their data buffers */
592 txbdp
= priv
->tx_bd_base
;
594 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
596 if (priv
->tx_skbuff
[i
]) {
597 dma_unmap_single(NULL
, txbdp
->bufPtr
,
600 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
601 priv
->tx_skbuff
[i
] = NULL
;
605 kfree(priv
->tx_skbuff
);
607 rxbdp
= priv
->rx_bd_base
;
609 /* rx_skbuff is not guaranteed to be allocated, so only
610 * free it and its contents if it is allocated */
611 if(priv
->rx_skbuff
!= NULL
) {
612 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
613 if (priv
->rx_skbuff
[i
]) {
614 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
615 priv
->rx_buffer_size
,
618 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
619 priv
->rx_skbuff
[i
] = NULL
;
629 kfree(priv
->rx_skbuff
);
633 void gfar_start(struct net_device
*dev
)
635 struct gfar_private
*priv
= netdev_priv(dev
);
636 struct gfar __iomem
*regs
= priv
->regs
;
639 /* Enable Rx and Tx in MACCFG1 */
640 tempval
= gfar_read(®s
->maccfg1
);
641 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
642 gfar_write(®s
->maccfg1
, tempval
);
644 /* Initialize DMACTRL to have WWR and WOP */
645 tempval
= gfar_read(&priv
->regs
->dmactrl
);
646 tempval
|= DMACTRL_INIT_SETTINGS
;
647 gfar_write(&priv
->regs
->dmactrl
, tempval
);
649 /* Make sure we aren't stopped */
650 tempval
= gfar_read(&priv
->regs
->dmactrl
);
651 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
652 gfar_write(&priv
->regs
->dmactrl
, tempval
);
654 /* Clear THLT/RHLT, so that the DMA starts polling now */
655 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
656 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
658 /* Unmask the interrupts we look for */
659 gfar_write(®s
->imask
, IMASK_DEFAULT
);
662 /* Bring the controller up and running */
663 int startup_gfar(struct net_device
*dev
)
670 struct gfar_private
*priv
= netdev_priv(dev
);
671 struct gfar __iomem
*regs
= priv
->regs
;
676 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
678 /* Allocate memory for the buffer descriptors */
679 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
680 sizeof (struct txbd8
) * priv
->tx_ring_size
+
681 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
685 if (netif_msg_ifup(priv
))
686 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
691 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
693 /* enet DMA only understands physical addresses */
694 gfar_write(®s
->tbase0
, addr
);
696 /* Start the rx descriptor ring where the tx ring leaves off */
697 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
698 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
699 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
700 gfar_write(®s
->rbase0
, addr
);
702 /* Setup the skbuff rings */
704 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
705 priv
->tx_ring_size
, GFP_KERNEL
);
707 if (NULL
== priv
->tx_skbuff
) {
708 if (netif_msg_ifup(priv
))
709 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
715 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
716 priv
->tx_skbuff
[i
] = NULL
;
719 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
720 priv
->rx_ring_size
, GFP_KERNEL
);
722 if (NULL
== priv
->rx_skbuff
) {
723 if (netif_msg_ifup(priv
))
724 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
730 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
731 priv
->rx_skbuff
[i
] = NULL
;
733 /* Initialize some variables in our dev structure */
734 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
735 priv
->cur_rx
= priv
->rx_bd_base
;
736 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
739 /* Initialize Transmit Descriptor Ring */
740 txbdp
= priv
->tx_bd_base
;
741 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
748 /* Set the last descriptor in the ring to indicate wrap */
750 txbdp
->status
|= TXBD_WRAP
;
752 rxbdp
= priv
->rx_bd_base
;
753 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
754 struct sk_buff
*skb
= NULL
;
758 skb
= gfar_new_skb(dev
, rxbdp
);
760 priv
->rx_skbuff
[i
] = skb
;
765 /* Set the last descriptor in the ring to wrap */
767 rxbdp
->status
|= RXBD_WRAP
;
769 /* If the device has multiple interrupts, register for
770 * them. Otherwise, only register for the one */
771 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
772 /* Install our interrupt handlers for Error,
773 * Transmit, and Receive */
774 if (request_irq(priv
->interruptError
, gfar_error
,
775 0, "enet_error", dev
) < 0) {
776 if (netif_msg_intr(priv
))
777 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
778 dev
->name
, priv
->interruptError
);
784 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
785 0, "enet_tx", dev
) < 0) {
786 if (netif_msg_intr(priv
))
787 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
788 dev
->name
, priv
->interruptTransmit
);
795 if (request_irq(priv
->interruptReceive
, gfar_receive
,
796 0, "enet_rx", dev
) < 0) {
797 if (netif_msg_intr(priv
))
798 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
799 dev
->name
, priv
->interruptReceive
);
805 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
806 0, "gfar_interrupt", dev
) < 0) {
807 if (netif_msg_intr(priv
))
808 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
809 dev
->name
, priv
->interruptError
);
816 phy_start(priv
->phydev
);
818 /* Configure the coalescing support */
819 if (priv
->txcoalescing
)
820 gfar_write(®s
->txic
,
821 mk_ic_value(priv
->txcount
, priv
->txtime
));
823 gfar_write(®s
->txic
, 0);
825 if (priv
->rxcoalescing
)
826 gfar_write(®s
->rxic
,
827 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
829 gfar_write(®s
->rxic
, 0);
831 if (priv
->rx_csum_enable
)
832 rctrl
|= RCTRL_CHECKSUMMING
;
834 if (priv
->extended_hash
) {
835 rctrl
|= RCTRL_EXTHASH
;
837 gfar_clear_exact_match(dev
);
841 if (priv
->vlan_enable
)
845 rctrl
&= ~RCTRL_PAL_MASK
;
846 rctrl
|= RCTRL_PADDING(priv
->padding
);
849 /* Init rctrl based on our settings */
850 gfar_write(&priv
->regs
->rctrl
, rctrl
);
852 if (dev
->features
& NETIF_F_IP_CSUM
)
853 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
855 /* Set the extraction length and index */
856 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
857 ATTRELI_EI(priv
->rx_stash_index
);
859 gfar_write(&priv
->regs
->attreli
, attrs
);
861 /* Start with defaults, and add stashing or locking
862 * depending on the approprate variables */
863 attrs
= ATTR_INIT_SETTINGS
;
865 if (priv
->bd_stash_en
)
866 attrs
|= ATTR_BDSTASH
;
868 if (priv
->rx_stash_size
!= 0)
869 attrs
|= ATTR_BUFSTASH
;
871 gfar_write(&priv
->regs
->attr
, attrs
);
873 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
874 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
875 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
877 /* Start the controller */
883 free_irq(priv
->interruptTransmit
, dev
);
885 free_irq(priv
->interruptError
, dev
);
888 free_skb_resources(priv
);
890 dma_free_coherent(NULL
,
891 sizeof(struct txbd8
)*priv
->tx_ring_size
892 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
894 gfar_read(®s
->tbase0
));
899 /* Called when something needs to use the ethernet device */
900 /* Returns 0 for success. */
901 static int gfar_enet_open(struct net_device
*dev
)
905 /* Initialize a bunch of registers */
908 gfar_set_mac_address(dev
);
915 err
= startup_gfar(dev
);
917 netif_start_queue(dev
);
922 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
924 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
926 memset(fcb
, 0, GMAC_FCB_LEN
);
931 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
935 /* If we're here, it's a IP packet with a TCP or UDP
936 * payload. We set it to checksum, using a pseudo-header
939 flags
= TXFCB_DEFAULT
;
941 /* Tell the controller what the protocol is */
942 /* And provide the already calculated phcs */
943 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
945 fcb
->phcs
= udp_hdr(skb
)->check
;
947 fcb
->phcs
= tcp_hdr(skb
)->check
;
949 /* l3os is the distance between the start of the
950 * frame (skb->data) and the start of the IP hdr.
951 * l4os is the distance between the start of the
952 * l3 hdr and the l4 hdr */
953 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - GMAC_FCB_LEN
);
954 fcb
->l4os
= skb_network_header_len(skb
);
959 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
961 fcb
->flags
|= TXFCB_VLN
;
962 fcb
->vlctl
= vlan_tx_tag_get(skb
);
965 /* This is called by the kernel when a frame is ready for transmission. */
966 /* It is pointed to by the dev->hard_start_xmit function pointer */
967 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
969 struct gfar_private
*priv
= netdev_priv(dev
);
970 struct txfcb
*fcb
= NULL
;
975 /* Update transmit stats */
976 priv
->stats
.tx_bytes
+= skb
->len
;
979 spin_lock_irqsave(&priv
->txlock
, flags
);
981 /* Point at the first free tx descriptor */
982 txbdp
= priv
->cur_tx
;
984 /* Clear all but the WRAP status flags */
985 status
= txbdp
->status
& TXBD_WRAP
;
987 /* Set up checksumming */
988 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
989 && (CHECKSUM_PARTIAL
== skb
->ip_summed
))) {
990 fcb
= gfar_add_fcb(skb
, txbdp
);
992 gfar_tx_checksum(skb
, fcb
);
995 if (priv
->vlan_enable
&&
996 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
997 if (unlikely(NULL
== fcb
)) {
998 fcb
= gfar_add_fcb(skb
, txbdp
);
1002 gfar_tx_vlan(skb
, fcb
);
1005 /* Set buffer length and pointer */
1006 txbdp
->length
= skb
->len
;
1007 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1008 skb
->len
, DMA_TO_DEVICE
);
1010 /* Save the skb pointer so we can free it later */
1011 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1013 /* Update the current skb pointer (wrapping if this was the last) */
1015 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1017 /* Flag the BD as interrupt-causing */
1018 status
|= TXBD_INTERRUPT
;
1020 /* Flag the BD as ready to go, last in frame, and */
1021 /* in need of CRC */
1022 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
1024 dev
->trans_start
= jiffies
;
1026 /* The powerpc-specific eieio() is used, as wmb() has too strong
1027 * semantics (it requires synchronization between cacheable and
1028 * uncacheable mappings, which eieio doesn't provide and which we
1029 * don't need), thus requiring a more expensive sync instruction. At
1030 * some point, the set of architecture-independent barrier functions
1031 * should be expanded to include weaker barriers.
1035 txbdp
->status
= status
;
1037 /* If this was the last BD in the ring, the next one */
1038 /* is at the beginning of the ring */
1039 if (txbdp
->status
& TXBD_WRAP
)
1040 txbdp
= priv
->tx_bd_base
;
1044 /* If the next BD still needs to be cleaned up, then the bds
1045 are full. We need to tell the kernel to stop sending us stuff. */
1046 if (txbdp
== priv
->dirty_tx
) {
1047 netif_stop_queue(dev
);
1049 priv
->stats
.tx_fifo_errors
++;
1052 /* Update the current txbd to the next one */
1053 priv
->cur_tx
= txbdp
;
1055 /* Tell the DMA to go go go */
1056 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1059 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1064 /* Stops the kernel queue, and halts the controller */
1065 static int gfar_close(struct net_device
*dev
)
1067 struct gfar_private
*priv
= netdev_priv(dev
);
1070 /* Disconnect from the PHY */
1071 phy_disconnect(priv
->phydev
);
1072 priv
->phydev
= NULL
;
1074 netif_stop_queue(dev
);
1079 /* returns a net_device_stats structure pointer */
1080 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
1082 struct gfar_private
*priv
= netdev_priv(dev
);
1084 return &(priv
->stats
);
1087 /* Changes the mac address if the controller is not running. */
1088 int gfar_set_mac_address(struct net_device
*dev
)
1090 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1096 /* Enables and disables VLAN insertion/extraction */
1097 static void gfar_vlan_rx_register(struct net_device
*dev
,
1098 struct vlan_group
*grp
)
1100 struct gfar_private
*priv
= netdev_priv(dev
);
1101 unsigned long flags
;
1104 spin_lock_irqsave(&priv
->rxlock
, flags
);
1109 /* Enable VLAN tag insertion */
1110 tempval
= gfar_read(&priv
->regs
->tctrl
);
1111 tempval
|= TCTRL_VLINS
;
1113 gfar_write(&priv
->regs
->tctrl
, tempval
);
1115 /* Enable VLAN tag extraction */
1116 tempval
= gfar_read(&priv
->regs
->rctrl
);
1117 tempval
|= RCTRL_VLEX
;
1118 gfar_write(&priv
->regs
->rctrl
, tempval
);
1120 /* Disable VLAN tag insertion */
1121 tempval
= gfar_read(&priv
->regs
->tctrl
);
1122 tempval
&= ~TCTRL_VLINS
;
1123 gfar_write(&priv
->regs
->tctrl
, tempval
);
1125 /* Disable VLAN tag extraction */
1126 tempval
= gfar_read(&priv
->regs
->rctrl
);
1127 tempval
&= ~RCTRL_VLEX
;
1128 gfar_write(&priv
->regs
->rctrl
, tempval
);
1131 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1134 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1136 int tempsize
, tempval
;
1137 struct gfar_private
*priv
= netdev_priv(dev
);
1138 int oldsize
= priv
->rx_buffer_size
;
1139 int frame_size
= new_mtu
+ ETH_HLEN
;
1141 if (priv
->vlan_enable
)
1142 frame_size
+= VLAN_ETH_HLEN
;
1144 if (gfar_uses_fcb(priv
))
1145 frame_size
+= GMAC_FCB_LEN
;
1147 frame_size
+= priv
->padding
;
1149 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1150 if (netif_msg_drv(priv
))
1151 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1157 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1158 INCREMENTAL_BUFFER_SIZE
;
1160 /* Only stop and start the controller if it isn't already
1161 * stopped, and we changed something */
1162 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1165 priv
->rx_buffer_size
= tempsize
;
1169 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1170 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1172 /* If the mtu is larger than the max size for standard
1173 * ethernet frames (ie, a jumbo frame), then set maccfg2
1174 * to allow huge frames, and to check the length */
1175 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1177 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1178 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1180 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1182 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1184 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1190 /* gfar_timeout gets called when a packet has not been
1191 * transmitted after a set amount of time.
1192 * For now, assume that clearing out all the structures, and
1193 * starting over will fix the problem. */
1194 static void gfar_timeout(struct net_device
*dev
)
1196 struct gfar_private
*priv
= netdev_priv(dev
);
1198 priv
->stats
.tx_errors
++;
1200 if (dev
->flags
& IFF_UP
) {
1205 netif_schedule(dev
);
1208 /* Interrupt Handler for Transmit complete */
1209 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1211 struct net_device
*dev
= (struct net_device
*) dev_id
;
1212 struct gfar_private
*priv
= netdev_priv(dev
);
1216 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1219 spin_lock(&priv
->txlock
);
1220 bdp
= priv
->dirty_tx
;
1221 while ((bdp
->status
& TXBD_READY
) == 0) {
1222 /* If dirty_tx and cur_tx are the same, then either the */
1223 /* ring is empty or full now (it could only be full in the beginning, */
1224 /* obviously). If it is empty, we are done. */
1225 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1228 priv
->stats
.tx_packets
++;
1230 /* Deferred means some collisions occurred during transmit, */
1231 /* but we eventually sent the packet. */
1232 if (bdp
->status
& TXBD_DEF
)
1233 priv
->stats
.collisions
++;
1235 /* Free the sk buffer associated with this TxBD */
1236 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1237 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1239 (priv
->skb_dirtytx
+
1240 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1242 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1243 if (bdp
->status
& TXBD_WRAP
)
1244 bdp
= priv
->tx_bd_base
;
1248 /* Move dirty_tx to be the next bd */
1249 priv
->dirty_tx
= bdp
;
1251 /* We freed a buffer, so now we can restart transmission */
1252 if (netif_queue_stopped(dev
))
1253 netif_wake_queue(dev
);
1254 } /* while ((bdp->status & TXBD_READY) == 0) */
1256 /* If we are coalescing the interrupts, reset the timer */
1257 /* Otherwise, clear it */
1258 if (priv
->txcoalescing
)
1259 gfar_write(&priv
->regs
->txic
,
1260 mk_ic_value(priv
->txcount
, priv
->txtime
));
1262 gfar_write(&priv
->regs
->txic
, 0);
1264 spin_unlock(&priv
->txlock
);
1269 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1271 unsigned int alignamount
;
1272 struct gfar_private
*priv
= netdev_priv(dev
);
1273 struct sk_buff
*skb
= NULL
;
1274 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1276 /* We have to allocate the skb, so keep trying till we succeed */
1277 while ((!skb
) && timeout
--)
1278 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1283 alignamount
= RXBUF_ALIGNMENT
-
1284 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1286 /* We need the data buffer to be aligned properly. We will reserve
1287 * as many bytes as needed to align the data properly
1289 skb_reserve(skb
, alignamount
);
1291 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1292 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1296 /* Mark the buffer empty */
1298 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1303 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1305 struct net_device_stats
*stats
= &priv
->stats
;
1306 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1308 /* If the packet was truncated, none of the other errors
1310 if (status
& RXBD_TRUNCATED
) {
1311 stats
->rx_length_errors
++;
1317 /* Count the errors, if there were any */
1318 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1319 stats
->rx_length_errors
++;
1321 if (status
& RXBD_LARGE
)
1326 if (status
& RXBD_NONOCTET
) {
1327 stats
->rx_frame_errors
++;
1328 estats
->rx_nonoctet
++;
1330 if (status
& RXBD_CRCERR
) {
1331 estats
->rx_crcerr
++;
1332 stats
->rx_crc_errors
++;
1334 if (status
& RXBD_OVERRUN
) {
1335 estats
->rx_overrun
++;
1336 stats
->rx_crc_errors
++;
1340 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1342 struct net_device
*dev
= (struct net_device
*) dev_id
;
1343 struct gfar_private
*priv
= netdev_priv(dev
);
1344 #ifdef CONFIG_GFAR_NAPI
1347 unsigned long flags
;
1350 /* Clear IEVENT, so rx interrupt isn't called again
1351 * because of this interrupt */
1352 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1355 #ifdef CONFIG_GFAR_NAPI
1356 if (netif_rx_schedule_prep(dev
)) {
1357 tempval
= gfar_read(&priv
->regs
->imask
);
1358 tempval
&= IMASK_RX_DISABLED
;
1359 gfar_write(&priv
->regs
->imask
, tempval
);
1361 __netif_rx_schedule(dev
);
1363 if (netif_msg_rx_err(priv
))
1364 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1365 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1366 gfar_read(&priv
->regs
->imask
));
1370 spin_lock_irqsave(&priv
->rxlock
, flags
);
1371 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1373 /* If we are coalescing interrupts, update the timer */
1374 /* Otherwise, clear it */
1375 if (priv
->rxcoalescing
)
1376 gfar_write(&priv
->regs
->rxic
,
1377 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1379 gfar_write(&priv
->regs
->rxic
, 0);
1381 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1387 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1388 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1390 #ifdef CONFIG_GFAR_NAPI
1391 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1393 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1397 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1399 /* If valid headers were found, and valid sums
1400 * were verified, then we tell the kernel that no
1401 * checksumming is necessary. Otherwise, it is */
1402 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1403 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1405 skb
->ip_summed
= CHECKSUM_NONE
;
1409 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1411 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1413 /* Remove the FCB from the skb */
1414 skb_pull(skb
, GMAC_FCB_LEN
);
1419 /* gfar_process_frame() -- handle one incoming packet if skb
1421 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1424 struct gfar_private
*priv
= netdev_priv(dev
);
1425 struct rxfcb
*fcb
= NULL
;
1428 if (netif_msg_rx_err(priv
))
1429 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1430 priv
->stats
.rx_dropped
++;
1431 priv
->extra_stats
.rx_skbmissing
++;
1435 /* Prep the skb for the packet */
1436 skb_put(skb
, length
);
1438 /* Grab the FCB if there is one */
1439 if (gfar_uses_fcb(priv
))
1440 fcb
= gfar_get_fcb(skb
);
1442 /* Remove the padded bytes, if there are any */
1444 skb_pull(skb
, priv
->padding
);
1446 if (priv
->rx_csum_enable
)
1447 gfar_rx_checksum(skb
, fcb
);
1449 /* Tell the skb what kind of packet this is */
1450 skb
->protocol
= eth_type_trans(skb
, dev
);
1452 /* Send the packet up the stack */
1453 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1454 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1458 if (NET_RX_DROP
== ret
)
1459 priv
->extra_stats
.kernel_dropped
++;
1465 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1466 * until the budget/quota has been reached. Returns the number
1469 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1472 struct sk_buff
*skb
;
1475 struct gfar_private
*priv
= netdev_priv(dev
);
1477 /* Get the first full descriptor */
1480 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1482 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1485 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1486 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1487 /* Increment the number of packets */
1488 priv
->stats
.rx_packets
++;
1491 /* Remove the FCS from the packet length */
1492 pkt_len
= bdp
->length
- 4;
1494 gfar_process_frame(dev
, skb
, pkt_len
);
1496 priv
->stats
.rx_bytes
+= pkt_len
;
1498 count_errors(bdp
->status
, priv
);
1501 dev_kfree_skb_any(skb
);
1503 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1506 dev
->last_rx
= jiffies
;
1508 /* Clear the status flags for this buffer */
1509 bdp
->status
&= ~RXBD_STATS
;
1511 /* Add another skb for the future */
1512 skb
= gfar_new_skb(dev
, bdp
);
1513 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1515 /* Update to the next pointer */
1516 if (bdp
->status
& RXBD_WRAP
)
1517 bdp
= priv
->rx_bd_base
;
1521 /* update to point at the next skb */
1524 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1528 /* Update the current rxbd pointer to be the next one */
1534 #ifdef CONFIG_GFAR_NAPI
1535 static int gfar_poll(struct net_device
*dev
, int *budget
)
1538 struct gfar_private
*priv
= netdev_priv(dev
);
1539 int rx_work_limit
= *budget
;
1541 if (rx_work_limit
> dev
->quota
)
1542 rx_work_limit
= dev
->quota
;
1544 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1546 dev
->quota
-= howmany
;
1547 rx_work_limit
-= howmany
;
1550 if (rx_work_limit
> 0) {
1551 netif_rx_complete(dev
);
1553 /* Clear the halt bit in RSTAT */
1554 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1556 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1558 /* If we are coalescing interrupts, update the timer */
1559 /* Otherwise, clear it */
1560 if (priv
->rxcoalescing
)
1561 gfar_write(&priv
->regs
->rxic
,
1562 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1564 gfar_write(&priv
->regs
->rxic
, 0);
1567 /* Return 1 if there's more work to do */
1568 return (rx_work_limit
> 0) ? 0 : 1;
1572 #ifdef CONFIG_NET_POLL_CONTROLLER
1574 * Polling 'interrupt' - used by things like netconsole to send skbs
1575 * without having to re-enable interrupts. It's not called while
1576 * the interrupt routine is executing.
1578 static void gfar_netpoll(struct net_device
*dev
)
1580 struct gfar_private
*priv
= netdev_priv(dev
);
1582 /* If the device has multiple interrupts, run tx/rx */
1583 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1584 disable_irq(priv
->interruptTransmit
);
1585 disable_irq(priv
->interruptReceive
);
1586 disable_irq(priv
->interruptError
);
1587 gfar_interrupt(priv
->interruptTransmit
, dev
);
1588 enable_irq(priv
->interruptError
);
1589 enable_irq(priv
->interruptReceive
);
1590 enable_irq(priv
->interruptTransmit
);
1592 disable_irq(priv
->interruptTransmit
);
1593 gfar_interrupt(priv
->interruptTransmit
, dev
);
1594 enable_irq(priv
->interruptTransmit
);
1599 /* The interrupt handler for devices with one interrupt */
1600 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
1602 struct net_device
*dev
= dev_id
;
1603 struct gfar_private
*priv
= netdev_priv(dev
);
1605 /* Save ievent for future reference */
1606 u32 events
= gfar_read(&priv
->regs
->ievent
);
1608 /* Check for reception */
1609 if (events
& IEVENT_RX_MASK
)
1610 gfar_receive(irq
, dev_id
);
1612 /* Check for transmit completion */
1613 if (events
& IEVENT_TX_MASK
)
1614 gfar_transmit(irq
, dev_id
);
1616 /* Check for errors */
1617 if (events
& IEVENT_ERR_MASK
)
1618 gfar_error(irq
, dev_id
);
1623 /* Called every time the controller might need to be made
1624 * aware of new link state. The PHY code conveys this
1625 * information through variables in the phydev structure, and this
1626 * function converts those variables into the appropriate
1627 * register values, and can bring down the device if needed.
1629 static void adjust_link(struct net_device
*dev
)
1631 struct gfar_private
*priv
= netdev_priv(dev
);
1632 struct gfar __iomem
*regs
= priv
->regs
;
1633 unsigned long flags
;
1634 struct phy_device
*phydev
= priv
->phydev
;
1637 spin_lock_irqsave(&priv
->txlock
, flags
);
1639 u32 tempval
= gfar_read(®s
->maccfg2
);
1640 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1642 /* Now we make sure that we can be in full duplex mode.
1643 * If not, we operate in half-duplex mode. */
1644 if (phydev
->duplex
!= priv
->oldduplex
) {
1646 if (!(phydev
->duplex
))
1647 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1649 tempval
|= MACCFG2_FULL_DUPLEX
;
1651 priv
->oldduplex
= phydev
->duplex
;
1654 if (phydev
->speed
!= priv
->oldspeed
) {
1656 switch (phydev
->speed
) {
1659 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1664 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1666 /* Reduced mode distinguishes
1667 * between 10 and 100 */
1668 if (phydev
->speed
== SPEED_100
)
1669 ecntrl
|= ECNTRL_R100
;
1671 ecntrl
&= ~(ECNTRL_R100
);
1674 if (netif_msg_link(priv
))
1676 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1677 dev
->name
, phydev
->speed
);
1681 priv
->oldspeed
= phydev
->speed
;
1684 gfar_write(®s
->maccfg2
, tempval
);
1685 gfar_write(®s
->ecntrl
, ecntrl
);
1687 if (!priv
->oldlink
) {
1690 netif_schedule(dev
);
1692 } else if (priv
->oldlink
) {
1696 priv
->oldduplex
= -1;
1699 if (new_state
&& netif_msg_link(priv
))
1700 phy_print_status(phydev
);
1702 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1705 /* Update the hash table based on the current list of multicast
1706 * addresses we subscribe to. Also, change the promiscuity of
1707 * the device based on the flags (this function is called
1708 * whenever dev->flags is changed */
1709 static void gfar_set_multi(struct net_device
*dev
)
1711 struct dev_mc_list
*mc_ptr
;
1712 struct gfar_private
*priv
= netdev_priv(dev
);
1713 struct gfar __iomem
*regs
= priv
->regs
;
1716 if(dev
->flags
& IFF_PROMISC
) {
1717 /* Set RCTRL to PROM */
1718 tempval
= gfar_read(®s
->rctrl
);
1719 tempval
|= RCTRL_PROM
;
1720 gfar_write(®s
->rctrl
, tempval
);
1722 /* Set RCTRL to not PROM */
1723 tempval
= gfar_read(®s
->rctrl
);
1724 tempval
&= ~(RCTRL_PROM
);
1725 gfar_write(®s
->rctrl
, tempval
);
1728 if(dev
->flags
& IFF_ALLMULTI
) {
1729 /* Set the hash to rx all multicast frames */
1730 gfar_write(®s
->igaddr0
, 0xffffffff);
1731 gfar_write(®s
->igaddr1
, 0xffffffff);
1732 gfar_write(®s
->igaddr2
, 0xffffffff);
1733 gfar_write(®s
->igaddr3
, 0xffffffff);
1734 gfar_write(®s
->igaddr4
, 0xffffffff);
1735 gfar_write(®s
->igaddr5
, 0xffffffff);
1736 gfar_write(®s
->igaddr6
, 0xffffffff);
1737 gfar_write(®s
->igaddr7
, 0xffffffff);
1738 gfar_write(®s
->gaddr0
, 0xffffffff);
1739 gfar_write(®s
->gaddr1
, 0xffffffff);
1740 gfar_write(®s
->gaddr2
, 0xffffffff);
1741 gfar_write(®s
->gaddr3
, 0xffffffff);
1742 gfar_write(®s
->gaddr4
, 0xffffffff);
1743 gfar_write(®s
->gaddr5
, 0xffffffff);
1744 gfar_write(®s
->gaddr6
, 0xffffffff);
1745 gfar_write(®s
->gaddr7
, 0xffffffff);
1750 /* zero out the hash */
1751 gfar_write(®s
->igaddr0
, 0x0);
1752 gfar_write(®s
->igaddr1
, 0x0);
1753 gfar_write(®s
->igaddr2
, 0x0);
1754 gfar_write(®s
->igaddr3
, 0x0);
1755 gfar_write(®s
->igaddr4
, 0x0);
1756 gfar_write(®s
->igaddr5
, 0x0);
1757 gfar_write(®s
->igaddr6
, 0x0);
1758 gfar_write(®s
->igaddr7
, 0x0);
1759 gfar_write(®s
->gaddr0
, 0x0);
1760 gfar_write(®s
->gaddr1
, 0x0);
1761 gfar_write(®s
->gaddr2
, 0x0);
1762 gfar_write(®s
->gaddr3
, 0x0);
1763 gfar_write(®s
->gaddr4
, 0x0);
1764 gfar_write(®s
->gaddr5
, 0x0);
1765 gfar_write(®s
->gaddr6
, 0x0);
1766 gfar_write(®s
->gaddr7
, 0x0);
1768 /* If we have extended hash tables, we need to
1769 * clear the exact match registers to prepare for
1771 if (priv
->extended_hash
) {
1772 em_num
= GFAR_EM_NUM
+ 1;
1773 gfar_clear_exact_match(dev
);
1780 if(dev
->mc_count
== 0)
1783 /* Parse the list, and set the appropriate bits */
1784 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1786 gfar_set_mac_for_addr(dev
, idx
,
1790 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1798 /* Clears each of the exact match registers to zero, so they
1799 * don't interfere with normal reception */
1800 static void gfar_clear_exact_match(struct net_device
*dev
)
1803 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1805 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1806 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1809 /* Set the appropriate hash bit for the given addr */
1810 /* The algorithm works like so:
1811 * 1) Take the Destination Address (ie the multicast address), and
1812 * do a CRC on it (little endian), and reverse the bits of the
1814 * 2) Use the 8 most significant bits as a hash into a 256-entry
1815 * table. The table is controlled through 8 32-bit registers:
1816 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1817 * gaddr7. This means that the 3 most significant bits in the
1818 * hash index which gaddr register to use, and the 5 other bits
1819 * indicate which bit (assuming an IBM numbering scheme, which
1820 * for PowerPC (tm) is usually the case) in the register holds
1822 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1825 struct gfar_private
*priv
= netdev_priv(dev
);
1826 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1827 int width
= priv
->hash_width
;
1828 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1829 u8 whichreg
= result
>> (32 - width
+ 5);
1830 u32 value
= (1 << (31-whichbit
));
1832 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1834 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1840 /* There are multiple MAC Address register pairs on some controllers
1841 * This function sets the numth pair to a given address
1843 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
1845 struct gfar_private
*priv
= netdev_priv(dev
);
1847 char tmpbuf
[MAC_ADDR_LEN
];
1849 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
1853 /* Now copy it into the mac registers backwards, cuz */
1854 /* little endian is silly */
1855 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
1856 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
1858 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
1860 tempval
= *((u32
*) (tmpbuf
+ 4));
1862 gfar_write(macptr
+1, tempval
);
1865 /* GFAR error interrupt handler */
1866 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
1868 struct net_device
*dev
= dev_id
;
1869 struct gfar_private
*priv
= netdev_priv(dev
);
1871 /* Save ievent for future reference */
1872 u32 events
= gfar_read(&priv
->regs
->ievent
);
1875 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1878 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
1879 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1880 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1882 /* Update the error counters */
1883 if (events
& IEVENT_TXE
) {
1884 priv
->stats
.tx_errors
++;
1886 if (events
& IEVENT_LC
)
1887 priv
->stats
.tx_window_errors
++;
1888 if (events
& IEVENT_CRL
)
1889 priv
->stats
.tx_aborted_errors
++;
1890 if (events
& IEVENT_XFUN
) {
1891 if (netif_msg_tx_err(priv
))
1892 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
1893 "packet dropped.\n", dev
->name
);
1894 priv
->stats
.tx_dropped
++;
1895 priv
->extra_stats
.tx_underrun
++;
1897 /* Reactivate the Tx Queues */
1898 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1900 if (netif_msg_tx_err(priv
))
1901 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1903 if (events
& IEVENT_BSY
) {
1904 priv
->stats
.rx_errors
++;
1905 priv
->extra_stats
.rx_bsy
++;
1907 gfar_receive(irq
, dev_id
);
1909 #ifndef CONFIG_GFAR_NAPI
1910 /* Clear the halt bit in RSTAT */
1911 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1914 if (netif_msg_rx_err(priv
))
1915 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
1916 dev
->name
, gfar_read(&priv
->regs
->rstat
));
1918 if (events
& IEVENT_BABR
) {
1919 priv
->stats
.rx_errors
++;
1920 priv
->extra_stats
.rx_babr
++;
1922 if (netif_msg_rx_err(priv
))
1923 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
1925 if (events
& IEVENT_EBERR
) {
1926 priv
->extra_stats
.eberr
++;
1927 if (netif_msg_rx_err(priv
))
1928 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
1930 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
1931 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1933 if (events
& IEVENT_BABT
) {
1934 priv
->extra_stats
.tx_babt
++;
1935 if (netif_msg_tx_err(priv
))
1936 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
1941 /* Structure for a device driver */
1942 static struct platform_driver gfar_driver
= {
1943 .probe
= gfar_probe
,
1944 .remove
= gfar_remove
,
1946 .name
= "fsl-gianfar",
1950 static int __init
gfar_init(void)
1952 int err
= gfar_mdio_init();
1957 err
= platform_driver_register(&gfar_driver
);
1965 static void __exit
gfar_exit(void)
1967 platform_driver_unregister(&gfar_driver
);
1971 module_init(gfar_init
);
1972 module_exit(gfar_exit
);