2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
47 #include <asm/uaccess.h>
49 #include <asm/pgtable.h>
51 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
52 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
53 defined(CONFIG_M520x) || defined(CONFIG_M532x)
54 #include <asm/coldfire.h>
55 #include <asm/mcfsim.h>
58 #include <asm/8xx_immap.h>
59 #include <asm/mpc8xx.h>
63 #if defined(CONFIG_FEC2)
64 #define FEC_MAX_PORTS 2
66 #define FEC_MAX_PORTS 1
70 * Define the fixed address of the FEC hardware.
72 static unsigned int fec_hw
[] = {
73 #if defined(CONFIG_M5272)
75 #elif defined(CONFIG_M527x)
78 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
80 #elif defined(CONFIG_M520x)
82 #elif defined(CONFIG_M532x)
83 (MCF_MBAR
+0xfc030000),
85 &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
),
89 static unsigned char fec_mac_default
[] = {
90 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
94 * Some hardware gets it MAC address out of local flash memory.
95 * if this is non-zero then assume it is the address to get MAC from.
97 #if defined(CONFIG_NETtel)
98 #define FEC_FLASHMAC 0xf0006006
99 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
100 #define FEC_FLASHMAC 0xf0006000
101 #elif defined (CONFIG_MTD_KeyTechnology)
102 #define FEC_FLASHMAC 0xffe04000
103 #elif defined(CONFIG_CANCam)
104 #define FEC_FLASHMAC 0xf0020000
105 #elif defined (CONFIG_M5272C3)
106 #define FEC_FLASHMAC (0xffe04000 + 4)
107 #elif defined(CONFIG_MOD5272)
108 #define FEC_FLASHMAC 0xffc0406b
110 #define FEC_FLASHMAC 0
113 /* Forward declarations of some structures to support different PHYs
118 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
125 const phy_cmd_t
*config
;
126 const phy_cmd_t
*startup
;
127 const phy_cmd_t
*ack_int
;
128 const phy_cmd_t
*shutdown
;
131 /* The number of Tx and Rx buffers. These are allocated from the page
132 * pool. The code may assume these are power of two, so it it best
133 * to keep them that size.
134 * We don't need to allocate pages for the transmitter. We just use
135 * the skbuffer directly.
137 #define FEC_ENET_RX_PAGES 8
138 #define FEC_ENET_RX_FRSIZE 2048
139 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
140 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
141 #define FEC_ENET_TX_FRSIZE 2048
142 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
143 #define TX_RING_SIZE 16 /* Must be power of two */
144 #define TX_RING_MOD_MASK 15 /* for this to work */
146 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
147 #error "FEC: descriptor ring size constants too large"
150 /* Interrupt events/masks.
152 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
153 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
154 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
155 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
156 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
157 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
158 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
159 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
160 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
161 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
163 /* The FEC stores dest/src/type, data, and checksum for receive packets.
165 #define PKT_MAXBUF_SIZE 1518
166 #define PKT_MINBUF_SIZE 64
167 #define PKT_MAXBLR_SIZE 1520
171 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172 * size bits. Other FEC hardware does not, so we need to take that into
173 * account when setting it.
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176 defined(CONFIG_M520x) || defined(CONFIG_M532x)
177 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
179 #define OPT_FRAME_SIZE 0
182 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
183 * tx_bd_base always point to the base of the buffer descriptors. The
184 * cur_rx and cur_tx point to the currently available buffer.
185 * The dirty_tx tracks the current buffer that is being sent by the
186 * controller. The cur_tx and dirty_tx are equal under both completely
187 * empty and completely full conditions. The empty/ready indicator in
188 * the buffer descriptor determines the actual condition.
190 struct fec_enet_private
{
191 /* Hardware registers of the FEC device */
194 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
195 unsigned char *tx_bounce
[TX_RING_SIZE
];
196 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
200 /* CPM dual port RAM relative addresses.
202 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
204 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
205 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
206 struct net_device_stats stats
;
214 phy_info_t
const *phy
;
215 struct work_struct phy_task
;
218 uint mii_phy_task_queued
;
229 static int fec_enet_open(struct net_device
*dev
);
230 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
231 static void fec_enet_mii(struct net_device
*dev
);
232 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
);
233 static void fec_enet_tx(struct net_device
*dev
);
234 static void fec_enet_rx(struct net_device
*dev
);
235 static int fec_enet_close(struct net_device
*dev
);
236 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
);
237 static void set_multicast_list(struct net_device
*dev
);
238 static void fec_restart(struct net_device
*dev
, int duplex
);
239 static void fec_stop(struct net_device
*dev
);
240 static void fec_set_mac_address(struct net_device
*dev
);
243 /* MII processing. We keep this as simple as possible. Requests are
244 * placed on the list (if there is room). When the request is finished
245 * by the MII, an optional function may be called.
247 typedef struct mii_list
{
249 void (*mii_func
)(uint val
, struct net_device
*dev
);
250 struct mii_list
*mii_next
;
254 static mii_list_t mii_cmds
[NMII
];
255 static mii_list_t
*mii_free
;
256 static mii_list_t
*mii_head
;
257 static mii_list_t
*mii_tail
;
259 static int mii_queue(struct net_device
*dev
, int request
,
260 void (*func
)(uint
, struct net_device
*));
262 /* Make MII read/write commands for the FEC.
264 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
265 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
269 /* Transmitter timeout.
271 #define TX_TIMEOUT (2*HZ)
273 /* Register definitions for the PHY.
276 #define MII_REG_CR 0 /* Control Register */
277 #define MII_REG_SR 1 /* Status Register */
278 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
279 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
280 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
281 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
282 #define MII_REG_ANER 6 /* A-N Expansion Register */
283 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
284 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
286 /* values for phy_status */
288 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
289 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
290 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
291 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
292 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
293 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
294 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
296 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
297 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
298 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
299 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
300 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
301 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
302 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
303 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
307 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
309 struct fec_enet_private
*fep
;
310 volatile fec_t
*fecp
;
312 unsigned short status
;
314 fep
= netdev_priv(dev
);
315 fecp
= (volatile fec_t
*)dev
->base_addr
;
318 /* Link is down or autonegotiation is in progress. */
322 /* Fill in a Tx ring entry */
325 status
= bdp
->cbd_sc
;
326 #ifndef final_version
327 if (status
& BD_ENET_TX_READY
) {
328 /* Ooops. All transmit buffers are full. Bail out.
329 * This should not happen, since dev->tbusy should be set.
331 printk("%s: tx queue full!.\n", dev
->name
);
336 /* Clear all of the status flags.
338 status
&= ~BD_ENET_TX_STATS
;
340 /* Set buffer length and buffer pointer.
342 bdp
->cbd_bufaddr
= __pa(skb
->data
);
343 bdp
->cbd_datlen
= skb
->len
;
346 * On some FEC implementations data must be aligned on
347 * 4-byte boundaries. Use bounce buffers to copy data
348 * and get it aligned. Ugh.
350 if (bdp
->cbd_bufaddr
& 0x3) {
352 index
= bdp
- fep
->tx_bd_base
;
353 memcpy(fep
->tx_bounce
[index
], (void *) bdp
->cbd_bufaddr
, bdp
->cbd_datlen
);
354 bdp
->cbd_bufaddr
= __pa(fep
->tx_bounce
[index
]);
359 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
361 fep
->stats
.tx_bytes
+= skb
->len
;
362 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
364 /* Push the data cache so the CPM does not get stale memory
367 flush_dcache_range((unsigned long)skb
->data
,
368 (unsigned long)skb
->data
+ skb
->len
);
370 spin_lock_irq(&fep
->lock
);
372 /* Send it on its way. Tell FEC it's ready, interrupt when done,
373 * it's the last BD of the frame, and to put the CRC on the end.
376 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
377 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
378 bdp
->cbd_sc
= status
;
380 dev
->trans_start
= jiffies
;
382 /* Trigger transmission start */
383 fecp
->fec_x_des_active
= 0;
385 /* If this was the last BD in the ring, start at the beginning again.
387 if (status
& BD_ENET_TX_WRAP
) {
388 bdp
= fep
->tx_bd_base
;
393 if (bdp
== fep
->dirty_tx
) {
395 netif_stop_queue(dev
);
398 fep
->cur_tx
= (cbd_t
*)bdp
;
400 spin_unlock_irq(&fep
->lock
);
406 fec_timeout(struct net_device
*dev
)
408 struct fec_enet_private
*fep
= netdev_priv(dev
);
410 printk("%s: transmit timed out.\n", dev
->name
);
411 fep
->stats
.tx_errors
++;
412 #ifndef final_version
417 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
418 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
419 (unsigned long)fep
->dirty_tx
,
420 (unsigned long)fep
->cur_rx
);
422 bdp
= fep
->tx_bd_base
;
423 printk(" tx: %u buffers\n", TX_RING_SIZE
);
424 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
425 printk(" %08x: %04x %04x %08x\n",
429 (int) bdp
->cbd_bufaddr
);
433 bdp
= fep
->rx_bd_base
;
434 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
435 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
436 printk(" %08x: %04x %04x %08x\n",
440 (int) bdp
->cbd_bufaddr
);
445 fec_restart(dev
, fep
->full_duplex
);
446 netif_wake_queue(dev
);
449 /* The interrupt handler.
450 * This is called from the MPC core interrupt.
453 fec_enet_interrupt(int irq
, void * dev_id
)
455 struct net_device
*dev
= dev_id
;
456 volatile fec_t
*fecp
;
460 fecp
= (volatile fec_t
*)dev
->base_addr
;
462 /* Get the interrupt events that caused us to be here.
464 while ((int_events
= fecp
->fec_ievent
) != 0) {
465 fecp
->fec_ievent
= int_events
;
467 /* Handle receive event in its own function.
469 if (int_events
& FEC_ENET_RXF
) {
474 /* Transmit OK, or non-fatal error. Update the buffer
475 descriptors. FEC handles all errors, we just discover
476 them as part of the transmit process.
478 if (int_events
& FEC_ENET_TXF
) {
483 if (int_events
& FEC_ENET_MII
) {
489 return IRQ_RETVAL(handled
);
494 fec_enet_tx(struct net_device
*dev
)
496 struct fec_enet_private
*fep
;
498 unsigned short status
;
501 fep
= netdev_priv(dev
);
502 spin_lock(&fep
->lock
);
505 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
506 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
508 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
509 /* Check for errors. */
510 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
511 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
513 fep
->stats
.tx_errors
++;
514 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
515 fep
->stats
.tx_heartbeat_errors
++;
516 if (status
& BD_ENET_TX_LC
) /* Late collision */
517 fep
->stats
.tx_window_errors
++;
518 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
519 fep
->stats
.tx_aborted_errors
++;
520 if (status
& BD_ENET_TX_UN
) /* Underrun */
521 fep
->stats
.tx_fifo_errors
++;
522 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
523 fep
->stats
.tx_carrier_errors
++;
525 fep
->stats
.tx_packets
++;
528 #ifndef final_version
529 if (status
& BD_ENET_TX_READY
)
530 printk("HEY! Enet xmit interrupt and TX_READY.\n");
532 /* Deferred means some collisions occurred during transmit,
533 * but we eventually sent the packet OK.
535 if (status
& BD_ENET_TX_DEF
)
536 fep
->stats
.collisions
++;
538 /* Free the sk buffer associated with this last transmit.
540 dev_kfree_skb_any(skb
);
541 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
542 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
544 /* Update pointer to next buffer descriptor to be transmitted.
546 if (status
& BD_ENET_TX_WRAP
)
547 bdp
= fep
->tx_bd_base
;
551 /* Since we have freed up a buffer, the ring is no longer
556 if (netif_queue_stopped(dev
))
557 netif_wake_queue(dev
);
560 fep
->dirty_tx
= (cbd_t
*)bdp
;
561 spin_unlock(&fep
->lock
);
565 /* During a receive, the cur_rx points to the current incoming buffer.
566 * When we update through the ring, if the next incoming buffer has
567 * not been given to the system, we just set the empty indicator,
568 * effectively tossing the packet.
571 fec_enet_rx(struct net_device
*dev
)
573 struct fec_enet_private
*fep
;
574 volatile fec_t
*fecp
;
576 unsigned short status
;
585 fep
= netdev_priv(dev
);
586 fecp
= (volatile fec_t
*)dev
->base_addr
;
588 /* First, grab all of the stats for the incoming packet.
589 * These get messed up if we get called due to a busy condition.
593 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
595 #ifndef final_version
596 /* Since we have allocated space to hold a complete frame,
597 * the last indicator should be set.
599 if ((status
& BD_ENET_RX_LAST
) == 0)
600 printk("FEC ENET: rcv is not +last\n");
604 goto rx_processing_done
;
606 /* Check for errors. */
607 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
608 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
609 fep
->stats
.rx_errors
++;
610 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
611 /* Frame too long or too short. */
612 fep
->stats
.rx_length_errors
++;
614 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
615 fep
->stats
.rx_frame_errors
++;
616 if (status
& BD_ENET_RX_CR
) /* CRC Error */
617 fep
->stats
.rx_crc_errors
++;
618 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
619 fep
->stats
.rx_fifo_errors
++;
622 /* Report late collisions as a frame error.
623 * On this error, the BD is closed, but we don't know what we
624 * have in the buffer. So, just drop this frame on the floor.
626 if (status
& BD_ENET_RX_CL
) {
627 fep
->stats
.rx_errors
++;
628 fep
->stats
.rx_frame_errors
++;
629 goto rx_processing_done
;
632 /* Process the incoming frame.
634 fep
->stats
.rx_packets
++;
635 pkt_len
= bdp
->cbd_datlen
;
636 fep
->stats
.rx_bytes
+= pkt_len
;
637 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
639 /* This does 16 byte alignment, exactly what we need.
640 * The packet length includes FCS, but we don't want to
641 * include that when passing upstream as it messes up
642 * bridging applications.
644 skb
= dev_alloc_skb(pkt_len
-4);
647 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
648 fep
->stats
.rx_dropped
++;
650 skb_put(skb
,pkt_len
-4); /* Make room */
651 eth_copy_and_sum(skb
, data
, pkt_len
-4, 0);
652 skb
->protocol
=eth_type_trans(skb
,dev
);
657 /* Clear the status flags for this buffer.
659 status
&= ~BD_ENET_RX_STATS
;
661 /* Mark the buffer empty.
663 status
|= BD_ENET_RX_EMPTY
;
664 bdp
->cbd_sc
= status
;
666 /* Update BD pointer to next entry.
668 if (status
& BD_ENET_RX_WRAP
)
669 bdp
= fep
->rx_bd_base
;
674 /* Doing this here will keep the FEC running while we process
675 * incoming frames. On a heavily loaded network, we should be
676 * able to keep up at the expense of system resources.
678 fecp
->fec_r_des_active
= 0;
680 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
681 fep
->cur_rx
= (cbd_t
*)bdp
;
684 /* Doing this here will allow us to process all frames in the
685 * ring before the FEC is allowed to put more there. On a heavily
686 * loaded network, some frames may be lost. Unfortunately, this
687 * increases the interrupt overhead since we can potentially work
688 * our way back to the interrupt return only to come right back
691 fecp
->fec_r_des_active
= 0;
696 /* called from interrupt context */
698 fec_enet_mii(struct net_device
*dev
)
700 struct fec_enet_private
*fep
;
705 fep
= netdev_priv(dev
);
707 mii_reg
= ep
->fec_mii_data
;
709 spin_lock(&fep
->lock
);
711 if ((mip
= mii_head
) == NULL
) {
712 printk("MII and no head!\n");
716 if (mip
->mii_func
!= NULL
)
717 (*(mip
->mii_func
))(mii_reg
, dev
);
719 mii_head
= mip
->mii_next
;
720 mip
->mii_next
= mii_free
;
723 if ((mip
= mii_head
) != NULL
)
724 ep
->fec_mii_data
= mip
->mii_regval
;
727 spin_unlock(&fep
->lock
);
731 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
733 struct fec_enet_private
*fep
;
738 /* Add PHY address to register command.
740 fep
= netdev_priv(dev
);
741 regval
|= fep
->phy_addr
<< 23;
745 spin_lock_irqsave(&fep
->lock
,flags
);
747 if ((mip
= mii_free
) != NULL
) {
748 mii_free
= mip
->mii_next
;
749 mip
->mii_regval
= regval
;
750 mip
->mii_func
= func
;
751 mip
->mii_next
= NULL
;
753 mii_tail
->mii_next
= mip
;
757 mii_head
= mii_tail
= mip
;
758 fep
->hwp
->fec_mii_data
= regval
;
765 spin_unlock_irqrestore(&fep
->lock
,flags
);
770 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
777 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++) {
778 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
782 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
784 struct fec_enet_private
*fep
= netdev_priv(dev
);
785 volatile uint
*s
= &(fep
->phy_status
);
788 status
= *s
& ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
790 if (mii_reg
& 0x0004)
791 status
|= PHY_STAT_LINK
;
792 if (mii_reg
& 0x0010)
793 status
|= PHY_STAT_FAULT
;
794 if (mii_reg
& 0x0020)
795 status
|= PHY_STAT_ANC
;
800 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
802 struct fec_enet_private
*fep
= netdev_priv(dev
);
803 volatile uint
*s
= &(fep
->phy_status
);
806 status
= *s
& ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
808 if (mii_reg
& 0x1000)
809 status
|= PHY_CONF_ANE
;
810 if (mii_reg
& 0x4000)
811 status
|= PHY_CONF_LOOP
;
815 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
817 struct fec_enet_private
*fep
= netdev_priv(dev
);
818 volatile uint
*s
= &(fep
->phy_status
);
821 status
= *s
& ~(PHY_CONF_SPMASK
);
823 if (mii_reg
& 0x0020)
824 status
|= PHY_CONF_10HDX
;
825 if (mii_reg
& 0x0040)
826 status
|= PHY_CONF_10FDX
;
827 if (mii_reg
& 0x0080)
828 status
|= PHY_CONF_100HDX
;
829 if (mii_reg
& 0x00100)
830 status
|= PHY_CONF_100FDX
;
834 /* ------------------------------------------------------------------------- */
835 /* The Level one LXT970 is used by many boards */
837 #define MII_LXT970_MIRROR 16 /* Mirror register */
838 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
839 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
840 #define MII_LXT970_CONFIG 19 /* Configuration Register */
841 #define MII_LXT970_CSR 20 /* Chip Status Register */
843 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
845 struct fec_enet_private
*fep
= netdev_priv(dev
);
846 volatile uint
*s
= &(fep
->phy_status
);
849 status
= *s
& ~(PHY_STAT_SPMASK
);
850 if (mii_reg
& 0x0800) {
851 if (mii_reg
& 0x1000)
852 status
|= PHY_STAT_100FDX
;
854 status
|= PHY_STAT_100HDX
;
856 if (mii_reg
& 0x1000)
857 status
|= PHY_STAT_10FDX
;
859 status
|= PHY_STAT_10HDX
;
864 static phy_cmd_t
const phy_cmd_lxt970_config
[] = {
865 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
866 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
869 static phy_cmd_t
const phy_cmd_lxt970_startup
[] = { /* enable interrupts */
870 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
871 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
874 static phy_cmd_t
const phy_cmd_lxt970_ack_int
[] = {
875 /* read SR and ISR to acknowledge */
876 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
877 { mk_mii_read(MII_LXT970_ISR
), NULL
},
879 /* find out the current status */
880 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
883 static phy_cmd_t
const phy_cmd_lxt970_shutdown
[] = { /* disable interrupts */
884 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
887 static phy_info_t
const phy_info_lxt970
= {
890 .config
= phy_cmd_lxt970_config
,
891 .startup
= phy_cmd_lxt970_startup
,
892 .ack_int
= phy_cmd_lxt970_ack_int
,
893 .shutdown
= phy_cmd_lxt970_shutdown
896 /* ------------------------------------------------------------------------- */
897 /* The Level one LXT971 is used on some of my custom boards */
899 /* register definitions for the 971 */
901 #define MII_LXT971_PCR 16 /* Port Control Register */
902 #define MII_LXT971_SR2 17 /* Status Register 2 */
903 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
904 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
905 #define MII_LXT971_LCR 20 /* LED Control Register */
906 #define MII_LXT971_TCR 30 /* Transmit Control Register */
909 * I had some nice ideas of running the MDIO faster...
910 * The 971 should support 8MHz and I tried it, but things acted really
911 * weird, so 2.5 MHz ought to be enough for anyone...
914 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
916 struct fec_enet_private
*fep
= netdev_priv(dev
);
917 volatile uint
*s
= &(fep
->phy_status
);
920 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
922 if (mii_reg
& 0x0400) {
924 status
|= PHY_STAT_LINK
;
928 if (mii_reg
& 0x0080)
929 status
|= PHY_STAT_ANC
;
930 if (mii_reg
& 0x4000) {
931 if (mii_reg
& 0x0200)
932 status
|= PHY_STAT_100FDX
;
934 status
|= PHY_STAT_100HDX
;
936 if (mii_reg
& 0x0200)
937 status
|= PHY_STAT_10FDX
;
939 status
|= PHY_STAT_10HDX
;
941 if (mii_reg
& 0x0008)
942 status
|= PHY_STAT_FAULT
;
947 static phy_cmd_t
const phy_cmd_lxt971_config
[] = {
948 /* limit to 10MBit because my prototype board
949 * doesn't work with 100. */
950 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
951 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
952 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
955 static phy_cmd_t
const phy_cmd_lxt971_startup
[] = { /* enable interrupts */
956 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
957 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
958 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
959 /* Somehow does the 971 tell me that the link is down
960 * the first read after power-up.
961 * read here to get a valid value in ack_int */
962 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
965 static phy_cmd_t
const phy_cmd_lxt971_ack_int
[] = {
966 /* acknowledge the int before reading status ! */
967 { mk_mii_read(MII_LXT971_ISR
), NULL
},
968 /* find out the current status */
969 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
970 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
973 static phy_cmd_t
const phy_cmd_lxt971_shutdown
[] = { /* disable interrupts */
974 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
977 static phy_info_t
const phy_info_lxt971
= {
980 .config
= phy_cmd_lxt971_config
,
981 .startup
= phy_cmd_lxt971_startup
,
982 .ack_int
= phy_cmd_lxt971_ack_int
,
983 .shutdown
= phy_cmd_lxt971_shutdown
986 /* ------------------------------------------------------------------------- */
987 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
989 /* register definitions */
991 #define MII_QS6612_MCR 17 /* Mode Control Register */
992 #define MII_QS6612_FTR 27 /* Factory Test Register */
993 #define MII_QS6612_MCO 28 /* Misc. Control Register */
994 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
995 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
996 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
998 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
1000 struct fec_enet_private
*fep
= netdev_priv(dev
);
1001 volatile uint
*s
= &(fep
->phy_status
);
1004 status
= *s
& ~(PHY_STAT_SPMASK
);
1006 switch((mii_reg
>> 2) & 7) {
1007 case 1: status
|= PHY_STAT_10HDX
; break;
1008 case 2: status
|= PHY_STAT_100HDX
; break;
1009 case 5: status
|= PHY_STAT_10FDX
; break;
1010 case 6: status
|= PHY_STAT_100FDX
; break;
1016 static phy_cmd_t
const phy_cmd_qs6612_config
[] = {
1017 /* The PHY powers up isolated on the RPX,
1018 * so send a command to allow operation.
1020 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1022 /* parse cr and anar to get some info */
1023 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1024 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1027 static phy_cmd_t
const phy_cmd_qs6612_startup
[] = { /* enable interrupts */
1028 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1029 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1032 static phy_cmd_t
const phy_cmd_qs6612_ack_int
[] = {
1033 /* we need to read ISR, SR and ANER to acknowledge */
1034 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1035 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1036 { mk_mii_read(MII_REG_ANER
), NULL
},
1038 /* read pcr to get info */
1039 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1042 static phy_cmd_t
const phy_cmd_qs6612_shutdown
[] = { /* disable interrupts */
1043 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1046 static phy_info_t
const phy_info_qs6612
= {
1049 .config
= phy_cmd_qs6612_config
,
1050 .startup
= phy_cmd_qs6612_startup
,
1051 .ack_int
= phy_cmd_qs6612_ack_int
,
1052 .shutdown
= phy_cmd_qs6612_shutdown
1055 /* ------------------------------------------------------------------------- */
1056 /* AMD AM79C874 phy */
1058 /* register definitions for the 874 */
1060 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1061 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1062 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1063 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1064 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1065 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1066 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1068 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
1070 struct fec_enet_private
*fep
= netdev_priv(dev
);
1071 volatile uint
*s
= &(fep
->phy_status
);
1074 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
1076 if (mii_reg
& 0x0080)
1077 status
|= PHY_STAT_ANC
;
1078 if (mii_reg
& 0x0400)
1079 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
1081 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
1086 static phy_cmd_t
const phy_cmd_am79c874_config
[] = {
1087 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1088 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1089 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1092 static phy_cmd_t
const phy_cmd_am79c874_startup
[] = { /* enable interrupts */
1093 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1094 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1095 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1098 static phy_cmd_t
const phy_cmd_am79c874_ack_int
[] = {
1099 /* find out the current status */
1100 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1101 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1102 /* we only need to read ISR to acknowledge */
1103 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1106 static phy_cmd_t
const phy_cmd_am79c874_shutdown
[] = { /* disable interrupts */
1107 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1110 static phy_info_t
const phy_info_am79c874
= {
1113 .config
= phy_cmd_am79c874_config
,
1114 .startup
= phy_cmd_am79c874_startup
,
1115 .ack_int
= phy_cmd_am79c874_ack_int
,
1116 .shutdown
= phy_cmd_am79c874_shutdown
1120 /* ------------------------------------------------------------------------- */
1121 /* Kendin KS8721BL phy */
1123 /* register definitions for the 8721 */
1125 #define MII_KS8721BL_RXERCR 21
1126 #define MII_KS8721BL_ICSR 22
1127 #define MII_KS8721BL_PHYCR 31
1129 static phy_cmd_t
const phy_cmd_ks8721bl_config
[] = {
1130 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1131 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1134 static phy_cmd_t
const phy_cmd_ks8721bl_startup
[] = { /* enable interrupts */
1135 { mk_mii_write(MII_KS8721BL_ICSR
, 0xff00), NULL
},
1136 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1137 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1140 static phy_cmd_t
const phy_cmd_ks8721bl_ack_int
[] = {
1141 /* find out the current status */
1142 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1143 /* we only need to read ISR to acknowledge */
1144 { mk_mii_read(MII_KS8721BL_ICSR
), NULL
},
1147 static phy_cmd_t
const phy_cmd_ks8721bl_shutdown
[] = { /* disable interrupts */
1148 { mk_mii_write(MII_KS8721BL_ICSR
, 0x0000), NULL
},
1151 static phy_info_t
const phy_info_ks8721bl
= {
1154 .config
= phy_cmd_ks8721bl_config
,
1155 .startup
= phy_cmd_ks8721bl_startup
,
1156 .ack_int
= phy_cmd_ks8721bl_ack_int
,
1157 .shutdown
= phy_cmd_ks8721bl_shutdown
1160 /* ------------------------------------------------------------------------- */
1161 /* register definitions for the DP83848 */
1163 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1165 static void mii_parse_dp8384x_sr2(uint mii_reg
, struct net_device
*dev
)
1167 struct fec_enet_private
*fep
= dev
->priv
;
1168 volatile uint
*s
= &(fep
->phy_status
);
1170 *s
&= ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
1173 if (mii_reg
& 0x0001) {
1175 *s
|= PHY_STAT_LINK
;
1178 /* Status of link */
1179 if (mii_reg
& 0x0010) /* Autonegotioation complete */
1181 if (mii_reg
& 0x0002) { /* 10MBps? */
1182 if (mii_reg
& 0x0004) /* Full Duplex? */
1183 *s
|= PHY_STAT_10FDX
;
1185 *s
|= PHY_STAT_10HDX
;
1186 } else { /* 100 Mbps? */
1187 if (mii_reg
& 0x0004) /* Full Duplex? */
1188 *s
|= PHY_STAT_100FDX
;
1190 *s
|= PHY_STAT_100HDX
;
1192 if (mii_reg
& 0x0008)
1193 *s
|= PHY_STAT_FAULT
;
1196 static phy_info_t phy_info_dp83848
= {
1200 (const phy_cmd_t
[]) { /* config */
1201 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1202 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1203 { mk_mii_read(MII_DP8384X_PHYSTST
), mii_parse_dp8384x_sr2
},
1206 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1207 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1208 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1211 (const phy_cmd_t
[]) { /* ack_int - never happens, no interrupt */
1214 (const phy_cmd_t
[]) { /* shutdown */
1219 /* ------------------------------------------------------------------------- */
1221 static phy_info_t
const * const phy_info
[] = {
1231 /* ------------------------------------------------------------------------- */
1232 #if !defined(CONFIG_M532x)
1233 #ifdef CONFIG_RPXCLASSIC
1235 mii_link_interrupt(void *dev_id
);
1238 mii_link_interrupt(int irq
, void * dev_id
);
1242 #if defined(CONFIG_M5272)
1245 * Code specific to Coldfire 5272 setup.
1247 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1249 volatile unsigned long *icrp
;
1250 static const struct idesc
{
1253 irq_handler_t handler
;
1255 { "fec(RX)", 86, fec_enet_interrupt
},
1256 { "fec(TX)", 87, fec_enet_interrupt
},
1257 { "fec(OTHER)", 88, fec_enet_interrupt
},
1258 { "fec(MII)", 66, mii_link_interrupt
},
1262 /* Setup interrupt handlers. */
1263 for (idp
= id
; idp
->name
; idp
++) {
1264 if (request_irq(idp
->irq
, idp
->handler
, 0, idp
->name
, dev
) != 0)
1265 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, idp
->irq
);
1268 /* Unmask interrupt at ColdFire 5272 SIM */
1269 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1271 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1272 *icrp
= (*icrp
& 0x70777777) | 0x0d000000;
1275 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1277 volatile fec_t
*fecp
;
1280 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1281 fecp
->fec_x_cntrl
= 0x00;
1284 * Set MII speed to 2.5 MHz
1285 * See 5272 manual section 11.5.8: MSCR
1287 fep
->phy_speed
= ((((MCF_CLK
/ 4) / (2500000 / 10)) + 5) / 10) * 2;
1288 fecp
->fec_mii_speed
= fep
->phy_speed
;
1290 fec_restart(dev
, 0);
1293 static void __inline__
fec_get_mac(struct net_device
*dev
)
1295 struct fec_enet_private
*fep
= netdev_priv(dev
);
1296 volatile fec_t
*fecp
;
1297 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1303 * Get MAC address from FLASH.
1304 * If it is all 1's or 0's, use the default.
1306 iap
= (unsigned char *)FEC_FLASHMAC
;
1307 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1308 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1309 iap
= fec_mac_default
;
1310 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1311 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1312 iap
= fec_mac_default
;
1314 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1315 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1319 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1321 /* Adjust MAC if using default MAC address */
1322 if (iap
== fec_mac_default
)
1323 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1326 static void __inline__
fec_enable_phy_intr(void)
1330 static void __inline__
fec_disable_phy_intr(void)
1332 volatile unsigned long *icrp
;
1333 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1334 *icrp
= (*icrp
& 0x70777777) | 0x08000000;
1337 static void __inline__
fec_phy_ack_intr(void)
1339 volatile unsigned long *icrp
;
1340 /* Acknowledge the interrupt */
1341 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1342 *icrp
= (*icrp
& 0x77777777) | 0x08000000;
1345 static void __inline__
fec_localhw_setup(void)
1350 * Do not need to make region uncached on 5272.
1352 static void __inline__
fec_uncache(unsigned long addr
)
1356 /* ------------------------------------------------------------------------- */
1358 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1361 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1362 * the 5270/5271/5274/5275 and 5280/5282 setups.
1364 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1366 struct fec_enet_private
*fep
;
1368 static const struct idesc
{
1374 { "fec(TXFIFO)", 25 },
1375 { "fec(TXCR)", 26 },
1380 { "fec(HBERR)", 31 },
1382 { "fec(EBERR)", 33 },
1383 { "fec(BABT)", 34 },
1384 { "fec(BABR)", 35 },
1388 fep
= netdev_priv(dev
);
1389 b
= (fep
->index
) ? 128 : 64;
1391 /* Setup interrupt handlers. */
1392 for (idp
= id
; idp
->name
; idp
++) {
1393 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, 0, idp
->name
, dev
) != 0)
1394 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1397 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1399 volatile unsigned char *icrp
;
1400 volatile unsigned long *imrp
;
1403 b
= (fep
->index
) ? MCFICM_INTC1
: MCFICM_INTC0
;
1404 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ b
+
1406 for (i
= 23, ilip
= 0x28; (i
< 36); i
++)
1409 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1411 *imrp
&= ~0x0000000f;
1412 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1414 *imrp
&= ~0xff800001;
1417 #if defined(CONFIG_M528x)
1418 /* Set up gpio outputs for MII lines */
1420 volatile u16
*gpio_paspar
;
1421 volatile u8
*gpio_pehlpar
;
1423 gpio_paspar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100056);
1424 gpio_pehlpar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100058);
1425 *gpio_paspar
|= 0x0f00;
1426 *gpio_pehlpar
= 0xc0;
1431 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1433 volatile fec_t
*fecp
;
1436 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1437 fecp
->fec_x_cntrl
= 0x00;
1440 * Set MII speed to 2.5 MHz
1441 * See 5282 manual section 17.5.4.7: MSCR
1443 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1444 fecp
->fec_mii_speed
= fep
->phy_speed
;
1446 fec_restart(dev
, 0);
1449 static void __inline__
fec_get_mac(struct net_device
*dev
)
1451 struct fec_enet_private
*fep
= netdev_priv(dev
);
1452 volatile fec_t
*fecp
;
1453 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1459 * Get MAC address from FLASH.
1460 * If it is all 1's or 0's, use the default.
1463 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1464 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1465 iap
= fec_mac_default
;
1466 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1467 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1468 iap
= fec_mac_default
;
1470 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1471 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1475 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1477 /* Adjust MAC if using default MAC address */
1478 if (iap
== fec_mac_default
)
1479 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1482 static void __inline__
fec_enable_phy_intr(void)
1486 static void __inline__
fec_disable_phy_intr(void)
1490 static void __inline__
fec_phy_ack_intr(void)
1494 static void __inline__
fec_localhw_setup(void)
1499 * Do not need to make region uncached on 5272.
1501 static void __inline__
fec_uncache(unsigned long addr
)
1505 /* ------------------------------------------------------------------------- */
1507 #elif defined(CONFIG_M520x)
1510 * Code specific to Coldfire 520x
1512 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1514 struct fec_enet_private
*fep
;
1516 static const struct idesc
{
1522 { "fec(TXFIFO)", 25 },
1523 { "fec(TXCR)", 26 },
1528 { "fec(HBERR)", 31 },
1530 { "fec(EBERR)", 33 },
1531 { "fec(BABT)", 34 },
1532 { "fec(BABR)", 35 },
1536 fep
= netdev_priv(dev
);
1539 /* Setup interrupt handlers. */
1540 for (idp
= id
; idp
->name
; idp
++) {
1541 if (request_irq(b
+idp
->irq
,fec_enet_interrupt
,0,idp
->name
,dev
)!=0)
1542 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1545 /* Unmask interrupts at ColdFire interrupt controller */
1547 volatile unsigned char *icrp
;
1548 volatile unsigned long *imrp
;
1550 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1552 for (b
= 36; (b
< 49); b
++)
1554 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ MCFICM_INTC0
+
1556 *imrp
&= ~0x0001FFF0;
1558 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FEC
) |= 0xf0;
1559 *(volatile unsigned char *)(MCF_IPSBAR
+ MCF_GPIO_PAR_FECI2C
) |= 0x0f;
1562 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1564 volatile fec_t
*fecp
;
1567 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1568 fecp
->fec_x_cntrl
= 0x00;
1571 * Set MII speed to 2.5 MHz
1572 * See 5282 manual section 17.5.4.7: MSCR
1574 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1575 fecp
->fec_mii_speed
= fep
->phy_speed
;
1577 fec_restart(dev
, 0);
1580 static void __inline__
fec_get_mac(struct net_device
*dev
)
1582 struct fec_enet_private
*fep
= netdev_priv(dev
);
1583 volatile fec_t
*fecp
;
1584 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1590 * Get MAC address from FLASH.
1591 * If it is all 1's or 0's, use the default.
1594 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1595 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1596 iap
= fec_mac_default
;
1597 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1598 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1599 iap
= fec_mac_default
;
1601 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1602 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1606 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1608 /* Adjust MAC if using default MAC address */
1609 if (iap
== fec_mac_default
)
1610 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1613 static void __inline__
fec_enable_phy_intr(void)
1617 static void __inline__
fec_disable_phy_intr(void)
1621 static void __inline__
fec_phy_ack_intr(void)
1625 static void __inline__
fec_localhw_setup(void)
1629 static void __inline__
fec_uncache(unsigned long addr
)
1633 /* ------------------------------------------------------------------------- */
1635 #elif defined(CONFIG_M532x)
1637 * Code specific for M532x
1639 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1641 struct fec_enet_private
*fep
;
1643 static const struct idesc
{
1649 { "fec(TXFIFO)", 38 },
1650 { "fec(TXCR)", 39 },
1655 { "fec(HBERR)", 44 },
1657 { "fec(EBERR)", 46 },
1658 { "fec(BABT)", 47 },
1659 { "fec(BABR)", 48 },
1663 fep
= netdev_priv(dev
);
1664 b
= (fep
->index
) ? 128 : 64;
1666 /* Setup interrupt handlers. */
1667 for (idp
= id
; idp
->name
; idp
++) {
1668 if (request_irq(b
+idp
->irq
,fec_enet_interrupt
,0,idp
->name
,dev
)!=0)
1669 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1670 idp
->name
, b
+idp
->irq
);
1673 /* Unmask interrupts */
1674 MCF_INTC0_ICR36
= 0x2;
1675 MCF_INTC0_ICR37
= 0x2;
1676 MCF_INTC0_ICR38
= 0x2;
1677 MCF_INTC0_ICR39
= 0x2;
1678 MCF_INTC0_ICR40
= 0x2;
1679 MCF_INTC0_ICR41
= 0x2;
1680 MCF_INTC0_ICR42
= 0x2;
1681 MCF_INTC0_ICR43
= 0x2;
1682 MCF_INTC0_ICR44
= 0x2;
1683 MCF_INTC0_ICR45
= 0x2;
1684 MCF_INTC0_ICR46
= 0x2;
1685 MCF_INTC0_ICR47
= 0x2;
1686 MCF_INTC0_ICR48
= 0x2;
1688 MCF_INTC0_IMRH
&= ~(
1689 MCF_INTC_IMRH_INT_MASK36
|
1690 MCF_INTC_IMRH_INT_MASK37
|
1691 MCF_INTC_IMRH_INT_MASK38
|
1692 MCF_INTC_IMRH_INT_MASK39
|
1693 MCF_INTC_IMRH_INT_MASK40
|
1694 MCF_INTC_IMRH_INT_MASK41
|
1695 MCF_INTC_IMRH_INT_MASK42
|
1696 MCF_INTC_IMRH_INT_MASK43
|
1697 MCF_INTC_IMRH_INT_MASK44
|
1698 MCF_INTC_IMRH_INT_MASK45
|
1699 MCF_INTC_IMRH_INT_MASK46
|
1700 MCF_INTC_IMRH_INT_MASK47
|
1701 MCF_INTC_IMRH_INT_MASK48
);
1703 /* Set up gpio outputs for MII lines */
1704 MCF_GPIO_PAR_FECI2C
|= (0 |
1705 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC
|
1706 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO
);
1707 MCF_GPIO_PAR_FEC
= (0 |
1708 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC
|
1709 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC
);
1712 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1714 volatile fec_t
*fecp
;
1717 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1718 fecp
->fec_x_cntrl
= 0x00;
1721 * Set MII speed to 2.5 MHz
1723 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1724 fecp
->fec_mii_speed
= fep
->phy_speed
;
1726 fec_restart(dev
, 0);
1729 static void __inline__
fec_get_mac(struct net_device
*dev
)
1731 struct fec_enet_private
*fep
= netdev_priv(dev
);
1732 volatile fec_t
*fecp
;
1733 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1739 * Get MAC address from FLASH.
1740 * If it is all 1's or 0's, use the default.
1743 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1744 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1745 iap
= fec_mac_default
;
1746 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1747 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1748 iap
= fec_mac_default
;
1750 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1751 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1755 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1757 /* Adjust MAC if using default MAC address */
1758 if (iap
== fec_mac_default
)
1759 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1762 static void __inline__
fec_enable_phy_intr(void)
1766 static void __inline__
fec_disable_phy_intr(void)
1770 static void __inline__
fec_phy_ack_intr(void)
1774 static void __inline__
fec_localhw_setup(void)
1779 * Do not need to make region uncached on 532x.
1781 static void __inline__
fec_uncache(unsigned long addr
)
1785 /* ------------------------------------------------------------------------- */
1791 * Code specific to the MPC860T setup.
1793 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1795 volatile immap_t
*immap
;
1797 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1799 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1800 panic("Could not allocate FEC IRQ!");
1802 #ifdef CONFIG_RPXCLASSIC
1803 /* Make Port C, bit 15 an input that causes interrupts.
1805 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1806 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1807 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1808 immap
->im_ioport
.iop_pcint
|= 0x0001;
1809 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1811 /* Make LEDS reflect Link status.
1813 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1816 if (request_8xxirq(SIU_IRQ2
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1817 panic("Could not allocate MII IRQ!");
1821 static void __inline__
fec_get_mac(struct net_device
*dev
)
1826 memcpy(dev
->dev_addr
, bd
->bi_enetaddr
, ETH_ALEN
);
1828 #ifdef CONFIG_RPXCLASSIC
1829 /* The Embedded Planet boards have only one MAC address in
1830 * the EEPROM, but can have two Ethernet ports. For the
1831 * FEC port, we create another address by setting one of
1832 * the address bits above something that would have (up to
1833 * now) been allocated.
1835 dev
->dev_adrd
[3] |= 0x80;
1839 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1841 extern uint
_get_IMMR(void);
1842 volatile immap_t
*immap
;
1843 volatile fec_t
*fecp
;
1846 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1848 /* Configure all of port D for MII.
1850 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1852 /* Bits moved from Rev. D onward.
1854 if ((_get_IMMR() & 0xffff) < 0x0501)
1855 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1857 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1859 /* Set MII speed to 2.5 MHz
1861 fecp
->fec_mii_speed
= fep
->phy_speed
=
1862 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1865 static void __inline__
fec_enable_phy_intr(void)
1867 volatile fec_t
*fecp
;
1871 /* Enable MII command finished interrupt
1873 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1876 static void __inline__
fec_disable_phy_intr(void)
1880 static void __inline__
fec_phy_ack_intr(void)
1884 static void __inline__
fec_localhw_setup(void)
1886 volatile fec_t
*fecp
;
1889 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1890 /* Enable big endian and don't care about SDMA FC.
1892 fecp
->fec_fun_code
= 0x78000000;
1895 static void __inline__
fec_uncache(unsigned long addr
)
1898 pte
= va_to_pte(mem_addr
);
1899 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1900 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1905 /* ------------------------------------------------------------------------- */
1907 static void mii_display_status(struct net_device
*dev
)
1909 struct fec_enet_private
*fep
= netdev_priv(dev
);
1910 volatile uint
*s
= &(fep
->phy_status
);
1912 if (!fep
->link
&& !fep
->old_link
) {
1913 /* Link is still down - don't print anything */
1917 printk("%s: status: ", dev
->name
);
1920 printk("link down");
1924 switch(*s
& PHY_STAT_SPMASK
) {
1925 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1926 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1927 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1928 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1930 printk(", Unknown speed/duplex");
1933 if (*s
& PHY_STAT_ANC
)
1934 printk(", auto-negotiation complete");
1937 if (*s
& PHY_STAT_FAULT
)
1938 printk(", remote fault");
1943 static void mii_display_config(struct net_device
*dev
)
1945 struct fec_enet_private
*fep
= netdev_priv(dev
);
1946 uint status
= fep
->phy_status
;
1949 ** When we get here, phy_task is already removed from
1950 ** the workqueue. It is thus safe to allow to reuse it.
1952 fep
->mii_phy_task_queued
= 0;
1953 printk("%s: config: auto-negotiation ", dev
->name
);
1955 if (status
& PHY_CONF_ANE
)
1960 if (status
& PHY_CONF_100FDX
)
1962 if (status
& PHY_CONF_100HDX
)
1964 if (status
& PHY_CONF_10FDX
)
1966 if (status
& PHY_CONF_10HDX
)
1968 if (!(status
& PHY_CONF_SPMASK
))
1969 printk(", No speed/duplex selected?");
1971 if (status
& PHY_CONF_LOOP
)
1972 printk(", loopback enabled");
1976 fep
->sequence_done
= 1;
1979 static void mii_relink(struct net_device
*dev
)
1981 struct fec_enet_private
*fep
= netdev_priv(dev
);
1985 ** When we get here, phy_task is already removed from
1986 ** the workqueue. It is thus safe to allow to reuse it.
1988 fep
->mii_phy_task_queued
= 0;
1989 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1990 mii_display_status(dev
);
1991 fep
->old_link
= fep
->link
;
1996 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1998 fec_restart(dev
, duplex
);
2004 enable_irq(fep
->mii_irq
);
2009 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2010 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
2012 struct fec_enet_private
*fep
= netdev_priv(dev
);
2015 ** We cannot queue phy_task twice in the workqueue. It
2016 ** would cause an endless loop in the workqueue.
2017 ** Fortunately, if the last mii_relink entry has not yet been
2018 ** executed now, it will do the job for the current interrupt,
2019 ** which is just what we want.
2021 if (fep
->mii_phy_task_queued
)
2024 fep
->mii_phy_task_queued
= 1;
2025 INIT_WORK(&fep
->phy_task
, (void*)mii_relink
, dev
);
2026 schedule_work(&fep
->phy_task
);
2029 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2030 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
2032 struct fec_enet_private
*fep
= netdev_priv(dev
);
2034 if (fep
->mii_phy_task_queued
)
2037 fep
->mii_phy_task_queued
= 1;
2038 INIT_WORK(&fep
->phy_task
, (void*)mii_display_config
, dev
);
2039 schedule_work(&fep
->phy_task
);
2042 phy_cmd_t
const phy_cmd_relink
[] = {
2043 { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
2046 phy_cmd_t
const phy_cmd_config
[] = {
2047 { mk_mii_read(MII_REG_CR
), mii_queue_config
},
2051 /* Read remainder of PHY ID.
2054 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
2056 struct fec_enet_private
*fep
;
2059 fep
= netdev_priv(dev
);
2060 fep
->phy_id
|= (mii_reg
& 0xffff);
2061 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
2063 for(i
= 0; phy_info
[i
]; i
++) {
2064 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
2069 printk(" -- %s\n", phy_info
[i
]->name
);
2071 printk(" -- unknown PHY!\n");
2073 fep
->phy
= phy_info
[i
];
2074 fep
->phy_id_done
= 1;
2077 /* Scan all of the MII PHY addresses looking for someone to respond
2078 * with a valid ID. This usually happens quickly.
2081 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
2083 struct fec_enet_private
*fep
;
2084 volatile fec_t
*fecp
;
2087 fep
= netdev_priv(dev
);
2090 if (fep
->phy_addr
< 32) {
2091 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
2093 /* Got first part of ID, now get remainder.
2095 fep
->phy_id
= phytype
<< 16;
2096 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
2101 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
2105 printk("FEC: No PHY device found.\n");
2106 /* Disable external MII interface */
2107 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
2108 fec_disable_phy_intr();
2112 /* This interrupt occurs when the PHY detects a link change.
2114 #ifdef CONFIG_RPXCLASSIC
2116 mii_link_interrupt(void *dev_id
)
2119 mii_link_interrupt(int irq
, void * dev_id
)
2122 struct net_device
*dev
= dev_id
;
2123 struct fec_enet_private
*fep
= netdev_priv(dev
);
2128 disable_irq(fep
->mii_irq
); /* disable now, enable later */
2131 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2132 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
2138 fec_enet_open(struct net_device
*dev
)
2140 struct fec_enet_private
*fep
= netdev_priv(dev
);
2142 /* I should reset the ring buffers here, but I don't yet know
2143 * a simple way to do that.
2145 fec_set_mac_address(dev
);
2147 fep
->sequence_done
= 0;
2151 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2152 mii_do_cmd(dev
, fep
->phy
->config
);
2153 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2155 /* Poll until the PHY tells us its configuration
2157 * Request is initiated by mii_do_cmd above, but answer
2158 * comes by interrupt.
2159 * This should take about 25 usec per register at 2.5 MHz,
2160 * and we read approximately 5 registers.
2162 while(!fep
->sequence_done
)
2165 mii_do_cmd(dev
, fep
->phy
->startup
);
2167 /* Set the initial link state to true. A lot of hardware
2168 * based on this device does not implement a PHY interrupt,
2169 * so we are never notified of link change.
2173 fep
->link
= 1; /* lets just try it and see */
2174 /* no phy, go full duplex, it's most likely a hub chip */
2175 fec_restart(dev
, 1);
2178 netif_start_queue(dev
);
2180 return 0; /* Success */
2184 fec_enet_close(struct net_device
*dev
)
2186 struct fec_enet_private
*fep
= netdev_priv(dev
);
2188 /* Don't know what to do yet.
2191 netif_stop_queue(dev
);
2197 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
2199 struct fec_enet_private
*fep
= netdev_priv(dev
);
2204 /* Set or clear the multicast filter for this adaptor.
2205 * Skeleton taken from sunlance driver.
2206 * The CPM Ethernet implementation allows Multicast as well as individual
2207 * MAC address filtering. Some of the drivers check to make sure it is
2208 * a group multicast address, and discard those that are not. I guess I
2209 * will do the same for now, but just remove the test if you want
2210 * individual filtering as well (do the upper net layers want or support
2211 * this kind of feature?).
2214 #define HASH_BITS 6 /* #bits in hash */
2215 #define CRC32_POLY 0xEDB88320
2217 static void set_multicast_list(struct net_device
*dev
)
2219 struct fec_enet_private
*fep
;
2221 struct dev_mc_list
*dmi
;
2222 unsigned int i
, j
, bit
, data
, crc
;
2225 fep
= netdev_priv(dev
);
2228 if (dev
->flags
&IFF_PROMISC
) {
2229 ep
->fec_r_cntrl
|= 0x0008;
2232 ep
->fec_r_cntrl
&= ~0x0008;
2234 if (dev
->flags
& IFF_ALLMULTI
) {
2235 /* Catch all multicast addresses, so set the
2236 * filter to all 1's.
2238 ep
->fec_hash_table_high
= 0xffffffff;
2239 ep
->fec_hash_table_low
= 0xffffffff;
2241 /* Clear filter and add the addresses in hash register.
2243 ep
->fec_hash_table_high
= 0;
2244 ep
->fec_hash_table_low
= 0;
2248 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
2250 /* Only support group multicast for now.
2252 if (!(dmi
->dmi_addr
[0] & 1))
2255 /* calculate crc32 value of mac address
2259 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
2261 data
= dmi
->dmi_addr
[i
];
2262 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
2265 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
2269 /* only upper 6 bits (HASH_BITS) are used
2270 which point to specific bit in he hash registers
2272 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
2275 ep
->fec_hash_table_high
|= 1 << (hash
- 32);
2277 ep
->fec_hash_table_low
|= 1 << hash
;
2283 /* Set a MAC change in hardware.
2286 fec_set_mac_address(struct net_device
*dev
)
2288 volatile fec_t
*fecp
;
2290 fecp
= ((struct fec_enet_private
*)netdev_priv(dev
))->hwp
;
2292 /* Set station address. */
2293 fecp
->fec_addr_low
= dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
2294 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24);
2295 fecp
->fec_addr_high
= (dev
->dev_addr
[5] << 16) |
2296 (dev
->dev_addr
[4] << 24);
2300 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2303 * XXX: We need to clean up on failure exits here.
2305 int __init
fec_enet_init(struct net_device
*dev
)
2307 struct fec_enet_private
*fep
= netdev_priv(dev
);
2308 unsigned long mem_addr
;
2309 volatile cbd_t
*bdp
;
2311 volatile fec_t
*fecp
;
2313 static int index
= 0;
2315 /* Only allow us to be probed once. */
2316 if (index
>= FEC_MAX_PORTS
)
2319 /* Allocate memory for buffer descriptors.
2321 mem_addr
= __get_free_page(GFP_KERNEL
);
2322 if (mem_addr
== 0) {
2323 printk("FEC: allocate descriptor memory failed?\n");
2327 /* Create an Ethernet device instance.
2329 fecp
= (volatile fec_t
*) fec_hw
[index
];
2334 /* Whack a reset. We should wait for this.
2336 fecp
->fec_ecntrl
= 1;
2339 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2340 * this needs some work to get unique addresses.
2342 * This is our default MAC address unless the user changes
2343 * it via eth_mac_addr (our dev->set_mac_addr handler).
2347 cbd_base
= (cbd_t
*)mem_addr
;
2348 /* XXX: missing check for allocation failure */
2350 fec_uncache(mem_addr
);
2352 /* Set receive and transmit descriptor base.
2354 fep
->rx_bd_base
= cbd_base
;
2355 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
2357 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2358 fep
->cur_rx
= fep
->rx_bd_base
;
2360 fep
->skb_cur
= fep
->skb_dirty
= 0;
2362 /* Initialize the receive buffer descriptors.
2364 bdp
= fep
->rx_bd_base
;
2365 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
2369 mem_addr
= __get_free_page(GFP_KERNEL
);
2370 /* XXX: missing check for allocation failure */
2372 fec_uncache(mem_addr
);
2374 /* Initialize the BD for every fragment in the page.
2376 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
2377 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2378 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2379 mem_addr
+= FEC_ENET_RX_FRSIZE
;
2384 /* Set the last buffer to wrap.
2387 bdp
->cbd_sc
|= BD_SC_WRAP
;
2389 /* ...and the same for transmmit.
2391 bdp
= fep
->tx_bd_base
;
2392 for (i
=0, j
=FEC_ENET_TX_FRPPG
; i
<TX_RING_SIZE
; i
++) {
2393 if (j
>= FEC_ENET_TX_FRPPG
) {
2394 mem_addr
= __get_free_page(GFP_KERNEL
);
2397 mem_addr
+= FEC_ENET_TX_FRSIZE
;
2400 fep
->tx_bounce
[i
] = (unsigned char *) mem_addr
;
2402 /* Initialize the BD for every fragment in the page.
2405 bdp
->cbd_bufaddr
= 0;
2409 /* Set the last buffer to wrap.
2412 bdp
->cbd_sc
|= BD_SC_WRAP
;
2414 /* Set receive and transmit descriptor base.
2416 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2417 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2419 /* Install our interrupt handlers. This varies depending on
2422 fec_request_intrs(dev
);
2424 fecp
->fec_hash_table_high
= 0;
2425 fecp
->fec_hash_table_low
= 0;
2426 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2427 fecp
->fec_ecntrl
= 2;
2428 fecp
->fec_r_des_active
= 0;
2430 dev
->base_addr
= (unsigned long)fecp
;
2432 /* The FEC Ethernet specific entries in the device structure. */
2433 dev
->open
= fec_enet_open
;
2434 dev
->hard_start_xmit
= fec_enet_start_xmit
;
2435 dev
->tx_timeout
= fec_timeout
;
2436 dev
->watchdog_timeo
= TX_TIMEOUT
;
2437 dev
->stop
= fec_enet_close
;
2438 dev
->get_stats
= fec_enet_get_stats
;
2439 dev
->set_multicast_list
= set_multicast_list
;
2441 for (i
=0; i
<NMII
-1; i
++)
2442 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
2443 mii_free
= mii_cmds
;
2445 /* setup MII interface */
2446 fec_set_mii(dev
, fep
);
2448 /* Clear and enable interrupts */
2449 fecp
->fec_ievent
= 0xffc00000;
2450 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2451 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2453 /* Queue up command to detect the PHY and initialize the
2454 * remainder of the interface.
2456 fep
->phy_id_done
= 0;
2458 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
2464 /* This function is called to start or restart the FEC during a link
2465 * change. This only happens when switching between half and full
2469 fec_restart(struct net_device
*dev
, int duplex
)
2471 struct fec_enet_private
*fep
;
2472 volatile cbd_t
*bdp
;
2473 volatile fec_t
*fecp
;
2476 fep
= netdev_priv(dev
);
2479 /* Whack a reset. We should wait for this.
2481 fecp
->fec_ecntrl
= 1;
2484 /* Clear any outstanding interrupt.
2486 fecp
->fec_ievent
= 0xffc00000;
2487 fec_enable_phy_intr();
2489 /* Set station address.
2491 fec_set_mac_address(dev
);
2493 /* Reset all multicast.
2495 fecp
->fec_hash_table_high
= 0;
2496 fecp
->fec_hash_table_low
= 0;
2498 /* Set maximum receive buffer size.
2500 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2502 fec_localhw_setup();
2504 /* Set receive and transmit descriptor base.
2506 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2507 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2509 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2510 fep
->cur_rx
= fep
->rx_bd_base
;
2512 /* Reset SKB transmit buffers.
2514 fep
->skb_cur
= fep
->skb_dirty
= 0;
2515 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2516 if (fep
->tx_skbuff
[i
] != NULL
) {
2517 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
2518 fep
->tx_skbuff
[i
] = NULL
;
2522 /* Initialize the receive buffer descriptors.
2524 bdp
= fep
->rx_bd_base
;
2525 for (i
=0; i
<RX_RING_SIZE
; i
++) {
2527 /* Initialize the BD for every fragment in the page.
2529 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2533 /* Set the last buffer to wrap.
2536 bdp
->cbd_sc
|= BD_SC_WRAP
;
2538 /* ...and the same for transmmit.
2540 bdp
= fep
->tx_bd_base
;
2541 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2543 /* Initialize the BD for every fragment in the page.
2546 bdp
->cbd_bufaddr
= 0;
2550 /* Set the last buffer to wrap.
2553 bdp
->cbd_sc
|= BD_SC_WRAP
;
2558 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;/* MII enable */
2559 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
2562 /* MII enable|No Rcv on Xmit */
2563 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x06;
2564 fecp
->fec_x_cntrl
= 0x00;
2566 fep
->full_duplex
= duplex
;
2570 fecp
->fec_mii_speed
= fep
->phy_speed
;
2572 /* And last, enable the transmit and receive processing.
2574 fecp
->fec_ecntrl
= 2;
2575 fecp
->fec_r_des_active
= 0;
2577 /* Enable interrupts we wish to service.
2579 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2580 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2584 fec_stop(struct net_device
*dev
)
2586 volatile fec_t
*fecp
;
2587 struct fec_enet_private
*fep
;
2589 fep
= netdev_priv(dev
);
2593 ** We cannot expect a graceful transmit stop without link !!!
2597 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
2599 if (!(fecp
->fec_ievent
& FEC_ENET_GRA
))
2600 printk("fec_stop : Graceful transmit stop did not complete !\n");
2603 /* Whack a reset. We should wait for this.
2605 fecp
->fec_ecntrl
= 1;
2608 /* Clear outstanding MII command interrupts.
2610 fecp
->fec_ievent
= FEC_ENET_MII
;
2611 fec_enable_phy_intr();
2613 fecp
->fec_imask
= FEC_ENET_MII
;
2614 fecp
->fec_mii_speed
= fep
->phy_speed
;
2617 static int __init
fec_enet_module_init(void)
2619 struct net_device
*dev
;
2622 printk("FEC ENET Version 0.2\n");
2624 for (i
= 0; (i
< FEC_MAX_PORTS
); i
++) {
2625 dev
= alloc_etherdev(sizeof(struct fec_enet_private
));
2628 err
= fec_enet_init(dev
);
2633 if (register_netdev(dev
) != 0) {
2634 /* XXX: missing cleanup here */
2639 printk("%s: ethernet ", dev
->name
);
2640 for (j
= 0; (j
< 5); j
++)
2641 printk("%02x:", dev
->dev_addr
[j
]);
2642 printk("%02x\n", dev
->dev_addr
[5]);
2647 module_init(fec_enet_module_init
);
2649 MODULE_LICENSE("GPL");