2 * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
38 #include "xfs_trans.h"
41 #include "xfs_dmapi.h"
42 #include "xfs_mount.h"
43 #include "xfs_trans_priv.h"
44 #include "xfs_error.h"
46 STATIC
void xfs_ail_insert(xfs_ail_entry_t
*, xfs_log_item_t
*);
47 STATIC xfs_log_item_t
* xfs_ail_delete(xfs_ail_entry_t
*, xfs_log_item_t
*);
48 STATIC xfs_log_item_t
* xfs_ail_min(xfs_ail_entry_t
*);
49 STATIC xfs_log_item_t
* xfs_ail_next(xfs_ail_entry_t
*, xfs_log_item_t
*);
52 STATIC
void xfs_ail_check(xfs_ail_entry_t
*);
54 #define xfs_ail_check(a)
59 * This is called by the log manager code to determine the LSN
60 * of the tail of the log. This is exactly the LSN of the first
61 * item in the AIL. If the AIL is empty, then this function
64 * We need the AIL lock in order to get a coherent read of the
65 * lsn of the last item in the AIL.
76 lip
= xfs_ail_min(&(mp
->m_ail
));
90 * This routine is called to move the tail of the AIL
91 * forward. It does this by trying to flush items in the AIL
92 * whose lsns are below the given threshold_lsn.
94 * The routine returns the lsn of the tail of the log.
99 xfs_lsn_t threshold_lsn
)
109 #define XFS_TRANS_PUSH_AIL_RESTARTS 10
112 lip
= xfs_trans_first_ail(mp
, &gen
);
113 if (lip
== NULL
|| XFS_FORCED_SHUTDOWN(mp
)) {
115 * Just return if the AIL is empty.
121 XFS_STATS_INC(xs_push_ail
);
124 * While the item we are looking at is below the given threshold
125 * try to flush it out. Make sure to limit the number of times
126 * we allow xfs_trans_next_ail() to restart scanning from the
127 * beginning of the list. We'd like not to stop until we've at least
128 * tried to push on everything in the AIL with an LSN less than
129 * the given threshold. However, we may give up before that if
130 * we realize that we've been holding the AIL_LOCK for 'too long',
131 * blocking interrupts. Currently, too long is < 500us roughly.
135 while (((restarts
< XFS_TRANS_PUSH_AIL_RESTARTS
) &&
136 (XFS_LSN_CMP(lip
->li_lsn
, threshold_lsn
) < 0))) {
138 * If we can lock the item without sleeping, unlock
139 * the AIL lock and flush the item. Then re-grab the
140 * AIL lock so we can look for the next item on the
141 * AIL. Since we unlock the AIL while we flush the
142 * item, the next routine may start over again at the
143 * the beginning of the list if anything has changed.
144 * That is what the generation count is for.
146 * If we can't lock the item, either its holder will flush
147 * it or it is already being flushed or it is being relogged.
148 * In any of these case it is being taken care of and we
149 * can just skip to the next item in the list.
151 lock_result
= IOP_TRYLOCK(lip
);
152 switch (lock_result
) {
153 case XFS_ITEM_SUCCESS
:
155 XFS_STATS_INC(xs_push_ail_success
);
160 case XFS_ITEM_PUSHBUF
:
162 XFS_STATS_INC(xs_push_ail_pushbuf
);
167 ASSERT(lip
->li_ops
->iop_pushbuf
);
173 case XFS_ITEM_PINNED
:
174 XFS_STATS_INC(xs_push_ail_pinned
);
178 case XFS_ITEM_LOCKED
:
179 XFS_STATS_INC(xs_push_ail_locked
);
182 case XFS_ITEM_FLUSHING
:
183 XFS_STATS_INC(xs_push_ail_flushing
);
191 lip
= xfs_trans_next_ail(mp
, lip
, &gen
, &restarts
);
195 if (XFS_FORCED_SHUTDOWN(mp
)) {
197 * Just return if we shut down during the last try.
207 * If something we need to push out was pinned, then
208 * push out the log so it will become unpinned and
209 * move forward in the AIL.
212 XFS_STATS_INC(xs_push_ail_flush
);
213 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
217 lip
= xfs_ail_min(&(mp
->m_ail
));
226 } /* xfs_trans_push_ail */
230 * This is to be called when an item is unlocked that may have
231 * been in the AIL. It will wake up the first member of the AIL
232 * wait list if this item's unlocking might allow it to progress.
233 * If the item is in the AIL, then we need to get the AIL lock
234 * while doing our checking so we don't race with someone going
235 * to sleep waiting for this event in xfs_trans_push_ail().
238 xfs_trans_unlocked_item(
242 xfs_log_item_t
*min_lip
;
245 * If we're forcibly shutting down, we may have
246 * unlocked log items arbitrarily. The last thing
247 * we want to do is to move the tail of the log
248 * over some potentially valid data.
250 if (!(lip
->li_flags
& XFS_LI_IN_AIL
) ||
251 XFS_FORCED_SHUTDOWN(mp
)) {
256 * This is the one case where we can call into xfs_ail_min()
257 * without holding the AIL lock because we only care about the
258 * case where we are at the tail of the AIL. If the object isn't
259 * at the tail, it doesn't matter what result we get back. This
260 * is slightly racy because since we were just unlocked, we could
261 * go to sleep between the call to xfs_ail_min and the call to
262 * xfs_log_move_tail, have someone else lock us, commit to us disk,
263 * move us out of the tail of the AIL, and then we wake up. However,
264 * the call to xfs_log_move_tail() doesn't do anything if there's
265 * not enough free space to wake people up so we're safe calling it.
267 min_lip
= xfs_ail_min(&mp
->m_ail
);
270 xfs_log_move_tail(mp
, 1);
271 } /* xfs_trans_unlocked_item */
275 * Update the position of the item in the AIL with the new
276 * lsn. If it is not yet in the AIL, add it. Otherwise, move
277 * it to its new position by removing it and re-adding it.
279 * Wakeup anyone with an lsn less than the item's lsn. If the item
280 * we move in the AIL is the minimum one, update the tail lsn in the
283 * Increment the AIL's generation count to indicate that the tree
286 * This function must be called with the AIL lock held. The lock
287 * is dropped before returning, so the caller must pass in the
288 * cookie returned by AIL_LOCK.
291 xfs_trans_update_ail(
297 xfs_ail_entry_t
*ailp
;
298 xfs_log_item_t
*dlip
=NULL
;
299 xfs_log_item_t
*mlip
; /* ptr to minimum lip */
302 mlip
= xfs_ail_min(ailp
);
304 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
305 dlip
= xfs_ail_delete(ailp
, lip
);
308 lip
->li_flags
|= XFS_LI_IN_AIL
;
313 xfs_ail_insert(ailp
, lip
);
317 mlip
= xfs_ail_min(&(mp
->m_ail
));
319 xfs_log_move_tail(mp
, mlip
->li_lsn
);
325 } /* xfs_trans_update_ail */
328 * Delete the given item from the AIL. It must already be in
331 * Wakeup anyone with an lsn less than item's lsn. If the item
332 * we delete in the AIL is the minimum one, update the tail lsn in the
335 * Clear the IN_AIL flag from the item, reset its lsn to 0, and
336 * bump the AIL's generation count to indicate that the tree
339 * This function must be called with the AIL lock held. The lock
340 * is dropped before returning, so the caller must pass in the
341 * cookie returned by AIL_LOCK.
344 xfs_trans_delete_ail(
349 xfs_ail_entry_t
*ailp
;
350 xfs_log_item_t
*dlip
;
351 xfs_log_item_t
*mlip
;
353 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
355 mlip
= xfs_ail_min(ailp
);
356 dlip
= xfs_ail_delete(ailp
, lip
);
360 lip
->li_flags
&= ~XFS_LI_IN_AIL
;
365 mlip
= xfs_ail_min(&(mp
->m_ail
));
367 xfs_log_move_tail(mp
, (mlip
? mlip
->li_lsn
: 0));
374 * If the file system is not being shutdown, we are in
375 * serious trouble if we get to this stage.
377 if (XFS_FORCED_SHUTDOWN(mp
))
380 xfs_cmn_err(XFS_PTAG_AILDELETE
, CE_ALERT
, mp
,
381 "xfs_trans_delete_ail: attempting to delete a log item that is not in the AIL");
383 xfs_force_shutdown(mp
, XFS_CORRUPT_INCORE
);
391 * Return the item in the AIL with the smallest lsn.
392 * Return the current tree generation number for use
393 * in calls to xfs_trans_next_ail().
402 lip
= xfs_ail_min(&(mp
->m_ail
));
403 *gen
= (int)mp
->m_ail_gen
;
409 * If the generation count of the tree has not changed since the
410 * caller last took something from the AIL, then return the elmt
411 * in the tree which follows the one given. If the count has changed,
412 * then return the minimum elmt of the AIL and bump the restarts counter
422 xfs_log_item_t
*nlip
;
424 ASSERT(mp
&& lip
&& gen
);
425 if (mp
->m_ail_gen
== *gen
) {
426 nlip
= xfs_ail_next(&(mp
->m_ail
), lip
);
428 nlip
= xfs_ail_min(&(mp
->m_ail
));
429 *gen
= (int)mp
->m_ail_gen
;
430 if (restarts
!= NULL
) {
431 XFS_STATS_INC(xs_push_ail_restarts
);
441 * The active item list (AIL) is a doubly linked list of log
442 * items sorted by ascending lsn. The base of the list is
443 * a forw/back pointer pair embedded in the xfs mount structure.
444 * The base is initialized with both pointers pointing to the
445 * base. This case always needs to be distinguished, because
446 * the base has no lsn to look at. We almost always insert
447 * at the end of the list, so on inserts we search from the
448 * end of the list to find where the new item belongs.
452 * Initialize the doubly linked list to point only to itself.
458 mp
->m_ail
.ail_forw
= (xfs_log_item_t
*)&(mp
->m_ail
);
459 mp
->m_ail
.ail_back
= (xfs_log_item_t
*)&(mp
->m_ail
);
463 * Insert the given log item into the AIL.
464 * We almost always insert at the end of the list, so on inserts
465 * we search from the end of the list to find where the
470 xfs_ail_entry_t
*base
,
474 xfs_log_item_t
*next_lip
;
477 * If the list is empty, just insert the item.
479 if (base
->ail_back
== (xfs_log_item_t
*)base
) {
480 base
->ail_forw
= lip
;
481 base
->ail_back
= lip
;
482 lip
->li_ail
.ail_forw
= (xfs_log_item_t
*)base
;
483 lip
->li_ail
.ail_back
= (xfs_log_item_t
*)base
;
487 next_lip
= base
->ail_back
;
488 while ((next_lip
!= (xfs_log_item_t
*)base
) &&
489 (XFS_LSN_CMP(next_lip
->li_lsn
, lip
->li_lsn
) > 0)) {
490 next_lip
= next_lip
->li_ail
.ail_back
;
492 ASSERT((next_lip
== (xfs_log_item_t
*)base
) ||
493 (XFS_LSN_CMP(next_lip
->li_lsn
, lip
->li_lsn
) <= 0));
494 lip
->li_ail
.ail_forw
= next_lip
->li_ail
.ail_forw
;
495 lip
->li_ail
.ail_back
= next_lip
;
496 next_lip
->li_ail
.ail_forw
= lip
;
497 lip
->li_ail
.ail_forw
->li_ail
.ail_back
= lip
;
504 * Delete the given item from the AIL. Return a pointer to the item.
507 STATIC xfs_log_item_t
*
509 xfs_ail_entry_t
*base
,
513 lip
->li_ail
.ail_forw
->li_ail
.ail_back
= lip
->li_ail
.ail_back
;
514 lip
->li_ail
.ail_back
->li_ail
.ail_forw
= lip
->li_ail
.ail_forw
;
515 lip
->li_ail
.ail_forw
= NULL
;
516 lip
->li_ail
.ail_back
= NULL
;
523 * Return a pointer to the first item in the AIL.
524 * If the AIL is empty, then return NULL.
526 STATIC xfs_log_item_t
*
528 xfs_ail_entry_t
*base
)
531 register xfs_log_item_t
*forw
= base
->ail_forw
;
532 if (forw
== (xfs_log_item_t
*)base
) {
539 * Return a pointer to the item which follows
540 * the given item in the AIL. If the given item
541 * is the last item in the list, then return NULL.
543 STATIC xfs_log_item_t
*
545 xfs_ail_entry_t
*base
,
549 if (lip
->li_ail
.ail_forw
== (xfs_log_item_t
*)base
) {
552 return lip
->li_ail
.ail_forw
;
558 * Check that the list is sorted as it should be.
562 xfs_ail_entry_t
*base
)
565 xfs_log_item_t
*prev_lip
;
567 lip
= base
->ail_forw
;
568 if (lip
== (xfs_log_item_t
*)base
) {
570 * Make sure the pointers are correct when the list
573 ASSERT(base
->ail_back
== (xfs_log_item_t
*)base
);
578 * Walk the list checking forward and backward pointers,
579 * lsn ordering, and that every entry has the XFS_LI_IN_AIL
582 prev_lip
= (xfs_log_item_t
*)base
;
583 while (lip
!= (xfs_log_item_t
*)base
) {
584 if (prev_lip
!= (xfs_log_item_t
*)base
) {
585 ASSERT(prev_lip
->li_ail
.ail_forw
== lip
);
586 ASSERT(XFS_LSN_CMP(prev_lip
->li_lsn
, lip
->li_lsn
) <= 0);
588 ASSERT(lip
->li_ail
.ail_back
== prev_lip
);
589 ASSERT((lip
->li_flags
& XFS_LI_IN_AIL
) != 0);
591 lip
= lip
->li_ail
.ail_forw
;
593 ASSERT(lip
== (xfs_log_item_t
*)base
);
594 ASSERT(base
->ail_back
== prev_lip
);