1 /* pgtable.h: FR-V page table mangling
3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 * include/asm-m68knommu/pgtable.h
13 * include/asm-i386/pgtable.h
16 #ifndef _ASM_PGTABLE_H
17 #define _ASM_PGTABLE_H
19 #include <asm/mem-layout.h>
20 #include <asm/setup.h>
21 #include <asm/processor.h>
24 #include <linux/threads.h>
25 #include <linux/slab.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
29 struct vm_area_struct
;
33 #if defined(CONFIG_HIGHPTE)
34 typedef unsigned long pte_addr_t
;
36 typedef pte_t
*pte_addr_t
;
40 /*****************************************************************************/
42 * MMU-less operation case first
46 #define pgd_present(pgd) (1) /* pages are always present on NO_MM */
47 #define pgd_none(pgd) (0)
48 #define pgd_bad(pgd) (0)
49 #define pgd_clear(pgdp)
50 #define kern_addr_valid(addr) (1)
51 #define pmd_offset(a, b) ((void *) 0)
53 #define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */
54 #define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */
55 #define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */
56 #define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */
57 #define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */
59 #define __swp_type(x) (0)
60 #define __swp_offset(x) (0)
61 #define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
62 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
63 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
66 static inline int pte_file(pte_t pte
) { return 0; }
69 #define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
71 #define swapper_pg_dir ((pgd_t *) NULL)
73 #define pgtable_cache_init() do {} while(0)
75 #else /* !CONFIG_MMU */
76 /*****************************************************************************/
82 * ZERO_PAGE is a global shared page that is always zero: used
83 * for zero-mapped memory areas etc..
86 extern unsigned long empty_zero_page
;
87 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
91 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
92 * [see Documentation/fujitsu/frv/mmu-layout.txt]
97 * - Each PGE holds 1 PUD and covers 64MB
99 * Page Upper Directory:
102 * - Each PUE holds 1 PMD and covers 64MB
104 * Page Mid-Level Directory
107 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
108 * - All STEs are instantiated at the same time
113 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
119 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
120 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
121 * = 262144 (or 256 * 1024)
123 #define PGDIR_SHIFT 26
124 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
125 #define PGDIR_MASK (~(PGDIR_SIZE - 1))
126 #define PTRS_PER_PGD 64
129 #define PTRS_PER_PUD 1
130 #define PUD_SIZE (1UL << PUD_SHIFT)
131 #define PUD_MASK (~(PUD_SIZE - 1))
135 #define PMD_SIZE (1UL << PMD_SHIFT)
136 #define PMD_MASK (~(PMD_SIZE - 1))
137 #define PTRS_PER_PMD 1
140 #define __frv_PT_SIZE 256
142 #define PTRS_PER_PTE 4096
144 #define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE)
145 #define FIRST_USER_ADDRESS 0
147 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
148 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
150 #define TWOLEVEL_PGDIR_SHIFT 26
151 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
152 #define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
156 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
158 #define pte_ERROR(e) \
159 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
160 #define pmd_ERROR(e) \
161 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
162 #define pud_ERROR(e) \
163 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
164 #define pgd_ERROR(e) \
165 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
168 * Certain architectures need to do special things when PTEs
169 * within a page table are directly modified. Thus, the following
170 * hook is made available.
172 #define set_pte(pteptr, pteval) \
174 *(pteptr) = (pteval); \
175 asm volatile("dcf %M0" :: "U"(*pteptr)); \
177 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
180 * pgd_offset() returns a (pgd_t *)
181 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
183 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
186 * a shortcut which implies the use of the kernel's pgd, instead
189 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
192 * The "pgd_xxx()" functions here are trivial for a folded two-level
193 * setup: the pud is never bad, and a pud always exists (as it's folded
194 * into the pgd entry)
196 static inline int pgd_none(pgd_t pgd
) { return 0; }
197 static inline int pgd_bad(pgd_t pgd
) { return 0; }
198 static inline int pgd_present(pgd_t pgd
) { return 1; }
199 static inline void pgd_clear(pgd_t
*pgd
) { }
201 #define pgd_populate(mm, pgd, pud) do { } while (0)
203 * (puds are folded into pgds so this doesn't get actually called,
204 * but the define is needed for a generic inline function.)
206 #define set_pgd(pgdptr, pgdval) \
208 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \
209 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \
212 static inline pud_t
*pud_offset(pgd_t
*pgd
, unsigned long address
)
214 return (pud_t
*) pgd
;
217 #define pgd_page(pgd) (pud_page((pud_t){ pgd }))
218 #define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd }))
221 * allocating and freeing a pud is trivial: the 1-entry pud is
222 * inside the pgd, so has no extra memory associated with it.
224 #define pud_alloc_one(mm, address) NULL
225 #define pud_free(x) do { } while (0)
226 #define __pud_free_tlb(tlb, x) do { } while (0)
229 * The "pud_xxx()" functions here are trivial for a folded two-level
230 * setup: the pmd is never bad, and a pmd always exists (as it's folded
231 * into the pud entry)
233 static inline int pud_none(pud_t pud
) { return 0; }
234 static inline int pud_bad(pud_t pud
) { return 0; }
235 static inline int pud_present(pud_t pud
) { return 1; }
236 static inline void pud_clear(pud_t
*pud
) { }
238 #define pud_populate(mm, pmd, pte) do { } while (0)
241 * (pmds are folded into puds so this doesn't get actually called,
242 * but the define is needed for a generic inline function.)
244 #define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
246 #define pud_page(pud) (pmd_page((pmd_t){ pud }))
247 #define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud }))
250 * (pmds are folded into pgds so this doesn't get actually called,
251 * but the define is needed for a generic inline function.)
253 extern void __set_pmd(pmd_t
*pmdptr
, unsigned long __pmd
);
255 #define set_pmd(pmdptr, pmdval) \
257 __set_pmd((pmdptr), (pmdval).ste[0]); \
260 #define __pmd_index(address) 0
262 static inline pmd_t
*pmd_offset(pud_t
*dir
, unsigned long address
)
264 return (pmd_t
*) dir
+ __pmd_index(address
);
267 #define pte_same(a, b) ((a).pte == (b).pte)
268 #define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
269 #define pte_none(x) (!(x).pte)
270 #define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT)))
271 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
272 #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
274 #define VMALLOC_VMADDR(x) ((unsigned long) (x))
276 #endif /* !__ASSEMBLY__ */
279 * control flags in AMPR registers and TLB entries
281 #define _PAGE_BIT_PRESENT xAMPRx_V_BIT
282 #define _PAGE_BIT_WP DAMPRx_WP_BIT
283 #define _PAGE_BIT_NOCACHE xAMPRx_C_BIT
284 #define _PAGE_BIT_SUPER xAMPRx_S_BIT
285 #define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT
286 #define _PAGE_BIT_DIRTY xAMPRx_M_BIT
287 #define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT
289 #define _PAGE_PRESENT xAMPRx_V
290 #define _PAGE_WP DAMPRx_WP
291 #define _PAGE_NOCACHE xAMPRx_C
292 #define _PAGE_SUPER xAMPRx_S
293 #define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */
294 #define _PAGE_DIRTY xAMPRx_M
295 #define _PAGE_NOTGLOBAL xAMPRx_NG
297 #define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
299 #define _PAGE_FILE 0x002 /* set:pagecache unset:swap */
300 #define _PAGE_PROTNONE 0x000 /* If not present */
302 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
304 #define __PGPROT_BASE \
305 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
307 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
308 #define PAGE_SHARED __pgprot(__PGPROT_BASE)
309 #define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP)
310 #define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP)
312 #define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
313 #define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
314 #define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
316 #define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
318 #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
319 #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
320 #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
322 #define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb)
327 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for
328 * instruction access and for data access. However, we don't have enough reserved bits to say
329 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
331 #define __P000 PAGE_NONE
332 #define __P001 PAGE_READONLY
333 #define __P010 PAGE_COPY
334 #define __P011 PAGE_COPY
335 #define __P100 PAGE_READONLY
336 #define __P101 PAGE_READONLY
337 #define __P110 PAGE_COPY
338 #define __P111 PAGE_COPY
340 #define __S000 PAGE_NONE
341 #define __S001 PAGE_READONLY
342 #define __S010 PAGE_SHARED
343 #define __S011 PAGE_SHARED
344 #define __S100 PAGE_READONLY
345 #define __S101 PAGE_READONLY
346 #define __S110 PAGE_SHARED
347 #define __S111 PAGE_SHARED
350 * Define this to warn about kernel memory accesses that are
351 * done without a 'access_ok(VERIFY_WRITE,..)'
353 #undef TEST_ACCESS_OK
355 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
356 #define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
358 #define pmd_none(x) (!pmd_val(x))
359 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
360 #define pmd_bad(x) (pmd_val(x) & xAMPRx_SS)
361 #define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0)
363 #define pmd_page_vaddr(pmd) \
364 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
366 #ifndef CONFIG_DISCONTIGMEM
367 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
370 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
373 * The following only work if pte_present() is true.
374 * Undefined behaviour if not..
376 static inline int pte_read(pte_t pte
) { return !((pte
).pte
& _PAGE_SUPER
); }
377 static inline int pte_exec(pte_t pte
) { return !((pte
).pte
& _PAGE_SUPER
); }
378 static inline int pte_dirty(pte_t pte
) { return (pte
).pte
& _PAGE_DIRTY
; }
379 static inline int pte_young(pte_t pte
) { return (pte
).pte
& _PAGE_ACCESSED
; }
380 static inline int pte_write(pte_t pte
) { return !((pte
).pte
& _PAGE_WP
); }
382 static inline pte_t
pte_rdprotect(pte_t pte
) { (pte
).pte
|= _PAGE_SUPER
; return pte
; }
383 static inline pte_t
pte_exprotect(pte_t pte
) { (pte
).pte
|= _PAGE_SUPER
; return pte
; }
384 static inline pte_t
pte_mkclean(pte_t pte
) { (pte
).pte
&= ~_PAGE_DIRTY
; return pte
; }
385 static inline pte_t
pte_mkold(pte_t pte
) { (pte
).pte
&= ~_PAGE_ACCESSED
; return pte
; }
386 static inline pte_t
pte_wrprotect(pte_t pte
) { (pte
).pte
|= _PAGE_WP
; return pte
; }
387 static inline pte_t
pte_mkread(pte_t pte
) { (pte
).pte
&= ~_PAGE_SUPER
; return pte
; }
388 static inline pte_t
pte_mkexec(pte_t pte
) { (pte
).pte
&= ~_PAGE_SUPER
; return pte
; }
389 static inline pte_t
pte_mkdirty(pte_t pte
) { (pte
).pte
|= _PAGE_DIRTY
; return pte
; }
390 static inline pte_t
pte_mkyoung(pte_t pte
) { (pte
).pte
|= _PAGE_ACCESSED
; return pte
; }
391 static inline pte_t
pte_mkwrite(pte_t pte
) { (pte
).pte
&= ~_PAGE_WP
; return pte
; }
393 static inline int ptep_test_and_clear_dirty(struct vm_area_struct
*vma
, unsigned long addr
, pte_t
*ptep
)
395 int i
= test_and_clear_bit(_PAGE_BIT_DIRTY
, ptep
);
396 asm volatile("dcf %M0" :: "U"(*ptep
));
400 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
, unsigned long addr
, pte_t
*ptep
)
402 int i
= test_and_clear_bit(_PAGE_BIT_ACCESSED
, ptep
);
403 asm volatile("dcf %M0" :: "U"(*ptep
));
407 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
409 unsigned long x
= xchg(&ptep
->pte
, 0);
410 asm volatile("dcf %M0" :: "U"(*ptep
));
414 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
416 set_bit(_PAGE_BIT_WP
, ptep
);
417 asm volatile("dcf %M0" :: "U"(*ptep
));
421 * Macro to mark a page protection value as "uncacheable"
423 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
426 * Conversion functions: convert a page and protection to a page entry,
427 * and a page entry and page directory to the page they refer to.
430 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
431 #define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
433 /* This takes a physical page address that is used by the remapping functions */
434 #define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
436 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
438 pte
.pte
&= _PAGE_CHG_MASK
;
439 pte
.pte
|= pgprot_val(newprot
);
443 /* to find an entry in a page-table-directory. */
444 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
445 #define pgd_index_k(addr) pgd_index(addr)
447 /* Find an entry in the bottom-level page table.. */
448 #define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
451 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
453 * this macro returns the index of the entry in the pte page which would
454 * control the given virtual address
456 #define pte_index(address) \
457 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
458 #define pte_offset_kernel(dir, address) \
459 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
461 #if defined(CONFIG_HIGHPTE)
462 #define pte_offset_map(dir, address) \
463 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
464 #define pte_offset_map_nested(dir, address) \
465 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
466 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
467 #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
469 #define pte_offset_map(dir, address) \
470 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
471 #define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
472 #define pte_unmap(pte) do { } while (0)
473 #define pte_unmap_nested(pte) do { } while (0)
477 * Handle swap and file entries
478 * - the PTE is encoded in the following format:
479 * bit 0: Must be 0 (!_PAGE_PRESENT)
480 * bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE)
481 * bits 2-7: Swap type
482 * bits 8-31: Swap offset
483 * bits 2-31: File pgoff
485 #define __swp_type(x) (((x).val >> 2) & 0x1f)
486 #define __swp_offset(x) ((x).val >> 8)
487 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
488 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte })
489 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
491 static inline int pte_file(pte_t pte
)
493 return pte
.pte
& _PAGE_FILE
;
496 #define PTE_FILE_MAX_BITS 29
498 #define pte_to_pgoff(PTE) ((PTE).pte >> 2)
499 #define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE)
501 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
502 #define PageSkip(page) (0)
503 #define kern_addr_valid(addr) (1)
505 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
506 remap_pfn_range(vma, vaddr, pfn, size, prot)
508 #define MK_IOSPACE_PFN(space, pfn) (pfn)
509 #define GET_IOSPACE(pfn) 0
510 #define GET_PFN(pfn) (pfn)
512 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
513 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
514 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
515 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
516 #define __HAVE_ARCH_PTE_SAME
517 #include <asm-generic/pgtable.h>
520 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
522 static inline void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t pte
)
525 pgd_t
*pge
= pgd_offset(current
->mm
, address
);
526 pud_t
*pue
= pud_offset(pge
, address
);
527 pmd_t
*pme
= pmd_offset(pue
, address
);
529 ampr
= pme
->ste
[0] & 0xffffff00;
530 ampr
|= xAMPRx_L
| xAMPRx_SS_16Kb
| xAMPRx_S
| xAMPRx_C
| xAMPRx_V
;
532 asm volatile("movgs %0,scr0\n"
537 : "r"(address
), "r"(ampr
)
541 #ifdef CONFIG_PROC_FS
542 extern char *proc_pid_status_frv_cxnr(struct mm_struct
*mm
, char *buffer
);
545 extern void __init
pgtable_cache_init(void);
547 #endif /* !__ASSEMBLY__ */
548 #endif /* !CONFIG_MMU */
551 extern void __init
paging_init(void);
552 #endif /* !__ASSEMBLY__ */
554 #endif /* _ASM_PGTABLE_H */