[PARISC] Further updates to timer_interrupt()
[linux-2.6.22.y-op.git] / arch / parisc / kernel / firmware.c
blobc2531ae032cf74895e4d6ef518607b856ba810c3
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 * PDC == Processor Dependent Code
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
53 * return retval;
54 * }
55 * prumpf 991016
58 #include <stdarg.h>
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/system.h>
71 #include <asm/processor.h> /* for boot_cpu_data */
73 static DEFINE_SPINLOCK(pdc_lock);
74 static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75 static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
77 #ifdef __LP64__
78 #define WIDE_FIRMWARE 0x1
79 #define NARROW_FIRMWARE 0x2
81 /* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83 int parisc_narrow_firmware __read_mostly = 1;
84 #endif
86 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
97 #ifdef __LP64__
98 long real64_call(unsigned long function, ...);
99 #endif
100 long real32_call(unsigned long function, ...);
102 #ifdef __LP64__
103 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105 #else
106 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
107 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108 #endif
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
118 static unsigned long f_extend(unsigned long address)
120 #ifdef __LP64__
121 if(unlikely(parisc_narrow_firmware)) {
122 if((address & 0xff000000) == 0xf0000000)
123 return 0xf0f0f0f000000000UL | (u32)address;
125 if((address & 0xf0000000) == 0xf0000000)
126 return 0xffffffff00000000UL | (u32)address;
128 #endif
129 return address;
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
140 static void convert_to_wide(unsigned long *addr)
142 #ifdef __LP64__
143 int i;
144 unsigned int *p = (unsigned int *)addr;
146 if(unlikely(parisc_narrow_firmware)) {
147 for(i = 31; i >= 0; --i)
148 addr[i] = p[i];
150 #endif
154 * set_firmware_width - Determine if the firmware is wide or narrow.
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
159 void __init set_firmware_width(void)
161 #ifdef __LP64__
162 int retval;
164 spin_lock_irq(&pdc_lock);
165 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
166 convert_to_wide(pdc_result);
167 if(pdc_result[0] != NARROW_FIRMWARE)
168 parisc_narrow_firmware = 0;
169 spin_unlock_irq(&pdc_lock);
170 #endif
174 * pdc_emergency_unlock - Unlock the linux pdc lock
176 * This call unlocks the linux pdc lock in case we need some PDC functions
177 * (like pdc_add_valid) during kernel stack dump.
179 void pdc_emergency_unlock(void)
181 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
182 if (spin_is_locked(&pdc_lock))
183 spin_unlock(&pdc_lock);
188 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
189 * @address: Address to be verified.
191 * This PDC call attempts to read from the specified address and verifies
192 * if the address is valid.
194 * The return value is PDC_OK (0) in case accessing this address is valid.
196 int pdc_add_valid(unsigned long address)
198 int retval;
200 spin_lock_irq(&pdc_lock);
201 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
202 spin_unlock_irq(&pdc_lock);
204 return retval;
206 EXPORT_SYMBOL(pdc_add_valid);
209 * pdc_chassis_info - Return chassis information.
210 * @result: The return buffer.
211 * @chassis_info: The memory buffer address.
212 * @len: The size of the memory buffer address.
214 * An HVERSION dependent call for returning the chassis information.
216 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
218 int retval;
220 spin_lock_irq(&pdc_lock);
221 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
222 memcpy(&pdc_result2, led_info, len);
223 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
224 __pa(pdc_result), __pa(pdc_result2), len);
225 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
226 memcpy(led_info, pdc_result2, len);
227 spin_unlock_irq(&pdc_lock);
229 return retval;
233 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
234 * @retval: -1 on error, 0 on success. Other value are PDC errors
236 * Must be correctly formatted or expect system crash
238 #ifdef __LP64__
239 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
241 int retval = 0;
243 if (!is_pdc_pat())
244 return -1;
246 spin_lock_irq(&pdc_lock);
247 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
248 spin_unlock_irq(&pdc_lock);
250 return retval;
252 #endif
255 * pdc_chassis_disp - Updates chassis code
256 * @retval: -1 on error, 0 on success
258 int pdc_chassis_disp(unsigned long disp)
260 int retval = 0;
262 spin_lock_irq(&pdc_lock);
263 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
264 spin_unlock_irq(&pdc_lock);
266 return retval;
270 * pdc_chassis_warn - Fetches chassis warnings
271 * @retval: -1 on error, 0 on success
273 int pdc_chassis_warn(unsigned long *warn)
275 int retval = 0;
277 spin_lock_irq(&pdc_lock);
278 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
279 *warn = pdc_result[0];
280 spin_unlock_irq(&pdc_lock);
282 return retval;
286 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
287 * @pdc_coproc_info: Return buffer address.
289 * This PDC call returns the presence and status of all the coprocessors
290 * attached to the processor.
292 int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
294 int retval;
296 spin_lock_irq(&pdc_lock);
297 retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
298 convert_to_wide(pdc_result);
299 pdc_coproc_info->ccr_functional = pdc_result[0];
300 pdc_coproc_info->ccr_present = pdc_result[1];
301 pdc_coproc_info->revision = pdc_result[17];
302 pdc_coproc_info->model = pdc_result[18];
303 spin_unlock_irq(&pdc_lock);
305 return retval;
309 * pdc_iodc_read - Read data from the modules IODC.
310 * @actcnt: The actual number of bytes.
311 * @hpa: The HPA of the module for the iodc read.
312 * @index: The iodc entry point.
313 * @iodc_data: A buffer memory for the iodc options.
314 * @iodc_data_size: Size of the memory buffer.
316 * This PDC call reads from the IODC of the module specified by the hpa
317 * argument.
319 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
320 void *iodc_data, unsigned int iodc_data_size)
322 int retval;
324 spin_lock_irq(&pdc_lock);
325 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
326 index, __pa(pdc_result2), iodc_data_size);
327 convert_to_wide(pdc_result);
328 *actcnt = pdc_result[0];
329 memcpy(iodc_data, pdc_result2, iodc_data_size);
330 spin_unlock_irq(&pdc_lock);
332 return retval;
334 EXPORT_SYMBOL(pdc_iodc_read);
337 * pdc_system_map_find_mods - Locate unarchitected modules.
338 * @pdc_mod_info: Return buffer address.
339 * @mod_path: pointer to dev path structure.
340 * @mod_index: fixed address module index.
342 * To locate and identify modules which reside at fixed I/O addresses, which
343 * do not self-identify via architected bus walks.
345 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
346 struct pdc_module_path *mod_path, long mod_index)
348 int retval;
350 spin_lock_irq(&pdc_lock);
351 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
352 __pa(pdc_result2), mod_index);
353 convert_to_wide(pdc_result);
354 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
355 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
356 spin_unlock_irq(&pdc_lock);
358 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
359 return retval;
363 * pdc_system_map_find_addrs - Retrieve additional address ranges.
364 * @pdc_addr_info: Return buffer address.
365 * @mod_index: Fixed address module index.
366 * @addr_index: Address range index.
368 * Retrieve additional information about subsequent address ranges for modules
369 * with multiple address ranges.
371 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
372 long mod_index, long addr_index)
374 int retval;
376 spin_lock_irq(&pdc_lock);
377 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
378 mod_index, addr_index);
379 convert_to_wide(pdc_result);
380 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
381 spin_unlock_irq(&pdc_lock);
383 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
384 return retval;
388 * pdc_model_info - Return model information about the processor.
389 * @model: The return buffer.
391 * Returns the version numbers, identifiers, and capabilities from the processor module.
393 int pdc_model_info(struct pdc_model *model)
395 int retval;
397 spin_lock_irq(&pdc_lock);
398 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
399 convert_to_wide(pdc_result);
400 memcpy(model, pdc_result, sizeof(*model));
401 spin_unlock_irq(&pdc_lock);
403 return retval;
407 * pdc_model_sysmodel - Get the system model name.
408 * @name: A char array of at least 81 characters.
410 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
411 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
412 * on HP/UX.
414 int pdc_model_sysmodel(char *name)
416 int retval;
418 spin_lock_irq(&pdc_lock);
419 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
420 OS_ID_HPUX, __pa(name));
421 convert_to_wide(pdc_result);
423 if (retval == PDC_OK) {
424 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
425 } else {
426 name[0] = 0;
428 spin_unlock_irq(&pdc_lock);
430 return retval;
434 * pdc_model_versions - Identify the version number of each processor.
435 * @cpu_id: The return buffer.
436 * @id: The id of the processor to check.
438 * Returns the version number for each processor component.
440 * This comment was here before, but I do not know what it means :( -RB
441 * id: 0 = cpu revision, 1 = boot-rom-version
443 int pdc_model_versions(unsigned long *versions, int id)
445 int retval;
447 spin_lock_irq(&pdc_lock);
448 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
449 convert_to_wide(pdc_result);
450 *versions = pdc_result[0];
451 spin_unlock_irq(&pdc_lock);
453 return retval;
457 * pdc_model_cpuid - Returns the CPU_ID.
458 * @cpu_id: The return buffer.
460 * Returns the CPU_ID value which uniquely identifies the cpu portion of
461 * the processor module.
463 int pdc_model_cpuid(unsigned long *cpu_id)
465 int retval;
467 spin_lock_irq(&pdc_lock);
468 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
469 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
470 convert_to_wide(pdc_result);
471 *cpu_id = pdc_result[0];
472 spin_unlock_irq(&pdc_lock);
474 return retval;
478 * pdc_model_capabilities - Returns the platform capabilities.
479 * @capabilities: The return buffer.
481 * Returns information about platform support for 32- and/or 64-bit
482 * OSes, IO-PDIR coherency, and virtual aliasing.
484 int pdc_model_capabilities(unsigned long *capabilities)
486 int retval;
488 spin_lock_irq(&pdc_lock);
489 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
490 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
491 convert_to_wide(pdc_result);
492 *capabilities = pdc_result[0];
493 spin_unlock_irq(&pdc_lock);
495 return retval;
499 * pdc_cache_info - Return cache and TLB information.
500 * @cache_info: The return buffer.
502 * Returns information about the processor's cache and TLB.
504 int pdc_cache_info(struct pdc_cache_info *cache_info)
506 int retval;
508 spin_lock_irq(&pdc_lock);
509 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
510 convert_to_wide(pdc_result);
511 memcpy(cache_info, pdc_result, sizeof(*cache_info));
512 spin_unlock_irq(&pdc_lock);
514 return retval;
518 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
519 * @space_bits: Should be 0, if not, bad mojo!
521 * Returns information about Space ID hashing.
523 int pdc_spaceid_bits(unsigned long *space_bits)
525 int retval;
527 spin_lock_irq(&pdc_lock);
528 pdc_result[0] = 0;
529 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
530 convert_to_wide(pdc_result);
531 *space_bits = pdc_result[0];
532 spin_unlock_irq(&pdc_lock);
534 return retval;
537 #ifndef CONFIG_PA20
539 * pdc_btlb_info - Return block TLB information.
540 * @btlb: The return buffer.
542 * Returns information about the hardware Block TLB.
544 int pdc_btlb_info(struct pdc_btlb_info *btlb)
546 int retval;
548 spin_lock_irq(&pdc_lock);
549 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
550 memcpy(btlb, pdc_result, sizeof(*btlb));
551 spin_unlock_irq(&pdc_lock);
553 if(retval < 0) {
554 btlb->max_size = 0;
556 return retval;
560 * pdc_mem_map_hpa - Find fixed module information.
561 * @address: The return buffer
562 * @mod_path: pointer to dev path structure.
564 * This call was developed for S700 workstations to allow the kernel to find
565 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
566 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
567 * call.
569 * This call is supported by all existing S700 workstations (up to Gecko).
571 int pdc_mem_map_hpa(struct pdc_memory_map *address,
572 struct pdc_module_path *mod_path)
574 int retval;
576 spin_lock_irq(&pdc_lock);
577 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
578 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
579 __pa(pdc_result2));
580 memcpy(address, pdc_result, sizeof(*address));
581 spin_unlock_irq(&pdc_lock);
583 return retval;
585 #endif /* !CONFIG_PA20 */
588 * pdc_lan_station_id - Get the LAN address.
589 * @lan_addr: The return buffer.
590 * @hpa: The network device HPA.
592 * Get the LAN station address when it is not directly available from the LAN hardware.
594 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
596 int retval;
598 spin_lock_irq(&pdc_lock);
599 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
600 __pa(pdc_result), hpa);
601 if (retval < 0) {
602 /* FIXME: else read MAC from NVRAM */
603 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
604 } else {
605 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
607 spin_unlock_irq(&pdc_lock);
609 return retval;
611 EXPORT_SYMBOL(pdc_lan_station_id);
614 * pdc_stable_read - Read data from Stable Storage.
615 * @staddr: Stable Storage address to access.
616 * @memaddr: The memory address where Stable Storage data shall be copied.
617 * @count: number of bytes to transfert. count is multiple of 4.
619 * This PDC call reads from the Stable Storage address supplied in staddr
620 * and copies count bytes to the memory address memaddr.
621 * The call will fail if staddr+count > PDC_STABLE size.
623 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
625 int retval;
627 spin_lock_irq(&pdc_lock);
628 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
629 __pa(pdc_result), count);
630 convert_to_wide(pdc_result);
631 memcpy(memaddr, pdc_result, count);
632 spin_unlock_irq(&pdc_lock);
634 return retval;
636 EXPORT_SYMBOL(pdc_stable_read);
639 * pdc_stable_write - Write data to Stable Storage.
640 * @staddr: Stable Storage address to access.
641 * @memaddr: The memory address where Stable Storage data shall be read from.
642 * @count: number of bytes to transfert. count is multiple of 4.
644 * This PDC call reads count bytes from the supplied memaddr address,
645 * and copies count bytes to the Stable Storage address staddr.
646 * The call will fail if staddr+count > PDC_STABLE size.
648 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
650 int retval;
652 spin_lock_irq(&pdc_lock);
653 memcpy(pdc_result, memaddr, count);
654 convert_to_wide(pdc_result);
655 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
656 __pa(pdc_result), count);
657 spin_unlock_irq(&pdc_lock);
659 return retval;
661 EXPORT_SYMBOL(pdc_stable_write);
664 * pdc_stable_get_size - Get Stable Storage size in bytes.
665 * @size: pointer where the size will be stored.
667 * This PDC call returns the number of bytes in the processor's Stable
668 * Storage, which is the number of contiguous bytes implemented in Stable
669 * Storage starting from staddr=0. size in an unsigned 64-bit integer
670 * which is a multiple of four.
672 int pdc_stable_get_size(unsigned long *size)
674 int retval;
676 spin_lock_irq(&pdc_lock);
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
678 *size = pdc_result[0];
679 spin_unlock_irq(&pdc_lock);
681 return retval;
683 EXPORT_SYMBOL(pdc_stable_get_size);
686 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
688 * This PDC call is meant to be used to check the integrity of the current
689 * contents of Stable Storage.
691 int pdc_stable_verify_contents(void)
693 int retval;
695 spin_lock_irq(&pdc_lock);
696 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
697 spin_unlock_irq(&pdc_lock);
699 return retval;
701 EXPORT_SYMBOL(pdc_stable_verify_contents);
704 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
705 * the validity indicator.
707 * This PDC call will erase all contents of Stable Storage. Use with care!
709 int pdc_stable_initialize(void)
711 int retval;
713 spin_lock_irq(&pdc_lock);
714 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
715 spin_unlock_irq(&pdc_lock);
717 return retval;
719 EXPORT_SYMBOL(pdc_stable_initialize);
722 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
723 * @hwpath: fully bc.mod style path to the device.
724 * @initiator: the array to return the result into
726 * Get the SCSI operational parameters from PDC.
727 * Needed since HPUX never used BIOS or symbios card NVRAM.
728 * Most ncr/sym cards won't have an entry and just use whatever
729 * capabilities of the card are (eg Ultra, LVD). But there are
730 * several cases where it's useful:
731 * o set SCSI id for Multi-initiator clusters,
732 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
733 * o bus width exported is less than what the interface chip supports.
735 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
737 int retval;
739 spin_lock_irq(&pdc_lock);
741 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
742 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
743 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
745 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
746 __pa(pdc_result), __pa(hwpath));
747 if (retval < PDC_OK)
748 goto out;
750 if (pdc_result[0] < 16) {
751 initiator->host_id = pdc_result[0];
752 } else {
753 initiator->host_id = -1;
757 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
758 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
760 switch (pdc_result[1]) {
761 case 1: initiator->factor = 50; break;
762 case 2: initiator->factor = 25; break;
763 case 5: initiator->factor = 12; break;
764 case 25: initiator->factor = 10; break;
765 case 20: initiator->factor = 12; break;
766 case 40: initiator->factor = 10; break;
767 default: initiator->factor = -1; break;
770 if (IS_SPROCKETS()) {
771 initiator->width = pdc_result[4];
772 initiator->mode = pdc_result[5];
773 } else {
774 initiator->width = -1;
775 initiator->mode = -1;
778 out:
779 spin_unlock_irq(&pdc_lock);
780 return (retval >= PDC_OK);
782 EXPORT_SYMBOL(pdc_get_initiator);
786 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
787 * @num_entries: The return value.
788 * @hpa: The HPA for the device.
790 * This PDC function returns the number of entries in the specified cell's
791 * interrupt table.
792 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
794 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
796 int retval;
798 spin_lock_irq(&pdc_lock);
799 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
800 __pa(pdc_result), hpa);
801 convert_to_wide(pdc_result);
802 *num_entries = pdc_result[0];
803 spin_unlock_irq(&pdc_lock);
805 return retval;
808 /**
809 * pdc_pci_irt - Get the PCI interrupt routing table.
810 * @num_entries: The number of entries in the table.
811 * @hpa: The Hard Physical Address of the device.
812 * @tbl:
814 * Get the PCI interrupt routing table for the device at the given HPA.
815 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
817 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
819 int retval;
821 BUG_ON((unsigned long)tbl & 0x7);
823 spin_lock_irq(&pdc_lock);
824 pdc_result[0] = num_entries;
825 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
826 __pa(pdc_result), hpa, __pa(tbl));
827 spin_unlock_irq(&pdc_lock);
829 return retval;
833 #if 0 /* UNTEST CODE - left here in case someone needs it */
835 /**
836 * pdc_pci_config_read - read PCI config space.
837 * @hpa token from PDC to indicate which PCI device
838 * @pci_addr configuration space address to read from
840 * Read PCI Configuration space *before* linux PCI subsystem is running.
842 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
844 int retval;
845 spin_lock_irq(&pdc_lock);
846 pdc_result[0] = 0;
847 pdc_result[1] = 0;
848 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
849 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
850 spin_unlock_irq(&pdc_lock);
851 return retval ? ~0 : (unsigned int) pdc_result[0];
855 /**
856 * pdc_pci_config_write - read PCI config space.
857 * @hpa token from PDC to indicate which PCI device
858 * @pci_addr configuration space address to write
859 * @val value we want in the 32-bit register
861 * Write PCI Configuration space *before* linux PCI subsystem is running.
863 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
865 int retval;
866 spin_lock_irq(&pdc_lock);
867 pdc_result[0] = 0;
868 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
869 __pa(pdc_result), hpa,
870 cfg_addr&~3UL, 4UL, (unsigned long) val);
871 spin_unlock_irq(&pdc_lock);
872 return retval;
874 #endif /* UNTESTED CODE */
877 * pdc_tod_read - Read the Time-Of-Day clock.
878 * @tod: The return buffer:
880 * Read the Time-Of-Day clock
882 int pdc_tod_read(struct pdc_tod *tod)
884 int retval;
886 spin_lock_irq(&pdc_lock);
887 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
888 convert_to_wide(pdc_result);
889 memcpy(tod, pdc_result, sizeof(*tod));
890 spin_unlock_irq(&pdc_lock);
892 return retval;
894 EXPORT_SYMBOL(pdc_tod_read);
897 * pdc_tod_set - Set the Time-Of-Day clock.
898 * @sec: The number of seconds since epoch.
899 * @usec: The number of micro seconds.
901 * Set the Time-Of-Day clock.
903 int pdc_tod_set(unsigned long sec, unsigned long usec)
905 int retval;
907 spin_lock_irq(&pdc_lock);
908 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
909 spin_unlock_irq(&pdc_lock);
911 return retval;
913 EXPORT_SYMBOL(pdc_tod_set);
915 #ifdef __LP64__
916 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
917 struct pdc_memory_table *tbl, unsigned long entries)
919 int retval;
921 spin_lock_irq(&pdc_lock);
922 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
923 convert_to_wide(pdc_result);
924 memcpy(r_addr, pdc_result, sizeof(*r_addr));
925 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
926 spin_unlock_irq(&pdc_lock);
928 return retval;
930 #endif /* __LP64__ */
932 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
933 * so I guessed at unsigned long. Someone who knows what this does, can fix
934 * it later. :)
936 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
938 int retval;
940 spin_lock_irq(&pdc_lock);
941 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
942 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
943 spin_unlock_irq(&pdc_lock);
945 return retval;
949 * pdc_do_reset - Reset the system.
951 * Reset the system.
953 int pdc_do_reset(void)
955 int retval;
957 spin_lock_irq(&pdc_lock);
958 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
959 spin_unlock_irq(&pdc_lock);
961 return retval;
965 * pdc_soft_power_info - Enable soft power switch.
966 * @power_reg: address of soft power register
968 * Return the absolute address of the soft power switch register
970 int __init pdc_soft_power_info(unsigned long *power_reg)
972 int retval;
974 *power_reg = (unsigned long) (-1);
976 spin_lock_irq(&pdc_lock);
977 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
978 if (retval == PDC_OK) {
979 convert_to_wide(pdc_result);
980 *power_reg = f_extend(pdc_result[0]);
982 spin_unlock_irq(&pdc_lock);
984 return retval;
988 * pdc_soft_power_button - Control the soft power button behaviour
989 * @sw_control: 0 for hardware control, 1 for software control
992 * This PDC function places the soft power button under software or
993 * hardware control.
994 * Under software control the OS may control to when to allow to shut
995 * down the system. Under hardware control pressing the power button
996 * powers off the system immediately.
998 int pdc_soft_power_button(int sw_control)
1000 int retval;
1001 spin_lock_irq(&pdc_lock);
1002 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1003 spin_unlock_irq(&pdc_lock);
1004 return retval;
1008 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1009 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1010 * who knows what other platform firmware might do with this OS "hook".
1012 void pdc_io_reset(void)
1014 spin_lock_irq(&pdc_lock);
1015 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1016 spin_unlock_irq(&pdc_lock);
1020 * pdc_io_reset_devices - Hack to Stop USB controller
1022 * If PDC used the usb controller, the usb controller
1023 * is still running and will crash the machines during iommu
1024 * setup, because of still running DMA. This PDC call
1025 * stops the USB controller.
1026 * Normally called after calling pdc_io_reset().
1028 void pdc_io_reset_devices(void)
1030 spin_lock_irq(&pdc_lock);
1031 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1032 spin_unlock_irq(&pdc_lock);
1037 * pdc_iodc_putc - Console character print using IODC.
1038 * @c: the character to output.
1040 * Note that only these special chars are architected for console IODC io:
1041 * BEL, BS, CR, and LF. Others are passed through.
1042 * Since the HP console requires CR+LF to perform a 'newline', we translate
1043 * "\n" to "\r\n".
1045 void pdc_iodc_putc(unsigned char c)
1047 /* XXX Should we spinlock posx usage */
1048 static int posx; /* for simple TAB-Simulation... */
1049 static int __attribute__((aligned(8))) iodc_retbuf[32];
1050 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1051 unsigned int n;
1052 unsigned long flags;
1054 switch (c) {
1055 case '\n':
1056 iodc_dbuf[0] = '\r';
1057 iodc_dbuf[1] = '\n';
1058 n = 2;
1059 posx = 0;
1060 break;
1061 case '\t':
1062 pdc_iodc_putc(' ');
1063 while (posx & 7) /* expand TAB */
1064 pdc_iodc_putc(' ');
1065 return; /* return since IODC can't handle this */
1066 case '\b':
1067 posx-=2; /* BS */
1068 default:
1069 iodc_dbuf[0] = c;
1070 n = 1;
1071 posx++;
1072 break;
1075 spin_lock_irqsave(&pdc_lock, flags);
1076 real32_call(PAGE0->mem_cons.iodc_io,
1077 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1078 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1079 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1080 spin_unlock_irqrestore(&pdc_lock, flags);
1084 * pdc_iodc_outc - Console character print using IODC (without conversions).
1085 * @c: the character to output.
1087 * Write the character directly to the IODC console.
1089 void pdc_iodc_outc(unsigned char c)
1091 unsigned int n;
1092 unsigned long flags;
1094 /* fill buffer with one caracter and print it */
1095 static int __attribute__((aligned(8))) iodc_retbuf[32];
1096 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1098 n = 1;
1099 iodc_dbuf[0] = c;
1101 spin_lock_irqsave(&pdc_lock, flags);
1102 real32_call(PAGE0->mem_cons.iodc_io,
1103 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1104 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1105 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1106 spin_unlock_irqrestore(&pdc_lock, flags);
1110 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1112 * Read a character (non-blocking) from the PDC console, returns -1 if
1113 * key is not present.
1115 int pdc_iodc_getc(void)
1117 unsigned long flags;
1118 static int __attribute__((aligned(8))) iodc_retbuf[32];
1119 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1120 int ch;
1121 int status;
1123 /* Bail if no console input device. */
1124 if (!PAGE0->mem_kbd.iodc_io)
1125 return 0;
1127 /* wait for a keyboard (rs232)-input */
1128 spin_lock_irqsave(&pdc_lock, flags);
1129 real32_call(PAGE0->mem_kbd.iodc_io,
1130 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1131 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1132 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1134 ch = *iodc_dbuf;
1135 status = *iodc_retbuf;
1136 spin_unlock_irqrestore(&pdc_lock, flags);
1138 if (status == 0)
1139 return -1;
1141 return ch;
1144 int pdc_sti_call(unsigned long func, unsigned long flags,
1145 unsigned long inptr, unsigned long outputr,
1146 unsigned long glob_cfg)
1148 int retval;
1150 spin_lock_irq(&pdc_lock);
1151 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1152 spin_unlock_irq(&pdc_lock);
1154 return retval;
1156 EXPORT_SYMBOL(pdc_sti_call);
1158 #ifdef __LP64__
1160 * pdc_pat_cell_get_number - Returns the cell number.
1161 * @cell_info: The return buffer.
1163 * This PDC call returns the cell number of the cell from which the call
1164 * is made.
1166 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1168 int retval;
1170 spin_lock_irq(&pdc_lock);
1171 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1172 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1173 spin_unlock_irq(&pdc_lock);
1175 return retval;
1179 * pdc_pat_cell_module - Retrieve the cell's module information.
1180 * @actcnt: The number of bytes written to mem_addr.
1181 * @ploc: The physical location.
1182 * @mod: The module index.
1183 * @view_type: The view of the address type.
1184 * @mem_addr: The return buffer.
1186 * This PDC call returns information about each module attached to the cell
1187 * at the specified location.
1189 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1190 unsigned long view_type, void *mem_addr)
1192 int retval;
1193 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1195 spin_lock_irq(&pdc_lock);
1196 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1197 ploc, mod, view_type, __pa(&result));
1198 if(!retval) {
1199 *actcnt = pdc_result[0];
1200 memcpy(mem_addr, &result, *actcnt);
1202 spin_unlock_irq(&pdc_lock);
1204 return retval;
1208 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1209 * @cpu_info: The return buffer.
1210 * @hpa: The Hard Physical Address of the CPU.
1212 * Retrieve the cpu number for the cpu at the specified HPA.
1214 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1216 int retval;
1218 spin_lock_irq(&pdc_lock);
1219 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1220 __pa(&pdc_result), hpa);
1221 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1222 spin_unlock_irq(&pdc_lock);
1224 return retval;
1228 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1229 * @num_entries: The return value.
1230 * @cell_num: The target cell.
1232 * This PDC function returns the number of entries in the specified cell's
1233 * interrupt table.
1235 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1237 int retval;
1239 spin_lock_irq(&pdc_lock);
1240 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1241 __pa(pdc_result), cell_num);
1242 *num_entries = pdc_result[0];
1243 spin_unlock_irq(&pdc_lock);
1245 return retval;
1249 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1250 * @r_addr: The return buffer.
1251 * @cell_num: The target cell.
1253 * This PDC function returns the actual interrupt table for the specified cell.
1255 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1257 int retval;
1259 spin_lock_irq(&pdc_lock);
1260 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1261 __pa(r_addr), cell_num);
1262 spin_unlock_irq(&pdc_lock);
1264 return retval;
1268 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1269 * @actlen: The return buffer.
1270 * @mem_addr: Pointer to the memory buffer.
1271 * @count: The number of bytes to read from the buffer.
1272 * @offset: The offset with respect to the beginning of the buffer.
1275 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1276 unsigned long count, unsigned long offset)
1278 int retval;
1280 spin_lock_irq(&pdc_lock);
1281 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1282 __pa(pdc_result2), count, offset);
1283 *actual_len = pdc_result[0];
1284 memcpy(mem_addr, pdc_result2, *actual_len);
1285 spin_unlock_irq(&pdc_lock);
1287 return retval;
1291 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1292 * @pci_addr: PCI configuration space address for which the read request is being made.
1293 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1294 * @mem_addr: Pointer to return memory buffer.
1297 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1299 int retval;
1300 spin_lock_irq(&pdc_lock);
1301 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1302 __pa(pdc_result), pci_addr, pci_size);
1303 switch(pci_size) {
1304 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1305 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1306 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1308 spin_unlock_irq(&pdc_lock);
1310 return retval;
1314 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1315 * @pci_addr: PCI configuration space address for which the write request is being made.
1316 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1317 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1318 * written to PCI Config space.
1321 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1323 int retval;
1325 spin_lock_irq(&pdc_lock);
1326 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1327 pci_addr, pci_size, val);
1328 spin_unlock_irq(&pdc_lock);
1330 return retval;
1332 #endif /* __LP64__ */
1335 /***************** 32-bit real-mode calls ***********/
1336 /* The struct below is used
1337 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1338 * real32_call_asm() then uses this stack in narrow real mode
1341 struct narrow_stack {
1342 /* use int, not long which is 64 bits */
1343 unsigned int arg13;
1344 unsigned int arg12;
1345 unsigned int arg11;
1346 unsigned int arg10;
1347 unsigned int arg9;
1348 unsigned int arg8;
1349 unsigned int arg7;
1350 unsigned int arg6;
1351 unsigned int arg5;
1352 unsigned int arg4;
1353 unsigned int arg3;
1354 unsigned int arg2;
1355 unsigned int arg1;
1356 unsigned int arg0;
1357 unsigned int frame_marker[8];
1358 unsigned int sp;
1359 /* in reality, there's nearly 8k of stack after this */
1362 long real32_call(unsigned long fn, ...)
1364 va_list args;
1365 extern struct narrow_stack real_stack;
1366 extern unsigned long real32_call_asm(unsigned int *,
1367 unsigned int *,
1368 unsigned int);
1370 va_start(args, fn);
1371 real_stack.arg0 = va_arg(args, unsigned int);
1372 real_stack.arg1 = va_arg(args, unsigned int);
1373 real_stack.arg2 = va_arg(args, unsigned int);
1374 real_stack.arg3 = va_arg(args, unsigned int);
1375 real_stack.arg4 = va_arg(args, unsigned int);
1376 real_stack.arg5 = va_arg(args, unsigned int);
1377 real_stack.arg6 = va_arg(args, unsigned int);
1378 real_stack.arg7 = va_arg(args, unsigned int);
1379 real_stack.arg8 = va_arg(args, unsigned int);
1380 real_stack.arg9 = va_arg(args, unsigned int);
1381 real_stack.arg10 = va_arg(args, unsigned int);
1382 real_stack.arg11 = va_arg(args, unsigned int);
1383 real_stack.arg12 = va_arg(args, unsigned int);
1384 real_stack.arg13 = va_arg(args, unsigned int);
1385 va_end(args);
1387 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1390 #ifdef __LP64__
1391 /***************** 64-bit real-mode calls ***********/
1393 struct wide_stack {
1394 unsigned long arg0;
1395 unsigned long arg1;
1396 unsigned long arg2;
1397 unsigned long arg3;
1398 unsigned long arg4;
1399 unsigned long arg5;
1400 unsigned long arg6;
1401 unsigned long arg7;
1402 unsigned long arg8;
1403 unsigned long arg9;
1404 unsigned long arg10;
1405 unsigned long arg11;
1406 unsigned long arg12;
1407 unsigned long arg13;
1408 unsigned long frame_marker[2]; /* rp, previous sp */
1409 unsigned long sp;
1410 /* in reality, there's nearly 8k of stack after this */
1413 long real64_call(unsigned long fn, ...)
1415 va_list args;
1416 extern struct wide_stack real64_stack;
1417 extern unsigned long real64_call_asm(unsigned long *,
1418 unsigned long *,
1419 unsigned long);
1421 va_start(args, fn);
1422 real64_stack.arg0 = va_arg(args, unsigned long);
1423 real64_stack.arg1 = va_arg(args, unsigned long);
1424 real64_stack.arg2 = va_arg(args, unsigned long);
1425 real64_stack.arg3 = va_arg(args, unsigned long);
1426 real64_stack.arg4 = va_arg(args, unsigned long);
1427 real64_stack.arg5 = va_arg(args, unsigned long);
1428 real64_stack.arg6 = va_arg(args, unsigned long);
1429 real64_stack.arg7 = va_arg(args, unsigned long);
1430 real64_stack.arg8 = va_arg(args, unsigned long);
1431 real64_stack.arg9 = va_arg(args, unsigned long);
1432 real64_stack.arg10 = va_arg(args, unsigned long);
1433 real64_stack.arg11 = va_arg(args, unsigned long);
1434 real64_stack.arg12 = va_arg(args, unsigned long);
1435 real64_stack.arg13 = va_arg(args, unsigned long);
1436 va_end(args);
1438 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1441 #endif /* __LP64__ */