2 * SPARC64 Huge TLB page support.
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
7 #include <linux/config.h>
8 #include <linux/init.h>
9 #include <linux/module.h>
12 #include <linux/hugetlb.h>
13 #include <linux/pagemap.h>
14 #include <linux/smp_lock.h>
15 #include <linux/slab.h>
16 #include <linux/sysctl.h>
19 #include <asm/pgalloc.h>
21 #include <asm/tlbflush.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
25 /* Slightly simplified from the non-hugepage variant because by
26 * definition we don't have to worry about any page coloring stuff
28 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
29 #define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
31 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file
*filp
,
37 struct mm_struct
*mm
= current
->mm
;
38 struct vm_area_struct
* vma
;
39 unsigned long task_size
= TASK_SIZE
;
40 unsigned long start_addr
;
42 if (test_thread_flag(TIF_32BIT
))
43 task_size
= STACK_TOP32
;
44 if (unlikely(len
>= VA_EXCLUDE_START
))
47 if (len
> mm
->cached_hole_size
) {
48 start_addr
= addr
= mm
->free_area_cache
;
50 start_addr
= addr
= TASK_UNMAPPED_BASE
;
51 mm
->cached_hole_size
= 0;
57 addr
= ALIGN(addr
, HPAGE_SIZE
);
59 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
60 /* At this point: (!vma || addr < vma->vm_end). */
61 if (addr
< VA_EXCLUDE_START
&&
62 (addr
+ len
) >= VA_EXCLUDE_START
) {
63 addr
= VA_EXCLUDE_END
;
64 vma
= find_vma(mm
, VA_EXCLUDE_END
);
66 if (unlikely(task_size
< addr
)) {
67 if (start_addr
!= TASK_UNMAPPED_BASE
) {
68 start_addr
= addr
= TASK_UNMAPPED_BASE
;
69 mm
->cached_hole_size
= 0;
74 if (likely(!vma
|| addr
+ len
<= vma
->vm_start
)) {
76 * Remember the place where we stopped the search:
78 mm
->free_area_cache
= addr
+ len
;
81 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
82 mm
->cached_hole_size
= vma
->vm_start
- addr
;
84 addr
= ALIGN(vma
->vm_end
, HPAGE_SIZE
);
89 hugetlb_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
90 const unsigned long len
,
91 const unsigned long pgoff
,
92 const unsigned long flags
)
94 struct vm_area_struct
*vma
;
95 struct mm_struct
*mm
= current
->mm
;
96 unsigned long addr
= addr0
;
98 /* This should only ever run for 32-bit processes. */
99 BUG_ON(!test_thread_flag(TIF_32BIT
));
101 /* check if free_area_cache is useful for us */
102 if (len
<= mm
->cached_hole_size
) {
103 mm
->cached_hole_size
= 0;
104 mm
->free_area_cache
= mm
->mmap_base
;
107 /* either no address requested or can't fit in requested address hole */
108 addr
= mm
->free_area_cache
& HPAGE_MASK
;
110 /* make sure it can fit in the remaining address space */
111 if (likely(addr
> len
)) {
112 vma
= find_vma(mm
, addr
-len
);
113 if (!vma
|| addr
<= vma
->vm_start
) {
114 /* remember the address as a hint for next time */
115 return (mm
->free_area_cache
= addr
-len
);
119 if (unlikely(mm
->mmap_base
< len
))
122 addr
= (mm
->mmap_base
-len
) & HPAGE_MASK
;
126 * Lookup failure means no vma is above this address,
127 * else if new region fits below vma->vm_start,
128 * return with success:
130 vma
= find_vma(mm
, addr
);
131 if (likely(!vma
|| addr
+len
<= vma
->vm_start
)) {
132 /* remember the address as a hint for next time */
133 return (mm
->free_area_cache
= addr
);
136 /* remember the largest hole we saw so far */
137 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
138 mm
->cached_hole_size
= vma
->vm_start
- addr
;
140 /* try just below the current vma->vm_start */
141 addr
= (vma
->vm_start
-len
) & HPAGE_MASK
;
142 } while (likely(len
< vma
->vm_start
));
146 * A failed mmap() very likely causes application failure,
147 * so fall back to the bottom-up function here. This scenario
148 * can happen with large stack limits and large mmap()
151 mm
->cached_hole_size
= ~0UL;
152 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
153 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
155 * Restore the topdown base:
157 mm
->free_area_cache
= mm
->mmap_base
;
158 mm
->cached_hole_size
= ~0UL;
164 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
165 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
167 struct mm_struct
*mm
= current
->mm
;
168 struct vm_area_struct
*vma
;
169 unsigned long task_size
= TASK_SIZE
;
171 if (test_thread_flag(TIF_32BIT
))
172 task_size
= STACK_TOP32
;
174 if (len
& ~HPAGE_MASK
)
180 addr
= ALIGN(addr
, HPAGE_SIZE
);
181 vma
= find_vma(mm
, addr
);
182 if (task_size
- len
>= addr
&&
183 (!vma
|| addr
+ len
<= vma
->vm_start
))
186 if (mm
->get_unmapped_area
== arch_get_unmapped_area
)
187 return hugetlb_get_unmapped_area_bottomup(file
, addr
, len
,
190 return hugetlb_get_unmapped_area_topdown(file
, addr
, len
,
194 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
)
201 /* We must align the address, because our caller will run
202 * set_huge_pte_at() on whatever we return, which writes out
203 * all of the sub-ptes for the hugepage range. So we have
204 * to give it the first such sub-pte.
208 pgd
= pgd_offset(mm
, addr
);
209 pud
= pud_alloc(mm
, pgd
, addr
);
211 pmd
= pmd_alloc(mm
, pud
, addr
);
213 pte
= pte_alloc_map(mm
, pmd
, addr
);
218 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
227 pgd
= pgd_offset(mm
, addr
);
228 if (!pgd_none(*pgd
)) {
229 pud
= pud_offset(pgd
, addr
);
230 if (!pud_none(*pud
)) {
231 pmd
= pmd_offset(pud
, addr
);
233 pte
= pte_offset_map(pmd
, addr
);
239 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
240 pte_t
*ptep
, pte_t entry
)
244 if (!pte_present(*ptep
) && pte_present(entry
))
245 mm
->context
.huge_pte_count
++;
247 for (i
= 0; i
< (1 << HUGETLB_PAGE_ORDER
); i
++) {
248 set_pte_at(mm
, addr
, ptep
, entry
);
251 pte_val(entry
) += PAGE_SIZE
;
255 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
262 if (pte_present(entry
))
263 mm
->context
.huge_pte_count
--;
265 for (i
= 0; i
< (1 << HUGETLB_PAGE_ORDER
); i
++) {
266 pte_clear(mm
, addr
, ptep
);
274 struct page
*follow_huge_addr(struct mm_struct
*mm
,
275 unsigned long address
, int write
)
277 return ERR_PTR(-EINVAL
);
280 int pmd_huge(pmd_t pmd
)
285 struct page
*follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
286 pmd_t
*pmd
, int write
)
291 static void context_reload(void *__data
)
293 struct mm_struct
*mm
= __data
;
295 if (mm
== current
->mm
)
296 load_secondary_context(mm
);
299 void hugetlb_prefault_arch_hook(struct mm_struct
*mm
)
301 struct tsb_config
*tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
303 if (likely(tp
->tsb
!= NULL
))
306 tsb_grow(mm
, MM_TSB_HUGE
, 0);
307 tsb_context_switch(mm
);
310 /* On UltraSPARC-III+ and later, configure the second half of
311 * the Data-TLB for huge pages.
313 if (tlb_type
== cheetah_plus
) {
316 spin_lock(&ctx_alloc_lock
);
317 ctx
= mm
->context
.sparc64_ctx_val
;
318 ctx
&= ~CTX_PGSZ_MASK
;
319 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
320 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
322 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
323 /* When changing the page size fields, we
324 * must perform a context flush so that no
325 * stale entries match. This flush must
326 * occur with the original context register
331 /* Reload the context register of all processors
332 * also executing in this address space.
334 mm
->context
.sparc64_ctx_val
= ctx
;
335 on_each_cpu(context_reload
, mm
, 0, 0);
337 spin_unlock(&ctx_alloc_lock
);