[PATCH] mm: arm ready for split ptlock
[linux-2.6.22.y-op.git] / arch / arm / mm / fault-armv.c
blob7fc1b35a674695ed6b4b03473e6f4ae9368f419e
1 /*
2 * linux/arch/arm/mm/fault-armv.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 #include <linux/vmalloc.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
24 static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
27 * We take the easy way out of this problem - we make the
28 * PTE uncacheable. However, we leave the write buffer on.
30 * Note that the pte lock held when calling update_mmu_cache must also
31 * guard the pte (somewhere else in the same mm) that we modify here.
32 * Therefore those configurations which might call adjust_pte (those
33 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
35 static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
37 pgd_t *pgd;
38 pmd_t *pmd;
39 pte_t *pte, entry;
40 int ret = 0;
42 pgd = pgd_offset(vma->vm_mm, address);
43 if (pgd_none(*pgd))
44 goto no_pgd;
45 if (pgd_bad(*pgd))
46 goto bad_pgd;
48 pmd = pmd_offset(pgd, address);
49 if (pmd_none(*pmd))
50 goto no_pmd;
51 if (pmd_bad(*pmd))
52 goto bad_pmd;
54 pte = pte_offset_map(pmd, address);
55 entry = *pte;
58 * If this page isn't present, or is already setup to
59 * fault (ie, is old), we can safely ignore any issues.
61 if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {
62 flush_cache_page(vma, address, pte_pfn(entry));
63 pte_val(entry) &= ~shared_pte_mask;
64 set_pte(pte, entry);
65 flush_tlb_page(vma, address);
66 ret = 1;
68 pte_unmap(pte);
69 return ret;
71 bad_pgd:
72 pgd_ERROR(*pgd);
73 pgd_clear(pgd);
74 no_pgd:
75 return 0;
77 bad_pmd:
78 pmd_ERROR(*pmd);
79 pmd_clear(pmd);
80 no_pmd:
81 return 0;
84 static void
85 make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
87 struct mm_struct *mm = vma->vm_mm;
88 struct vm_area_struct *mpnt;
89 struct prio_tree_iter iter;
90 unsigned long offset;
91 pgoff_t pgoff;
92 int aliases = 0;
94 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
97 * If we have any shared mappings that are in the same mm
98 * space, then we need to handle them specially to maintain
99 * cache coherency.
101 flush_dcache_mmap_lock(mapping);
102 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
104 * If this VMA is not in our MM, we can ignore it.
105 * Note that we intentionally mask out the VMA
106 * that we are fixing up.
108 if (mpnt->vm_mm != mm || mpnt == vma)
109 continue;
110 if (!(mpnt->vm_flags & VM_MAYSHARE))
111 continue;
112 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
113 aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
115 flush_dcache_mmap_unlock(mapping);
116 if (aliases)
117 adjust_pte(vma, addr);
118 else
119 flush_cache_page(vma, addr, pfn);
122 void __flush_dcache_page(struct address_space *mapping, struct page *page);
125 * Take care of architecture specific things when placing a new PTE into
126 * a page table, or changing an existing PTE. Basically, there are two
127 * things that we need to take care of:
129 * 1. If PG_dcache_dirty is set for the page, we need to ensure
130 * that any cache entries for the kernels virtual memory
131 * range are written back to the page.
132 * 2. If we have multiple shared mappings of the same space in
133 * an object, we need to deal with the cache aliasing issues.
135 * Note that the pte lock will be held.
137 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
139 unsigned long pfn = pte_pfn(pte);
140 struct address_space *mapping;
141 struct page *page;
143 if (!pfn_valid(pfn))
144 return;
146 page = pfn_to_page(pfn);
147 mapping = page_mapping(page);
148 if (mapping) {
149 int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
151 if (dirty)
152 __flush_dcache_page(mapping, page);
154 if (cache_is_vivt())
155 make_coherent(mapping, vma, addr, pfn);
160 * Check whether the write buffer has physical address aliasing
161 * issues. If it has, we need to avoid them for the case where
162 * we have several shared mappings of the same object in user
163 * space.
165 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
167 register unsigned long zero = 0, one = 1, val;
169 local_irq_disable();
170 mb();
171 *p1 = one;
172 mb();
173 *p2 = zero;
174 mb();
175 val = *p1;
176 mb();
177 local_irq_enable();
178 return val != zero;
181 void __init check_writebuffer_bugs(void)
183 struct page *page;
184 const char *reason;
185 unsigned long v = 1;
187 printk(KERN_INFO "CPU: Testing write buffer coherency: ");
189 page = alloc_page(GFP_KERNEL);
190 if (page) {
191 unsigned long *p1, *p2;
192 pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
193 L_PTE_DIRTY|L_PTE_WRITE|
194 L_PTE_BUFFERABLE);
196 p1 = vmap(&page, 1, VM_IOREMAP, prot);
197 p2 = vmap(&page, 1, VM_IOREMAP, prot);
199 if (p1 && p2) {
200 v = check_writebuffer(p1, p2);
201 reason = "enabling work-around";
202 } else {
203 reason = "unable to map memory\n";
206 vunmap(p1);
207 vunmap(p2);
208 put_page(page);
209 } else {
210 reason = "unable to grab page\n";
213 if (v) {
214 printk("failed, %s\n", reason);
215 shared_pte_mask |= L_PTE_BUFFERABLE;
216 } else {
217 printk("ok\n");