2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version 2
7 * of the License, or (at your option) any later version.
9 * 2003-10-17 - Ported from altq
12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation is hereby granted (including for commercial or
16 * for-profit use), provided that both the copyright notice and this
17 * permission notice appear in all copies of the software, derivative
18 * works, or modified versions, and any portions thereof.
20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
35 * Carnegie Mellon encourages (but does not require) users of this
36 * software to return any improvements or extensions that they make,
37 * and to grant Carnegie Mellon the rights to redistribute these
38 * changes without encumbrance.
41 * H-FSC is described in Proceedings of SIGCOMM'97,
42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43 * Real-Time and Priority Service"
44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47 * when a class has an upperlimit, the fit-time is computed from the
48 * upperlimit service curve. the link-sharing scheduler does not schedule
49 * a class whose fit-time exceeds the current time.
52 #include <linux/kernel.h>
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/jiffies.h>
58 #include <linux/compiler.h>
59 #include <linux/spinlock.h>
60 #include <linux/skbuff.h>
61 #include <linux/string.h>
62 #include <linux/slab.h>
63 #include <linux/timer.h>
64 #include <linux/list.h>
65 #include <linux/rbtree.h>
66 #include <linux/init.h>
67 #include <linux/netdevice.h>
68 #include <linux/rtnetlink.h>
69 #include <linux/pkt_sched.h>
70 #include <net/pkt_sched.h>
71 #include <net/pkt_cls.h>
72 #include <asm/system.h>
73 #include <asm/div64.h>
78 * kernel internal service curve representation:
79 * coordinates are given by 64 bit unsigned integers.
80 * x-axis: unit is clock count.
81 * y-axis: unit is byte.
83 * The service curve parameters are converted to the internal
84 * representation. The slope values are scaled to avoid overflow.
85 * the inverse slope values as well as the y-projection of the 1st
86 * segment are kept in order to to avoid 64-bit divide operations
87 * that are expensive on 32-bit architectures.
92 u64 sm1
; /* scaled slope of the 1st segment */
93 u64 ism1
; /* scaled inverse-slope of the 1st segment */
94 u64 dx
; /* the x-projection of the 1st segment */
95 u64 dy
; /* the y-projection of the 1st segment */
96 u64 sm2
; /* scaled slope of the 2nd segment */
97 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
100 /* runtime service curve */
103 u64 x
; /* current starting position on x-axis */
104 u64 y
; /* current starting position on y-axis */
105 u64 sm1
; /* scaled slope of the 1st segment */
106 u64 ism1
; /* scaled inverse-slope of the 1st segment */
107 u64 dx
; /* the x-projection of the 1st segment */
108 u64 dy
; /* the y-projection of the 1st segment */
109 u64 sm2
; /* scaled slope of the 2nd segment */
110 u64 ism2
; /* scaled inverse-slope of the 2nd segment */
113 enum hfsc_class_flags
122 u32 classid
; /* class id */
123 unsigned int refcnt
; /* usage count */
125 struct gnet_stats_basic bstats
;
126 struct gnet_stats_queue qstats
;
127 struct gnet_stats_rate_est rate_est
;
128 spinlock_t
*stats_lock
;
129 unsigned int level
; /* class level in hierarchy */
130 struct tcf_proto
*filter_list
; /* filter list */
131 unsigned int filter_cnt
; /* filter count */
133 struct hfsc_sched
*sched
; /* scheduler data */
134 struct hfsc_class
*cl_parent
; /* parent class */
135 struct list_head siblings
; /* sibling classes */
136 struct list_head children
; /* child classes */
137 struct Qdisc
*qdisc
; /* leaf qdisc */
139 struct rb_node el_node
; /* qdisc's eligible tree member */
140 struct rb_root vt_tree
; /* active children sorted by cl_vt */
141 struct rb_node vt_node
; /* parent's vt_tree member */
142 struct rb_root cf_tree
; /* active children sorted by cl_f */
143 struct rb_node cf_node
; /* parent's cf_heap member */
144 struct list_head hlist
; /* hash list member */
145 struct list_head dlist
; /* drop list member */
147 u64 cl_total
; /* total work in bytes */
148 u64 cl_cumul
; /* cumulative work in bytes done by
149 real-time criteria */
151 u64 cl_d
; /* deadline*/
152 u64 cl_e
; /* eligible time */
153 u64 cl_vt
; /* virtual time */
154 u64 cl_f
; /* time when this class will fit for
155 link-sharing, max(myf, cfmin) */
156 u64 cl_myf
; /* my fit-time (calculated from this
157 class's own upperlimit curve) */
158 u64 cl_myfadj
; /* my fit-time adjustment (to cancel
159 history dependence) */
160 u64 cl_cfmin
; /* earliest children's fit-time (used
161 with cl_myf to obtain cl_f) */
162 u64 cl_cvtmin
; /* minimal virtual time among the
163 children fit for link-sharing
164 (monotonic within a period) */
165 u64 cl_vtadj
; /* intra-period cumulative vt
167 u64 cl_vtoff
; /* inter-period cumulative vt offset */
168 u64 cl_cvtmax
; /* max child's vt in the last period */
169 u64 cl_cvtoff
; /* cumulative cvtmax of all periods */
170 u64 cl_pcvtoff
; /* parent's cvtoff at initalization
173 struct internal_sc cl_rsc
; /* internal real-time service curve */
174 struct internal_sc cl_fsc
; /* internal fair service curve */
175 struct internal_sc cl_usc
; /* internal upperlimit service curve */
176 struct runtime_sc cl_deadline
; /* deadline curve */
177 struct runtime_sc cl_eligible
; /* eligible curve */
178 struct runtime_sc cl_virtual
; /* virtual curve */
179 struct runtime_sc cl_ulimit
; /* upperlimit curve */
181 unsigned long cl_flags
; /* which curves are valid */
182 unsigned long cl_vtperiod
; /* vt period sequence number */
183 unsigned long cl_parentperiod
;/* parent's vt period sequence number*/
184 unsigned long cl_nactive
; /* number of active children */
187 #define HFSC_HSIZE 16
191 u16 defcls
; /* default class id */
192 struct hfsc_class root
; /* root class */
193 struct list_head clhash
[HFSC_HSIZE
]; /* class hash */
194 struct rb_root eligible
; /* eligible tree */
195 struct list_head droplist
; /* active leaf class list (for
197 struct sk_buff_head requeue
; /* requeued packet */
198 struct timer_list wd_timer
; /* watchdog timer */
204 #ifdef CONFIG_NET_SCH_CLK_GETTIMEOFDAY
205 #include <linux/time.h>
206 #undef PSCHED_GET_TIME
207 #define PSCHED_GET_TIME(stamp) \
210 do_gettimeofday(&tv); \
211 (stamp) = 1ULL * USEC_PER_SEC * tv.tv_sec + tv.tv_usec; \
216 #define ASSERT(cond) \
218 if (unlikely(!(cond))) \
219 printk("assertion %s failed at %s:%i (%s)\n", \
220 #cond, __FILE__, __LINE__, __FUNCTION__); \
224 #endif /* HFSC_DEBUG */
226 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
230 * eligible tree holds backlogged classes being sorted by their eligible times.
231 * there is one eligible tree per hfsc instance.
235 eltree_insert(struct hfsc_class
*cl
)
237 struct rb_node
**p
= &cl
->sched
->eligible
.rb_node
;
238 struct rb_node
*parent
= NULL
;
239 struct hfsc_class
*cl1
;
243 cl1
= rb_entry(parent
, struct hfsc_class
, el_node
);
244 if (cl
->cl_e
>= cl1
->cl_e
)
245 p
= &parent
->rb_right
;
247 p
= &parent
->rb_left
;
249 rb_link_node(&cl
->el_node
, parent
, p
);
250 rb_insert_color(&cl
->el_node
, &cl
->sched
->eligible
);
254 eltree_remove(struct hfsc_class
*cl
)
256 rb_erase(&cl
->el_node
, &cl
->sched
->eligible
);
260 eltree_update(struct hfsc_class
*cl
)
266 /* find the class with the minimum deadline among the eligible classes */
267 static inline struct hfsc_class
*
268 eltree_get_mindl(struct hfsc_sched
*q
, u64 cur_time
)
270 struct hfsc_class
*p
, *cl
= NULL
;
273 for (n
= rb_first(&q
->eligible
); n
!= NULL
; n
= rb_next(n
)) {
274 p
= rb_entry(n
, struct hfsc_class
, el_node
);
275 if (p
->cl_e
> cur_time
)
277 if (cl
== NULL
|| p
->cl_d
< cl
->cl_d
)
283 /* find the class with minimum eligible time among the eligible classes */
284 static inline struct hfsc_class
*
285 eltree_get_minel(struct hfsc_sched
*q
)
289 n
= rb_first(&q
->eligible
);
292 return rb_entry(n
, struct hfsc_class
, el_node
);
296 * vttree holds holds backlogged child classes being sorted by their virtual
297 * time. each intermediate class has one vttree.
300 vttree_insert(struct hfsc_class
*cl
)
302 struct rb_node
**p
= &cl
->cl_parent
->vt_tree
.rb_node
;
303 struct rb_node
*parent
= NULL
;
304 struct hfsc_class
*cl1
;
308 cl1
= rb_entry(parent
, struct hfsc_class
, vt_node
);
309 if (cl
->cl_vt
>= cl1
->cl_vt
)
310 p
= &parent
->rb_right
;
312 p
= &parent
->rb_left
;
314 rb_link_node(&cl
->vt_node
, parent
, p
);
315 rb_insert_color(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
319 vttree_remove(struct hfsc_class
*cl
)
321 rb_erase(&cl
->vt_node
, &cl
->cl_parent
->vt_tree
);
325 vttree_update(struct hfsc_class
*cl
)
331 static inline struct hfsc_class
*
332 vttree_firstfit(struct hfsc_class
*cl
, u64 cur_time
)
334 struct hfsc_class
*p
;
337 for (n
= rb_first(&cl
->vt_tree
); n
!= NULL
; n
= rb_next(n
)) {
338 p
= rb_entry(n
, struct hfsc_class
, vt_node
);
339 if (p
->cl_f
<= cur_time
)
346 * get the leaf class with the minimum vt in the hierarchy
348 static struct hfsc_class
*
349 vttree_get_minvt(struct hfsc_class
*cl
, u64 cur_time
)
351 /* if root-class's cfmin is bigger than cur_time nothing to do */
352 if (cl
->cl_cfmin
> cur_time
)
355 while (cl
->level
> 0) {
356 cl
= vttree_firstfit(cl
, cur_time
);
360 * update parent's cl_cvtmin.
362 if (cl
->cl_parent
->cl_cvtmin
< cl
->cl_vt
)
363 cl
->cl_parent
->cl_cvtmin
= cl
->cl_vt
;
369 cftree_insert(struct hfsc_class
*cl
)
371 struct rb_node
**p
= &cl
->cl_parent
->cf_tree
.rb_node
;
372 struct rb_node
*parent
= NULL
;
373 struct hfsc_class
*cl1
;
377 cl1
= rb_entry(parent
, struct hfsc_class
, cf_node
);
378 if (cl
->cl_f
>= cl1
->cl_f
)
379 p
= &parent
->rb_right
;
381 p
= &parent
->rb_left
;
383 rb_link_node(&cl
->cf_node
, parent
, p
);
384 rb_insert_color(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
388 cftree_remove(struct hfsc_class
*cl
)
390 rb_erase(&cl
->cf_node
, &cl
->cl_parent
->cf_tree
);
394 cftree_update(struct hfsc_class
*cl
)
401 * service curve support functions
403 * external service curve parameters
406 * internal service curve parameters
407 * sm: (bytes/psched_us) << SM_SHIFT
408 * ism: (psched_us/byte) << ISM_SHIFT
411 * Clock source resolution (CONFIG_NET_SCH_CLK_*)
412 * JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us.
413 * CPU: resolution is between 0.5us and 1us.
414 * GETTIMEOFDAY: resolution is exactly 1us.
416 * sm and ism are scaled in order to keep effective digits.
417 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
418 * digits in decimal using the following table.
420 * Note: We can afford the additional accuracy (altq hfsc keeps at most
421 * 3 effective digits) thanks to the fact that linux clock is bounded
424 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
425 * ------------+-------------------------------------------------------
426 * bytes/0.5us 6.25e-3 62.5e-3 625e-3 6250e-e 62500e-3
427 * bytes/us 12.5e-3 125e-3 1250e-3 12500e-3 125000e-3
428 * bytes/1.27us 15.875e-3 158.75e-3 1587.5e-3 15875e-3 158750e-3
430 * 0.5us/byte 160 16 1.6 0.16 0.016
431 * us/byte 80 8 0.8 0.08 0.008
432 * 1.27us/byte 63 6.3 0.63 0.063 0.0063
437 #define SM_MASK ((1ULL << SM_SHIFT) - 1)
438 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
441 seg_x2y(u64 x
, u64 sm
)
447 * y = x * sm >> SM_SHIFT
448 * but divide it for the upper and lower bits to avoid overflow
450 y
= (x
>> SM_SHIFT
) * sm
+ (((x
& SM_MASK
) * sm
) >> SM_SHIFT
);
455 seg_y2x(u64 y
, u64 ism
)
461 else if (ism
== HT_INFINITY
)
464 x
= (y
>> ISM_SHIFT
) * ism
465 + (((y
& ISM_MASK
) * ism
) >> ISM_SHIFT
);
470 /* Convert m (bps) into sm (bytes/psched us) */
476 sm
= ((u64
)m
<< SM_SHIFT
);
477 sm
+= PSCHED_JIFFIE2US(HZ
) - 1;
478 do_div(sm
, PSCHED_JIFFIE2US(HZ
));
482 /* convert m (bps) into ism (psched us/byte) */
491 ism
= ((u64
)PSCHED_JIFFIE2US(HZ
) << ISM_SHIFT
);
498 /* convert d (us) into dx (psched us) */
504 dx
= ((u64
)d
* PSCHED_JIFFIE2US(HZ
));
505 dx
+= USEC_PER_SEC
- 1;
506 do_div(dx
, USEC_PER_SEC
);
510 /* convert sm (bytes/psched us) into m (bps) */
516 m
= (sm
* PSCHED_JIFFIE2US(HZ
)) >> SM_SHIFT
;
520 /* convert dx (psched us) into d (us) */
526 d
= dx
* USEC_PER_SEC
;
527 do_div(d
, PSCHED_JIFFIE2US(HZ
));
532 sc2isc(struct tc_service_curve
*sc
, struct internal_sc
*isc
)
534 isc
->sm1
= m2sm(sc
->m1
);
535 isc
->ism1
= m2ism(sc
->m1
);
536 isc
->dx
= d2dx(sc
->d
);
537 isc
->dy
= seg_x2y(isc
->dx
, isc
->sm1
);
538 isc
->sm2
= m2sm(sc
->m2
);
539 isc
->ism2
= m2ism(sc
->m2
);
543 * initialize the runtime service curve with the given internal
544 * service curve starting at (x, y).
547 rtsc_init(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
551 rtsc
->sm1
= isc
->sm1
;
552 rtsc
->ism1
= isc
->ism1
;
555 rtsc
->sm2
= isc
->sm2
;
556 rtsc
->ism2
= isc
->ism2
;
560 * calculate the y-projection of the runtime service curve by the
561 * given x-projection value
564 rtsc_y2x(struct runtime_sc
*rtsc
, u64 y
)
570 else if (y
<= rtsc
->y
+ rtsc
->dy
) {
571 /* x belongs to the 1st segment */
573 x
= rtsc
->x
+ rtsc
->dx
;
575 x
= rtsc
->x
+ seg_y2x(y
- rtsc
->y
, rtsc
->ism1
);
577 /* x belongs to the 2nd segment */
578 x
= rtsc
->x
+ rtsc
->dx
579 + seg_y2x(y
- rtsc
->y
- rtsc
->dy
, rtsc
->ism2
);
585 rtsc_x2y(struct runtime_sc
*rtsc
, u64 x
)
591 else if (x
<= rtsc
->x
+ rtsc
->dx
)
592 /* y belongs to the 1st segment */
593 y
= rtsc
->y
+ seg_x2y(x
- rtsc
->x
, rtsc
->sm1
);
595 /* y belongs to the 2nd segment */
596 y
= rtsc
->y
+ rtsc
->dy
597 + seg_x2y(x
- rtsc
->x
- rtsc
->dx
, rtsc
->sm2
);
602 * update the runtime service curve by taking the minimum of the current
603 * runtime service curve and the service curve starting at (x, y).
606 rtsc_min(struct runtime_sc
*rtsc
, struct internal_sc
*isc
, u64 x
, u64 y
)
611 if (isc
->sm1
<= isc
->sm2
) {
612 /* service curve is convex */
613 y1
= rtsc_x2y(rtsc
, x
);
615 /* the current rtsc is smaller */
623 * service curve is concave
624 * compute the two y values of the current rtsc
628 y1
= rtsc_x2y(rtsc
, x
);
630 /* rtsc is below isc, no change to rtsc */
634 y2
= rtsc_x2y(rtsc
, x
+ isc
->dx
);
635 if (y2
>= y
+ isc
->dy
) {
636 /* rtsc is above isc, replace rtsc by isc */
645 * the two curves intersect
646 * compute the offsets (dx, dy) using the reverse
647 * function of seg_x2y()
648 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
650 dx
= (y1
- y
) << SM_SHIFT
;
651 dsm
= isc
->sm1
- isc
->sm2
;
654 * check if (x, y1) belongs to the 1st segment of rtsc.
655 * if so, add the offset.
657 if (rtsc
->x
+ rtsc
->dx
> x
)
658 dx
+= rtsc
->x
+ rtsc
->dx
- x
;
659 dy
= seg_x2y(dx
, isc
->sm1
);
669 init_ed(struct hfsc_class
*cl
, unsigned int next_len
)
673 PSCHED_GET_TIME(cur_time
);
675 /* update the deadline curve */
676 rtsc_min(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
679 * update the eligible curve.
680 * for concave, it is equal to the deadline curve.
681 * for convex, it is a linear curve with slope m2.
683 cl
->cl_eligible
= cl
->cl_deadline
;
684 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
685 cl
->cl_eligible
.dx
= 0;
686 cl
->cl_eligible
.dy
= 0;
689 /* compute e and d */
690 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
691 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
697 update_ed(struct hfsc_class
*cl
, unsigned int next_len
)
699 cl
->cl_e
= rtsc_y2x(&cl
->cl_eligible
, cl
->cl_cumul
);
700 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
706 update_d(struct hfsc_class
*cl
, unsigned int next_len
)
708 cl
->cl_d
= rtsc_y2x(&cl
->cl_deadline
, cl
->cl_cumul
+ next_len
);
712 update_cfmin(struct hfsc_class
*cl
)
714 struct rb_node
*n
= rb_first(&cl
->cf_tree
);
715 struct hfsc_class
*p
;
721 p
= rb_entry(n
, struct hfsc_class
, cf_node
);
722 cl
->cl_cfmin
= p
->cl_f
;
726 init_vf(struct hfsc_class
*cl
, unsigned int len
)
728 struct hfsc_class
*max_cl
;
735 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
736 if (go_active
&& cl
->cl_nactive
++ == 0)
742 n
= rb_last(&cl
->cl_parent
->vt_tree
);
744 max_cl
= rb_entry(n
, struct hfsc_class
,vt_node
);
746 * set vt to the average of the min and max
747 * classes. if the parent's period didn't
748 * change, don't decrease vt of the class.
751 if (cl
->cl_parent
->cl_cvtmin
!= 0)
752 vt
= (cl
->cl_parent
->cl_cvtmin
+ vt
)/2;
754 if (cl
->cl_parent
->cl_vtperiod
!=
755 cl
->cl_parentperiod
|| vt
> cl
->cl_vt
)
759 * first child for a new parent backlog period.
760 * add parent's cvtmax to cvtoff to make a new
761 * vt (vtoff + vt) larger than the vt in the
762 * last period for all children.
764 vt
= cl
->cl_parent
->cl_cvtmax
;
765 cl
->cl_parent
->cl_cvtoff
+= vt
;
766 cl
->cl_parent
->cl_cvtmax
= 0;
767 cl
->cl_parent
->cl_cvtmin
= 0;
771 cl
->cl_vtoff
= cl
->cl_parent
->cl_cvtoff
-
774 /* update the virtual curve */
775 vt
= cl
->cl_vt
+ cl
->cl_vtoff
;
776 rtsc_min(&cl
->cl_virtual
, &cl
->cl_fsc
, vt
,
778 if (cl
->cl_virtual
.x
== vt
) {
779 cl
->cl_virtual
.x
-= cl
->cl_vtoff
;
784 cl
->cl_vtperiod
++; /* increment vt period */
785 cl
->cl_parentperiod
= cl
->cl_parent
->cl_vtperiod
;
786 if (cl
->cl_parent
->cl_nactive
== 0)
787 cl
->cl_parentperiod
++;
793 if (cl
->cl_flags
& HFSC_USC
) {
794 /* class has upper limit curve */
796 PSCHED_GET_TIME(cur_time
);
798 /* update the ulimit curve */
799 rtsc_min(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
,
802 cl
->cl_myf
= rtsc_y2x(&cl
->cl_ulimit
,
808 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
812 update_cfmin(cl
->cl_parent
);
818 update_vf(struct hfsc_class
*cl
, unsigned int len
, u64 cur_time
)
820 u64 f
; /* , myf_bound, delta; */
823 if (cl
->qdisc
->q
.qlen
== 0 && cl
->cl_flags
& HFSC_FSC
)
826 for (; cl
->cl_parent
!= NULL
; cl
= cl
->cl_parent
) {
829 if (!(cl
->cl_flags
& HFSC_FSC
) || cl
->cl_nactive
== 0)
832 if (go_passive
&& --cl
->cl_nactive
== 0)
838 /* no more active child, going passive */
840 /* update cvtmax of the parent class */
841 if (cl
->cl_vt
> cl
->cl_parent
->cl_cvtmax
)
842 cl
->cl_parent
->cl_cvtmax
= cl
->cl_vt
;
844 /* remove this class from the vt tree */
848 update_cfmin(cl
->cl_parent
);
856 cl
->cl_vt
= rtsc_y2x(&cl
->cl_virtual
, cl
->cl_total
)
857 - cl
->cl_vtoff
+ cl
->cl_vtadj
;
860 * if vt of the class is smaller than cvtmin,
861 * the class was skipped in the past due to non-fit.
862 * if so, we need to adjust vtadj.
864 if (cl
->cl_vt
< cl
->cl_parent
->cl_cvtmin
) {
865 cl
->cl_vtadj
+= cl
->cl_parent
->cl_cvtmin
- cl
->cl_vt
;
866 cl
->cl_vt
= cl
->cl_parent
->cl_cvtmin
;
869 /* update the vt tree */
872 if (cl
->cl_flags
& HFSC_USC
) {
873 cl
->cl_myf
= cl
->cl_myfadj
+ rtsc_y2x(&cl
->cl_ulimit
,
877 * This code causes classes to stay way under their
878 * limit when multiple classes are used at gigabit
879 * speed. needs investigation. -kaber
882 * if myf lags behind by more than one clock tick
883 * from the current time, adjust myfadj to prevent
884 * a rate-limited class from going greedy.
885 * in a steady state under rate-limiting, myf
886 * fluctuates within one clock tick.
888 myf_bound
= cur_time
- PSCHED_JIFFIE2US(1);
889 if (cl
->cl_myf
< myf_bound
) {
890 delta
= cur_time
- cl
->cl_myf
;
891 cl
->cl_myfadj
+= delta
;
897 f
= max(cl
->cl_myf
, cl
->cl_cfmin
);
901 update_cfmin(cl
->cl_parent
);
907 set_active(struct hfsc_class
*cl
, unsigned int len
)
909 if (cl
->cl_flags
& HFSC_RSC
)
911 if (cl
->cl_flags
& HFSC_FSC
)
914 list_add_tail(&cl
->dlist
, &cl
->sched
->droplist
);
918 set_passive(struct hfsc_class
*cl
)
920 if (cl
->cl_flags
& HFSC_RSC
)
923 list_del(&cl
->dlist
);
926 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
927 * needs to be called explicitly to remove a class from vttree.
932 * hack to get length of first packet in queue.
935 qdisc_peek_len(struct Qdisc
*sch
)
940 skb
= sch
->dequeue(sch
);
943 printk("qdisc_peek_len: non work-conserving qdisc ?\n");
947 if (unlikely(sch
->ops
->requeue(skb
, sch
) != NET_XMIT_SUCCESS
)) {
949 printk("qdisc_peek_len: failed to requeue\n");
956 hfsc_purge_queue(struct Qdisc
*sch
, struct hfsc_class
*cl
)
958 unsigned int len
= cl
->qdisc
->q
.qlen
;
960 qdisc_reset(cl
->qdisc
);
969 hfsc_adjust_levels(struct hfsc_class
*cl
)
971 struct hfsc_class
*p
;
976 list_for_each_entry(p
, &cl
->children
, siblings
) {
977 if (p
->level
>= level
)
978 level
= p
->level
+ 1;
981 } while ((cl
= cl
->cl_parent
) != NULL
);
984 static inline unsigned int
990 return h
& (HFSC_HSIZE
- 1);
993 static inline struct hfsc_class
*
994 hfsc_find_class(u32 classid
, struct Qdisc
*sch
)
996 struct hfsc_sched
*q
= qdisc_priv(sch
);
997 struct hfsc_class
*cl
;
999 list_for_each_entry(cl
, &q
->clhash
[hfsc_hash(classid
)], hlist
) {
1000 if (cl
->classid
== classid
)
1007 hfsc_change_rsc(struct hfsc_class
*cl
, struct tc_service_curve
*rsc
,
1010 sc2isc(rsc
, &cl
->cl_rsc
);
1011 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, cur_time
, cl
->cl_cumul
);
1012 cl
->cl_eligible
= cl
->cl_deadline
;
1013 if (cl
->cl_rsc
.sm1
<= cl
->cl_rsc
.sm2
) {
1014 cl
->cl_eligible
.dx
= 0;
1015 cl
->cl_eligible
.dy
= 0;
1017 cl
->cl_flags
|= HFSC_RSC
;
1021 hfsc_change_fsc(struct hfsc_class
*cl
, struct tc_service_curve
*fsc
)
1023 sc2isc(fsc
, &cl
->cl_fsc
);
1024 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, cl
->cl_vt
, cl
->cl_total
);
1025 cl
->cl_flags
|= HFSC_FSC
;
1029 hfsc_change_usc(struct hfsc_class
*cl
, struct tc_service_curve
*usc
,
1032 sc2isc(usc
, &cl
->cl_usc
);
1033 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, cur_time
, cl
->cl_total
);
1034 cl
->cl_flags
|= HFSC_USC
;
1038 hfsc_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
1039 struct rtattr
**tca
, unsigned long *arg
)
1041 struct hfsc_sched
*q
= qdisc_priv(sch
);
1042 struct hfsc_class
*cl
= (struct hfsc_class
*)*arg
;
1043 struct hfsc_class
*parent
= NULL
;
1044 struct rtattr
*opt
= tca
[TCA_OPTIONS
-1];
1045 struct rtattr
*tb
[TCA_HFSC_MAX
];
1046 struct tc_service_curve
*rsc
= NULL
, *fsc
= NULL
, *usc
= NULL
;
1049 if (opt
== NULL
|| rtattr_parse_nested(tb
, TCA_HFSC_MAX
, opt
))
1052 if (tb
[TCA_HFSC_RSC
-1]) {
1053 if (RTA_PAYLOAD(tb
[TCA_HFSC_RSC
-1]) < sizeof(*rsc
))
1055 rsc
= RTA_DATA(tb
[TCA_HFSC_RSC
-1]);
1056 if (rsc
->m1
== 0 && rsc
->m2
== 0)
1060 if (tb
[TCA_HFSC_FSC
-1]) {
1061 if (RTA_PAYLOAD(tb
[TCA_HFSC_FSC
-1]) < sizeof(*fsc
))
1063 fsc
= RTA_DATA(tb
[TCA_HFSC_FSC
-1]);
1064 if (fsc
->m1
== 0 && fsc
->m2
== 0)
1068 if (tb
[TCA_HFSC_USC
-1]) {
1069 if (RTA_PAYLOAD(tb
[TCA_HFSC_USC
-1]) < sizeof(*usc
))
1071 usc
= RTA_DATA(tb
[TCA_HFSC_USC
-1]);
1072 if (usc
->m1
== 0 && usc
->m2
== 0)
1078 if (cl
->cl_parent
&& cl
->cl_parent
->classid
!= parentid
)
1080 if (cl
->cl_parent
== NULL
&& parentid
!= TC_H_ROOT
)
1083 PSCHED_GET_TIME(cur_time
);
1087 hfsc_change_rsc(cl
, rsc
, cur_time
);
1089 hfsc_change_fsc(cl
, fsc
);
1091 hfsc_change_usc(cl
, usc
, cur_time
);
1093 if (cl
->qdisc
->q
.qlen
!= 0) {
1094 if (cl
->cl_flags
& HFSC_RSC
)
1095 update_ed(cl
, qdisc_peek_len(cl
->qdisc
));
1096 if (cl
->cl_flags
& HFSC_FSC
)
1097 update_vf(cl
, 0, cur_time
);
1099 sch_tree_unlock(sch
);
1101 #ifdef CONFIG_NET_ESTIMATOR
1102 if (tca
[TCA_RATE
-1])
1103 gen_replace_estimator(&cl
->bstats
, &cl
->rate_est
,
1104 cl
->stats_lock
, tca
[TCA_RATE
-1]);
1109 if (parentid
== TC_H_ROOT
)
1114 parent
= hfsc_find_class(parentid
, sch
);
1119 if (classid
== 0 || TC_H_MAJ(classid
^ sch
->handle
) != 0)
1121 if (hfsc_find_class(classid
, sch
))
1124 if (rsc
== NULL
&& fsc
== NULL
)
1127 cl
= kmalloc(sizeof(struct hfsc_class
), GFP_KERNEL
);
1130 memset(cl
, 0, sizeof(struct hfsc_class
));
1133 hfsc_change_rsc(cl
, rsc
, 0);
1135 hfsc_change_fsc(cl
, fsc
);
1137 hfsc_change_usc(cl
, usc
, 0);
1140 cl
->classid
= classid
;
1142 cl
->cl_parent
= parent
;
1143 cl
->qdisc
= qdisc_create_dflt(sch
->dev
, &pfifo_qdisc_ops
);
1144 if (cl
->qdisc
== NULL
)
1145 cl
->qdisc
= &noop_qdisc
;
1146 cl
->stats_lock
= &sch
->dev
->queue_lock
;
1147 INIT_LIST_HEAD(&cl
->children
);
1148 cl
->vt_tree
= RB_ROOT
;
1149 cl
->cf_tree
= RB_ROOT
;
1152 list_add_tail(&cl
->hlist
, &q
->clhash
[hfsc_hash(classid
)]);
1153 list_add_tail(&cl
->siblings
, &parent
->children
);
1154 if (parent
->level
== 0)
1155 hfsc_purge_queue(sch
, parent
);
1156 hfsc_adjust_levels(parent
);
1157 cl
->cl_pcvtoff
= parent
->cl_cvtoff
;
1158 sch_tree_unlock(sch
);
1160 #ifdef CONFIG_NET_ESTIMATOR
1161 if (tca
[TCA_RATE
-1])
1162 gen_new_estimator(&cl
->bstats
, &cl
->rate_est
,
1163 cl
->stats_lock
, tca
[TCA_RATE
-1]);
1165 *arg
= (unsigned long)cl
;
1170 hfsc_destroy_filters(struct tcf_proto
**fl
)
1172 struct tcf_proto
*tp
;
1174 while ((tp
= *fl
) != NULL
) {
1181 hfsc_destroy_class(struct Qdisc
*sch
, struct hfsc_class
*cl
)
1183 struct hfsc_sched
*q
= qdisc_priv(sch
);
1185 hfsc_destroy_filters(&cl
->filter_list
);
1186 qdisc_destroy(cl
->qdisc
);
1187 #ifdef CONFIG_NET_ESTIMATOR
1188 gen_kill_estimator(&cl
->bstats
, &cl
->rate_est
);
1195 hfsc_delete_class(struct Qdisc
*sch
, unsigned long arg
)
1197 struct hfsc_sched
*q
= qdisc_priv(sch
);
1198 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1200 if (cl
->level
> 0 || cl
->filter_cnt
> 0 || cl
== &q
->root
)
1205 list_del(&cl
->hlist
);
1206 list_del(&cl
->siblings
);
1207 hfsc_adjust_levels(cl
->cl_parent
);
1208 hfsc_purge_queue(sch
, cl
);
1209 if (--cl
->refcnt
== 0)
1210 hfsc_destroy_class(sch
, cl
);
1212 sch_tree_unlock(sch
);
1216 static struct hfsc_class
*
1217 hfsc_classify(struct sk_buff
*skb
, struct Qdisc
*sch
, int *qerr
)
1219 struct hfsc_sched
*q
= qdisc_priv(sch
);
1220 struct hfsc_class
*cl
;
1221 struct tcf_result res
;
1222 struct tcf_proto
*tcf
;
1225 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0 &&
1226 (cl
= hfsc_find_class(skb
->priority
, sch
)) != NULL
)
1230 *qerr
= NET_XMIT_BYPASS
;
1231 tcf
= q
->root
.filter_list
;
1232 while (tcf
&& (result
= tc_classify(skb
, tcf
, &res
)) >= 0) {
1233 #ifdef CONFIG_NET_CLS_ACT
1237 *qerr
= NET_XMIT_SUCCESS
;
1241 #elif defined(CONFIG_NET_CLS_POLICE)
1242 if (result
== TC_POLICE_SHOT
)
1245 if ((cl
= (struct hfsc_class
*)res
.class) == NULL
) {
1246 if ((cl
= hfsc_find_class(res
.classid
, sch
)) == NULL
)
1247 break; /* filter selected invalid classid */
1251 return cl
; /* hit leaf class */
1253 /* apply inner filter chain */
1254 tcf
= cl
->filter_list
;
1257 /* classification failed, try default class */
1258 cl
= hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch
->handle
), q
->defcls
), sch
);
1259 if (cl
== NULL
|| cl
->level
> 0)
1266 hfsc_graft_class(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1269 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1276 new = qdisc_create_dflt(sch
->dev
, &pfifo_qdisc_ops
);
1282 hfsc_purge_queue(sch
, cl
);
1283 *old
= xchg(&cl
->qdisc
, new);
1284 sch_tree_unlock(sch
);
1288 static struct Qdisc
*
1289 hfsc_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
1291 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1293 if (cl
!= NULL
&& cl
->level
== 0)
1299 static unsigned long
1300 hfsc_get_class(struct Qdisc
*sch
, u32 classid
)
1302 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1307 return (unsigned long)cl
;
1311 hfsc_put_class(struct Qdisc
*sch
, unsigned long arg
)
1313 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1315 if (--cl
->refcnt
== 0)
1316 hfsc_destroy_class(sch
, cl
);
1319 static unsigned long
1320 hfsc_bind_tcf(struct Qdisc
*sch
, unsigned long parent
, u32 classid
)
1322 struct hfsc_class
*p
= (struct hfsc_class
*)parent
;
1323 struct hfsc_class
*cl
= hfsc_find_class(classid
, sch
);
1326 if (p
!= NULL
&& p
->level
<= cl
->level
)
1331 return (unsigned long)cl
;
1335 hfsc_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
1337 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1342 static struct tcf_proto
**
1343 hfsc_tcf_chain(struct Qdisc
*sch
, unsigned long arg
)
1345 struct hfsc_sched
*q
= qdisc_priv(sch
);
1346 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1351 return &cl
->filter_list
;
1355 hfsc_dump_sc(struct sk_buff
*skb
, int attr
, struct internal_sc
*sc
)
1357 struct tc_service_curve tsc
;
1359 tsc
.m1
= sm2m(sc
->sm1
);
1360 tsc
.d
= dx2d(sc
->dx
);
1361 tsc
.m2
= sm2m(sc
->sm2
);
1362 RTA_PUT(skb
, attr
, sizeof(tsc
), &tsc
);
1371 hfsc_dump_curves(struct sk_buff
*skb
, struct hfsc_class
*cl
)
1373 if ((cl
->cl_flags
& HFSC_RSC
) &&
1374 (hfsc_dump_sc(skb
, TCA_HFSC_RSC
, &cl
->cl_rsc
) < 0))
1375 goto rtattr_failure
;
1377 if ((cl
->cl_flags
& HFSC_FSC
) &&
1378 (hfsc_dump_sc(skb
, TCA_HFSC_FSC
, &cl
->cl_fsc
) < 0))
1379 goto rtattr_failure
;
1381 if ((cl
->cl_flags
& HFSC_USC
) &&
1382 (hfsc_dump_sc(skb
, TCA_HFSC_USC
, &cl
->cl_usc
) < 0))
1383 goto rtattr_failure
;
1392 hfsc_dump_class(struct Qdisc
*sch
, unsigned long arg
, struct sk_buff
*skb
,
1395 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1396 unsigned char *b
= skb
->tail
;
1397 struct rtattr
*rta
= (struct rtattr
*)b
;
1399 tcm
->tcm_parent
= cl
->cl_parent
? cl
->cl_parent
->classid
: TC_H_ROOT
;
1400 tcm
->tcm_handle
= cl
->classid
;
1402 tcm
->tcm_info
= cl
->qdisc
->handle
;
1404 RTA_PUT(skb
, TCA_OPTIONS
, 0, NULL
);
1405 if (hfsc_dump_curves(skb
, cl
) < 0)
1406 goto rtattr_failure
;
1407 rta
->rta_len
= skb
->tail
- b
;
1411 skb_trim(skb
, b
- skb
->data
);
1416 hfsc_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
1417 struct gnet_dump
*d
)
1419 struct hfsc_class
*cl
= (struct hfsc_class
*)arg
;
1420 struct tc_hfsc_stats xstats
;
1422 cl
->qstats
.qlen
= cl
->qdisc
->q
.qlen
;
1423 xstats
.level
= cl
->level
;
1424 xstats
.period
= cl
->cl_vtperiod
;
1425 xstats
.work
= cl
->cl_total
;
1426 xstats
.rtwork
= cl
->cl_cumul
;
1428 if (gnet_stats_copy_basic(d
, &cl
->bstats
) < 0 ||
1429 #ifdef CONFIG_NET_ESTIMATOR
1430 gnet_stats_copy_rate_est(d
, &cl
->rate_est
) < 0 ||
1432 gnet_stats_copy_queue(d
, &cl
->qstats
) < 0)
1435 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
1441 hfsc_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
1443 struct hfsc_sched
*q
= qdisc_priv(sch
);
1444 struct hfsc_class
*cl
;
1450 for (i
= 0; i
< HFSC_HSIZE
; i
++) {
1451 list_for_each_entry(cl
, &q
->clhash
[i
], hlist
) {
1452 if (arg
->count
< arg
->skip
) {
1456 if (arg
->fn(sch
, (unsigned long)cl
, arg
) < 0) {
1466 hfsc_watchdog(unsigned long arg
)
1468 struct Qdisc
*sch
= (struct Qdisc
*)arg
;
1470 sch
->flags
&= ~TCQ_F_THROTTLED
;
1471 netif_schedule(sch
->dev
);
1475 hfsc_schedule_watchdog(struct Qdisc
*sch
, u64 cur_time
)
1477 struct hfsc_sched
*q
= qdisc_priv(sch
);
1478 struct hfsc_class
*cl
;
1482 if ((cl
= eltree_get_minel(q
)) != NULL
)
1483 next_time
= cl
->cl_e
;
1484 if (q
->root
.cl_cfmin
!= 0) {
1485 if (next_time
== 0 || next_time
> q
->root
.cl_cfmin
)
1486 next_time
= q
->root
.cl_cfmin
;
1488 ASSERT(next_time
!= 0);
1489 delay
= next_time
- cur_time
;
1490 delay
= PSCHED_US2JIFFIE(delay
);
1492 sch
->flags
|= TCQ_F_THROTTLED
;
1493 mod_timer(&q
->wd_timer
, jiffies
+ delay
);
1497 hfsc_init_qdisc(struct Qdisc
*sch
, struct rtattr
*opt
)
1499 struct hfsc_sched
*q
= qdisc_priv(sch
);
1500 struct tc_hfsc_qopt
*qopt
;
1503 if (opt
== NULL
|| RTA_PAYLOAD(opt
) < sizeof(*qopt
))
1505 qopt
= RTA_DATA(opt
);
1507 sch
->stats_lock
= &sch
->dev
->queue_lock
;
1509 q
->defcls
= qopt
->defcls
;
1510 for (i
= 0; i
< HFSC_HSIZE
; i
++)
1511 INIT_LIST_HEAD(&q
->clhash
[i
]);
1512 q
->eligible
= RB_ROOT
;
1513 INIT_LIST_HEAD(&q
->droplist
);
1514 skb_queue_head_init(&q
->requeue
);
1517 q
->root
.classid
= sch
->handle
;
1519 q
->root
.qdisc
= qdisc_create_dflt(sch
->dev
, &pfifo_qdisc_ops
);
1520 if (q
->root
.qdisc
== NULL
)
1521 q
->root
.qdisc
= &noop_qdisc
;
1522 q
->root
.stats_lock
= &sch
->dev
->queue_lock
;
1523 INIT_LIST_HEAD(&q
->root
.children
);
1524 q
->root
.vt_tree
= RB_ROOT
;
1525 q
->root
.cf_tree
= RB_ROOT
;
1527 list_add(&q
->root
.hlist
, &q
->clhash
[hfsc_hash(q
->root
.classid
)]);
1529 init_timer(&q
->wd_timer
);
1530 q
->wd_timer
.function
= hfsc_watchdog
;
1531 q
->wd_timer
.data
= (unsigned long)sch
;
1537 hfsc_change_qdisc(struct Qdisc
*sch
, struct rtattr
*opt
)
1539 struct hfsc_sched
*q
= qdisc_priv(sch
);
1540 struct tc_hfsc_qopt
*qopt
;
1542 if (opt
== NULL
|| RTA_PAYLOAD(opt
) < sizeof(*qopt
))
1544 qopt
= RTA_DATA(opt
);
1547 q
->defcls
= qopt
->defcls
;
1548 sch_tree_unlock(sch
);
1554 hfsc_reset_class(struct hfsc_class
*cl
)
1567 cl
->cl_vtperiod
= 0;
1568 cl
->cl_parentperiod
= 0;
1575 cl
->vt_tree
= RB_ROOT
;
1576 cl
->cf_tree
= RB_ROOT
;
1577 qdisc_reset(cl
->qdisc
);
1579 if (cl
->cl_flags
& HFSC_RSC
)
1580 rtsc_init(&cl
->cl_deadline
, &cl
->cl_rsc
, 0, 0);
1581 if (cl
->cl_flags
& HFSC_FSC
)
1582 rtsc_init(&cl
->cl_virtual
, &cl
->cl_fsc
, 0, 0);
1583 if (cl
->cl_flags
& HFSC_USC
)
1584 rtsc_init(&cl
->cl_ulimit
, &cl
->cl_usc
, 0, 0);
1588 hfsc_reset_qdisc(struct Qdisc
*sch
)
1590 struct hfsc_sched
*q
= qdisc_priv(sch
);
1591 struct hfsc_class
*cl
;
1594 for (i
= 0; i
< HFSC_HSIZE
; i
++) {
1595 list_for_each_entry(cl
, &q
->clhash
[i
], hlist
)
1596 hfsc_reset_class(cl
);
1598 __skb_queue_purge(&q
->requeue
);
1599 q
->eligible
= RB_ROOT
;
1600 INIT_LIST_HEAD(&q
->droplist
);
1601 del_timer(&q
->wd_timer
);
1602 sch
->flags
&= ~TCQ_F_THROTTLED
;
1607 hfsc_destroy_qdisc(struct Qdisc
*sch
)
1609 struct hfsc_sched
*q
= qdisc_priv(sch
);
1610 struct hfsc_class
*cl
, *next
;
1613 for (i
= 0; i
< HFSC_HSIZE
; i
++) {
1614 list_for_each_entry_safe(cl
, next
, &q
->clhash
[i
], hlist
)
1615 hfsc_destroy_class(sch
, cl
);
1617 __skb_queue_purge(&q
->requeue
);
1618 del_timer(&q
->wd_timer
);
1622 hfsc_dump_qdisc(struct Qdisc
*sch
, struct sk_buff
*skb
)
1624 struct hfsc_sched
*q
= qdisc_priv(sch
);
1625 unsigned char *b
= skb
->tail
;
1626 struct tc_hfsc_qopt qopt
;
1628 qopt
.defcls
= q
->defcls
;
1629 RTA_PUT(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
);
1633 skb_trim(skb
, b
- skb
->data
);
1638 hfsc_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
1640 struct hfsc_class
*cl
;
1644 cl
= hfsc_classify(skb
, sch
, &err
);
1646 if (err
== NET_XMIT_BYPASS
)
1647 sch
->qstats
.drops
++;
1653 err
= cl
->qdisc
->enqueue(skb
, cl
->qdisc
);
1654 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1656 sch
->qstats
.drops
++;
1660 if (cl
->qdisc
->q
.qlen
== 1)
1661 set_active(cl
, len
);
1663 cl
->bstats
.packets
++;
1664 cl
->bstats
.bytes
+= len
;
1665 sch
->bstats
.packets
++;
1666 sch
->bstats
.bytes
+= len
;
1669 return NET_XMIT_SUCCESS
;
1672 static struct sk_buff
*
1673 hfsc_dequeue(struct Qdisc
*sch
)
1675 struct hfsc_sched
*q
= qdisc_priv(sch
);
1676 struct hfsc_class
*cl
;
1677 struct sk_buff
*skb
;
1679 unsigned int next_len
;
1682 if (sch
->q
.qlen
== 0)
1684 if ((skb
= __skb_dequeue(&q
->requeue
)))
1687 PSCHED_GET_TIME(cur_time
);
1690 * if there are eligible classes, use real-time criteria.
1691 * find the class with the minimum deadline among
1692 * the eligible classes.
1694 if ((cl
= eltree_get_mindl(q
, cur_time
)) != NULL
) {
1698 * use link-sharing criteria
1699 * get the class with the minimum vt in the hierarchy
1701 cl
= vttree_get_minvt(&q
->root
, cur_time
);
1703 sch
->qstats
.overlimits
++;
1704 hfsc_schedule_watchdog(sch
, cur_time
);
1709 skb
= cl
->qdisc
->dequeue(cl
->qdisc
);
1711 if (net_ratelimit())
1712 printk("HFSC: Non-work-conserving qdisc ?\n");
1716 update_vf(cl
, skb
->len
, cur_time
);
1718 cl
->cl_cumul
+= skb
->len
;
1720 if (cl
->qdisc
->q
.qlen
!= 0) {
1721 if (cl
->cl_flags
& HFSC_RSC
) {
1723 next_len
= qdisc_peek_len(cl
->qdisc
);
1725 update_ed(cl
, next_len
);
1727 update_d(cl
, next_len
);
1730 /* the class becomes passive */
1735 sch
->flags
&= ~TCQ_F_THROTTLED
;
1742 hfsc_requeue(struct sk_buff
*skb
, struct Qdisc
*sch
)
1744 struct hfsc_sched
*q
= qdisc_priv(sch
);
1746 __skb_queue_head(&q
->requeue
, skb
);
1748 sch
->qstats
.requeues
++;
1749 return NET_XMIT_SUCCESS
;
1753 hfsc_drop(struct Qdisc
*sch
)
1755 struct hfsc_sched
*q
= qdisc_priv(sch
);
1756 struct hfsc_class
*cl
;
1759 list_for_each_entry(cl
, &q
->droplist
, dlist
) {
1760 if (cl
->qdisc
->ops
->drop
!= NULL
&&
1761 (len
= cl
->qdisc
->ops
->drop(cl
->qdisc
)) > 0) {
1762 if (cl
->qdisc
->q
.qlen
== 0) {
1763 update_vf(cl
, 0, 0);
1766 list_move_tail(&cl
->dlist
, &q
->droplist
);
1769 sch
->qstats
.drops
++;
1777 static struct Qdisc_class_ops hfsc_class_ops
= {
1778 .change
= hfsc_change_class
,
1779 .delete = hfsc_delete_class
,
1780 .graft
= hfsc_graft_class
,
1781 .leaf
= hfsc_class_leaf
,
1782 .get
= hfsc_get_class
,
1783 .put
= hfsc_put_class
,
1784 .bind_tcf
= hfsc_bind_tcf
,
1785 .unbind_tcf
= hfsc_unbind_tcf
,
1786 .tcf_chain
= hfsc_tcf_chain
,
1787 .dump
= hfsc_dump_class
,
1788 .dump_stats
= hfsc_dump_class_stats
,
1792 static struct Qdisc_ops hfsc_qdisc_ops
= {
1794 .init
= hfsc_init_qdisc
,
1795 .change
= hfsc_change_qdisc
,
1796 .reset
= hfsc_reset_qdisc
,
1797 .destroy
= hfsc_destroy_qdisc
,
1798 .dump
= hfsc_dump_qdisc
,
1799 .enqueue
= hfsc_enqueue
,
1800 .dequeue
= hfsc_dequeue
,
1801 .requeue
= hfsc_requeue
,
1803 .cl_ops
= &hfsc_class_ops
,
1804 .priv_size
= sizeof(struct hfsc_sched
),
1805 .owner
= THIS_MODULE
1811 return register_qdisc(&hfsc_qdisc_ops
);
1817 unregister_qdisc(&hfsc_qdisc_ops
);
1820 MODULE_LICENSE("GPL");
1821 module_init(hfsc_init
);
1822 module_exit(hfsc_cleanup
);