[NETFILTER]: statistic match: add missing Kconfig help text
[linux-2.6.22.y-op.git] / drivers / net / 8139cp.c
blobd26dd6a7062dcd2e72cb05a973fe1e78962fb7b4
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
29 * Implement dev->tx_timeout
31 Low priority TODO:
32 * Complete reset on PciErr
33 * Consider Rx interrupt mitigation using TimerIntr
34 * Investigate using skb->priority with h/w VLAN priority
35 * Investigate using High Priority Tx Queue with skb->priority
36 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
37 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
38 * Implement Tx software interrupt mitigation via
39 Tx descriptor bit
40 * The real minimum of CP_MIN_MTU is 4 bytes. However,
41 for this to be supported, one must(?) turn on packet padding.
42 * Support external MII transceivers (patch available)
44 NOTES:
45 * TX checksumming is considered experimental. It is off by
46 default, use ethtool to turn it on.
50 #define DRV_NAME "8139cp"
51 #define DRV_VERSION "1.2"
52 #define DRV_RELDATE "Mar 22, 2004"
55 #include <linux/config.h>
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/delay.h>
66 #include <linux/ethtool.h>
67 #include <linux/mii.h>
68 #include <linux/if_vlan.h>
69 #include <linux/crc32.h>
70 #include <linux/in.h>
71 #include <linux/ip.h>
72 #include <linux/tcp.h>
73 #include <linux/udp.h>
74 #include <linux/cache.h>
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h>
79 /* VLAN tagging feature enable/disable */
80 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
81 #define CP_VLAN_TAG_USED 1
82 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
83 do { (tx_desc)->opts2 = (vlan_tag_value); } while (0)
84 #else
85 #define CP_VLAN_TAG_USED 0
86 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
87 do { (tx_desc)->opts2 = 0; } while (0)
88 #endif
90 /* These identify the driver base version and may not be removed. */
91 static char version[] =
92 KERN_INFO DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
94 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
95 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
96 MODULE_VERSION(DRV_VERSION);
97 MODULE_LICENSE("GPL");
99 static int debug = -1;
100 module_param(debug, int, 0);
101 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
103 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
104 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
105 static int multicast_filter_limit = 32;
106 module_param(multicast_filter_limit, int, 0);
107 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
109 #define PFX DRV_NAME ": "
111 #ifndef TRUE
112 #define FALSE 0
113 #define TRUE (!FALSE)
114 #endif
116 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
117 NETIF_MSG_PROBE | \
118 NETIF_MSG_LINK)
119 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
120 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
121 #define CP_REGS_SIZE (0xff + 1)
122 #define CP_REGS_VER 1 /* version 1 */
123 #define CP_RX_RING_SIZE 64
124 #define CP_TX_RING_SIZE 64
125 #define CP_RING_BYTES \
126 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
127 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
128 CP_STATS_SIZE)
129 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
130 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
131 #define TX_BUFFS_AVAIL(CP) \
132 (((CP)->tx_tail <= (CP)->tx_head) ? \
133 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
134 (CP)->tx_tail - (CP)->tx_head - 1)
136 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
137 #define RX_OFFSET 2
138 #define CP_INTERNAL_PHY 32
140 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
141 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
142 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
143 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
144 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
146 /* Time in jiffies before concluding the transmitter is hung. */
147 #define TX_TIMEOUT (6*HZ)
149 /* hardware minimum and maximum for a single frame's data payload */
150 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
151 #define CP_MAX_MTU 4096
153 enum {
154 /* NIC register offsets */
155 MAC0 = 0x00, /* Ethernet hardware address. */
156 MAR0 = 0x08, /* Multicast filter. */
157 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
158 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
159 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
160 Cmd = 0x37, /* Command register */
161 IntrMask = 0x3C, /* Interrupt mask */
162 IntrStatus = 0x3E, /* Interrupt status */
163 TxConfig = 0x40, /* Tx configuration */
164 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
165 RxConfig = 0x44, /* Rx configuration */
166 RxMissed = 0x4C, /* 24 bits valid, write clears */
167 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
168 Config1 = 0x52, /* Config1 */
169 Config3 = 0x59, /* Config3 */
170 Config4 = 0x5A, /* Config4 */
171 MultiIntr = 0x5C, /* Multiple interrupt select */
172 BasicModeCtrl = 0x62, /* MII BMCR */
173 BasicModeStatus = 0x64, /* MII BMSR */
174 NWayAdvert = 0x66, /* MII ADVERTISE */
175 NWayLPAR = 0x68, /* MII LPA */
176 NWayExpansion = 0x6A, /* MII Expansion */
177 Config5 = 0xD8, /* Config5 */
178 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
179 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
180 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
181 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
182 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
183 TxThresh = 0xEC, /* Early Tx threshold */
184 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
185 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
187 /* Tx and Rx status descriptors */
188 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
189 RingEnd = (1 << 30), /* End of descriptor ring */
190 FirstFrag = (1 << 29), /* First segment of a packet */
191 LastFrag = (1 << 28), /* Final segment of a packet */
192 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
193 MSSShift = 16, /* MSS value position */
194 MSSMask = 0xfff, /* MSS value: 11 bits */
195 TxError = (1 << 23), /* Tx error summary */
196 RxError = (1 << 20), /* Rx error summary */
197 IPCS = (1 << 18), /* Calculate IP checksum */
198 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
199 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
200 TxVlanTag = (1 << 17), /* Add VLAN tag */
201 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
202 IPFail = (1 << 15), /* IP checksum failed */
203 UDPFail = (1 << 14), /* UDP/IP checksum failed */
204 TCPFail = (1 << 13), /* TCP/IP checksum failed */
205 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
206 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
207 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
208 RxProtoTCP = 1,
209 RxProtoUDP = 2,
210 RxProtoIP = 3,
211 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
212 TxOWC = (1 << 22), /* Tx Out-of-window collision */
213 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
214 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
215 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
216 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
217 RxErrFrame = (1 << 27), /* Rx frame alignment error */
218 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
219 RxErrCRC = (1 << 18), /* Rx CRC error */
220 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
221 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
222 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
224 /* StatsAddr register */
225 DumpStats = (1 << 3), /* Begin stats dump */
227 /* RxConfig register */
228 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
229 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
230 AcceptErr = 0x20, /* Accept packets with CRC errors */
231 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
232 AcceptBroadcast = 0x08, /* Accept broadcast packets */
233 AcceptMulticast = 0x04, /* Accept multicast packets */
234 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
235 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
237 /* IntrMask / IntrStatus registers */
238 PciErr = (1 << 15), /* System error on the PCI bus */
239 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
240 LenChg = (1 << 13), /* Cable length change */
241 SWInt = (1 << 8), /* Software-requested interrupt */
242 TxEmpty = (1 << 7), /* No Tx descriptors available */
243 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
244 LinkChg = (1 << 5), /* Packet underrun, or link change */
245 RxEmpty = (1 << 4), /* No Rx descriptors available */
246 TxErr = (1 << 3), /* Tx error */
247 TxOK = (1 << 2), /* Tx packet sent */
248 RxErr = (1 << 1), /* Rx error */
249 RxOK = (1 << 0), /* Rx packet received */
250 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
251 but hardware likes to raise it */
253 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
254 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
255 RxErr | RxOK | IntrResvd,
257 /* C mode command register */
258 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
259 RxOn = (1 << 3), /* Rx mode enable */
260 TxOn = (1 << 2), /* Tx mode enable */
262 /* C+ mode command register */
263 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
264 RxChkSum = (1 << 5), /* Rx checksum offload enable */
265 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
266 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
267 CpRxOn = (1 << 1), /* Rx mode enable */
268 CpTxOn = (1 << 0), /* Tx mode enable */
270 /* Cfg9436 EEPROM control register */
271 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
272 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
274 /* TxConfig register */
275 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
276 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
278 /* Early Tx Threshold register */
279 TxThreshMask = 0x3f, /* Mask bits 5-0 */
280 TxThreshMax = 2048, /* Max early Tx threshold */
282 /* Config1 register */
283 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
284 LWACT = (1 << 4), /* LWAKE active mode */
285 PMEnable = (1 << 0), /* Enable various PM features of chip */
287 /* Config3 register */
288 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
289 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
290 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
292 /* Config4 register */
293 LWPTN = (1 << 1), /* LWAKE Pattern */
294 LWPME = (1 << 4), /* LANWAKE vs PMEB */
296 /* Config5 register */
297 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
298 MWF = (1 << 5), /* Accept Multicast wakeup frame */
299 UWF = (1 << 4), /* Accept Unicast wakeup frame */
300 LANWake = (1 << 1), /* Enable LANWake signal */
301 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
303 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
304 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
305 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
308 static const unsigned int cp_rx_config =
309 (RX_FIFO_THRESH << RxCfgFIFOShift) |
310 (RX_DMA_BURST << RxCfgDMAShift);
312 struct cp_desc {
313 u32 opts1;
314 u32 opts2;
315 u64 addr;
318 struct ring_info {
319 struct sk_buff *skb;
320 dma_addr_t mapping;
321 u32 len;
324 struct cp_dma_stats {
325 u64 tx_ok;
326 u64 rx_ok;
327 u64 tx_err;
328 u32 rx_err;
329 u16 rx_fifo;
330 u16 frame_align;
331 u32 tx_ok_1col;
332 u32 tx_ok_mcol;
333 u64 rx_ok_phys;
334 u64 rx_ok_bcast;
335 u32 rx_ok_mcast;
336 u16 tx_abort;
337 u16 tx_underrun;
338 } __attribute__((packed));
340 struct cp_extra_stats {
341 unsigned long rx_frags;
344 struct cp_private {
345 void __iomem *regs;
346 struct net_device *dev;
347 spinlock_t lock;
348 u32 msg_enable;
350 struct pci_dev *pdev;
351 u32 rx_config;
352 u16 cpcmd;
354 struct net_device_stats net_stats;
355 struct cp_extra_stats cp_stats;
357 unsigned rx_tail ____cacheline_aligned;
358 struct cp_desc *rx_ring;
359 struct ring_info rx_skb[CP_RX_RING_SIZE];
360 unsigned rx_buf_sz;
362 unsigned tx_head ____cacheline_aligned;
363 unsigned tx_tail;
365 struct cp_desc *tx_ring;
366 struct ring_info tx_skb[CP_TX_RING_SIZE];
367 dma_addr_t ring_dma;
369 #if CP_VLAN_TAG_USED
370 struct vlan_group *vlgrp;
371 #endif
373 unsigned int wol_enabled : 1; /* Is Wake-on-LAN enabled? */
375 struct mii_if_info mii_if;
378 #define cpr8(reg) readb(cp->regs + (reg))
379 #define cpr16(reg) readw(cp->regs + (reg))
380 #define cpr32(reg) readl(cp->regs + (reg))
381 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
382 #define cpw16(reg,val) writew((val), cp->regs + (reg))
383 #define cpw32(reg,val) writel((val), cp->regs + (reg))
384 #define cpw8_f(reg,val) do { \
385 writeb((val), cp->regs + (reg)); \
386 readb(cp->regs + (reg)); \
387 } while (0)
388 #define cpw16_f(reg,val) do { \
389 writew((val), cp->regs + (reg)); \
390 readw(cp->regs + (reg)); \
391 } while (0)
392 #define cpw32_f(reg,val) do { \
393 writel((val), cp->regs + (reg)); \
394 readl(cp->regs + (reg)); \
395 } while (0)
398 static void __cp_set_rx_mode (struct net_device *dev);
399 static void cp_tx (struct cp_private *cp);
400 static void cp_clean_rings (struct cp_private *cp);
401 #ifdef CONFIG_NET_POLL_CONTROLLER
402 static void cp_poll_controller(struct net_device *dev);
403 #endif
404 static int cp_get_eeprom_len(struct net_device *dev);
405 static int cp_get_eeprom(struct net_device *dev,
406 struct ethtool_eeprom *eeprom, u8 *data);
407 static int cp_set_eeprom(struct net_device *dev,
408 struct ethtool_eeprom *eeprom, u8 *data);
410 static struct pci_device_id cp_pci_tbl[] = {
411 { PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139,
412 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
413 { PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322,
414 PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
415 { },
417 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
419 static struct {
420 const char str[ETH_GSTRING_LEN];
421 } ethtool_stats_keys[] = {
422 { "tx_ok" },
423 { "rx_ok" },
424 { "tx_err" },
425 { "rx_err" },
426 { "rx_fifo" },
427 { "frame_align" },
428 { "tx_ok_1col" },
429 { "tx_ok_mcol" },
430 { "rx_ok_phys" },
431 { "rx_ok_bcast" },
432 { "rx_ok_mcast" },
433 { "tx_abort" },
434 { "tx_underrun" },
435 { "rx_frags" },
439 #if CP_VLAN_TAG_USED
440 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
442 struct cp_private *cp = netdev_priv(dev);
443 unsigned long flags;
445 spin_lock_irqsave(&cp->lock, flags);
446 cp->vlgrp = grp;
447 cp->cpcmd |= RxVlanOn;
448 cpw16(CpCmd, cp->cpcmd);
449 spin_unlock_irqrestore(&cp->lock, flags);
452 static void cp_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
454 struct cp_private *cp = netdev_priv(dev);
455 unsigned long flags;
457 spin_lock_irqsave(&cp->lock, flags);
458 cp->cpcmd &= ~RxVlanOn;
459 cpw16(CpCmd, cp->cpcmd);
460 if (cp->vlgrp)
461 cp->vlgrp->vlan_devices[vid] = NULL;
462 spin_unlock_irqrestore(&cp->lock, flags);
464 #endif /* CP_VLAN_TAG_USED */
466 static inline void cp_set_rxbufsize (struct cp_private *cp)
468 unsigned int mtu = cp->dev->mtu;
470 if (mtu > ETH_DATA_LEN)
471 /* MTU + ethernet header + FCS + optional VLAN tag */
472 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
473 else
474 cp->rx_buf_sz = PKT_BUF_SZ;
477 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
478 struct cp_desc *desc)
480 skb->protocol = eth_type_trans (skb, cp->dev);
482 cp->net_stats.rx_packets++;
483 cp->net_stats.rx_bytes += skb->len;
484 cp->dev->last_rx = jiffies;
486 #if CP_VLAN_TAG_USED
487 if (cp->vlgrp && (desc->opts2 & RxVlanTagged)) {
488 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
489 be16_to_cpu(desc->opts2 & 0xffff));
490 } else
491 #endif
492 netif_receive_skb(skb);
495 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
496 u32 status, u32 len)
498 if (netif_msg_rx_err (cp))
499 printk (KERN_DEBUG
500 "%s: rx err, slot %d status 0x%x len %d\n",
501 cp->dev->name, rx_tail, status, len);
502 cp->net_stats.rx_errors++;
503 if (status & RxErrFrame)
504 cp->net_stats.rx_frame_errors++;
505 if (status & RxErrCRC)
506 cp->net_stats.rx_crc_errors++;
507 if ((status & RxErrRunt) || (status & RxErrLong))
508 cp->net_stats.rx_length_errors++;
509 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
510 cp->net_stats.rx_length_errors++;
511 if (status & RxErrFIFO)
512 cp->net_stats.rx_fifo_errors++;
515 static inline unsigned int cp_rx_csum_ok (u32 status)
517 unsigned int protocol = (status >> 16) & 0x3;
519 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
520 return 1;
521 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
522 return 1;
523 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
524 return 1;
525 return 0;
528 static int cp_rx_poll (struct net_device *dev, int *budget)
530 struct cp_private *cp = netdev_priv(dev);
531 unsigned rx_tail = cp->rx_tail;
532 unsigned rx_work = dev->quota;
533 unsigned rx;
535 rx_status_loop:
536 rx = 0;
537 cpw16(IntrStatus, cp_rx_intr_mask);
539 while (1) {
540 u32 status, len;
541 dma_addr_t mapping;
542 struct sk_buff *skb, *new_skb;
543 struct cp_desc *desc;
544 unsigned buflen;
546 skb = cp->rx_skb[rx_tail].skb;
547 BUG_ON(!skb);
549 desc = &cp->rx_ring[rx_tail];
550 status = le32_to_cpu(desc->opts1);
551 if (status & DescOwn)
552 break;
554 len = (status & 0x1fff) - 4;
555 mapping = cp->rx_skb[rx_tail].mapping;
557 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
558 /* we don't support incoming fragmented frames.
559 * instead, we attempt to ensure that the
560 * pre-allocated RX skbs are properly sized such
561 * that RX fragments are never encountered
563 cp_rx_err_acct(cp, rx_tail, status, len);
564 cp->net_stats.rx_dropped++;
565 cp->cp_stats.rx_frags++;
566 goto rx_next;
569 if (status & (RxError | RxErrFIFO)) {
570 cp_rx_err_acct(cp, rx_tail, status, len);
571 goto rx_next;
574 if (netif_msg_rx_status(cp))
575 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d\n",
576 cp->dev->name, rx_tail, status, len);
578 buflen = cp->rx_buf_sz + RX_OFFSET;
579 new_skb = dev_alloc_skb (buflen);
580 if (!new_skb) {
581 cp->net_stats.rx_dropped++;
582 goto rx_next;
585 skb_reserve(new_skb, RX_OFFSET);
586 new_skb->dev = cp->dev;
588 pci_unmap_single(cp->pdev, mapping,
589 buflen, PCI_DMA_FROMDEVICE);
591 /* Handle checksum offloading for incoming packets. */
592 if (cp_rx_csum_ok(status))
593 skb->ip_summed = CHECKSUM_UNNECESSARY;
594 else
595 skb->ip_summed = CHECKSUM_NONE;
597 skb_put(skb, len);
599 mapping =
600 cp->rx_skb[rx_tail].mapping =
601 pci_map_single(cp->pdev, new_skb->data,
602 buflen, PCI_DMA_FROMDEVICE);
603 cp->rx_skb[rx_tail].skb = new_skb;
605 cp_rx_skb(cp, skb, desc);
606 rx++;
608 rx_next:
609 cp->rx_ring[rx_tail].opts2 = 0;
610 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
611 if (rx_tail == (CP_RX_RING_SIZE - 1))
612 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
613 cp->rx_buf_sz);
614 else
615 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
616 rx_tail = NEXT_RX(rx_tail);
618 if (!rx_work--)
619 break;
622 cp->rx_tail = rx_tail;
624 dev->quota -= rx;
625 *budget -= rx;
627 /* if we did not reach work limit, then we're done with
628 * this round of polling
630 if (rx_work) {
631 if (cpr16(IntrStatus) & cp_rx_intr_mask)
632 goto rx_status_loop;
634 local_irq_disable();
635 cpw16_f(IntrMask, cp_intr_mask);
636 __netif_rx_complete(dev);
637 local_irq_enable();
639 return 0; /* done */
642 return 1; /* not done */
645 static irqreturn_t
646 cp_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
648 struct net_device *dev = dev_instance;
649 struct cp_private *cp;
650 u16 status;
652 if (unlikely(dev == NULL))
653 return IRQ_NONE;
654 cp = netdev_priv(dev);
656 status = cpr16(IntrStatus);
657 if (!status || (status == 0xFFFF))
658 return IRQ_NONE;
660 if (netif_msg_intr(cp))
661 printk(KERN_DEBUG "%s: intr, status %04x cmd %02x cpcmd %04x\n",
662 dev->name, status, cpr8(Cmd), cpr16(CpCmd));
664 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
666 spin_lock(&cp->lock);
668 /* close possible race's with dev_close */
669 if (unlikely(!netif_running(dev))) {
670 cpw16(IntrMask, 0);
671 spin_unlock(&cp->lock);
672 return IRQ_HANDLED;
675 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
676 if (netif_rx_schedule_prep(dev)) {
677 cpw16_f(IntrMask, cp_norx_intr_mask);
678 __netif_rx_schedule(dev);
681 if (status & (TxOK | TxErr | TxEmpty | SWInt))
682 cp_tx(cp);
683 if (status & LinkChg)
684 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
686 spin_unlock(&cp->lock);
688 if (status & PciErr) {
689 u16 pci_status;
691 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
692 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
693 printk(KERN_ERR "%s: PCI bus error, status=%04x, PCI status=%04x\n",
694 dev->name, status, pci_status);
696 /* TODO: reset hardware */
699 return IRQ_HANDLED;
702 #ifdef CONFIG_NET_POLL_CONTROLLER
704 * Polling receive - used by netconsole and other diagnostic tools
705 * to allow network i/o with interrupts disabled.
707 static void cp_poll_controller(struct net_device *dev)
709 disable_irq(dev->irq);
710 cp_interrupt(dev->irq, dev, NULL);
711 enable_irq(dev->irq);
713 #endif
715 static void cp_tx (struct cp_private *cp)
717 unsigned tx_head = cp->tx_head;
718 unsigned tx_tail = cp->tx_tail;
720 while (tx_tail != tx_head) {
721 struct sk_buff *skb;
722 u32 status;
724 rmb();
725 status = le32_to_cpu(cp->tx_ring[tx_tail].opts1);
726 if (status & DescOwn)
727 break;
729 skb = cp->tx_skb[tx_tail].skb;
730 BUG_ON(!skb);
732 pci_unmap_single(cp->pdev, cp->tx_skb[tx_tail].mapping,
733 cp->tx_skb[tx_tail].len, PCI_DMA_TODEVICE);
735 if (status & LastFrag) {
736 if (status & (TxError | TxFIFOUnder)) {
737 if (netif_msg_tx_err(cp))
738 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
739 cp->dev->name, status);
740 cp->net_stats.tx_errors++;
741 if (status & TxOWC)
742 cp->net_stats.tx_window_errors++;
743 if (status & TxMaxCol)
744 cp->net_stats.tx_aborted_errors++;
745 if (status & TxLinkFail)
746 cp->net_stats.tx_carrier_errors++;
747 if (status & TxFIFOUnder)
748 cp->net_stats.tx_fifo_errors++;
749 } else {
750 cp->net_stats.collisions +=
751 ((status >> TxColCntShift) & TxColCntMask);
752 cp->net_stats.tx_packets++;
753 cp->net_stats.tx_bytes += skb->len;
754 if (netif_msg_tx_done(cp))
755 printk(KERN_DEBUG "%s: tx done, slot %d\n", cp->dev->name, tx_tail);
757 dev_kfree_skb_irq(skb);
760 cp->tx_skb[tx_tail].skb = NULL;
762 tx_tail = NEXT_TX(tx_tail);
765 cp->tx_tail = tx_tail;
767 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
768 netif_wake_queue(cp->dev);
771 static int cp_start_xmit (struct sk_buff *skb, struct net_device *dev)
773 struct cp_private *cp = netdev_priv(dev);
774 unsigned entry;
775 u32 eor, flags;
776 #if CP_VLAN_TAG_USED
777 u32 vlan_tag = 0;
778 #endif
779 int mss = 0;
781 spin_lock_irq(&cp->lock);
783 /* This is a hard error, log it. */
784 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
785 netif_stop_queue(dev);
786 spin_unlock_irq(&cp->lock);
787 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
788 dev->name);
789 return 1;
792 #if CP_VLAN_TAG_USED
793 if (cp->vlgrp && vlan_tx_tag_present(skb))
794 vlan_tag = TxVlanTag | cpu_to_be16(vlan_tx_tag_get(skb));
795 #endif
797 entry = cp->tx_head;
798 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
799 if (dev->features & NETIF_F_TSO)
800 mss = skb_shinfo(skb)->gso_size;
802 if (skb_shinfo(skb)->nr_frags == 0) {
803 struct cp_desc *txd = &cp->tx_ring[entry];
804 u32 len;
805 dma_addr_t mapping;
807 len = skb->len;
808 mapping = pci_map_single(cp->pdev, skb->data, len, PCI_DMA_TODEVICE);
809 CP_VLAN_TX_TAG(txd, vlan_tag);
810 txd->addr = cpu_to_le64(mapping);
811 wmb();
813 flags = eor | len | DescOwn | FirstFrag | LastFrag;
815 if (mss)
816 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
817 else if (skb->ip_summed == CHECKSUM_HW) {
818 const struct iphdr *ip = skb->nh.iph;
819 if (ip->protocol == IPPROTO_TCP)
820 flags |= IPCS | TCPCS;
821 else if (ip->protocol == IPPROTO_UDP)
822 flags |= IPCS | UDPCS;
823 else
824 WARN_ON(1); /* we need a WARN() */
827 txd->opts1 = cpu_to_le32(flags);
828 wmb();
830 cp->tx_skb[entry].skb = skb;
831 cp->tx_skb[entry].mapping = mapping;
832 cp->tx_skb[entry].len = len;
833 entry = NEXT_TX(entry);
834 } else {
835 struct cp_desc *txd;
836 u32 first_len, first_eor;
837 dma_addr_t first_mapping;
838 int frag, first_entry = entry;
839 const struct iphdr *ip = skb->nh.iph;
841 /* We must give this initial chunk to the device last.
842 * Otherwise we could race with the device.
844 first_eor = eor;
845 first_len = skb_headlen(skb);
846 first_mapping = pci_map_single(cp->pdev, skb->data,
847 first_len, PCI_DMA_TODEVICE);
848 cp->tx_skb[entry].skb = skb;
849 cp->tx_skb[entry].mapping = first_mapping;
850 cp->tx_skb[entry].len = first_len;
851 entry = NEXT_TX(entry);
853 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
854 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
855 u32 len;
856 u32 ctrl;
857 dma_addr_t mapping;
859 len = this_frag->size;
860 mapping = pci_map_single(cp->pdev,
861 ((void *) page_address(this_frag->page) +
862 this_frag->page_offset),
863 len, PCI_DMA_TODEVICE);
864 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
866 ctrl = eor | len | DescOwn;
868 if (mss)
869 ctrl |= LargeSend |
870 ((mss & MSSMask) << MSSShift);
871 else if (skb->ip_summed == CHECKSUM_HW) {
872 if (ip->protocol == IPPROTO_TCP)
873 ctrl |= IPCS | TCPCS;
874 else if (ip->protocol == IPPROTO_UDP)
875 ctrl |= IPCS | UDPCS;
876 else
877 BUG();
880 if (frag == skb_shinfo(skb)->nr_frags - 1)
881 ctrl |= LastFrag;
883 txd = &cp->tx_ring[entry];
884 CP_VLAN_TX_TAG(txd, vlan_tag);
885 txd->addr = cpu_to_le64(mapping);
886 wmb();
888 txd->opts1 = cpu_to_le32(ctrl);
889 wmb();
891 cp->tx_skb[entry].skb = skb;
892 cp->tx_skb[entry].mapping = mapping;
893 cp->tx_skb[entry].len = len;
894 entry = NEXT_TX(entry);
897 txd = &cp->tx_ring[first_entry];
898 CP_VLAN_TX_TAG(txd, vlan_tag);
899 txd->addr = cpu_to_le64(first_mapping);
900 wmb();
902 if (skb->ip_summed == CHECKSUM_HW) {
903 if (ip->protocol == IPPROTO_TCP)
904 txd->opts1 = cpu_to_le32(first_eor | first_len |
905 FirstFrag | DescOwn |
906 IPCS | TCPCS);
907 else if (ip->protocol == IPPROTO_UDP)
908 txd->opts1 = cpu_to_le32(first_eor | first_len |
909 FirstFrag | DescOwn |
910 IPCS | UDPCS);
911 else
912 BUG();
913 } else
914 txd->opts1 = cpu_to_le32(first_eor | first_len |
915 FirstFrag | DescOwn);
916 wmb();
918 cp->tx_head = entry;
919 if (netif_msg_tx_queued(cp))
920 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
921 dev->name, entry, skb->len);
922 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
923 netif_stop_queue(dev);
925 spin_unlock_irq(&cp->lock);
927 cpw8(TxPoll, NormalTxPoll);
928 dev->trans_start = jiffies;
930 return 0;
933 /* Set or clear the multicast filter for this adaptor.
934 This routine is not state sensitive and need not be SMP locked. */
936 static void __cp_set_rx_mode (struct net_device *dev)
938 struct cp_private *cp = netdev_priv(dev);
939 u32 mc_filter[2]; /* Multicast hash filter */
940 int i, rx_mode;
941 u32 tmp;
943 /* Note: do not reorder, GCC is clever about common statements. */
944 if (dev->flags & IFF_PROMISC) {
945 /* Unconditionally log net taps. */
946 printk (KERN_NOTICE "%s: Promiscuous mode enabled.\n",
947 dev->name);
948 rx_mode =
949 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
950 AcceptAllPhys;
951 mc_filter[1] = mc_filter[0] = 0xffffffff;
952 } else if ((dev->mc_count > multicast_filter_limit)
953 || (dev->flags & IFF_ALLMULTI)) {
954 /* Too many to filter perfectly -- accept all multicasts. */
955 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
956 mc_filter[1] = mc_filter[0] = 0xffffffff;
957 } else {
958 struct dev_mc_list *mclist;
959 rx_mode = AcceptBroadcast | AcceptMyPhys;
960 mc_filter[1] = mc_filter[0] = 0;
961 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
962 i++, mclist = mclist->next) {
963 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
965 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
966 rx_mode |= AcceptMulticast;
970 /* We can safely update without stopping the chip. */
971 tmp = cp_rx_config | rx_mode;
972 if (cp->rx_config != tmp) {
973 cpw32_f (RxConfig, tmp);
974 cp->rx_config = tmp;
976 cpw32_f (MAR0 + 0, mc_filter[0]);
977 cpw32_f (MAR0 + 4, mc_filter[1]);
980 static void cp_set_rx_mode (struct net_device *dev)
982 unsigned long flags;
983 struct cp_private *cp = netdev_priv(dev);
985 spin_lock_irqsave (&cp->lock, flags);
986 __cp_set_rx_mode(dev);
987 spin_unlock_irqrestore (&cp->lock, flags);
990 static void __cp_get_stats(struct cp_private *cp)
992 /* only lower 24 bits valid; write any value to clear */
993 cp->net_stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
994 cpw32 (RxMissed, 0);
997 static struct net_device_stats *cp_get_stats(struct net_device *dev)
999 struct cp_private *cp = netdev_priv(dev);
1000 unsigned long flags;
1002 /* The chip only need report frame silently dropped. */
1003 spin_lock_irqsave(&cp->lock, flags);
1004 if (netif_running(dev) && netif_device_present(dev))
1005 __cp_get_stats(cp);
1006 spin_unlock_irqrestore(&cp->lock, flags);
1008 return &cp->net_stats;
1011 static void cp_stop_hw (struct cp_private *cp)
1013 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
1014 cpw16_f(IntrMask, 0);
1015 cpw8(Cmd, 0);
1016 cpw16_f(CpCmd, 0);
1017 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
1019 cp->rx_tail = 0;
1020 cp->tx_head = cp->tx_tail = 0;
1023 static void cp_reset_hw (struct cp_private *cp)
1025 unsigned work = 1000;
1027 cpw8(Cmd, CmdReset);
1029 while (work--) {
1030 if (!(cpr8(Cmd) & CmdReset))
1031 return;
1033 schedule_timeout_uninterruptible(10);
1036 printk(KERN_ERR "%s: hardware reset timeout\n", cp->dev->name);
1039 static inline void cp_start_hw (struct cp_private *cp)
1041 cpw16(CpCmd, cp->cpcmd);
1042 cpw8(Cmd, RxOn | TxOn);
1045 static void cp_init_hw (struct cp_private *cp)
1047 struct net_device *dev = cp->dev;
1048 dma_addr_t ring_dma;
1050 cp_reset_hw(cp);
1052 cpw8_f (Cfg9346, Cfg9346_Unlock);
1054 /* Restore our idea of the MAC address. */
1055 cpw32_f (MAC0 + 0, cpu_to_le32 (*(u32 *) (dev->dev_addr + 0)));
1056 cpw32_f (MAC0 + 4, cpu_to_le32 (*(u32 *) (dev->dev_addr + 4)));
1058 cp_start_hw(cp);
1059 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1061 __cp_set_rx_mode(dev);
1062 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1064 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1065 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1066 cpw8(Config3, PARMEnable);
1067 cp->wol_enabled = 0;
1069 cpw8(Config5, cpr8(Config5) & PMEStatus);
1071 cpw32_f(HiTxRingAddr, 0);
1072 cpw32_f(HiTxRingAddr + 4, 0);
1074 ring_dma = cp->ring_dma;
1075 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1076 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1078 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1079 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1080 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1082 cpw16(MultiIntr, 0);
1084 cpw16_f(IntrMask, cp_intr_mask);
1086 cpw8_f(Cfg9346, Cfg9346_Lock);
1089 static int cp_refill_rx (struct cp_private *cp)
1091 unsigned i;
1093 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1094 struct sk_buff *skb;
1096 skb = dev_alloc_skb(cp->rx_buf_sz + RX_OFFSET);
1097 if (!skb)
1098 goto err_out;
1100 skb->dev = cp->dev;
1101 skb_reserve(skb, RX_OFFSET);
1103 cp->rx_skb[i].mapping = pci_map_single(cp->pdev,
1104 skb->data, cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1105 cp->rx_skb[i].skb = skb;
1107 cp->rx_ring[i].opts2 = 0;
1108 cp->rx_ring[i].addr = cpu_to_le64(cp->rx_skb[i].mapping);
1109 if (i == (CP_RX_RING_SIZE - 1))
1110 cp->rx_ring[i].opts1 =
1111 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1112 else
1113 cp->rx_ring[i].opts1 =
1114 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1117 return 0;
1119 err_out:
1120 cp_clean_rings(cp);
1121 return -ENOMEM;
1124 static void cp_init_rings_index (struct cp_private *cp)
1126 cp->rx_tail = 0;
1127 cp->tx_head = cp->tx_tail = 0;
1130 static int cp_init_rings (struct cp_private *cp)
1132 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1133 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1135 cp_init_rings_index(cp);
1137 return cp_refill_rx (cp);
1140 static int cp_alloc_rings (struct cp_private *cp)
1142 void *mem;
1144 mem = pci_alloc_consistent(cp->pdev, CP_RING_BYTES, &cp->ring_dma);
1145 if (!mem)
1146 return -ENOMEM;
1148 cp->rx_ring = mem;
1149 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1151 return cp_init_rings(cp);
1154 static void cp_clean_rings (struct cp_private *cp)
1156 unsigned i;
1158 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1159 if (cp->rx_skb[i].skb) {
1160 pci_unmap_single(cp->pdev, cp->rx_skb[i].mapping,
1161 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1162 dev_kfree_skb(cp->rx_skb[i].skb);
1166 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1167 if (cp->tx_skb[i].skb) {
1168 struct sk_buff *skb = cp->tx_skb[i].skb;
1170 pci_unmap_single(cp->pdev, cp->tx_skb[i].mapping,
1171 cp->tx_skb[i].len, PCI_DMA_TODEVICE);
1172 if (le32_to_cpu(cp->tx_ring[i].opts1) & LastFrag)
1173 dev_kfree_skb(skb);
1174 cp->net_stats.tx_dropped++;
1178 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1179 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1181 memset(&cp->rx_skb, 0, sizeof(struct ring_info) * CP_RX_RING_SIZE);
1182 memset(&cp->tx_skb, 0, sizeof(struct ring_info) * CP_TX_RING_SIZE);
1185 static void cp_free_rings (struct cp_private *cp)
1187 cp_clean_rings(cp);
1188 pci_free_consistent(cp->pdev, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1189 cp->rx_ring = NULL;
1190 cp->tx_ring = NULL;
1193 static int cp_open (struct net_device *dev)
1195 struct cp_private *cp = netdev_priv(dev);
1196 int rc;
1198 if (netif_msg_ifup(cp))
1199 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1201 rc = cp_alloc_rings(cp);
1202 if (rc)
1203 return rc;
1205 cp_init_hw(cp);
1207 rc = request_irq(dev->irq, cp_interrupt, SA_SHIRQ, dev->name, dev);
1208 if (rc)
1209 goto err_out_hw;
1211 netif_carrier_off(dev);
1212 mii_check_media(&cp->mii_if, netif_msg_link(cp), TRUE);
1213 netif_start_queue(dev);
1215 return 0;
1217 err_out_hw:
1218 cp_stop_hw(cp);
1219 cp_free_rings(cp);
1220 return rc;
1223 static int cp_close (struct net_device *dev)
1225 struct cp_private *cp = netdev_priv(dev);
1226 unsigned long flags;
1228 if (netif_msg_ifdown(cp))
1229 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1231 spin_lock_irqsave(&cp->lock, flags);
1233 netif_stop_queue(dev);
1234 netif_carrier_off(dev);
1236 cp_stop_hw(cp);
1238 spin_unlock_irqrestore(&cp->lock, flags);
1240 synchronize_irq(dev->irq);
1241 free_irq(dev->irq, dev);
1243 cp_free_rings(cp);
1244 return 0;
1247 #ifdef BROKEN
1248 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1250 struct cp_private *cp = netdev_priv(dev);
1251 int rc;
1252 unsigned long flags;
1254 /* check for invalid MTU, according to hardware limits */
1255 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1256 return -EINVAL;
1258 /* if network interface not up, no need for complexity */
1259 if (!netif_running(dev)) {
1260 dev->mtu = new_mtu;
1261 cp_set_rxbufsize(cp); /* set new rx buf size */
1262 return 0;
1265 spin_lock_irqsave(&cp->lock, flags);
1267 cp_stop_hw(cp); /* stop h/w and free rings */
1268 cp_clean_rings(cp);
1270 dev->mtu = new_mtu;
1271 cp_set_rxbufsize(cp); /* set new rx buf size */
1273 rc = cp_init_rings(cp); /* realloc and restart h/w */
1274 cp_start_hw(cp);
1276 spin_unlock_irqrestore(&cp->lock, flags);
1278 return rc;
1280 #endif /* BROKEN */
1282 static const char mii_2_8139_map[8] = {
1283 BasicModeCtrl,
1284 BasicModeStatus,
1287 NWayAdvert,
1288 NWayLPAR,
1289 NWayExpansion,
1293 static int mdio_read(struct net_device *dev, int phy_id, int location)
1295 struct cp_private *cp = netdev_priv(dev);
1297 return location < 8 && mii_2_8139_map[location] ?
1298 readw(cp->regs + mii_2_8139_map[location]) : 0;
1302 static void mdio_write(struct net_device *dev, int phy_id, int location,
1303 int value)
1305 struct cp_private *cp = netdev_priv(dev);
1307 if (location == 0) {
1308 cpw8(Cfg9346, Cfg9346_Unlock);
1309 cpw16(BasicModeCtrl, value);
1310 cpw8(Cfg9346, Cfg9346_Lock);
1311 } else if (location < 8 && mii_2_8139_map[location])
1312 cpw16(mii_2_8139_map[location], value);
1315 /* Set the ethtool Wake-on-LAN settings */
1316 static int netdev_set_wol (struct cp_private *cp,
1317 const struct ethtool_wolinfo *wol)
1319 u8 options;
1321 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1322 /* If WOL is being disabled, no need for complexity */
1323 if (wol->wolopts) {
1324 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1325 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1328 cpw8 (Cfg9346, Cfg9346_Unlock);
1329 cpw8 (Config3, options);
1330 cpw8 (Cfg9346, Cfg9346_Lock);
1332 options = 0; /* Paranoia setting */
1333 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1334 /* If WOL is being disabled, no need for complexity */
1335 if (wol->wolopts) {
1336 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1337 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1338 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1341 cpw8 (Config5, options);
1343 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1345 return 0;
1348 /* Get the ethtool Wake-on-LAN settings */
1349 static void netdev_get_wol (struct cp_private *cp,
1350 struct ethtool_wolinfo *wol)
1352 u8 options;
1354 wol->wolopts = 0; /* Start from scratch */
1355 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1356 WAKE_MCAST | WAKE_UCAST;
1357 /* We don't need to go on if WOL is disabled */
1358 if (!cp->wol_enabled) return;
1360 options = cpr8 (Config3);
1361 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1362 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1364 options = 0; /* Paranoia setting */
1365 options = cpr8 (Config5);
1366 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1367 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1368 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1371 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1373 struct cp_private *cp = netdev_priv(dev);
1375 strcpy (info->driver, DRV_NAME);
1376 strcpy (info->version, DRV_VERSION);
1377 strcpy (info->bus_info, pci_name(cp->pdev));
1380 static int cp_get_regs_len(struct net_device *dev)
1382 return CP_REGS_SIZE;
1385 static int cp_get_stats_count (struct net_device *dev)
1387 return CP_NUM_STATS;
1390 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1392 struct cp_private *cp = netdev_priv(dev);
1393 int rc;
1394 unsigned long flags;
1396 spin_lock_irqsave(&cp->lock, flags);
1397 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1398 spin_unlock_irqrestore(&cp->lock, flags);
1400 return rc;
1403 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1405 struct cp_private *cp = netdev_priv(dev);
1406 int rc;
1407 unsigned long flags;
1409 spin_lock_irqsave(&cp->lock, flags);
1410 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1411 spin_unlock_irqrestore(&cp->lock, flags);
1413 return rc;
1416 static int cp_nway_reset(struct net_device *dev)
1418 struct cp_private *cp = netdev_priv(dev);
1419 return mii_nway_restart(&cp->mii_if);
1422 static u32 cp_get_msglevel(struct net_device *dev)
1424 struct cp_private *cp = netdev_priv(dev);
1425 return cp->msg_enable;
1428 static void cp_set_msglevel(struct net_device *dev, u32 value)
1430 struct cp_private *cp = netdev_priv(dev);
1431 cp->msg_enable = value;
1434 static u32 cp_get_rx_csum(struct net_device *dev)
1436 struct cp_private *cp = netdev_priv(dev);
1437 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1440 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1442 struct cp_private *cp = netdev_priv(dev);
1443 u16 cmd = cp->cpcmd, newcmd;
1445 newcmd = cmd;
1447 if (data)
1448 newcmd |= RxChkSum;
1449 else
1450 newcmd &= ~RxChkSum;
1452 if (newcmd != cmd) {
1453 unsigned long flags;
1455 spin_lock_irqsave(&cp->lock, flags);
1456 cp->cpcmd = newcmd;
1457 cpw16_f(CpCmd, newcmd);
1458 spin_unlock_irqrestore(&cp->lock, flags);
1461 return 0;
1464 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1465 void *p)
1467 struct cp_private *cp = netdev_priv(dev);
1468 unsigned long flags;
1470 if (regs->len < CP_REGS_SIZE)
1471 return /* -EINVAL */;
1473 regs->version = CP_REGS_VER;
1475 spin_lock_irqsave(&cp->lock, flags);
1476 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1477 spin_unlock_irqrestore(&cp->lock, flags);
1480 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1482 struct cp_private *cp = netdev_priv(dev);
1483 unsigned long flags;
1485 spin_lock_irqsave (&cp->lock, flags);
1486 netdev_get_wol (cp, wol);
1487 spin_unlock_irqrestore (&cp->lock, flags);
1490 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1492 struct cp_private *cp = netdev_priv(dev);
1493 unsigned long flags;
1494 int rc;
1496 spin_lock_irqsave (&cp->lock, flags);
1497 rc = netdev_set_wol (cp, wol);
1498 spin_unlock_irqrestore (&cp->lock, flags);
1500 return rc;
1503 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1505 switch (stringset) {
1506 case ETH_SS_STATS:
1507 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1508 break;
1509 default:
1510 BUG();
1511 break;
1515 static void cp_get_ethtool_stats (struct net_device *dev,
1516 struct ethtool_stats *estats, u64 *tmp_stats)
1518 struct cp_private *cp = netdev_priv(dev);
1519 struct cp_dma_stats *nic_stats;
1520 dma_addr_t dma;
1521 int i;
1523 nic_stats = pci_alloc_consistent(cp->pdev, sizeof(*nic_stats), &dma);
1524 if (!nic_stats)
1525 return;
1527 /* begin NIC statistics dump */
1528 cpw32(StatsAddr + 4, (u64)dma >> 32);
1529 cpw32(StatsAddr, ((u64)dma & DMA_32BIT_MASK) | DumpStats);
1530 cpr32(StatsAddr);
1532 for (i = 0; i < 1000; i++) {
1533 if ((cpr32(StatsAddr) & DumpStats) == 0)
1534 break;
1535 udelay(10);
1537 cpw32(StatsAddr, 0);
1538 cpw32(StatsAddr + 4, 0);
1539 cpr32(StatsAddr);
1541 i = 0;
1542 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1543 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1544 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1545 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1546 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1547 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1548 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1549 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1550 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1551 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1552 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1553 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1554 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1555 tmp_stats[i++] = cp->cp_stats.rx_frags;
1556 BUG_ON(i != CP_NUM_STATS);
1558 pci_free_consistent(cp->pdev, sizeof(*nic_stats), nic_stats, dma);
1561 static struct ethtool_ops cp_ethtool_ops = {
1562 .get_drvinfo = cp_get_drvinfo,
1563 .get_regs_len = cp_get_regs_len,
1564 .get_stats_count = cp_get_stats_count,
1565 .get_settings = cp_get_settings,
1566 .set_settings = cp_set_settings,
1567 .nway_reset = cp_nway_reset,
1568 .get_link = ethtool_op_get_link,
1569 .get_msglevel = cp_get_msglevel,
1570 .set_msglevel = cp_set_msglevel,
1571 .get_rx_csum = cp_get_rx_csum,
1572 .set_rx_csum = cp_set_rx_csum,
1573 .get_tx_csum = ethtool_op_get_tx_csum,
1574 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1575 .get_sg = ethtool_op_get_sg,
1576 .set_sg = ethtool_op_set_sg,
1577 .get_tso = ethtool_op_get_tso,
1578 .set_tso = ethtool_op_set_tso,
1579 .get_regs = cp_get_regs,
1580 .get_wol = cp_get_wol,
1581 .set_wol = cp_set_wol,
1582 .get_strings = cp_get_strings,
1583 .get_ethtool_stats = cp_get_ethtool_stats,
1584 .get_perm_addr = ethtool_op_get_perm_addr,
1585 .get_eeprom_len = cp_get_eeprom_len,
1586 .get_eeprom = cp_get_eeprom,
1587 .set_eeprom = cp_set_eeprom,
1590 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1592 struct cp_private *cp = netdev_priv(dev);
1593 int rc;
1594 unsigned long flags;
1596 if (!netif_running(dev))
1597 return -EINVAL;
1599 spin_lock_irqsave(&cp->lock, flags);
1600 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1601 spin_unlock_irqrestore(&cp->lock, flags);
1602 return rc;
1605 /* Serial EEPROM section. */
1607 /* EEPROM_Ctrl bits. */
1608 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1609 #define EE_CS 0x08 /* EEPROM chip select. */
1610 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1611 #define EE_WRITE_0 0x00
1612 #define EE_WRITE_1 0x02
1613 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1614 #define EE_ENB (0x80 | EE_CS)
1616 /* Delay between EEPROM clock transitions.
1617 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1620 #define eeprom_delay() readl(ee_addr)
1622 /* The EEPROM commands include the alway-set leading bit. */
1623 #define EE_EXTEND_CMD (4)
1624 #define EE_WRITE_CMD (5)
1625 #define EE_READ_CMD (6)
1626 #define EE_ERASE_CMD (7)
1628 #define EE_EWDS_ADDR (0)
1629 #define EE_WRAL_ADDR (1)
1630 #define EE_ERAL_ADDR (2)
1631 #define EE_EWEN_ADDR (3)
1633 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1635 static void eeprom_cmd_start(void __iomem *ee_addr)
1637 writeb (EE_ENB & ~EE_CS, ee_addr);
1638 writeb (EE_ENB, ee_addr);
1639 eeprom_delay ();
1642 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1644 int i;
1646 /* Shift the command bits out. */
1647 for (i = cmd_len - 1; i >= 0; i--) {
1648 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1649 writeb (EE_ENB | dataval, ee_addr);
1650 eeprom_delay ();
1651 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1652 eeprom_delay ();
1654 writeb (EE_ENB, ee_addr);
1655 eeprom_delay ();
1658 static void eeprom_cmd_end(void __iomem *ee_addr)
1660 writeb (~EE_CS, ee_addr);
1661 eeprom_delay ();
1664 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1665 int addr_len)
1667 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1669 eeprom_cmd_start(ee_addr);
1670 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1671 eeprom_cmd_end(ee_addr);
1674 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1676 int i;
1677 u16 retval = 0;
1678 void __iomem *ee_addr = ioaddr + Cfg9346;
1679 int read_cmd = location | (EE_READ_CMD << addr_len);
1681 eeprom_cmd_start(ee_addr);
1682 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1684 for (i = 16; i > 0; i--) {
1685 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1686 eeprom_delay ();
1687 retval =
1688 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1690 writeb (EE_ENB, ee_addr);
1691 eeprom_delay ();
1694 eeprom_cmd_end(ee_addr);
1696 return retval;
1699 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1700 int addr_len)
1702 int i;
1703 void __iomem *ee_addr = ioaddr + Cfg9346;
1704 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1706 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1708 eeprom_cmd_start(ee_addr);
1709 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1710 eeprom_cmd(ee_addr, val, 16);
1711 eeprom_cmd_end(ee_addr);
1713 eeprom_cmd_start(ee_addr);
1714 for (i = 0; i < 20000; i++)
1715 if (readb(ee_addr) & EE_DATA_READ)
1716 break;
1717 eeprom_cmd_end(ee_addr);
1719 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1722 static int cp_get_eeprom_len(struct net_device *dev)
1724 struct cp_private *cp = netdev_priv(dev);
1725 int size;
1727 spin_lock_irq(&cp->lock);
1728 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1729 spin_unlock_irq(&cp->lock);
1731 return size;
1734 static int cp_get_eeprom(struct net_device *dev,
1735 struct ethtool_eeprom *eeprom, u8 *data)
1737 struct cp_private *cp = netdev_priv(dev);
1738 unsigned int addr_len;
1739 u16 val;
1740 u32 offset = eeprom->offset >> 1;
1741 u32 len = eeprom->len;
1742 u32 i = 0;
1744 eeprom->magic = CP_EEPROM_MAGIC;
1746 spin_lock_irq(&cp->lock);
1748 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1750 if (eeprom->offset & 1) {
1751 val = read_eeprom(cp->regs, offset, addr_len);
1752 data[i++] = (u8)(val >> 8);
1753 offset++;
1756 while (i < len - 1) {
1757 val = read_eeprom(cp->regs, offset, addr_len);
1758 data[i++] = (u8)val;
1759 data[i++] = (u8)(val >> 8);
1760 offset++;
1763 if (i < len) {
1764 val = read_eeprom(cp->regs, offset, addr_len);
1765 data[i] = (u8)val;
1768 spin_unlock_irq(&cp->lock);
1769 return 0;
1772 static int cp_set_eeprom(struct net_device *dev,
1773 struct ethtool_eeprom *eeprom, u8 *data)
1775 struct cp_private *cp = netdev_priv(dev);
1776 unsigned int addr_len;
1777 u16 val;
1778 u32 offset = eeprom->offset >> 1;
1779 u32 len = eeprom->len;
1780 u32 i = 0;
1782 if (eeprom->magic != CP_EEPROM_MAGIC)
1783 return -EINVAL;
1785 spin_lock_irq(&cp->lock);
1787 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1789 if (eeprom->offset & 1) {
1790 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1791 val |= (u16)data[i++] << 8;
1792 write_eeprom(cp->regs, offset, val, addr_len);
1793 offset++;
1796 while (i < len - 1) {
1797 val = (u16)data[i++];
1798 val |= (u16)data[i++] << 8;
1799 write_eeprom(cp->regs, offset, val, addr_len);
1800 offset++;
1803 if (i < len) {
1804 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1805 val |= (u16)data[i];
1806 write_eeprom(cp->regs, offset, val, addr_len);
1809 spin_unlock_irq(&cp->lock);
1810 return 0;
1813 /* Put the board into D3cold state and wait for WakeUp signal */
1814 static void cp_set_d3_state (struct cp_private *cp)
1816 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1817 pci_set_power_state (cp->pdev, PCI_D3hot);
1820 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1822 struct net_device *dev;
1823 struct cp_private *cp;
1824 int rc;
1825 void __iomem *regs;
1826 resource_size_t pciaddr;
1827 unsigned int addr_len, i, pci_using_dac;
1828 u8 pci_rev;
1830 #ifndef MODULE
1831 static int version_printed;
1832 if (version_printed++ == 0)
1833 printk("%s", version);
1834 #endif
1836 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
1838 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1839 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pci_rev < 0x20) {
1840 printk(KERN_ERR PFX "pci dev %s (id %04x:%04x rev %02x) is not an 8139C+ compatible chip\n",
1841 pci_name(pdev), pdev->vendor, pdev->device, pci_rev);
1842 printk(KERN_ERR PFX "Try the \"8139too\" driver instead.\n");
1843 return -ENODEV;
1846 dev = alloc_etherdev(sizeof(struct cp_private));
1847 if (!dev)
1848 return -ENOMEM;
1849 SET_MODULE_OWNER(dev);
1850 SET_NETDEV_DEV(dev, &pdev->dev);
1852 cp = netdev_priv(dev);
1853 cp->pdev = pdev;
1854 cp->dev = dev;
1855 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1856 spin_lock_init (&cp->lock);
1857 cp->mii_if.dev = dev;
1858 cp->mii_if.mdio_read = mdio_read;
1859 cp->mii_if.mdio_write = mdio_write;
1860 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1861 cp->mii_if.phy_id_mask = 0x1f;
1862 cp->mii_if.reg_num_mask = 0x1f;
1863 cp_set_rxbufsize(cp);
1865 rc = pci_enable_device(pdev);
1866 if (rc)
1867 goto err_out_free;
1869 rc = pci_set_mwi(pdev);
1870 if (rc)
1871 goto err_out_disable;
1873 rc = pci_request_regions(pdev, DRV_NAME);
1874 if (rc)
1875 goto err_out_mwi;
1877 pciaddr = pci_resource_start(pdev, 1);
1878 if (!pciaddr) {
1879 rc = -EIO;
1880 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
1881 pci_name(pdev));
1882 goto err_out_res;
1884 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1885 rc = -EIO;
1886 printk(KERN_ERR PFX "MMIO resource (%llx) too small on pci dev %s\n",
1887 (unsigned long long)pci_resource_len(pdev, 1), pci_name(pdev));
1888 goto err_out_res;
1891 /* Configure DMA attributes. */
1892 if ((sizeof(dma_addr_t) > 4) &&
1893 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK) &&
1894 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1895 pci_using_dac = 1;
1896 } else {
1897 pci_using_dac = 0;
1899 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1900 if (rc) {
1901 printk(KERN_ERR PFX "No usable DMA configuration, "
1902 "aborting.\n");
1903 goto err_out_res;
1905 rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1906 if (rc) {
1907 printk(KERN_ERR PFX "No usable consistent DMA configuration, "
1908 "aborting.\n");
1909 goto err_out_res;
1913 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1914 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1916 regs = ioremap(pciaddr, CP_REGS_SIZE);
1917 if (!regs) {
1918 rc = -EIO;
1919 printk(KERN_ERR PFX "Cannot map PCI MMIO (%llx@%llx) on pci dev %s\n",
1920 (unsigned long long)pci_resource_len(pdev, 1),
1921 (unsigned long long)pciaddr, pci_name(pdev));
1922 goto err_out_res;
1924 dev->base_addr = (unsigned long) regs;
1925 cp->regs = regs;
1927 cp_stop_hw(cp);
1929 /* read MAC address from EEPROM */
1930 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1931 for (i = 0; i < 3; i++)
1932 ((u16 *) (dev->dev_addr))[i] =
1933 le16_to_cpu (read_eeprom (regs, i + 7, addr_len));
1934 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1936 dev->open = cp_open;
1937 dev->stop = cp_close;
1938 dev->set_multicast_list = cp_set_rx_mode;
1939 dev->hard_start_xmit = cp_start_xmit;
1940 dev->get_stats = cp_get_stats;
1941 dev->do_ioctl = cp_ioctl;
1942 dev->poll = cp_rx_poll;
1943 #ifdef CONFIG_NET_POLL_CONTROLLER
1944 dev->poll_controller = cp_poll_controller;
1945 #endif
1946 dev->weight = 16; /* arbitrary? from NAPI_HOWTO.txt. */
1947 #ifdef BROKEN
1948 dev->change_mtu = cp_change_mtu;
1949 #endif
1950 dev->ethtool_ops = &cp_ethtool_ops;
1951 #if 0
1952 dev->tx_timeout = cp_tx_timeout;
1953 dev->watchdog_timeo = TX_TIMEOUT;
1954 #endif
1956 #if CP_VLAN_TAG_USED
1957 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1958 dev->vlan_rx_register = cp_vlan_rx_register;
1959 dev->vlan_rx_kill_vid = cp_vlan_rx_kill_vid;
1960 #endif
1962 if (pci_using_dac)
1963 dev->features |= NETIF_F_HIGHDMA;
1965 #if 0 /* disabled by default until verified */
1966 dev->features |= NETIF_F_TSO;
1967 #endif
1969 dev->irq = pdev->irq;
1971 rc = register_netdev(dev);
1972 if (rc)
1973 goto err_out_iomap;
1975 printk (KERN_INFO "%s: RTL-8139C+ at 0x%lx, "
1976 "%02x:%02x:%02x:%02x:%02x:%02x, "
1977 "IRQ %d\n",
1978 dev->name,
1979 dev->base_addr,
1980 dev->dev_addr[0], dev->dev_addr[1],
1981 dev->dev_addr[2], dev->dev_addr[3],
1982 dev->dev_addr[4], dev->dev_addr[5],
1983 dev->irq);
1985 pci_set_drvdata(pdev, dev);
1987 /* enable busmastering and memory-write-invalidate */
1988 pci_set_master(pdev);
1990 if (cp->wol_enabled) cp_set_d3_state (cp);
1992 return 0;
1994 err_out_iomap:
1995 iounmap(regs);
1996 err_out_res:
1997 pci_release_regions(pdev);
1998 err_out_mwi:
1999 pci_clear_mwi(pdev);
2000 err_out_disable:
2001 pci_disable_device(pdev);
2002 err_out_free:
2003 free_netdev(dev);
2004 return rc;
2007 static void cp_remove_one (struct pci_dev *pdev)
2009 struct net_device *dev = pci_get_drvdata(pdev);
2010 struct cp_private *cp = netdev_priv(dev);
2012 BUG_ON(!dev);
2013 unregister_netdev(dev);
2014 iounmap(cp->regs);
2015 if (cp->wol_enabled) pci_set_power_state (pdev, PCI_D0);
2016 pci_release_regions(pdev);
2017 pci_clear_mwi(pdev);
2018 pci_disable_device(pdev);
2019 pci_set_drvdata(pdev, NULL);
2020 free_netdev(dev);
2023 #ifdef CONFIG_PM
2024 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2026 struct net_device *dev;
2027 struct cp_private *cp;
2028 unsigned long flags;
2030 dev = pci_get_drvdata (pdev);
2031 cp = netdev_priv(dev);
2033 if (!dev || !netif_running (dev)) return 0;
2035 netif_device_detach (dev);
2036 netif_stop_queue (dev);
2038 spin_lock_irqsave (&cp->lock, flags);
2040 /* Disable Rx and Tx */
2041 cpw16 (IntrMask, 0);
2042 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2044 spin_unlock_irqrestore (&cp->lock, flags);
2046 pci_save_state(pdev);
2047 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2048 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2050 return 0;
2053 static int cp_resume (struct pci_dev *pdev)
2055 struct net_device *dev = pci_get_drvdata (pdev);
2056 struct cp_private *cp = netdev_priv(dev);
2057 unsigned long flags;
2059 if (!netif_running(dev))
2060 return 0;
2062 netif_device_attach (dev);
2064 pci_set_power_state(pdev, PCI_D0);
2065 pci_restore_state(pdev);
2066 pci_enable_wake(pdev, PCI_D0, 0);
2068 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2069 cp_init_rings_index (cp);
2070 cp_init_hw (cp);
2071 netif_start_queue (dev);
2073 spin_lock_irqsave (&cp->lock, flags);
2075 mii_check_media(&cp->mii_if, netif_msg_link(cp), FALSE);
2077 spin_unlock_irqrestore (&cp->lock, flags);
2079 return 0;
2081 #endif /* CONFIG_PM */
2083 static struct pci_driver cp_driver = {
2084 .name = DRV_NAME,
2085 .id_table = cp_pci_tbl,
2086 .probe = cp_init_one,
2087 .remove = cp_remove_one,
2088 #ifdef CONFIG_PM
2089 .resume = cp_resume,
2090 .suspend = cp_suspend,
2091 #endif
2094 static int __init cp_init (void)
2096 #ifdef MODULE
2097 printk("%s", version);
2098 #endif
2099 return pci_module_init (&cp_driver);
2102 static void __exit cp_exit (void)
2104 pci_unregister_driver (&cp_driver);
2107 module_init(cp_init);
2108 module_exit(cp_exit);