MM: Fix macro argument substitution in PageHead() and PageTail()
[linux-2.6.22.y-op.git] / kernel / sys.c
blob28e8364ad68a238fc74defc137916e9d736d6bfe
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
35 #include <linux/compat.h>
36 #include <linux/syscalls.h>
37 #include <linux/kprobes.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/unistd.h>
43 #ifndef SET_UNALIGN_CTL
44 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
45 #endif
46 #ifndef GET_UNALIGN_CTL
47 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
48 #endif
49 #ifndef SET_FPEMU_CTL
50 # define SET_FPEMU_CTL(a,b) (-EINVAL)
51 #endif
52 #ifndef GET_FPEMU_CTL
53 # define GET_FPEMU_CTL(a,b) (-EINVAL)
54 #endif
55 #ifndef SET_FPEXC_CTL
56 # define SET_FPEXC_CTL(a,b) (-EINVAL)
57 #endif
58 #ifndef GET_FPEXC_CTL
59 # define GET_FPEXC_CTL(a,b) (-EINVAL)
60 #endif
61 #ifndef GET_ENDIAN
62 # define GET_ENDIAN(a,b) (-EINVAL)
63 #endif
64 #ifndef SET_ENDIAN
65 # define SET_ENDIAN(a,b) (-EINVAL)
66 #endif
69 * this is where the system-wide overflow UID and GID are defined, for
70 * architectures that now have 32-bit UID/GID but didn't in the past
73 int overflowuid = DEFAULT_OVERFLOWUID;
74 int overflowgid = DEFAULT_OVERFLOWGID;
76 #ifdef CONFIG_UID16
77 EXPORT_SYMBOL(overflowuid);
78 EXPORT_SYMBOL(overflowgid);
79 #endif
82 * the same as above, but for filesystems which can only store a 16-bit
83 * UID and GID. as such, this is needed on all architectures
86 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
87 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
89 EXPORT_SYMBOL(fs_overflowuid);
90 EXPORT_SYMBOL(fs_overflowgid);
93 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
96 int C_A_D = 1;
97 struct pid *cad_pid;
98 EXPORT_SYMBOL(cad_pid);
101 * Notifier list for kernel code which wants to be called
102 * at shutdown. This is used to stop any idling DMA operations
103 * and the like.
106 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
109 * Notifier chain core routines. The exported routines below
110 * are layered on top of these, with appropriate locking added.
113 static int notifier_chain_register(struct notifier_block **nl,
114 struct notifier_block *n)
116 while ((*nl) != NULL) {
117 if (n->priority > (*nl)->priority)
118 break;
119 nl = &((*nl)->next);
121 n->next = *nl;
122 rcu_assign_pointer(*nl, n);
123 return 0;
126 static int notifier_chain_unregister(struct notifier_block **nl,
127 struct notifier_block *n)
129 while ((*nl) != NULL) {
130 if ((*nl) == n) {
131 rcu_assign_pointer(*nl, n->next);
132 return 0;
134 nl = &((*nl)->next);
136 return -ENOENT;
140 * notifier_call_chain - Informs the registered notifiers about an event.
141 * @nl: Pointer to head of the blocking notifier chain
142 * @val: Value passed unmodified to notifier function
143 * @v: Pointer passed unmodified to notifier function
144 * @nr_to_call: Number of notifier functions to be called. Don't care
145 * value of this parameter is -1.
146 * @nr_calls: Records the number of notifications sent. Don't care
147 * value of this field is NULL.
148 * @returns: notifier_call_chain returns the value returned by the
149 * last notifier function called.
152 static int __kprobes notifier_call_chain(struct notifier_block **nl,
153 unsigned long val, void *v,
154 int nr_to_call, int *nr_calls)
156 int ret = NOTIFY_DONE;
157 struct notifier_block *nb, *next_nb;
159 nb = rcu_dereference(*nl);
161 while (nb && nr_to_call) {
162 next_nb = rcu_dereference(nb->next);
163 ret = nb->notifier_call(nb, val, v);
165 if (nr_calls)
166 (*nr_calls)++;
168 if ((ret & NOTIFY_STOP_MASK) == NOTIFY_STOP_MASK)
169 break;
170 nb = next_nb;
171 nr_to_call--;
173 return ret;
177 * Atomic notifier chain routines. Registration and unregistration
178 * use a spinlock, and call_chain is synchronized by RCU (no locks).
182 * atomic_notifier_chain_register - Add notifier to an atomic notifier chain
183 * @nh: Pointer to head of the atomic notifier chain
184 * @n: New entry in notifier chain
186 * Adds a notifier to an atomic notifier chain.
188 * Currently always returns zero.
191 int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
192 struct notifier_block *n)
194 unsigned long flags;
195 int ret;
197 spin_lock_irqsave(&nh->lock, flags);
198 ret = notifier_chain_register(&nh->head, n);
199 spin_unlock_irqrestore(&nh->lock, flags);
200 return ret;
203 EXPORT_SYMBOL_GPL(atomic_notifier_chain_register);
206 * atomic_notifier_chain_unregister - Remove notifier from an atomic notifier chain
207 * @nh: Pointer to head of the atomic notifier chain
208 * @n: Entry to remove from notifier chain
210 * Removes a notifier from an atomic notifier chain.
212 * Returns zero on success or %-ENOENT on failure.
214 int atomic_notifier_chain_unregister(struct atomic_notifier_head *nh,
215 struct notifier_block *n)
217 unsigned long flags;
218 int ret;
220 spin_lock_irqsave(&nh->lock, flags);
221 ret = notifier_chain_unregister(&nh->head, n);
222 spin_unlock_irqrestore(&nh->lock, flags);
223 synchronize_rcu();
224 return ret;
227 EXPORT_SYMBOL_GPL(atomic_notifier_chain_unregister);
230 * __atomic_notifier_call_chain - Call functions in an atomic notifier chain
231 * @nh: Pointer to head of the atomic notifier chain
232 * @val: Value passed unmodified to notifier function
233 * @v: Pointer passed unmodified to notifier function
234 * @nr_to_call: See the comment for notifier_call_chain.
235 * @nr_calls: See the comment for notifier_call_chain.
237 * Calls each function in a notifier chain in turn. The functions
238 * run in an atomic context, so they must not block.
239 * This routine uses RCU to synchronize with changes to the chain.
241 * If the return value of the notifier can be and'ed
242 * with %NOTIFY_STOP_MASK then atomic_notifier_call_chain()
243 * will return immediately, with the return value of
244 * the notifier function which halted execution.
245 * Otherwise the return value is the return value
246 * of the last notifier function called.
249 int __kprobes __atomic_notifier_call_chain(struct atomic_notifier_head *nh,
250 unsigned long val, void *v,
251 int nr_to_call, int *nr_calls)
253 int ret;
255 rcu_read_lock();
256 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
257 rcu_read_unlock();
258 return ret;
261 EXPORT_SYMBOL_GPL(__atomic_notifier_call_chain);
263 int __kprobes atomic_notifier_call_chain(struct atomic_notifier_head *nh,
264 unsigned long val, void *v)
266 return __atomic_notifier_call_chain(nh, val, v, -1, NULL);
269 EXPORT_SYMBOL_GPL(atomic_notifier_call_chain);
271 * Blocking notifier chain routines. All access to the chain is
272 * synchronized by an rwsem.
276 * blocking_notifier_chain_register - Add notifier to a blocking notifier chain
277 * @nh: Pointer to head of the blocking notifier chain
278 * @n: New entry in notifier chain
280 * Adds a notifier to a blocking notifier chain.
281 * Must be called in process context.
283 * Currently always returns zero.
286 int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
287 struct notifier_block *n)
289 int ret;
292 * This code gets used during boot-up, when task switching is
293 * not yet working and interrupts must remain disabled. At
294 * such times we must not call down_write().
296 if (unlikely(system_state == SYSTEM_BOOTING))
297 return notifier_chain_register(&nh->head, n);
299 down_write(&nh->rwsem);
300 ret = notifier_chain_register(&nh->head, n);
301 up_write(&nh->rwsem);
302 return ret;
305 EXPORT_SYMBOL_GPL(blocking_notifier_chain_register);
308 * blocking_notifier_chain_unregister - Remove notifier from a blocking notifier chain
309 * @nh: Pointer to head of the blocking notifier chain
310 * @n: Entry to remove from notifier chain
312 * Removes a notifier from a blocking notifier chain.
313 * Must be called from process context.
315 * Returns zero on success or %-ENOENT on failure.
317 int blocking_notifier_chain_unregister(struct blocking_notifier_head *nh,
318 struct notifier_block *n)
320 int ret;
323 * This code gets used during boot-up, when task switching is
324 * not yet working and interrupts must remain disabled. At
325 * such times we must not call down_write().
327 if (unlikely(system_state == SYSTEM_BOOTING))
328 return notifier_chain_unregister(&nh->head, n);
330 down_write(&nh->rwsem);
331 ret = notifier_chain_unregister(&nh->head, n);
332 up_write(&nh->rwsem);
333 return ret;
336 EXPORT_SYMBOL_GPL(blocking_notifier_chain_unregister);
339 * __blocking_notifier_call_chain - Call functions in a blocking notifier chain
340 * @nh: Pointer to head of the blocking notifier chain
341 * @val: Value passed unmodified to notifier function
342 * @v: Pointer passed unmodified to notifier function
343 * @nr_to_call: See comment for notifier_call_chain.
344 * @nr_calls: See comment for notifier_call_chain.
346 * Calls each function in a notifier chain in turn. The functions
347 * run in a process context, so they are allowed to block.
349 * If the return value of the notifier can be and'ed
350 * with %NOTIFY_STOP_MASK then blocking_notifier_call_chain()
351 * will return immediately, with the return value of
352 * the notifier function which halted execution.
353 * Otherwise the return value is the return value
354 * of the last notifier function called.
357 int __blocking_notifier_call_chain(struct blocking_notifier_head *nh,
358 unsigned long val, void *v,
359 int nr_to_call, int *nr_calls)
361 int ret = NOTIFY_DONE;
364 * We check the head outside the lock, but if this access is
365 * racy then it does not matter what the result of the test
366 * is, we re-check the list after having taken the lock anyway:
368 if (rcu_dereference(nh->head)) {
369 down_read(&nh->rwsem);
370 ret = notifier_call_chain(&nh->head, val, v, nr_to_call,
371 nr_calls);
372 up_read(&nh->rwsem);
374 return ret;
376 EXPORT_SYMBOL_GPL(__blocking_notifier_call_chain);
378 int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
379 unsigned long val, void *v)
381 return __blocking_notifier_call_chain(nh, val, v, -1, NULL);
383 EXPORT_SYMBOL_GPL(blocking_notifier_call_chain);
386 * Raw notifier chain routines. There is no protection;
387 * the caller must provide it. Use at your own risk!
391 * raw_notifier_chain_register - Add notifier to a raw notifier chain
392 * @nh: Pointer to head of the raw notifier chain
393 * @n: New entry in notifier chain
395 * Adds a notifier to a raw notifier chain.
396 * All locking must be provided by the caller.
398 * Currently always returns zero.
401 int raw_notifier_chain_register(struct raw_notifier_head *nh,
402 struct notifier_block *n)
404 return notifier_chain_register(&nh->head, n);
407 EXPORT_SYMBOL_GPL(raw_notifier_chain_register);
410 * raw_notifier_chain_unregister - Remove notifier from a raw notifier chain
411 * @nh: Pointer to head of the raw notifier chain
412 * @n: Entry to remove from notifier chain
414 * Removes a notifier from a raw notifier chain.
415 * All locking must be provided by the caller.
417 * Returns zero on success or %-ENOENT on failure.
419 int raw_notifier_chain_unregister(struct raw_notifier_head *nh,
420 struct notifier_block *n)
422 return notifier_chain_unregister(&nh->head, n);
425 EXPORT_SYMBOL_GPL(raw_notifier_chain_unregister);
428 * __raw_notifier_call_chain - Call functions in a raw notifier chain
429 * @nh: Pointer to head of the raw notifier chain
430 * @val: Value passed unmodified to notifier function
431 * @v: Pointer passed unmodified to notifier function
432 * @nr_to_call: See comment for notifier_call_chain.
433 * @nr_calls: See comment for notifier_call_chain
435 * Calls each function in a notifier chain in turn. The functions
436 * run in an undefined context.
437 * All locking must be provided by the caller.
439 * If the return value of the notifier can be and'ed
440 * with %NOTIFY_STOP_MASK then raw_notifier_call_chain()
441 * will return immediately, with the return value of
442 * the notifier function which halted execution.
443 * Otherwise the return value is the return value
444 * of the last notifier function called.
447 int __raw_notifier_call_chain(struct raw_notifier_head *nh,
448 unsigned long val, void *v,
449 int nr_to_call, int *nr_calls)
451 return notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
454 EXPORT_SYMBOL_GPL(__raw_notifier_call_chain);
456 int raw_notifier_call_chain(struct raw_notifier_head *nh,
457 unsigned long val, void *v)
459 return __raw_notifier_call_chain(nh, val, v, -1, NULL);
462 EXPORT_SYMBOL_GPL(raw_notifier_call_chain);
465 * SRCU notifier chain routines. Registration and unregistration
466 * use a mutex, and call_chain is synchronized by SRCU (no locks).
470 * srcu_notifier_chain_register - Add notifier to an SRCU notifier chain
471 * @nh: Pointer to head of the SRCU notifier chain
472 * @n: New entry in notifier chain
474 * Adds a notifier to an SRCU notifier chain.
475 * Must be called in process context.
477 * Currently always returns zero.
480 int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
481 struct notifier_block *n)
483 int ret;
486 * This code gets used during boot-up, when task switching is
487 * not yet working and interrupts must remain disabled. At
488 * such times we must not call mutex_lock().
490 if (unlikely(system_state == SYSTEM_BOOTING))
491 return notifier_chain_register(&nh->head, n);
493 mutex_lock(&nh->mutex);
494 ret = notifier_chain_register(&nh->head, n);
495 mutex_unlock(&nh->mutex);
496 return ret;
499 EXPORT_SYMBOL_GPL(srcu_notifier_chain_register);
502 * srcu_notifier_chain_unregister - Remove notifier from an SRCU notifier chain
503 * @nh: Pointer to head of the SRCU notifier chain
504 * @n: Entry to remove from notifier chain
506 * Removes a notifier from an SRCU notifier chain.
507 * Must be called from process context.
509 * Returns zero on success or %-ENOENT on failure.
511 int srcu_notifier_chain_unregister(struct srcu_notifier_head *nh,
512 struct notifier_block *n)
514 int ret;
517 * This code gets used during boot-up, when task switching is
518 * not yet working and interrupts must remain disabled. At
519 * such times we must not call mutex_lock().
521 if (unlikely(system_state == SYSTEM_BOOTING))
522 return notifier_chain_unregister(&nh->head, n);
524 mutex_lock(&nh->mutex);
525 ret = notifier_chain_unregister(&nh->head, n);
526 mutex_unlock(&nh->mutex);
527 synchronize_srcu(&nh->srcu);
528 return ret;
531 EXPORT_SYMBOL_GPL(srcu_notifier_chain_unregister);
534 * __srcu_notifier_call_chain - Call functions in an SRCU notifier chain
535 * @nh: Pointer to head of the SRCU notifier chain
536 * @val: Value passed unmodified to notifier function
537 * @v: Pointer passed unmodified to notifier function
538 * @nr_to_call: See comment for notifier_call_chain.
539 * @nr_calls: See comment for notifier_call_chain
541 * Calls each function in a notifier chain in turn. The functions
542 * run in a process context, so they are allowed to block.
544 * If the return value of the notifier can be and'ed
545 * with %NOTIFY_STOP_MASK then srcu_notifier_call_chain()
546 * will return immediately, with the return value of
547 * the notifier function which halted execution.
548 * Otherwise the return value is the return value
549 * of the last notifier function called.
552 int __srcu_notifier_call_chain(struct srcu_notifier_head *nh,
553 unsigned long val, void *v,
554 int nr_to_call, int *nr_calls)
556 int ret;
557 int idx;
559 idx = srcu_read_lock(&nh->srcu);
560 ret = notifier_call_chain(&nh->head, val, v, nr_to_call, nr_calls);
561 srcu_read_unlock(&nh->srcu, idx);
562 return ret;
564 EXPORT_SYMBOL_GPL(__srcu_notifier_call_chain);
566 int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
567 unsigned long val, void *v)
569 return __srcu_notifier_call_chain(nh, val, v, -1, NULL);
571 EXPORT_SYMBOL_GPL(srcu_notifier_call_chain);
574 * srcu_init_notifier_head - Initialize an SRCU notifier head
575 * @nh: Pointer to head of the srcu notifier chain
577 * Unlike other sorts of notifier heads, SRCU notifier heads require
578 * dynamic initialization. Be sure to call this routine before
579 * calling any of the other SRCU notifier routines for this head.
581 * If an SRCU notifier head is deallocated, it must first be cleaned
582 * up by calling srcu_cleanup_notifier_head(). Otherwise the head's
583 * per-cpu data (used by the SRCU mechanism) will leak.
586 void srcu_init_notifier_head(struct srcu_notifier_head *nh)
588 mutex_init(&nh->mutex);
589 if (init_srcu_struct(&nh->srcu) < 0)
590 BUG();
591 nh->head = NULL;
594 EXPORT_SYMBOL_GPL(srcu_init_notifier_head);
597 * register_reboot_notifier - Register function to be called at reboot time
598 * @nb: Info about notifier function to be called
600 * Registers a function with the list of functions
601 * to be called at reboot time.
603 * Currently always returns zero, as blocking_notifier_chain_register()
604 * always returns zero.
607 int register_reboot_notifier(struct notifier_block * nb)
609 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
612 EXPORT_SYMBOL(register_reboot_notifier);
615 * unregister_reboot_notifier - Unregister previously registered reboot notifier
616 * @nb: Hook to be unregistered
618 * Unregisters a previously registered reboot
619 * notifier function.
621 * Returns zero on success, or %-ENOENT on failure.
624 int unregister_reboot_notifier(struct notifier_block * nb)
626 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
629 EXPORT_SYMBOL(unregister_reboot_notifier);
631 static int set_one_prio(struct task_struct *p, int niceval, int error)
633 int no_nice;
635 if (p->uid != current->euid &&
636 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
637 error = -EPERM;
638 goto out;
640 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
641 error = -EACCES;
642 goto out;
644 no_nice = security_task_setnice(p, niceval);
645 if (no_nice) {
646 error = no_nice;
647 goto out;
649 if (error == -ESRCH)
650 error = 0;
651 set_user_nice(p, niceval);
652 out:
653 return error;
656 asmlinkage long sys_setpriority(int which, int who, int niceval)
658 struct task_struct *g, *p;
659 struct user_struct *user;
660 int error = -EINVAL;
661 struct pid *pgrp;
663 if (which > PRIO_USER || which < PRIO_PROCESS)
664 goto out;
666 /* normalize: avoid signed division (rounding problems) */
667 error = -ESRCH;
668 if (niceval < -20)
669 niceval = -20;
670 if (niceval > 19)
671 niceval = 19;
673 read_lock(&tasklist_lock);
674 switch (which) {
675 case PRIO_PROCESS:
676 if (who)
677 p = find_task_by_pid(who);
678 else
679 p = current;
680 if (p)
681 error = set_one_prio(p, niceval, error);
682 break;
683 case PRIO_PGRP:
684 if (who)
685 pgrp = find_pid(who);
686 else
687 pgrp = task_pgrp(current);
688 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
689 error = set_one_prio(p, niceval, error);
690 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
691 break;
692 case PRIO_USER:
693 user = current->user;
694 if (!who)
695 who = current->uid;
696 else
697 if ((who != current->uid) && !(user = find_user(who)))
698 goto out_unlock; /* No processes for this user */
700 do_each_thread(g, p)
701 if (p->uid == who)
702 error = set_one_prio(p, niceval, error);
703 while_each_thread(g, p);
704 if (who != current->uid)
705 free_uid(user); /* For find_user() */
706 break;
708 out_unlock:
709 read_unlock(&tasklist_lock);
710 out:
711 return error;
715 * Ugh. To avoid negative return values, "getpriority()" will
716 * not return the normal nice-value, but a negated value that
717 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
718 * to stay compatible.
720 asmlinkage long sys_getpriority(int which, int who)
722 struct task_struct *g, *p;
723 struct user_struct *user;
724 long niceval, retval = -ESRCH;
725 struct pid *pgrp;
727 if (which > PRIO_USER || which < PRIO_PROCESS)
728 return -EINVAL;
730 read_lock(&tasklist_lock);
731 switch (which) {
732 case PRIO_PROCESS:
733 if (who)
734 p = find_task_by_pid(who);
735 else
736 p = current;
737 if (p) {
738 niceval = 20 - task_nice(p);
739 if (niceval > retval)
740 retval = niceval;
742 break;
743 case PRIO_PGRP:
744 if (who)
745 pgrp = find_pid(who);
746 else
747 pgrp = task_pgrp(current);
748 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
749 niceval = 20 - task_nice(p);
750 if (niceval > retval)
751 retval = niceval;
752 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
753 break;
754 case PRIO_USER:
755 user = current->user;
756 if (!who)
757 who = current->uid;
758 else
759 if ((who != current->uid) && !(user = find_user(who)))
760 goto out_unlock; /* No processes for this user */
762 do_each_thread(g, p)
763 if (p->uid == who) {
764 niceval = 20 - task_nice(p);
765 if (niceval > retval)
766 retval = niceval;
768 while_each_thread(g, p);
769 if (who != current->uid)
770 free_uid(user); /* for find_user() */
771 break;
773 out_unlock:
774 read_unlock(&tasklist_lock);
776 return retval;
780 * emergency_restart - reboot the system
782 * Without shutting down any hardware or taking any locks
783 * reboot the system. This is called when we know we are in
784 * trouble so this is our best effort to reboot. This is
785 * safe to call in interrupt context.
787 void emergency_restart(void)
789 machine_emergency_restart();
791 EXPORT_SYMBOL_GPL(emergency_restart);
793 static void kernel_restart_prepare(char *cmd)
795 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
796 system_state = SYSTEM_RESTART;
797 device_shutdown();
801 * kernel_restart - reboot the system
802 * @cmd: pointer to buffer containing command to execute for restart
803 * or %NULL
805 * Shutdown everything and perform a clean reboot.
806 * This is not safe to call in interrupt context.
808 void kernel_restart(char *cmd)
810 kernel_restart_prepare(cmd);
811 if (!cmd)
812 printk(KERN_EMERG "Restarting system.\n");
813 else
814 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
815 machine_restart(cmd);
817 EXPORT_SYMBOL_GPL(kernel_restart);
820 * kernel_kexec - reboot the system
822 * Move into place and start executing a preloaded standalone
823 * executable. If nothing was preloaded return an error.
825 static void kernel_kexec(void)
827 #ifdef CONFIG_KEXEC
828 struct kimage *image;
829 image = xchg(&kexec_image, NULL);
830 if (!image)
831 return;
832 kernel_restart_prepare(NULL);
833 printk(KERN_EMERG "Starting new kernel\n");
834 machine_shutdown();
835 machine_kexec(image);
836 #endif
839 void kernel_shutdown_prepare(enum system_states state)
841 blocking_notifier_call_chain(&reboot_notifier_list,
842 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
843 system_state = state;
844 device_shutdown();
847 * kernel_halt - halt the system
849 * Shutdown everything and perform a clean system halt.
851 void kernel_halt(void)
853 kernel_shutdown_prepare(SYSTEM_HALT);
854 printk(KERN_EMERG "System halted.\n");
855 machine_halt();
858 EXPORT_SYMBOL_GPL(kernel_halt);
861 * kernel_power_off - power_off the system
863 * Shutdown everything and perform a clean system power_off.
865 void kernel_power_off(void)
867 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
868 printk(KERN_EMERG "Power down.\n");
869 machine_power_off();
871 EXPORT_SYMBOL_GPL(kernel_power_off);
873 * Reboot system call: for obvious reasons only root may call it,
874 * and even root needs to set up some magic numbers in the registers
875 * so that some mistake won't make this reboot the whole machine.
876 * You can also set the meaning of the ctrl-alt-del-key here.
878 * reboot doesn't sync: do that yourself before calling this.
880 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
882 char buffer[256];
884 /* We only trust the superuser with rebooting the system. */
885 if (!capable(CAP_SYS_BOOT))
886 return -EPERM;
888 /* For safety, we require "magic" arguments. */
889 if (magic1 != LINUX_REBOOT_MAGIC1 ||
890 (magic2 != LINUX_REBOOT_MAGIC2 &&
891 magic2 != LINUX_REBOOT_MAGIC2A &&
892 magic2 != LINUX_REBOOT_MAGIC2B &&
893 magic2 != LINUX_REBOOT_MAGIC2C))
894 return -EINVAL;
896 /* Instead of trying to make the power_off code look like
897 * halt when pm_power_off is not set do it the easy way.
899 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
900 cmd = LINUX_REBOOT_CMD_HALT;
902 lock_kernel();
903 switch (cmd) {
904 case LINUX_REBOOT_CMD_RESTART:
905 kernel_restart(NULL);
906 break;
908 case LINUX_REBOOT_CMD_CAD_ON:
909 C_A_D = 1;
910 break;
912 case LINUX_REBOOT_CMD_CAD_OFF:
913 C_A_D = 0;
914 break;
916 case LINUX_REBOOT_CMD_HALT:
917 kernel_halt();
918 unlock_kernel();
919 do_exit(0);
920 break;
922 case LINUX_REBOOT_CMD_POWER_OFF:
923 kernel_power_off();
924 unlock_kernel();
925 do_exit(0);
926 break;
928 case LINUX_REBOOT_CMD_RESTART2:
929 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
930 unlock_kernel();
931 return -EFAULT;
933 buffer[sizeof(buffer) - 1] = '\0';
935 kernel_restart(buffer);
936 break;
938 case LINUX_REBOOT_CMD_KEXEC:
939 kernel_kexec();
940 unlock_kernel();
941 return -EINVAL;
943 #ifdef CONFIG_SOFTWARE_SUSPEND
944 case LINUX_REBOOT_CMD_SW_SUSPEND:
946 int ret = hibernate();
947 unlock_kernel();
948 return ret;
950 #endif
952 default:
953 unlock_kernel();
954 return -EINVAL;
956 unlock_kernel();
957 return 0;
960 static void deferred_cad(struct work_struct *dummy)
962 kernel_restart(NULL);
966 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
967 * As it's called within an interrupt, it may NOT sync: the only choice
968 * is whether to reboot at once, or just ignore the ctrl-alt-del.
970 void ctrl_alt_del(void)
972 static DECLARE_WORK(cad_work, deferred_cad);
974 if (C_A_D)
975 schedule_work(&cad_work);
976 else
977 kill_cad_pid(SIGINT, 1);
981 * Unprivileged users may change the real gid to the effective gid
982 * or vice versa. (BSD-style)
984 * If you set the real gid at all, or set the effective gid to a value not
985 * equal to the real gid, then the saved gid is set to the new effective gid.
987 * This makes it possible for a setgid program to completely drop its
988 * privileges, which is often a useful assertion to make when you are doing
989 * a security audit over a program.
991 * The general idea is that a program which uses just setregid() will be
992 * 100% compatible with BSD. A program which uses just setgid() will be
993 * 100% compatible with POSIX with saved IDs.
995 * SMP: There are not races, the GIDs are checked only by filesystem
996 * operations (as far as semantic preservation is concerned).
998 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
1000 int old_rgid = current->gid;
1001 int old_egid = current->egid;
1002 int new_rgid = old_rgid;
1003 int new_egid = old_egid;
1004 int retval;
1006 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
1007 if (retval)
1008 return retval;
1010 if (rgid != (gid_t) -1) {
1011 if ((old_rgid == rgid) ||
1012 (current->egid==rgid) ||
1013 capable(CAP_SETGID))
1014 new_rgid = rgid;
1015 else
1016 return -EPERM;
1018 if (egid != (gid_t) -1) {
1019 if ((old_rgid == egid) ||
1020 (current->egid == egid) ||
1021 (current->sgid == egid) ||
1022 capable(CAP_SETGID))
1023 new_egid = egid;
1024 else
1025 return -EPERM;
1027 if (new_egid != old_egid) {
1028 current->mm->dumpable = suid_dumpable;
1029 smp_wmb();
1031 if (rgid != (gid_t) -1 ||
1032 (egid != (gid_t) -1 && egid != old_rgid))
1033 current->sgid = new_egid;
1034 current->fsgid = new_egid;
1035 current->egid = new_egid;
1036 current->gid = new_rgid;
1037 key_fsgid_changed(current);
1038 proc_id_connector(current, PROC_EVENT_GID);
1039 return 0;
1043 * setgid() is implemented like SysV w/ SAVED_IDS
1045 * SMP: Same implicit races as above.
1047 asmlinkage long sys_setgid(gid_t gid)
1049 int old_egid = current->egid;
1050 int retval;
1052 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
1053 if (retval)
1054 return retval;
1056 if (capable(CAP_SETGID)) {
1057 if (old_egid != gid) {
1058 current->mm->dumpable = suid_dumpable;
1059 smp_wmb();
1061 current->gid = current->egid = current->sgid = current->fsgid = gid;
1062 } else if ((gid == current->gid) || (gid == current->sgid)) {
1063 if (old_egid != gid) {
1064 current->mm->dumpable = suid_dumpable;
1065 smp_wmb();
1067 current->egid = current->fsgid = gid;
1069 else
1070 return -EPERM;
1072 key_fsgid_changed(current);
1073 proc_id_connector(current, PROC_EVENT_GID);
1074 return 0;
1077 static int set_user(uid_t new_ruid, int dumpclear)
1079 struct user_struct *new_user;
1081 new_user = alloc_uid(new_ruid);
1082 if (!new_user)
1083 return -EAGAIN;
1085 if (atomic_read(&new_user->processes) >=
1086 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
1087 new_user != &root_user) {
1088 free_uid(new_user);
1089 return -EAGAIN;
1092 switch_uid(new_user);
1094 if (dumpclear) {
1095 current->mm->dumpable = suid_dumpable;
1096 smp_wmb();
1098 current->uid = new_ruid;
1099 return 0;
1103 * Unprivileged users may change the real uid to the effective uid
1104 * or vice versa. (BSD-style)
1106 * If you set the real uid at all, or set the effective uid to a value not
1107 * equal to the real uid, then the saved uid is set to the new effective uid.
1109 * This makes it possible for a setuid program to completely drop its
1110 * privileges, which is often a useful assertion to make when you are doing
1111 * a security audit over a program.
1113 * The general idea is that a program which uses just setreuid() will be
1114 * 100% compatible with BSD. A program which uses just setuid() will be
1115 * 100% compatible with POSIX with saved IDs.
1117 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
1119 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
1120 int retval;
1122 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
1123 if (retval)
1124 return retval;
1126 new_ruid = old_ruid = current->uid;
1127 new_euid = old_euid = current->euid;
1128 old_suid = current->suid;
1130 if (ruid != (uid_t) -1) {
1131 new_ruid = ruid;
1132 if ((old_ruid != ruid) &&
1133 (current->euid != ruid) &&
1134 !capable(CAP_SETUID))
1135 return -EPERM;
1138 if (euid != (uid_t) -1) {
1139 new_euid = euid;
1140 if ((old_ruid != euid) &&
1141 (current->euid != euid) &&
1142 (current->suid != euid) &&
1143 !capable(CAP_SETUID))
1144 return -EPERM;
1147 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
1148 return -EAGAIN;
1150 if (new_euid != old_euid) {
1151 current->mm->dumpable = suid_dumpable;
1152 smp_wmb();
1154 current->fsuid = current->euid = new_euid;
1155 if (ruid != (uid_t) -1 ||
1156 (euid != (uid_t) -1 && euid != old_ruid))
1157 current->suid = current->euid;
1158 current->fsuid = current->euid;
1160 key_fsuid_changed(current);
1161 proc_id_connector(current, PROC_EVENT_UID);
1163 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
1169 * setuid() is implemented like SysV with SAVED_IDS
1171 * Note that SAVED_ID's is deficient in that a setuid root program
1172 * like sendmail, for example, cannot set its uid to be a normal
1173 * user and then switch back, because if you're root, setuid() sets
1174 * the saved uid too. If you don't like this, blame the bright people
1175 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
1176 * will allow a root program to temporarily drop privileges and be able to
1177 * regain them by swapping the real and effective uid.
1179 asmlinkage long sys_setuid(uid_t uid)
1181 int old_euid = current->euid;
1182 int old_ruid, old_suid, new_suid;
1183 int retval;
1185 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
1186 if (retval)
1187 return retval;
1189 old_ruid = current->uid;
1190 old_suid = current->suid;
1191 new_suid = old_suid;
1193 if (capable(CAP_SETUID)) {
1194 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
1195 return -EAGAIN;
1196 new_suid = uid;
1197 } else if ((uid != current->uid) && (uid != new_suid))
1198 return -EPERM;
1200 if (old_euid != uid) {
1201 current->mm->dumpable = suid_dumpable;
1202 smp_wmb();
1204 current->fsuid = current->euid = uid;
1205 current->suid = new_suid;
1207 key_fsuid_changed(current);
1208 proc_id_connector(current, PROC_EVENT_UID);
1210 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
1215 * This function implements a generic ability to update ruid, euid,
1216 * and suid. This allows you to implement the 4.4 compatible seteuid().
1218 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1220 int old_ruid = current->uid;
1221 int old_euid = current->euid;
1222 int old_suid = current->suid;
1223 int retval;
1225 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
1226 if (retval)
1227 return retval;
1229 if (!capable(CAP_SETUID)) {
1230 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
1231 (ruid != current->euid) && (ruid != current->suid))
1232 return -EPERM;
1233 if ((euid != (uid_t) -1) && (euid != current->uid) &&
1234 (euid != current->euid) && (euid != current->suid))
1235 return -EPERM;
1236 if ((suid != (uid_t) -1) && (suid != current->uid) &&
1237 (suid != current->euid) && (suid != current->suid))
1238 return -EPERM;
1240 if (ruid != (uid_t) -1) {
1241 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
1242 return -EAGAIN;
1244 if (euid != (uid_t) -1) {
1245 if (euid != current->euid) {
1246 current->mm->dumpable = suid_dumpable;
1247 smp_wmb();
1249 current->euid = euid;
1251 current->fsuid = current->euid;
1252 if (suid != (uid_t) -1)
1253 current->suid = suid;
1255 key_fsuid_changed(current);
1256 proc_id_connector(current, PROC_EVENT_UID);
1258 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
1261 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
1263 int retval;
1265 if (!(retval = put_user(current->uid, ruid)) &&
1266 !(retval = put_user(current->euid, euid)))
1267 retval = put_user(current->suid, suid);
1269 return retval;
1273 * Same as above, but for rgid, egid, sgid.
1275 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1277 int retval;
1279 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
1280 if (retval)
1281 return retval;
1283 if (!capable(CAP_SETGID)) {
1284 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
1285 (rgid != current->egid) && (rgid != current->sgid))
1286 return -EPERM;
1287 if ((egid != (gid_t) -1) && (egid != current->gid) &&
1288 (egid != current->egid) && (egid != current->sgid))
1289 return -EPERM;
1290 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
1291 (sgid != current->egid) && (sgid != current->sgid))
1292 return -EPERM;
1294 if (egid != (gid_t) -1) {
1295 if (egid != current->egid) {
1296 current->mm->dumpable = suid_dumpable;
1297 smp_wmb();
1299 current->egid = egid;
1301 current->fsgid = current->egid;
1302 if (rgid != (gid_t) -1)
1303 current->gid = rgid;
1304 if (sgid != (gid_t) -1)
1305 current->sgid = sgid;
1307 key_fsgid_changed(current);
1308 proc_id_connector(current, PROC_EVENT_GID);
1309 return 0;
1312 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
1314 int retval;
1316 if (!(retval = put_user(current->gid, rgid)) &&
1317 !(retval = put_user(current->egid, egid)))
1318 retval = put_user(current->sgid, sgid);
1320 return retval;
1325 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
1326 * is used for "access()" and for the NFS daemon (letting nfsd stay at
1327 * whatever uid it wants to). It normally shadows "euid", except when
1328 * explicitly set by setfsuid() or for access..
1330 asmlinkage long sys_setfsuid(uid_t uid)
1332 int old_fsuid;
1334 old_fsuid = current->fsuid;
1335 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
1336 return old_fsuid;
1338 if (uid == current->uid || uid == current->euid ||
1339 uid == current->suid || uid == current->fsuid ||
1340 capable(CAP_SETUID)) {
1341 if (uid != old_fsuid) {
1342 current->mm->dumpable = suid_dumpable;
1343 smp_wmb();
1345 current->fsuid = uid;
1348 key_fsuid_changed(current);
1349 proc_id_connector(current, PROC_EVENT_UID);
1351 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
1353 return old_fsuid;
1357 * Samma på svenska..
1359 asmlinkage long sys_setfsgid(gid_t gid)
1361 int old_fsgid;
1363 old_fsgid = current->fsgid;
1364 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
1365 return old_fsgid;
1367 if (gid == current->gid || gid == current->egid ||
1368 gid == current->sgid || gid == current->fsgid ||
1369 capable(CAP_SETGID)) {
1370 if (gid != old_fsgid) {
1371 current->mm->dumpable = suid_dumpable;
1372 smp_wmb();
1374 current->fsgid = gid;
1375 key_fsgid_changed(current);
1376 proc_id_connector(current, PROC_EVENT_GID);
1378 return old_fsgid;
1381 asmlinkage long sys_times(struct tms __user * tbuf)
1384 * In the SMP world we might just be unlucky and have one of
1385 * the times increment as we use it. Since the value is an
1386 * atomically safe type this is just fine. Conceptually its
1387 * as if the syscall took an instant longer to occur.
1389 if (tbuf) {
1390 struct tms tmp;
1391 struct task_struct *tsk = current;
1392 struct task_struct *t;
1393 cputime_t utime, stime, cutime, cstime;
1395 spin_lock_irq(&tsk->sighand->siglock);
1396 utime = tsk->signal->utime;
1397 stime = tsk->signal->stime;
1398 t = tsk;
1399 do {
1400 utime = cputime_add(utime, t->utime);
1401 stime = cputime_add(stime, t->stime);
1402 t = next_thread(t);
1403 } while (t != tsk);
1405 cutime = tsk->signal->cutime;
1406 cstime = tsk->signal->cstime;
1407 spin_unlock_irq(&tsk->sighand->siglock);
1409 tmp.tms_utime = cputime_to_clock_t(utime);
1410 tmp.tms_stime = cputime_to_clock_t(stime);
1411 tmp.tms_cutime = cputime_to_clock_t(cutime);
1412 tmp.tms_cstime = cputime_to_clock_t(cstime);
1413 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1414 return -EFAULT;
1416 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1420 * This needs some heavy checking ...
1421 * I just haven't the stomach for it. I also don't fully
1422 * understand sessions/pgrp etc. Let somebody who does explain it.
1424 * OK, I think I have the protection semantics right.... this is really
1425 * only important on a multi-user system anyway, to make sure one user
1426 * can't send a signal to a process owned by another. -TYT, 12/12/91
1428 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1429 * LBT 04.03.94
1431 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1433 struct task_struct *p;
1434 struct task_struct *group_leader = current->group_leader;
1435 int err = -EINVAL;
1437 if (!pid)
1438 pid = group_leader->pid;
1439 if (!pgid)
1440 pgid = pid;
1441 if (pgid < 0)
1442 return -EINVAL;
1444 /* From this point forward we keep holding onto the tasklist lock
1445 * so that our parent does not change from under us. -DaveM
1447 write_lock_irq(&tasklist_lock);
1449 err = -ESRCH;
1450 p = find_task_by_pid(pid);
1451 if (!p)
1452 goto out;
1454 err = -EINVAL;
1455 if (!thread_group_leader(p))
1456 goto out;
1458 if (p->real_parent->tgid == group_leader->tgid) {
1459 err = -EPERM;
1460 if (task_session(p) != task_session(group_leader))
1461 goto out;
1462 err = -EACCES;
1463 if (p->did_exec)
1464 goto out;
1465 } else {
1466 err = -ESRCH;
1467 if (p != group_leader)
1468 goto out;
1471 err = -EPERM;
1472 if (p->signal->leader)
1473 goto out;
1475 if (pgid != pid) {
1476 struct task_struct *g =
1477 find_task_by_pid_type(PIDTYPE_PGID, pgid);
1479 if (!g || task_session(g) != task_session(group_leader))
1480 goto out;
1483 err = security_task_setpgid(p, pgid);
1484 if (err)
1485 goto out;
1487 if (process_group(p) != pgid) {
1488 detach_pid(p, PIDTYPE_PGID);
1489 p->signal->pgrp = pgid;
1490 attach_pid(p, PIDTYPE_PGID, find_pid(pgid));
1493 err = 0;
1494 out:
1495 /* All paths lead to here, thus we are safe. -DaveM */
1496 write_unlock_irq(&tasklist_lock);
1497 return err;
1500 asmlinkage long sys_getpgid(pid_t pid)
1502 if (!pid)
1503 return process_group(current);
1504 else {
1505 int retval;
1506 struct task_struct *p;
1508 read_lock(&tasklist_lock);
1509 p = find_task_by_pid(pid);
1511 retval = -ESRCH;
1512 if (p) {
1513 retval = security_task_getpgid(p);
1514 if (!retval)
1515 retval = process_group(p);
1517 read_unlock(&tasklist_lock);
1518 return retval;
1522 #ifdef __ARCH_WANT_SYS_GETPGRP
1524 asmlinkage long sys_getpgrp(void)
1526 /* SMP - assuming writes are word atomic this is fine */
1527 return process_group(current);
1530 #endif
1532 asmlinkage long sys_getsid(pid_t pid)
1534 if (!pid)
1535 return process_session(current);
1536 else {
1537 int retval;
1538 struct task_struct *p;
1540 read_lock(&tasklist_lock);
1541 p = find_task_by_pid(pid);
1543 retval = -ESRCH;
1544 if (p) {
1545 retval = security_task_getsid(p);
1546 if (!retval)
1547 retval = process_session(p);
1549 read_unlock(&tasklist_lock);
1550 return retval;
1554 asmlinkage long sys_setsid(void)
1556 struct task_struct *group_leader = current->group_leader;
1557 pid_t session;
1558 int err = -EPERM;
1560 write_lock_irq(&tasklist_lock);
1562 /* Fail if I am already a session leader */
1563 if (group_leader->signal->leader)
1564 goto out;
1566 session = group_leader->pid;
1567 /* Fail if a process group id already exists that equals the
1568 * proposed session id.
1570 * Don't check if session id == 1 because kernel threads use this
1571 * session id and so the check will always fail and make it so
1572 * init cannot successfully call setsid.
1574 if (session > 1 && find_task_by_pid_type(PIDTYPE_PGID, session))
1575 goto out;
1577 group_leader->signal->leader = 1;
1578 __set_special_pids(session, session);
1580 spin_lock(&group_leader->sighand->siglock);
1581 group_leader->signal->tty = NULL;
1582 spin_unlock(&group_leader->sighand->siglock);
1584 err = process_group(group_leader);
1585 out:
1586 write_unlock_irq(&tasklist_lock);
1587 return err;
1591 * Supplementary group IDs
1594 /* init to 2 - one for init_task, one to ensure it is never freed */
1595 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1597 struct group_info *groups_alloc(int gidsetsize)
1599 struct group_info *group_info;
1600 int nblocks;
1601 int i;
1603 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1604 /* Make sure we always allocate at least one indirect block pointer */
1605 nblocks = nblocks ? : 1;
1606 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1607 if (!group_info)
1608 return NULL;
1609 group_info->ngroups = gidsetsize;
1610 group_info->nblocks = nblocks;
1611 atomic_set(&group_info->usage, 1);
1613 if (gidsetsize <= NGROUPS_SMALL)
1614 group_info->blocks[0] = group_info->small_block;
1615 else {
1616 for (i = 0; i < nblocks; i++) {
1617 gid_t *b;
1618 b = (void *)__get_free_page(GFP_USER);
1619 if (!b)
1620 goto out_undo_partial_alloc;
1621 group_info->blocks[i] = b;
1624 return group_info;
1626 out_undo_partial_alloc:
1627 while (--i >= 0) {
1628 free_page((unsigned long)group_info->blocks[i]);
1630 kfree(group_info);
1631 return NULL;
1634 EXPORT_SYMBOL(groups_alloc);
1636 void groups_free(struct group_info *group_info)
1638 if (group_info->blocks[0] != group_info->small_block) {
1639 int i;
1640 for (i = 0; i < group_info->nblocks; i++)
1641 free_page((unsigned long)group_info->blocks[i]);
1643 kfree(group_info);
1646 EXPORT_SYMBOL(groups_free);
1648 /* export the group_info to a user-space array */
1649 static int groups_to_user(gid_t __user *grouplist,
1650 struct group_info *group_info)
1652 int i;
1653 int count = group_info->ngroups;
1655 for (i = 0; i < group_info->nblocks; i++) {
1656 int cp_count = min(NGROUPS_PER_BLOCK, count);
1657 int off = i * NGROUPS_PER_BLOCK;
1658 int len = cp_count * sizeof(*grouplist);
1660 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1661 return -EFAULT;
1663 count -= cp_count;
1665 return 0;
1668 /* fill a group_info from a user-space array - it must be allocated already */
1669 static int groups_from_user(struct group_info *group_info,
1670 gid_t __user *grouplist)
1672 int i;
1673 int count = group_info->ngroups;
1675 for (i = 0; i < group_info->nblocks; i++) {
1676 int cp_count = min(NGROUPS_PER_BLOCK, count);
1677 int off = i * NGROUPS_PER_BLOCK;
1678 int len = cp_count * sizeof(*grouplist);
1680 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1681 return -EFAULT;
1683 count -= cp_count;
1685 return 0;
1688 /* a simple Shell sort */
1689 static void groups_sort(struct group_info *group_info)
1691 int base, max, stride;
1692 int gidsetsize = group_info->ngroups;
1694 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1695 ; /* nothing */
1696 stride /= 3;
1698 while (stride) {
1699 max = gidsetsize - stride;
1700 for (base = 0; base < max; base++) {
1701 int left = base;
1702 int right = left + stride;
1703 gid_t tmp = GROUP_AT(group_info, right);
1705 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1706 GROUP_AT(group_info, right) =
1707 GROUP_AT(group_info, left);
1708 right = left;
1709 left -= stride;
1711 GROUP_AT(group_info, right) = tmp;
1713 stride /= 3;
1717 /* a simple bsearch */
1718 int groups_search(struct group_info *group_info, gid_t grp)
1720 unsigned int left, right;
1722 if (!group_info)
1723 return 0;
1725 left = 0;
1726 right = group_info->ngroups;
1727 while (left < right) {
1728 unsigned int mid = (left+right)/2;
1729 int cmp = grp - GROUP_AT(group_info, mid);
1730 if (cmp > 0)
1731 left = mid + 1;
1732 else if (cmp < 0)
1733 right = mid;
1734 else
1735 return 1;
1737 return 0;
1740 /* validate and set current->group_info */
1741 int set_current_groups(struct group_info *group_info)
1743 int retval;
1744 struct group_info *old_info;
1746 retval = security_task_setgroups(group_info);
1747 if (retval)
1748 return retval;
1750 groups_sort(group_info);
1751 get_group_info(group_info);
1753 task_lock(current);
1754 old_info = current->group_info;
1755 current->group_info = group_info;
1756 task_unlock(current);
1758 put_group_info(old_info);
1760 return 0;
1763 EXPORT_SYMBOL(set_current_groups);
1765 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1767 int i = 0;
1770 * SMP: Nobody else can change our grouplist. Thus we are
1771 * safe.
1774 if (gidsetsize < 0)
1775 return -EINVAL;
1777 /* no need to grab task_lock here; it cannot change */
1778 i = current->group_info->ngroups;
1779 if (gidsetsize) {
1780 if (i > gidsetsize) {
1781 i = -EINVAL;
1782 goto out;
1784 if (groups_to_user(grouplist, current->group_info)) {
1785 i = -EFAULT;
1786 goto out;
1789 out:
1790 return i;
1794 * SMP: Our groups are copy-on-write. We can set them safely
1795 * without another task interfering.
1798 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1800 struct group_info *group_info;
1801 int retval;
1803 if (!capable(CAP_SETGID))
1804 return -EPERM;
1805 if ((unsigned)gidsetsize > NGROUPS_MAX)
1806 return -EINVAL;
1808 group_info = groups_alloc(gidsetsize);
1809 if (!group_info)
1810 return -ENOMEM;
1811 retval = groups_from_user(group_info, grouplist);
1812 if (retval) {
1813 put_group_info(group_info);
1814 return retval;
1817 retval = set_current_groups(group_info);
1818 put_group_info(group_info);
1820 return retval;
1824 * Check whether we're fsgid/egid or in the supplemental group..
1826 int in_group_p(gid_t grp)
1828 int retval = 1;
1829 if (grp != current->fsgid)
1830 retval = groups_search(current->group_info, grp);
1831 return retval;
1834 EXPORT_SYMBOL(in_group_p);
1836 int in_egroup_p(gid_t grp)
1838 int retval = 1;
1839 if (grp != current->egid)
1840 retval = groups_search(current->group_info, grp);
1841 return retval;
1844 EXPORT_SYMBOL(in_egroup_p);
1846 DECLARE_RWSEM(uts_sem);
1848 EXPORT_SYMBOL(uts_sem);
1850 asmlinkage long sys_newuname(struct new_utsname __user * name)
1852 int errno = 0;
1854 down_read(&uts_sem);
1855 if (copy_to_user(name, utsname(), sizeof *name))
1856 errno = -EFAULT;
1857 up_read(&uts_sem);
1858 return errno;
1861 asmlinkage long sys_sethostname(char __user *name, int len)
1863 int errno;
1864 char tmp[__NEW_UTS_LEN];
1866 if (!capable(CAP_SYS_ADMIN))
1867 return -EPERM;
1868 if (len < 0 || len > __NEW_UTS_LEN)
1869 return -EINVAL;
1870 down_write(&uts_sem);
1871 errno = -EFAULT;
1872 if (!copy_from_user(tmp, name, len)) {
1873 memcpy(utsname()->nodename, tmp, len);
1874 utsname()->nodename[len] = 0;
1875 errno = 0;
1877 up_write(&uts_sem);
1878 return errno;
1881 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1883 asmlinkage long sys_gethostname(char __user *name, int len)
1885 int i, errno;
1887 if (len < 0)
1888 return -EINVAL;
1889 down_read(&uts_sem);
1890 i = 1 + strlen(utsname()->nodename);
1891 if (i > len)
1892 i = len;
1893 errno = 0;
1894 if (copy_to_user(name, utsname()->nodename, i))
1895 errno = -EFAULT;
1896 up_read(&uts_sem);
1897 return errno;
1900 #endif
1903 * Only setdomainname; getdomainname can be implemented by calling
1904 * uname()
1906 asmlinkage long sys_setdomainname(char __user *name, int len)
1908 int errno;
1909 char tmp[__NEW_UTS_LEN];
1911 if (!capable(CAP_SYS_ADMIN))
1912 return -EPERM;
1913 if (len < 0 || len > __NEW_UTS_LEN)
1914 return -EINVAL;
1916 down_write(&uts_sem);
1917 errno = -EFAULT;
1918 if (!copy_from_user(tmp, name, len)) {
1919 memcpy(utsname()->domainname, tmp, len);
1920 utsname()->domainname[len] = 0;
1921 errno = 0;
1923 up_write(&uts_sem);
1924 return errno;
1927 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1929 if (resource >= RLIM_NLIMITS)
1930 return -EINVAL;
1931 else {
1932 struct rlimit value;
1933 task_lock(current->group_leader);
1934 value = current->signal->rlim[resource];
1935 task_unlock(current->group_leader);
1936 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1940 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1943 * Back compatibility for getrlimit. Needed for some apps.
1946 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1948 struct rlimit x;
1949 if (resource >= RLIM_NLIMITS)
1950 return -EINVAL;
1952 task_lock(current->group_leader);
1953 x = current->signal->rlim[resource];
1954 task_unlock(current->group_leader);
1955 if (x.rlim_cur > 0x7FFFFFFF)
1956 x.rlim_cur = 0x7FFFFFFF;
1957 if (x.rlim_max > 0x7FFFFFFF)
1958 x.rlim_max = 0x7FFFFFFF;
1959 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1962 #endif
1964 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1966 struct rlimit new_rlim, *old_rlim;
1967 unsigned long it_prof_secs;
1968 int retval;
1970 if (resource >= RLIM_NLIMITS)
1971 return -EINVAL;
1972 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1973 return -EFAULT;
1974 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1975 return -EINVAL;
1976 old_rlim = current->signal->rlim + resource;
1977 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1978 !capable(CAP_SYS_RESOURCE))
1979 return -EPERM;
1980 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1981 return -EPERM;
1983 retval = security_task_setrlimit(resource, &new_rlim);
1984 if (retval)
1985 return retval;
1987 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1989 * The caller is asking for an immediate RLIMIT_CPU
1990 * expiry. But we use the zero value to mean "it was
1991 * never set". So let's cheat and make it one second
1992 * instead
1994 new_rlim.rlim_cur = 1;
1997 task_lock(current->group_leader);
1998 *old_rlim = new_rlim;
1999 task_unlock(current->group_leader);
2001 if (resource != RLIMIT_CPU)
2002 goto out;
2005 * RLIMIT_CPU handling. Note that the kernel fails to return an error
2006 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
2007 * very long-standing error, and fixing it now risks breakage of
2008 * applications, so we live with it
2010 if (new_rlim.rlim_cur == RLIM_INFINITY)
2011 goto out;
2013 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
2014 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
2015 unsigned long rlim_cur = new_rlim.rlim_cur;
2016 cputime_t cputime;
2018 cputime = secs_to_cputime(rlim_cur);
2019 read_lock(&tasklist_lock);
2020 spin_lock_irq(&current->sighand->siglock);
2021 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
2022 spin_unlock_irq(&current->sighand->siglock);
2023 read_unlock(&tasklist_lock);
2025 out:
2026 return 0;
2030 * It would make sense to put struct rusage in the task_struct,
2031 * except that would make the task_struct be *really big*. After
2032 * task_struct gets moved into malloc'ed memory, it would
2033 * make sense to do this. It will make moving the rest of the information
2034 * a lot simpler! (Which we're not doing right now because we're not
2035 * measuring them yet).
2037 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
2038 * races with threads incrementing their own counters. But since word
2039 * reads are atomic, we either get new values or old values and we don't
2040 * care which for the sums. We always take the siglock to protect reading
2041 * the c* fields from p->signal from races with exit.c updating those
2042 * fields when reaping, so a sample either gets all the additions of a
2043 * given child after it's reaped, or none so this sample is before reaping.
2045 * Locking:
2046 * We need to take the siglock for CHILDEREN, SELF and BOTH
2047 * for the cases current multithreaded, non-current single threaded
2048 * non-current multithreaded. Thread traversal is now safe with
2049 * the siglock held.
2050 * Strictly speaking, we donot need to take the siglock if we are current and
2051 * single threaded, as no one else can take our signal_struct away, no one
2052 * else can reap the children to update signal->c* counters, and no one else
2053 * can race with the signal-> fields. If we do not take any lock, the
2054 * signal-> fields could be read out of order while another thread was just
2055 * exiting. So we should place a read memory barrier when we avoid the lock.
2056 * On the writer side, write memory barrier is implied in __exit_signal
2057 * as __exit_signal releases the siglock spinlock after updating the signal->
2058 * fields. But we don't do this yet to keep things simple.
2062 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
2064 struct task_struct *t;
2065 unsigned long flags;
2066 cputime_t utime, stime;
2068 memset((char *) r, 0, sizeof *r);
2069 utime = stime = cputime_zero;
2071 rcu_read_lock();
2072 if (!lock_task_sighand(p, &flags)) {
2073 rcu_read_unlock();
2074 return;
2077 switch (who) {
2078 case RUSAGE_BOTH:
2079 case RUSAGE_CHILDREN:
2080 utime = p->signal->cutime;
2081 stime = p->signal->cstime;
2082 r->ru_nvcsw = p->signal->cnvcsw;
2083 r->ru_nivcsw = p->signal->cnivcsw;
2084 r->ru_minflt = p->signal->cmin_flt;
2085 r->ru_majflt = p->signal->cmaj_flt;
2086 r->ru_inblock = p->signal->cinblock;
2087 r->ru_oublock = p->signal->coublock;
2089 if (who == RUSAGE_CHILDREN)
2090 break;
2092 case RUSAGE_SELF:
2093 utime = cputime_add(utime, p->signal->utime);
2094 stime = cputime_add(stime, p->signal->stime);
2095 r->ru_nvcsw += p->signal->nvcsw;
2096 r->ru_nivcsw += p->signal->nivcsw;
2097 r->ru_minflt += p->signal->min_flt;
2098 r->ru_majflt += p->signal->maj_flt;
2099 r->ru_inblock += p->signal->inblock;
2100 r->ru_oublock += p->signal->oublock;
2101 t = p;
2102 do {
2103 utime = cputime_add(utime, t->utime);
2104 stime = cputime_add(stime, t->stime);
2105 r->ru_nvcsw += t->nvcsw;
2106 r->ru_nivcsw += t->nivcsw;
2107 r->ru_minflt += t->min_flt;
2108 r->ru_majflt += t->maj_flt;
2109 r->ru_inblock += task_io_get_inblock(t);
2110 r->ru_oublock += task_io_get_oublock(t);
2111 t = next_thread(t);
2112 } while (t != p);
2113 break;
2115 default:
2116 BUG();
2119 unlock_task_sighand(p, &flags);
2120 rcu_read_unlock();
2122 cputime_to_timeval(utime, &r->ru_utime);
2123 cputime_to_timeval(stime, &r->ru_stime);
2126 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
2128 struct rusage r;
2129 k_getrusage(p, who, &r);
2130 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
2133 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
2135 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
2136 return -EINVAL;
2137 return getrusage(current, who, ru);
2140 asmlinkage long sys_umask(int mask)
2142 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
2143 return mask;
2146 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
2147 unsigned long arg4, unsigned long arg5)
2149 long error;
2151 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2152 if (error)
2153 return error;
2155 switch (option) {
2156 case PR_SET_PDEATHSIG:
2157 if (!valid_signal(arg2)) {
2158 error = -EINVAL;
2159 break;
2161 current->pdeath_signal = arg2;
2162 break;
2163 case PR_GET_PDEATHSIG:
2164 error = put_user(current->pdeath_signal, (int __user *)arg2);
2165 break;
2166 case PR_GET_DUMPABLE:
2167 error = current->mm->dumpable;
2168 break;
2169 case PR_SET_DUMPABLE:
2170 if (arg2 < 0 || arg2 > 1) {
2171 error = -EINVAL;
2172 break;
2174 current->mm->dumpable = arg2;
2175 break;
2177 case PR_SET_UNALIGN:
2178 error = SET_UNALIGN_CTL(current, arg2);
2179 break;
2180 case PR_GET_UNALIGN:
2181 error = GET_UNALIGN_CTL(current, arg2);
2182 break;
2183 case PR_SET_FPEMU:
2184 error = SET_FPEMU_CTL(current, arg2);
2185 break;
2186 case PR_GET_FPEMU:
2187 error = GET_FPEMU_CTL(current, arg2);
2188 break;
2189 case PR_SET_FPEXC:
2190 error = SET_FPEXC_CTL(current, arg2);
2191 break;
2192 case PR_GET_FPEXC:
2193 error = GET_FPEXC_CTL(current, arg2);
2194 break;
2195 case PR_GET_TIMING:
2196 error = PR_TIMING_STATISTICAL;
2197 break;
2198 case PR_SET_TIMING:
2199 if (arg2 == PR_TIMING_STATISTICAL)
2200 error = 0;
2201 else
2202 error = -EINVAL;
2203 break;
2205 case PR_GET_KEEPCAPS:
2206 if (current->keep_capabilities)
2207 error = 1;
2208 break;
2209 case PR_SET_KEEPCAPS:
2210 if (arg2 != 0 && arg2 != 1) {
2211 error = -EINVAL;
2212 break;
2214 current->keep_capabilities = arg2;
2215 break;
2216 case PR_SET_NAME: {
2217 struct task_struct *me = current;
2218 unsigned char ncomm[sizeof(me->comm)];
2220 ncomm[sizeof(me->comm)-1] = 0;
2221 if (strncpy_from_user(ncomm, (char __user *)arg2,
2222 sizeof(me->comm)-1) < 0)
2223 return -EFAULT;
2224 set_task_comm(me, ncomm);
2225 return 0;
2227 case PR_GET_NAME: {
2228 struct task_struct *me = current;
2229 unsigned char tcomm[sizeof(me->comm)];
2231 get_task_comm(tcomm, me);
2232 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
2233 return -EFAULT;
2234 return 0;
2236 case PR_GET_ENDIAN:
2237 error = GET_ENDIAN(current, arg2);
2238 break;
2239 case PR_SET_ENDIAN:
2240 error = SET_ENDIAN(current, arg2);
2241 break;
2243 default:
2244 error = -EINVAL;
2245 break;
2247 return error;
2250 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
2251 struct getcpu_cache __user *cache)
2253 int err = 0;
2254 int cpu = raw_smp_processor_id();
2255 if (cpup)
2256 err |= put_user(cpu, cpup);
2257 if (nodep)
2258 err |= put_user(cpu_to_node(cpu), nodep);
2259 if (cache) {
2261 * The cache is not needed for this implementation,
2262 * but make sure user programs pass something
2263 * valid. vsyscall implementations can instead make
2264 * good use of the cache. Only use t0 and t1 because
2265 * these are available in both 32bit and 64bit ABI (no
2266 * need for a compat_getcpu). 32bit has enough
2267 * padding
2269 unsigned long t0, t1;
2270 get_user(t0, &cache->blob[0]);
2271 get_user(t1, &cache->blob[1]);
2272 t0++;
2273 t1++;
2274 put_user(t0, &cache->blob[0]);
2275 put_user(t1, &cache->blob[1]);
2277 return err ? -EFAULT : 0;