2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
97 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
98 unsigned long nr_segs
, loff_t pos
);
99 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
100 unsigned long nr_segs
, loff_t pos
);
101 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
103 static int sock_close(struct inode
*inode
, struct file
*file
);
104 static unsigned int sock_poll(struct file
*file
,
105 struct poll_table_struct
*wait
);
106 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
108 static long compat_sock_ioctl(struct file
*file
,
109 unsigned int cmd
, unsigned long arg
);
111 static int sock_fasync(int fd
, struct file
*filp
, int on
);
112 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
113 int offset
, size_t size
, loff_t
*ppos
, int more
);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static const struct file_operations socket_file_ops
= {
121 .owner
= THIS_MODULE
,
123 .aio_read
= sock_aio_read
,
124 .aio_write
= sock_aio_write
,
126 .unlocked_ioctl
= sock_ioctl
,
128 .compat_ioctl
= compat_sock_ioctl
,
131 .open
= sock_no_open
, /* special open code to disallow open via /proc */
132 .release
= sock_close
,
133 .fasync
= sock_fasync
,
134 .sendpage
= sock_sendpage
,
135 .splice_write
= generic_splice_sendpage
,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock
);
143 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, void *kaddr
)
179 if (ulen
< 0 || ulen
> MAX_SOCK_ADDR
)
183 if (copy_from_user(kaddr
, uaddr
, ulen
))
185 return audit_sockaddr(ulen
, kaddr
);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr
, int klen
, void __user
*uaddr
,
211 err
= get_user(len
, ulen
);
216 if (len
< 0 || len
> MAX_SOCK_ADDR
)
219 if (audit_sockaddr(klen
, kaddr
))
221 if (copy_to_user(uaddr
, kaddr
, len
))
225 * "fromlen shall refer to the value before truncation.."
228 return __put_user(klen
, ulen
);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
235 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
237 struct socket_alloc
*ei
;
239 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
242 init_waitqueue_head(&ei
->socket
.wait
);
244 ei
->socket
.fasync_list
= NULL
;
245 ei
->socket
.state
= SS_UNCONNECTED
;
246 ei
->socket
.flags
= 0;
247 ei
->socket
.ops
= NULL
;
248 ei
->socket
.sk
= NULL
;
249 ei
->socket
.file
= NULL
;
251 return &ei
->vfs_inode
;
254 static void sock_destroy_inode(struct inode
*inode
)
256 kmem_cache_free(sock_inode_cachep
,
257 container_of(inode
, struct socket_alloc
, vfs_inode
));
260 static void init_once(void *foo
, struct kmem_cache
*cachep
, unsigned long flags
)
262 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
264 if (flags
& SLAB_CTOR_CONSTRUCTOR
)
265 inode_init_once(&ei
->vfs_inode
);
268 static int init_inodecache(void)
270 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
271 sizeof(struct socket_alloc
),
273 (SLAB_HWCACHE_ALIGN
|
274 SLAB_RECLAIM_ACCOUNT
|
278 if (sock_inode_cachep
== NULL
)
283 static struct super_operations sockfs_ops
= {
284 .alloc_inode
= sock_alloc_inode
,
285 .destroy_inode
=sock_destroy_inode
,
286 .statfs
= simple_statfs
,
289 static int sockfs_get_sb(struct file_system_type
*fs_type
,
290 int flags
, const char *dev_name
, void *data
,
291 struct vfsmount
*mnt
)
293 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
297 static struct vfsmount
*sock_mnt __read_mostly
;
299 static struct file_system_type sock_fs_type
= {
301 .get_sb
= sockfs_get_sb
,
302 .kill_sb
= kill_anon_super
,
305 static int sockfs_delete_dentry(struct dentry
*dentry
)
308 * At creation time, we pretended this dentry was hashed
309 * (by clearing DCACHE_UNHASHED bit in d_flags)
310 * At delete time, we restore the truth : not hashed.
311 * (so that dput() can proceed correctly)
313 dentry
->d_flags
|= DCACHE_UNHASHED
;
316 static struct dentry_operations sockfs_dentry_operations
= {
317 .d_delete
= sockfs_delete_dentry
,
321 * Obtains the first available file descriptor and sets it up for use.
323 * These functions create file structures and maps them to fd space
324 * of the current process. On success it returns file descriptor
325 * and file struct implicitly stored in sock->file.
326 * Note that another thread may close file descriptor before we return
327 * from this function. We use the fact that now we do not refer
328 * to socket after mapping. If one day we will need it, this
329 * function will increment ref. count on file by 1.
331 * In any case returned fd MAY BE not valid!
332 * This race condition is unavoidable
333 * with shared fd spaces, we cannot solve it inside kernel,
334 * but we take care of internal coherence yet.
337 static int sock_alloc_fd(struct file
**filep
)
341 fd
= get_unused_fd();
342 if (likely(fd
>= 0)) {
343 struct file
*file
= get_empty_filp();
346 if (unlikely(!file
)) {
355 static int sock_attach_fd(struct socket
*sock
, struct file
*file
)
360 this.len
= sprintf(name
, "[%lu]", SOCK_INODE(sock
)->i_ino
);
364 file
->f_path
.dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &this);
365 if (unlikely(!file
->f_path
.dentry
))
368 file
->f_path
.dentry
->d_op
= &sockfs_dentry_operations
;
370 * We dont want to push this dentry into global dentry hash table.
371 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
372 * This permits a working /proc/$pid/fd/XXX on sockets
374 file
->f_path
.dentry
->d_flags
&= ~DCACHE_UNHASHED
;
375 d_instantiate(file
->f_path
.dentry
, SOCK_INODE(sock
));
376 file
->f_path
.mnt
= mntget(sock_mnt
);
377 file
->f_mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
380 file
->f_op
= SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
381 file
->f_mode
= FMODE_READ
| FMODE_WRITE
;
382 file
->f_flags
= O_RDWR
;
384 file
->private_data
= sock
;
389 int sock_map_fd(struct socket
*sock
)
391 struct file
*newfile
;
392 int fd
= sock_alloc_fd(&newfile
);
394 if (likely(fd
>= 0)) {
395 int err
= sock_attach_fd(sock
, newfile
);
397 if (unlikely(err
< 0)) {
402 fd_install(fd
, newfile
);
407 static struct socket
*sock_from_file(struct file
*file
, int *err
)
409 if (file
->f_op
== &socket_file_ops
)
410 return file
->private_data
; /* set in sock_map_fd */
417 * sockfd_lookup - Go from a file number to its socket slot
419 * @err: pointer to an error code return
421 * The file handle passed in is locked and the socket it is bound
422 * too is returned. If an error occurs the err pointer is overwritten
423 * with a negative errno code and NULL is returned. The function checks
424 * for both invalid handles and passing a handle which is not a socket.
426 * On a success the socket object pointer is returned.
429 struct socket
*sockfd_lookup(int fd
, int *err
)
440 sock
= sock_from_file(file
, err
);
446 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
452 file
= fget_light(fd
, fput_needed
);
454 sock
= sock_from_file(file
, err
);
457 fput_light(file
, *fput_needed
);
463 * sock_alloc - allocate a socket
465 * Allocate a new inode and socket object. The two are bound together
466 * and initialised. The socket is then returned. If we are out of inodes
470 static struct socket
*sock_alloc(void)
475 inode
= new_inode(sock_mnt
->mnt_sb
);
479 sock
= SOCKET_I(inode
);
481 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
482 inode
->i_uid
= current
->fsuid
;
483 inode
->i_gid
= current
->fsgid
;
485 get_cpu_var(sockets_in_use
)++;
486 put_cpu_var(sockets_in_use
);
491 * In theory you can't get an open on this inode, but /proc provides
492 * a back door. Remember to keep it shut otherwise you'll let the
493 * creepy crawlies in.
496 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
501 const struct file_operations bad_sock_fops
= {
502 .owner
= THIS_MODULE
,
503 .open
= sock_no_open
,
507 * sock_release - close a socket
508 * @sock: socket to close
510 * The socket is released from the protocol stack if it has a release
511 * callback, and the inode is then released if the socket is bound to
512 * an inode not a file.
515 void sock_release(struct socket
*sock
)
518 struct module
*owner
= sock
->ops
->owner
;
520 sock
->ops
->release(sock
);
525 if (sock
->fasync_list
)
526 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
528 get_cpu_var(sockets_in_use
)--;
529 put_cpu_var(sockets_in_use
);
531 iput(SOCK_INODE(sock
));
537 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
538 struct msghdr
*msg
, size_t size
)
540 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
548 err
= security_socket_sendmsg(sock
, msg
, size
);
552 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
555 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
558 struct sock_iocb siocb
;
561 init_sync_kiocb(&iocb
, NULL
);
562 iocb
.private = &siocb
;
563 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
564 if (-EIOCBQUEUED
== ret
)
565 ret
= wait_on_sync_kiocb(&iocb
);
569 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
570 struct kvec
*vec
, size_t num
, size_t size
)
572 mm_segment_t oldfs
= get_fs();
577 * the following is safe, since for compiler definitions of kvec and
578 * iovec are identical, yielding the same in-core layout and alignment
580 msg
->msg_iov
= (struct iovec
*)vec
;
581 msg
->msg_iovlen
= num
;
582 result
= sock_sendmsg(sock
, msg
, size
);
588 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
590 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
593 ktime_t kt
= skb
->tstamp
;
595 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
597 /* Race occurred between timestamp enabling and packet
598 receiving. Fill in the current time for now. */
600 kt
= ktime_get_real();
602 tv
= ktime_to_timeval(kt
);
603 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
, sizeof(tv
), &tv
);
606 /* Race occurred between timestamp enabling and packet
607 receiving. Fill in the current time for now. */
609 kt
= ktime_get_real();
611 ts
= ktime_to_timespec(kt
);
612 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
, sizeof(ts
), &ts
);
616 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
618 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
619 struct msghdr
*msg
, size_t size
, int flags
)
622 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
630 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
634 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
637 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
638 size_t size
, int flags
)
641 struct sock_iocb siocb
;
644 init_sync_kiocb(&iocb
, NULL
);
645 iocb
.private = &siocb
;
646 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
647 if (-EIOCBQUEUED
== ret
)
648 ret
= wait_on_sync_kiocb(&iocb
);
652 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
653 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
655 mm_segment_t oldfs
= get_fs();
660 * the following is safe, since for compiler definitions of kvec and
661 * iovec are identical, yielding the same in-core layout and alignment
663 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
664 result
= sock_recvmsg(sock
, msg
, size
, flags
);
669 static void sock_aio_dtor(struct kiocb
*iocb
)
671 kfree(iocb
->private);
674 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
675 int offset
, size_t size
, loff_t
*ppos
, int more
)
680 sock
= file
->private_data
;
682 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
686 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
689 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
690 struct sock_iocb
*siocb
)
692 if (!is_sync_kiocb(iocb
)) {
693 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
696 iocb
->ki_dtor
= sock_aio_dtor
;
700 iocb
->private = siocb
;
704 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
705 struct file
*file
, const struct iovec
*iov
,
706 unsigned long nr_segs
)
708 struct socket
*sock
= file
->private_data
;
712 for (i
= 0; i
< nr_segs
; i
++)
713 size
+= iov
[i
].iov_len
;
715 msg
->msg_name
= NULL
;
716 msg
->msg_namelen
= 0;
717 msg
->msg_control
= NULL
;
718 msg
->msg_controllen
= 0;
719 msg
->msg_iov
= (struct iovec
*)iov
;
720 msg
->msg_iovlen
= nr_segs
;
721 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
723 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
726 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
727 unsigned long nr_segs
, loff_t pos
)
729 struct sock_iocb siocb
, *x
;
734 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
738 x
= alloc_sock_iocb(iocb
, &siocb
);
741 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
744 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
745 struct file
*file
, const struct iovec
*iov
,
746 unsigned long nr_segs
)
748 struct socket
*sock
= file
->private_data
;
752 for (i
= 0; i
< nr_segs
; i
++)
753 size
+= iov
[i
].iov_len
;
755 msg
->msg_name
= NULL
;
756 msg
->msg_namelen
= 0;
757 msg
->msg_control
= NULL
;
758 msg
->msg_controllen
= 0;
759 msg
->msg_iov
= (struct iovec
*)iov
;
760 msg
->msg_iovlen
= nr_segs
;
761 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
762 if (sock
->type
== SOCK_SEQPACKET
)
763 msg
->msg_flags
|= MSG_EOR
;
765 return __sock_sendmsg(iocb
, sock
, msg
, size
);
768 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
769 unsigned long nr_segs
, loff_t pos
)
771 struct sock_iocb siocb
, *x
;
776 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
779 x
= alloc_sock_iocb(iocb
, &siocb
);
783 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
787 * Atomic setting of ioctl hooks to avoid race
788 * with module unload.
791 static DEFINE_MUTEX(br_ioctl_mutex
);
792 static int (*br_ioctl_hook
) (unsigned int cmd
, void __user
*arg
) = NULL
;
794 void brioctl_set(int (*hook
) (unsigned int, void __user
*))
796 mutex_lock(&br_ioctl_mutex
);
797 br_ioctl_hook
= hook
;
798 mutex_unlock(&br_ioctl_mutex
);
801 EXPORT_SYMBOL(brioctl_set
);
803 static DEFINE_MUTEX(vlan_ioctl_mutex
);
804 static int (*vlan_ioctl_hook
) (void __user
*arg
);
806 void vlan_ioctl_set(int (*hook
) (void __user
*))
808 mutex_lock(&vlan_ioctl_mutex
);
809 vlan_ioctl_hook
= hook
;
810 mutex_unlock(&vlan_ioctl_mutex
);
813 EXPORT_SYMBOL(vlan_ioctl_set
);
815 static DEFINE_MUTEX(dlci_ioctl_mutex
);
816 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
818 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
820 mutex_lock(&dlci_ioctl_mutex
);
821 dlci_ioctl_hook
= hook
;
822 mutex_unlock(&dlci_ioctl_mutex
);
825 EXPORT_SYMBOL(dlci_ioctl_set
);
828 * With an ioctl, arg may well be a user mode pointer, but we don't know
829 * what to do with it - that's up to the protocol still.
832 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
835 void __user
*argp
= (void __user
*)arg
;
838 sock
= file
->private_data
;
839 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
840 err
= dev_ioctl(cmd
, argp
);
842 #ifdef CONFIG_WIRELESS_EXT
843 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
844 err
= dev_ioctl(cmd
, argp
);
846 #endif /* CONFIG_WIRELESS_EXT */
851 if (get_user(pid
, (int __user
*)argp
))
853 err
= f_setown(sock
->file
, pid
, 1);
857 err
= put_user(f_getown(sock
->file
),
866 request_module("bridge");
868 mutex_lock(&br_ioctl_mutex
);
870 err
= br_ioctl_hook(cmd
, argp
);
871 mutex_unlock(&br_ioctl_mutex
);
876 if (!vlan_ioctl_hook
)
877 request_module("8021q");
879 mutex_lock(&vlan_ioctl_mutex
);
881 err
= vlan_ioctl_hook(argp
);
882 mutex_unlock(&vlan_ioctl_mutex
);
887 if (!dlci_ioctl_hook
)
888 request_module("dlci");
890 if (dlci_ioctl_hook
) {
891 mutex_lock(&dlci_ioctl_mutex
);
892 err
= dlci_ioctl_hook(cmd
, argp
);
893 mutex_unlock(&dlci_ioctl_mutex
);
897 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
900 * If this ioctl is unknown try to hand it down
903 if (err
== -ENOIOCTLCMD
)
904 err
= dev_ioctl(cmd
, argp
);
910 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
913 struct socket
*sock
= NULL
;
915 err
= security_socket_create(family
, type
, protocol
, 1);
926 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
939 /* No kernel lock held - perfect */
940 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
945 * We can't return errors to poll, so it's either yes or no.
947 sock
= file
->private_data
;
948 return sock
->ops
->poll(file
, sock
, wait
);
951 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
953 struct socket
*sock
= file
->private_data
;
955 return sock
->ops
->mmap(file
, sock
, vma
);
958 static int sock_close(struct inode
*inode
, struct file
*filp
)
961 * It was possible the inode is NULL we were
962 * closing an unfinished socket.
966 printk(KERN_DEBUG
"sock_close: NULL inode\n");
969 sock_fasync(-1, filp
, 0);
970 sock_release(SOCKET_I(inode
));
975 * Update the socket async list
977 * Fasync_list locking strategy.
979 * 1. fasync_list is modified only under process context socket lock
980 * i.e. under semaphore.
981 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
982 * or under socket lock.
983 * 3. fasync_list can be used from softirq context, so that
984 * modification under socket lock have to be enhanced with
985 * write_lock_bh(&sk->sk_callback_lock).
989 static int sock_fasync(int fd
, struct file
*filp
, int on
)
991 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
996 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1001 sock
= filp
->private_data
;
1011 prev
= &(sock
->fasync_list
);
1013 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
1014 if (fa
->fa_file
== filp
)
1019 write_lock_bh(&sk
->sk_callback_lock
);
1021 write_unlock_bh(&sk
->sk_callback_lock
);
1026 fna
->fa_file
= filp
;
1028 fna
->magic
= FASYNC_MAGIC
;
1029 fna
->fa_next
= sock
->fasync_list
;
1030 write_lock_bh(&sk
->sk_callback_lock
);
1031 sock
->fasync_list
= fna
;
1032 write_unlock_bh(&sk
->sk_callback_lock
);
1035 write_lock_bh(&sk
->sk_callback_lock
);
1036 *prev
= fa
->fa_next
;
1037 write_unlock_bh(&sk
->sk_callback_lock
);
1043 release_sock(sock
->sk
);
1047 /* This function may be called only under socket lock or callback_lock */
1049 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1051 if (!sock
|| !sock
->fasync_list
)
1056 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1060 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1065 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1068 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1073 static int __sock_create(int family
, int type
, int protocol
,
1074 struct socket
**res
, int kern
)
1077 struct socket
*sock
;
1078 const struct net_proto_family
*pf
;
1081 * Check protocol is in range
1083 if (family
< 0 || family
>= NPROTO
)
1084 return -EAFNOSUPPORT
;
1085 if (type
< 0 || type
>= SOCK_MAX
)
1090 This uglymoron is moved from INET layer to here to avoid
1091 deadlock in module load.
1093 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1097 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1103 err
= security_socket_create(family
, type
, protocol
, kern
);
1108 * Allocate the socket and allow the family to set things up. if
1109 * the protocol is 0, the family is instructed to select an appropriate
1112 sock
= sock_alloc();
1114 if (net_ratelimit())
1115 printk(KERN_WARNING
"socket: no more sockets\n");
1116 return -ENFILE
; /* Not exactly a match, but its the
1117 closest posix thing */
1122 #if defined(CONFIG_KMOD)
1123 /* Attempt to load a protocol module if the find failed.
1125 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1126 * requested real, full-featured networking support upon configuration.
1127 * Otherwise module support will break!
1129 if (net_families
[family
] == NULL
)
1130 request_module("net-pf-%d", family
);
1134 pf
= rcu_dereference(net_families
[family
]);
1135 err
= -EAFNOSUPPORT
;
1140 * We will call the ->create function, that possibly is in a loadable
1141 * module, so we have to bump that loadable module refcnt first.
1143 if (!try_module_get(pf
->owner
))
1146 /* Now protected by module ref count */
1149 err
= pf
->create(sock
, protocol
);
1151 goto out_module_put
;
1154 * Now to bump the refcnt of the [loadable] module that owns this
1155 * socket at sock_release time we decrement its refcnt.
1157 if (!try_module_get(sock
->ops
->owner
))
1158 goto out_module_busy
;
1161 * Now that we're done with the ->create function, the [loadable]
1162 * module can have its refcnt decremented
1164 module_put(pf
->owner
);
1165 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1173 err
= -EAFNOSUPPORT
;
1176 module_put(pf
->owner
);
1183 goto out_sock_release
;
1186 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1188 return __sock_create(family
, type
, protocol
, res
, 0);
1191 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1193 return __sock_create(family
, type
, protocol
, res
, 1);
1196 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1199 struct socket
*sock
;
1201 retval
= sock_create(family
, type
, protocol
, &sock
);
1205 retval
= sock_map_fd(sock
);
1210 /* It may be already another descriptor 8) Not kernel problem. */
1219 * Create a pair of connected sockets.
1222 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
,
1223 int __user
*usockvec
)
1225 struct socket
*sock1
, *sock2
;
1227 struct file
*newfile1
, *newfile2
;
1230 * Obtain the first socket and check if the underlying protocol
1231 * supports the socketpair call.
1234 err
= sock_create(family
, type
, protocol
, &sock1
);
1238 err
= sock_create(family
, type
, protocol
, &sock2
);
1242 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1244 goto out_release_both
;
1246 fd1
= sock_alloc_fd(&newfile1
);
1247 if (unlikely(fd1
< 0))
1248 goto out_release_both
;
1250 fd2
= sock_alloc_fd(&newfile2
);
1251 if (unlikely(fd2
< 0)) {
1254 goto out_release_both
;
1257 err
= sock_attach_fd(sock1
, newfile1
);
1258 if (unlikely(err
< 0)) {
1262 err
= sock_attach_fd(sock2
, newfile2
);
1263 if (unlikely(err
< 0)) {
1268 err
= audit_fd_pair(fd1
, fd2
);
1275 fd_install(fd1
, newfile1
);
1276 fd_install(fd2
, newfile2
);
1277 /* fd1 and fd2 may be already another descriptors.
1278 * Not kernel problem.
1281 err
= put_user(fd1
, &usockvec
[0]);
1283 err
= put_user(fd2
, &usockvec
[1]);
1292 sock_release(sock2
);
1294 sock_release(sock1
);
1300 sock_release(sock1
);
1303 sock_release(sock2
);
1311 * Bind a name to a socket. Nothing much to do here since it's
1312 * the protocol's responsibility to handle the local address.
1314 * We move the socket address to kernel space before we call
1315 * the protocol layer (having also checked the address is ok).
1318 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1320 struct socket
*sock
;
1321 char address
[MAX_SOCK_ADDR
];
1322 int err
, fput_needed
;
1324 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1326 err
= move_addr_to_kernel(umyaddr
, addrlen
, address
);
1328 err
= security_socket_bind(sock
,
1329 (struct sockaddr
*)address
,
1332 err
= sock
->ops
->bind(sock
,
1336 fput_light(sock
->file
, fput_needed
);
1342 * Perform a listen. Basically, we allow the protocol to do anything
1343 * necessary for a listen, and if that works, we mark the socket as
1344 * ready for listening.
1347 int sysctl_somaxconn __read_mostly
= SOMAXCONN
;
1349 asmlinkage
long sys_listen(int fd
, int backlog
)
1351 struct socket
*sock
;
1352 int err
, fput_needed
;
1354 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1356 if ((unsigned)backlog
> sysctl_somaxconn
)
1357 backlog
= sysctl_somaxconn
;
1359 err
= security_socket_listen(sock
, backlog
);
1361 err
= sock
->ops
->listen(sock
, backlog
);
1363 fput_light(sock
->file
, fput_needed
);
1369 * For accept, we attempt to create a new socket, set up the link
1370 * with the client, wake up the client, then return the new
1371 * connected fd. We collect the address of the connector in kernel
1372 * space and move it to user at the very end. This is unclean because
1373 * we open the socket then return an error.
1375 * 1003.1g adds the ability to recvmsg() to query connection pending
1376 * status to recvmsg. We need to add that support in a way thats
1377 * clean when we restucture accept also.
1380 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1381 int __user
*upeer_addrlen
)
1383 struct socket
*sock
, *newsock
;
1384 struct file
*newfile
;
1385 int err
, len
, newfd
, fput_needed
;
1386 char address
[MAX_SOCK_ADDR
];
1388 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1393 if (!(newsock
= sock_alloc()))
1396 newsock
->type
= sock
->type
;
1397 newsock
->ops
= sock
->ops
;
1400 * We don't need try_module_get here, as the listening socket (sock)
1401 * has the protocol module (sock->ops->owner) held.
1403 __module_get(newsock
->ops
->owner
);
1405 newfd
= sock_alloc_fd(&newfile
);
1406 if (unlikely(newfd
< 0)) {
1408 sock_release(newsock
);
1412 err
= sock_attach_fd(newsock
, newfile
);
1416 err
= security_socket_accept(sock
, newsock
);
1420 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1424 if (upeer_sockaddr
) {
1425 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)address
,
1427 err
= -ECONNABORTED
;
1430 err
= move_addr_to_user(address
, len
, upeer_sockaddr
,
1436 /* File flags are not inherited via accept() unlike another OSes. */
1438 fd_install(newfd
, newfile
);
1441 security_socket_post_accept(sock
, newsock
);
1444 fput_light(sock
->file
, fput_needed
);
1448 sock_release(newsock
);
1450 put_unused_fd(newfd
);
1454 put_unused_fd(newfd
);
1459 * Attempt to connect to a socket with the server address. The address
1460 * is in user space so we verify it is OK and move it to kernel space.
1462 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1465 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1466 * other SEQPACKET protocols that take time to connect() as it doesn't
1467 * include the -EINPROGRESS status for such sockets.
1470 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
,
1473 struct socket
*sock
;
1474 char address
[MAX_SOCK_ADDR
];
1475 int err
, fput_needed
;
1477 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1480 err
= move_addr_to_kernel(uservaddr
, addrlen
, address
);
1485 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1489 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1490 sock
->file
->f_flags
);
1492 fput_light(sock
->file
, fput_needed
);
1498 * Get the local address ('name') of a socket object. Move the obtained
1499 * name to user space.
1502 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1503 int __user
*usockaddr_len
)
1505 struct socket
*sock
;
1506 char address
[MAX_SOCK_ADDR
];
1507 int len
, err
, fput_needed
;
1509 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1513 err
= security_socket_getsockname(sock
);
1517 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 0);
1520 err
= move_addr_to_user(address
, len
, usockaddr
, usockaddr_len
);
1523 fput_light(sock
->file
, fput_needed
);
1529 * Get the remote address ('name') of a socket object. Move the obtained
1530 * name to user space.
1533 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1534 int __user
*usockaddr_len
)
1536 struct socket
*sock
;
1537 char address
[MAX_SOCK_ADDR
];
1538 int len
, err
, fput_needed
;
1540 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1542 err
= security_socket_getpeername(sock
);
1544 fput_light(sock
->file
, fput_needed
);
1549 sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
,
1552 err
= move_addr_to_user(address
, len
, usockaddr
,
1554 fput_light(sock
->file
, fput_needed
);
1560 * Send a datagram to a given address. We move the address into kernel
1561 * space and check the user space data area is readable before invoking
1565 asmlinkage
long sys_sendto(int fd
, void __user
*buff
, size_t len
,
1566 unsigned flags
, struct sockaddr __user
*addr
,
1569 struct socket
*sock
;
1570 char address
[MAX_SOCK_ADDR
];
1575 struct file
*sock_file
;
1577 sock_file
= fget_light(fd
, &fput_needed
);
1582 sock
= sock_from_file(sock_file
, &err
);
1585 iov
.iov_base
= buff
;
1587 msg
.msg_name
= NULL
;
1590 msg
.msg_control
= NULL
;
1591 msg
.msg_controllen
= 0;
1592 msg
.msg_namelen
= 0;
1594 err
= move_addr_to_kernel(addr
, addr_len
, address
);
1597 msg
.msg_name
= address
;
1598 msg
.msg_namelen
= addr_len
;
1600 if (sock
->file
->f_flags
& O_NONBLOCK
)
1601 flags
|= MSG_DONTWAIT
;
1602 msg
.msg_flags
= flags
;
1603 err
= sock_sendmsg(sock
, &msg
, len
);
1606 fput_light(sock_file
, fput_needed
);
1612 * Send a datagram down a socket.
1615 asmlinkage
long sys_send(int fd
, void __user
*buff
, size_t len
, unsigned flags
)
1617 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1621 * Receive a frame from the socket and optionally record the address of the
1622 * sender. We verify the buffers are writable and if needed move the
1623 * sender address from kernel to user space.
1626 asmlinkage
long sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
,
1627 unsigned flags
, struct sockaddr __user
*addr
,
1628 int __user
*addr_len
)
1630 struct socket
*sock
;
1633 char address
[MAX_SOCK_ADDR
];
1635 struct file
*sock_file
;
1638 sock_file
= fget_light(fd
, &fput_needed
);
1643 sock
= sock_from_file(sock_file
, &err
);
1647 msg
.msg_control
= NULL
;
1648 msg
.msg_controllen
= 0;
1652 iov
.iov_base
= ubuf
;
1653 msg
.msg_name
= address
;
1654 msg
.msg_namelen
= MAX_SOCK_ADDR
;
1655 if (sock
->file
->f_flags
& O_NONBLOCK
)
1656 flags
|= MSG_DONTWAIT
;
1657 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1659 if (err
>= 0 && addr
!= NULL
) {
1660 err2
= move_addr_to_user(address
, msg
.msg_namelen
, addr
, addr_len
);
1665 fput_light(sock_file
, fput_needed
);
1671 * Receive a datagram from a socket.
1674 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1677 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1681 * Set a socket option. Because we don't know the option lengths we have
1682 * to pass the user mode parameter for the protocols to sort out.
1685 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
,
1686 char __user
*optval
, int optlen
)
1688 int err
, fput_needed
;
1689 struct socket
*sock
;
1694 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1696 err
= security_socket_setsockopt(sock
, level
, optname
);
1700 if (level
== SOL_SOCKET
)
1702 sock_setsockopt(sock
, level
, optname
, optval
,
1706 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1709 fput_light(sock
->file
, fput_needed
);
1715 * Get a socket option. Because we don't know the option lengths we have
1716 * to pass a user mode parameter for the protocols to sort out.
1719 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
,
1720 char __user
*optval
, int __user
*optlen
)
1722 int err
, fput_needed
;
1723 struct socket
*sock
;
1725 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1727 err
= security_socket_getsockopt(sock
, level
, optname
);
1731 if (level
== SOL_SOCKET
)
1733 sock_getsockopt(sock
, level
, optname
, optval
,
1737 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1740 fput_light(sock
->file
, fput_needed
);
1746 * Shutdown a socket.
1749 asmlinkage
long sys_shutdown(int fd
, int how
)
1751 int err
, fput_needed
;
1752 struct socket
*sock
;
1754 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1756 err
= security_socket_shutdown(sock
, how
);
1758 err
= sock
->ops
->shutdown(sock
, how
);
1759 fput_light(sock
->file
, fput_needed
);
1764 /* A couple of helpful macros for getting the address of the 32/64 bit
1765 * fields which are the same type (int / unsigned) on our platforms.
1767 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1768 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1769 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1772 * BSD sendmsg interface
1775 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1777 struct compat_msghdr __user
*msg_compat
=
1778 (struct compat_msghdr __user
*)msg
;
1779 struct socket
*sock
;
1780 char address
[MAX_SOCK_ADDR
];
1781 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1782 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1783 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1784 /* 20 is size of ipv6_pktinfo */
1785 unsigned char *ctl_buf
= ctl
;
1786 struct msghdr msg_sys
;
1787 int err
, ctl_len
, iov_size
, total_len
;
1791 if (MSG_CMSG_COMPAT
& flags
) {
1792 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1795 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1798 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1802 /* do not move before msg_sys is valid */
1804 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1807 /* Check whether to allocate the iovec area */
1809 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1810 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1811 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1816 /* This will also move the address data into kernel space */
1817 if (MSG_CMSG_COMPAT
& flags
) {
1818 err
= verify_compat_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1820 err
= verify_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1827 if (msg_sys
.msg_controllen
> INT_MAX
)
1829 ctl_len
= msg_sys
.msg_controllen
;
1830 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1832 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1836 ctl_buf
= msg_sys
.msg_control
;
1837 ctl_len
= msg_sys
.msg_controllen
;
1838 } else if (ctl_len
) {
1839 if (ctl_len
> sizeof(ctl
)) {
1840 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1841 if (ctl_buf
== NULL
)
1846 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1847 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1848 * checking falls down on this.
1850 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1853 msg_sys
.msg_control
= ctl_buf
;
1855 msg_sys
.msg_flags
= flags
;
1857 if (sock
->file
->f_flags
& O_NONBLOCK
)
1858 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1859 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1863 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1865 if (iov
!= iovstack
)
1866 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1868 fput_light(sock
->file
, fput_needed
);
1874 * BSD recvmsg interface
1877 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
,
1880 struct compat_msghdr __user
*msg_compat
=
1881 (struct compat_msghdr __user
*)msg
;
1882 struct socket
*sock
;
1883 struct iovec iovstack
[UIO_FASTIOV
];
1884 struct iovec
*iov
= iovstack
;
1885 struct msghdr msg_sys
;
1886 unsigned long cmsg_ptr
;
1887 int err
, iov_size
, total_len
, len
;
1890 /* kernel mode address */
1891 char addr
[MAX_SOCK_ADDR
];
1893 /* user mode address pointers */
1894 struct sockaddr __user
*uaddr
;
1895 int __user
*uaddr_len
;
1897 if (MSG_CMSG_COMPAT
& flags
) {
1898 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1901 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1904 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1909 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1912 /* Check whether to allocate the iovec area */
1914 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1915 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1916 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1922 * Save the user-mode address (verify_iovec will change the
1923 * kernel msghdr to use the kernel address space)
1926 uaddr
= (void __user
*)msg_sys
.msg_name
;
1927 uaddr_len
= COMPAT_NAMELEN(msg
);
1928 if (MSG_CMSG_COMPAT
& flags
) {
1929 err
= verify_compat_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1931 err
= verify_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1936 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1937 msg_sys
.msg_flags
= 0;
1938 if (MSG_CMSG_COMPAT
& flags
)
1939 msg_sys
.msg_flags
= MSG_CMSG_COMPAT
;
1941 if (sock
->file
->f_flags
& O_NONBLOCK
)
1942 flags
|= MSG_DONTWAIT
;
1943 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1948 if (uaddr
!= NULL
) {
1949 err
= move_addr_to_user(addr
, msg_sys
.msg_namelen
, uaddr
,
1954 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
1958 if (MSG_CMSG_COMPAT
& flags
)
1959 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1960 &msg_compat
->msg_controllen
);
1962 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1963 &msg
->msg_controllen
);
1969 if (iov
!= iovstack
)
1970 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1972 fput_light(sock
->file
, fput_needed
);
1977 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1979 /* Argument list sizes for sys_socketcall */
1980 #define AL(x) ((x) * sizeof(unsigned long))
1981 static const unsigned char nargs
[18]={
1982 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1983 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1984 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1990 * System call vectors.
1992 * Argument checking cleaned up. Saved 20% in size.
1993 * This function doesn't need to set the kernel lock because
1994 * it is set by the callees.
1997 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
2000 unsigned long a0
, a1
;
2003 if (call
< 1 || call
> SYS_RECVMSG
)
2006 /* copy_from_user should be SMP safe. */
2007 if (copy_from_user(a
, args
, nargs
[call
]))
2010 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2019 err
= sys_socket(a0
, a1
, a
[2]);
2022 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2025 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2028 err
= sys_listen(a0
, a1
);
2032 sys_accept(a0
, (struct sockaddr __user
*)a1
,
2033 (int __user
*)a
[2]);
2035 case SYS_GETSOCKNAME
:
2037 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2038 (int __user
*)a
[2]);
2040 case SYS_GETPEERNAME
:
2042 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2043 (int __user
*)a
[2]);
2045 case SYS_SOCKETPAIR
:
2046 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2049 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2052 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2053 (struct sockaddr __user
*)a
[4], a
[5]);
2056 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2059 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2060 (struct sockaddr __user
*)a
[4],
2061 (int __user
*)a
[5]);
2064 err
= sys_shutdown(a0
, a1
);
2066 case SYS_SETSOCKOPT
:
2067 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2069 case SYS_GETSOCKOPT
:
2071 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2072 (int __user
*)a
[4]);
2075 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2078 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2087 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2090 * sock_register - add a socket protocol handler
2091 * @ops: description of protocol
2093 * This function is called by a protocol handler that wants to
2094 * advertise its address family, and have it linked into the
2095 * socket interface. The value ops->family coresponds to the
2096 * socket system call protocol family.
2098 int sock_register(const struct net_proto_family
*ops
)
2102 if (ops
->family
>= NPROTO
) {
2103 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2108 spin_lock(&net_family_lock
);
2109 if (net_families
[ops
->family
])
2112 net_families
[ops
->family
] = ops
;
2115 spin_unlock(&net_family_lock
);
2117 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2122 * sock_unregister - remove a protocol handler
2123 * @family: protocol family to remove
2125 * This function is called by a protocol handler that wants to
2126 * remove its address family, and have it unlinked from the
2127 * new socket creation.
2129 * If protocol handler is a module, then it can use module reference
2130 * counts to protect against new references. If protocol handler is not
2131 * a module then it needs to provide its own protection in
2132 * the ops->create routine.
2134 void sock_unregister(int family
)
2136 BUG_ON(family
< 0 || family
>= NPROTO
);
2138 spin_lock(&net_family_lock
);
2139 net_families
[family
] = NULL
;
2140 spin_unlock(&net_family_lock
);
2144 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2147 static int __init
sock_init(void)
2150 * Initialize sock SLAB cache.
2156 * Initialize skbuff SLAB cache
2161 * Initialize the protocols module.
2165 register_filesystem(&sock_fs_type
);
2166 sock_mnt
= kern_mount(&sock_fs_type
);
2168 /* The real protocol initialization is performed in later initcalls.
2171 #ifdef CONFIG_NETFILTER
2178 core_initcall(sock_init
); /* early initcall */
2180 #ifdef CONFIG_PROC_FS
2181 void socket_seq_show(struct seq_file
*seq
)
2186 for_each_possible_cpu(cpu
)
2187 counter
+= per_cpu(sockets_in_use
, cpu
);
2189 /* It can be negative, by the way. 8) */
2193 seq_printf(seq
, "sockets: used %d\n", counter
);
2195 #endif /* CONFIG_PROC_FS */
2197 #ifdef CONFIG_COMPAT
2198 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2201 struct socket
*sock
= file
->private_data
;
2202 int ret
= -ENOIOCTLCMD
;
2204 if (sock
->ops
->compat_ioctl
)
2205 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2211 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2213 return sock
->ops
->bind(sock
, addr
, addrlen
);
2216 int kernel_listen(struct socket
*sock
, int backlog
)
2218 return sock
->ops
->listen(sock
, backlog
);
2221 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2223 struct sock
*sk
= sock
->sk
;
2226 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2231 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2233 sock_release(*newsock
);
2237 (*newsock
)->ops
= sock
->ops
;
2243 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2246 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2249 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2252 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2255 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2258 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2261 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2262 char *optval
, int *optlen
)
2264 mm_segment_t oldfs
= get_fs();
2268 if (level
== SOL_SOCKET
)
2269 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2271 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2277 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2278 char *optval
, int optlen
)
2280 mm_segment_t oldfs
= get_fs();
2284 if (level
== SOL_SOCKET
)
2285 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2287 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2293 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2294 size_t size
, int flags
)
2296 if (sock
->ops
->sendpage
)
2297 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2299 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2302 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2304 mm_segment_t oldfs
= get_fs();
2308 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2314 /* ABI emulation layers need these two */
2315 EXPORT_SYMBOL(move_addr_to_kernel
);
2316 EXPORT_SYMBOL(move_addr_to_user
);
2317 EXPORT_SYMBOL(sock_create
);
2318 EXPORT_SYMBOL(sock_create_kern
);
2319 EXPORT_SYMBOL(sock_create_lite
);
2320 EXPORT_SYMBOL(sock_map_fd
);
2321 EXPORT_SYMBOL(sock_recvmsg
);
2322 EXPORT_SYMBOL(sock_register
);
2323 EXPORT_SYMBOL(sock_release
);
2324 EXPORT_SYMBOL(sock_sendmsg
);
2325 EXPORT_SYMBOL(sock_unregister
);
2326 EXPORT_SYMBOL(sock_wake_async
);
2327 EXPORT_SYMBOL(sockfd_lookup
);
2328 EXPORT_SYMBOL(kernel_sendmsg
);
2329 EXPORT_SYMBOL(kernel_recvmsg
);
2330 EXPORT_SYMBOL(kernel_bind
);
2331 EXPORT_SYMBOL(kernel_listen
);
2332 EXPORT_SYMBOL(kernel_accept
);
2333 EXPORT_SYMBOL(kernel_connect
);
2334 EXPORT_SYMBOL(kernel_getsockname
);
2335 EXPORT_SYMBOL(kernel_getpeername
);
2336 EXPORT_SYMBOL(kernel_getsockopt
);
2337 EXPORT_SYMBOL(kernel_setsockopt
);
2338 EXPORT_SYMBOL(kernel_sendpage
);
2339 EXPORT_SYMBOL(kernel_sock_ioctl
);