[PATCH] kprobe whitespace cleanup
[linux-2.6.22.y-op.git] / arch / powerpc / kernel / kprobes.c
blob46d2fd0e57895fe71c300e74da3aeb4eb98f7cf5
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <asm/cacheflush.h>
34 #include <asm/kdebug.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 int __kprobes arch_prepare_kprobe(struct kprobe *p)
43 int ret = 0;
44 kprobe_opcode_t insn = *p->addr;
46 if ((unsigned long)p->addr & 0x03) {
47 printk("Attempt to register kprobe at an unaligned address\n");
48 ret = -EINVAL;
49 } else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
50 printk("Cannot register a kprobe on rfid or mtmsrd\n");
51 ret = -EINVAL;
54 /* insn must be on a special executable page on ppc64 */
55 if (!ret) {
56 p->ainsn.insn = get_insn_slot();
57 if (!p->ainsn.insn)
58 ret = -ENOMEM;
61 if (!ret) {
62 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
63 p->opcode = *p->addr;
64 flush_icache_range((unsigned long)p->ainsn.insn,
65 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
68 return ret;
71 void __kprobes arch_arm_kprobe(struct kprobe *p)
73 *p->addr = BREAKPOINT_INSTRUCTION;
74 flush_icache_range((unsigned long) p->addr,
75 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
78 void __kprobes arch_disarm_kprobe(struct kprobe *p)
80 *p->addr = p->opcode;
81 flush_icache_range((unsigned long) p->addr,
82 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
85 void __kprobes arch_remove_kprobe(struct kprobe *p)
87 mutex_lock(&kprobe_mutex);
88 free_insn_slot(p->ainsn.insn);
89 mutex_unlock(&kprobe_mutex);
92 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
94 regs->msr |= MSR_SE;
97 * On powerpc we should single step on the original
98 * instruction even if the probed insn is a trap
99 * variant as values in regs could play a part in
100 * if the trap is taken or not
102 regs->nip = (unsigned long)p->ainsn.insn;
105 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
107 kcb->prev_kprobe.kp = kprobe_running();
108 kcb->prev_kprobe.status = kcb->kprobe_status;
109 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
112 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
114 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
115 kcb->kprobe_status = kcb->prev_kprobe.status;
116 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
119 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
120 struct kprobe_ctlblk *kcb)
122 __get_cpu_var(current_kprobe) = p;
123 kcb->kprobe_saved_msr = regs->msr;
126 /* Called with kretprobe_lock held */
127 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
128 struct pt_regs *regs)
130 struct kretprobe_instance *ri;
132 if ((ri = get_free_rp_inst(rp)) != NULL) {
133 ri->rp = rp;
134 ri->task = current;
135 ri->ret_addr = (kprobe_opcode_t *)regs->link;
137 /* Replace the return addr with trampoline addr */
138 regs->link = (unsigned long)kretprobe_trampoline;
139 add_rp_inst(ri);
140 } else {
141 rp->nmissed++;
145 static int __kprobes kprobe_handler(struct pt_regs *regs)
147 struct kprobe *p;
148 int ret = 0;
149 unsigned int *addr = (unsigned int *)regs->nip;
150 struct kprobe_ctlblk *kcb;
153 * We don't want to be preempted for the entire
154 * duration of kprobe processing
156 preempt_disable();
157 kcb = get_kprobe_ctlblk();
159 /* Check we're not actually recursing */
160 if (kprobe_running()) {
161 p = get_kprobe(addr);
162 if (p) {
163 kprobe_opcode_t insn = *p->ainsn.insn;
164 if (kcb->kprobe_status == KPROBE_HIT_SS &&
165 is_trap(insn)) {
166 regs->msr &= ~MSR_SE;
167 regs->msr |= kcb->kprobe_saved_msr;
168 goto no_kprobe;
170 /* We have reentered the kprobe_handler(), since
171 * another probe was hit while within the handler.
172 * We here save the original kprobes variables and
173 * just single step on the instruction of the new probe
174 * without calling any user handlers.
176 save_previous_kprobe(kcb);
177 set_current_kprobe(p, regs, kcb);
178 kcb->kprobe_saved_msr = regs->msr;
179 kprobes_inc_nmissed_count(p);
180 prepare_singlestep(p, regs);
181 kcb->kprobe_status = KPROBE_REENTER;
182 return 1;
183 } else {
184 if (*addr != BREAKPOINT_INSTRUCTION) {
185 /* If trap variant, then it belongs not to us */
186 kprobe_opcode_t cur_insn = *addr;
187 if (is_trap(cur_insn))
188 goto no_kprobe;
189 /* The breakpoint instruction was removed by
190 * another cpu right after we hit, no further
191 * handling of this interrupt is appropriate
193 ret = 1;
194 goto no_kprobe;
196 p = __get_cpu_var(current_kprobe);
197 if (p->break_handler && p->break_handler(p, regs)) {
198 goto ss_probe;
201 goto no_kprobe;
204 p = get_kprobe(addr);
205 if (!p) {
206 if (*addr != BREAKPOINT_INSTRUCTION) {
208 * PowerPC has multiple variants of the "trap"
209 * instruction. If the current instruction is a
210 * trap variant, it could belong to someone else
212 kprobe_opcode_t cur_insn = *addr;
213 if (is_trap(cur_insn))
214 goto no_kprobe;
216 * The breakpoint instruction was removed right
217 * after we hit it. Another cpu has removed
218 * either a probepoint or a debugger breakpoint
219 * at this address. In either case, no further
220 * handling of this interrupt is appropriate.
222 ret = 1;
224 /* Not one of ours: let kernel handle it */
225 goto no_kprobe;
228 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
229 set_current_kprobe(p, regs, kcb);
230 if (p->pre_handler && p->pre_handler(p, regs))
231 /* handler has already set things up, so skip ss setup */
232 return 1;
234 ss_probe:
235 prepare_singlestep(p, regs);
236 kcb->kprobe_status = KPROBE_HIT_SS;
237 return 1;
239 no_kprobe:
240 preempt_enable_no_resched();
241 return ret;
245 * Function return probe trampoline:
246 * - init_kprobes() establishes a probepoint here
247 * - When the probed function returns, this probe
248 * causes the handlers to fire
250 void kretprobe_trampoline_holder(void)
252 asm volatile(".global kretprobe_trampoline\n"
253 "kretprobe_trampoline:\n"
254 "nop\n");
258 * Called when the probe at kretprobe trampoline is hit
260 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
262 struct kretprobe_instance *ri = NULL;
263 struct hlist_head *head;
264 struct hlist_node *node, *tmp;
265 unsigned long flags, orig_ret_address = 0;
266 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
268 spin_lock_irqsave(&kretprobe_lock, flags);
269 head = kretprobe_inst_table_head(current);
272 * It is possible to have multiple instances associated with a given
273 * task either because an multiple functions in the call path
274 * have a return probe installed on them, and/or more then one return
275 * return probe was registered for a target function.
277 * We can handle this because:
278 * - instances are always inserted at the head of the list
279 * - when multiple return probes are registered for the same
280 * function, the first instance's ret_addr will point to the
281 * real return address, and all the rest will point to
282 * kretprobe_trampoline
284 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
285 if (ri->task != current)
286 /* another task is sharing our hash bucket */
287 continue;
289 if (ri->rp && ri->rp->handler)
290 ri->rp->handler(ri, regs);
292 orig_ret_address = (unsigned long)ri->ret_addr;
293 recycle_rp_inst(ri);
295 if (orig_ret_address != trampoline_address)
297 * This is the real return address. Any other
298 * instances associated with this task are for
299 * other calls deeper on the call stack
301 break;
304 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
305 regs->nip = orig_ret_address;
307 reset_current_kprobe();
308 spin_unlock_irqrestore(&kretprobe_lock, flags);
309 preempt_enable_no_resched();
312 * By returning a non-zero value, we are telling
313 * kprobe_handler() that we don't want the post_handler
314 * to run (and have re-enabled preemption)
316 return 1;
320 * Called after single-stepping. p->addr is the address of the
321 * instruction whose first byte has been replaced by the "breakpoint"
322 * instruction. To avoid the SMP problems that can occur when we
323 * temporarily put back the original opcode to single-step, we
324 * single-stepped a copy of the instruction. The address of this
325 * copy is p->ainsn.insn.
327 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
329 int ret;
330 unsigned int insn = *p->ainsn.insn;
332 regs->nip = (unsigned long)p->addr;
333 ret = emulate_step(regs, insn);
334 if (ret == 0)
335 regs->nip = (unsigned long)p->addr + 4;
338 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
340 struct kprobe *cur = kprobe_running();
341 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
343 if (!cur)
344 return 0;
346 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
347 kcb->kprobe_status = KPROBE_HIT_SSDONE;
348 cur->post_handler(cur, regs, 0);
351 resume_execution(cur, regs);
352 regs->msr |= kcb->kprobe_saved_msr;
354 /*Restore back the original saved kprobes variables and continue. */
355 if (kcb->kprobe_status == KPROBE_REENTER) {
356 restore_previous_kprobe(kcb);
357 goto out;
359 reset_current_kprobe();
360 out:
361 preempt_enable_no_resched();
364 * if somebody else is singlestepping across a probe point, msr
365 * will have SE set, in which case, continue the remaining processing
366 * of do_debug, as if this is not a probe hit.
368 if (regs->msr & MSR_SE)
369 return 0;
371 return 1;
374 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
376 struct kprobe *cur = kprobe_running();
377 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
378 const struct exception_table_entry *entry;
380 switch(kcb->kprobe_status) {
381 case KPROBE_HIT_SS:
382 case KPROBE_REENTER:
384 * We are here because the instruction being single
385 * stepped caused a page fault. We reset the current
386 * kprobe and the nip points back to the probe address
387 * and allow the page fault handler to continue as a
388 * normal page fault.
390 regs->nip = (unsigned long)cur->addr;
391 regs->msr &= ~MSR_SE;
392 regs->msr |= kcb->kprobe_saved_msr;
393 if (kcb->kprobe_status == KPROBE_REENTER)
394 restore_previous_kprobe(kcb);
395 else
396 reset_current_kprobe();
397 preempt_enable_no_resched();
398 break;
399 case KPROBE_HIT_ACTIVE:
400 case KPROBE_HIT_SSDONE:
402 * We increment the nmissed count for accounting,
403 * we can also use npre/npostfault count for accouting
404 * these specific fault cases.
406 kprobes_inc_nmissed_count(cur);
409 * We come here because instructions in the pre/post
410 * handler caused the page_fault, this could happen
411 * if handler tries to access user space by
412 * copy_from_user(), get_user() etc. Let the
413 * user-specified handler try to fix it first.
415 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
416 return 1;
419 * In case the user-specified fault handler returned
420 * zero, try to fix up.
422 if ((entry = search_exception_tables(regs->nip)) != NULL) {
423 regs->nip = entry->fixup;
424 return 1;
428 * fixup_exception() could not handle it,
429 * Let do_page_fault() fix it.
431 break;
432 default:
433 break;
435 return 0;
439 * Wrapper routine to for handling exceptions.
441 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
442 unsigned long val, void *data)
444 struct die_args *args = (struct die_args *)data;
445 int ret = NOTIFY_DONE;
447 if (args->regs && user_mode(args->regs))
448 return ret;
450 switch (val) {
451 case DIE_BPT:
452 if (kprobe_handler(args->regs))
453 ret = NOTIFY_STOP;
454 break;
455 case DIE_SSTEP:
456 if (post_kprobe_handler(args->regs))
457 ret = NOTIFY_STOP;
458 break;
459 case DIE_PAGE_FAULT:
460 /* kprobe_running() needs smp_processor_id() */
461 preempt_disable();
462 if (kprobe_running() &&
463 kprobe_fault_handler(args->regs, args->trapnr))
464 ret = NOTIFY_STOP;
465 preempt_enable();
466 break;
467 default:
468 break;
470 return ret;
473 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
475 struct jprobe *jp = container_of(p, struct jprobe, kp);
476 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
478 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
480 /* setup return addr to the jprobe handler routine */
481 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
482 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
484 return 1;
487 void __kprobes jprobe_return(void)
489 asm volatile("trap" ::: "memory");
492 void __kprobes jprobe_return_end(void)
496 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
498 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
501 * FIXME - we should ideally be validating that we got here 'cos
502 * of the "trap" in jprobe_return() above, before restoring the
503 * saved regs...
505 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
506 preempt_enable_no_resched();
507 return 1;
510 static struct kprobe trampoline_p = {
511 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
512 .pre_handler = trampoline_probe_handler
515 int __init arch_init_kprobes(void)
517 return register_kprobe(&trampoline_p);