[PATCH] e1000: endian fixes
[linux-2.6.22.y-op.git] / block / cfq-iosched.c
blob2540dfaa3e385def27a44284bf3e552f986ee15d
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
18 * tunables
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
34 #define CFQ_KEY_ASYNC (0)
36 static DEFINE_RWLOCK(cfq_exit_lock);
39 * for the hash of cfqq inside the cfqd
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
46 * for the hash of crq inside the cfqq
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
58 #define RQ_DATA(rq) (rq)->elevator_private
61 * rb-tree defines
63 #define RB_NONE (2)
64 #define RB_EMPTY(node) ((node)->rb_node == NULL)
65 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
66 #define RB_CLEAR(node) do { \
67 (node)->rb_parent = NULL; \
68 RB_CLEAR_COLOR((node)); \
69 (node)->rb_right = NULL; \
70 (node)->rb_left = NULL; \
71 } while (0)
72 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
73 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
74 #define rq_rb_key(rq) (rq)->sector
76 static kmem_cache_t *crq_pool;
77 static kmem_cache_t *cfq_pool;
78 static kmem_cache_t *cfq_ioc_pool;
80 static atomic_t ioc_count = ATOMIC_INIT(0);
81 static struct completion *ioc_gone;
83 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
84 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
85 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
86 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
88 #define ASYNC (0)
89 #define SYNC (1)
91 #define cfq_cfqq_dispatched(cfqq) \
92 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
94 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
96 #define cfq_cfqq_sync(cfqq) \
97 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
99 #define sample_valid(samples) ((samples) > 80)
102 * Per block device queue structure
104 struct cfq_data {
105 request_queue_t *queue;
108 * rr list of queues with requests and the count of them
110 struct list_head rr_list[CFQ_PRIO_LISTS];
111 struct list_head busy_rr;
112 struct list_head cur_rr;
113 struct list_head idle_rr;
114 unsigned int busy_queues;
117 * non-ordered list of empty cfqq's
119 struct list_head empty_list;
122 * cfqq lookup hash
124 struct hlist_head *cfq_hash;
127 * global crq hash for all queues
129 struct hlist_head *crq_hash;
131 unsigned int max_queued;
133 mempool_t *crq_pool;
135 int rq_in_driver;
138 * schedule slice state info
141 * idle window management
143 struct timer_list idle_slice_timer;
144 struct work_struct unplug_work;
146 struct cfq_queue *active_queue;
147 struct cfq_io_context *active_cic;
148 int cur_prio, cur_end_prio;
149 unsigned int dispatch_slice;
151 struct timer_list idle_class_timer;
153 sector_t last_sector;
154 unsigned long last_end_request;
156 unsigned int rq_starved;
159 * tunables, see top of file
161 unsigned int cfq_quantum;
162 unsigned int cfq_queued;
163 unsigned int cfq_fifo_expire[2];
164 unsigned int cfq_back_penalty;
165 unsigned int cfq_back_max;
166 unsigned int cfq_slice[2];
167 unsigned int cfq_slice_async_rq;
168 unsigned int cfq_slice_idle;
170 struct list_head cic_list;
174 * Per process-grouping structure
176 struct cfq_queue {
177 /* reference count */
178 atomic_t ref;
179 /* parent cfq_data */
180 struct cfq_data *cfqd;
181 /* cfqq lookup hash */
182 struct hlist_node cfq_hash;
183 /* hash key */
184 unsigned int key;
185 /* on either rr or empty list of cfqd */
186 struct list_head cfq_list;
187 /* sorted list of pending requests */
188 struct rb_root sort_list;
189 /* if fifo isn't expired, next request to serve */
190 struct cfq_rq *next_crq;
191 /* requests queued in sort_list */
192 int queued[2];
193 /* currently allocated requests */
194 int allocated[2];
195 /* fifo list of requests in sort_list */
196 struct list_head fifo;
198 unsigned long slice_start;
199 unsigned long slice_end;
200 unsigned long slice_left;
201 unsigned long service_last;
203 /* number of requests that are on the dispatch list */
204 int on_dispatch[2];
206 /* io prio of this group */
207 unsigned short ioprio, org_ioprio;
208 unsigned short ioprio_class, org_ioprio_class;
210 /* various state flags, see below */
211 unsigned int flags;
214 struct cfq_rq {
215 struct rb_node rb_node;
216 sector_t rb_key;
217 struct request *request;
218 struct hlist_node hash;
220 struct cfq_queue *cfq_queue;
221 struct cfq_io_context *io_context;
223 unsigned int crq_flags;
226 enum cfqq_state_flags {
227 CFQ_CFQQ_FLAG_on_rr = 0,
228 CFQ_CFQQ_FLAG_wait_request,
229 CFQ_CFQQ_FLAG_must_alloc,
230 CFQ_CFQQ_FLAG_must_alloc_slice,
231 CFQ_CFQQ_FLAG_must_dispatch,
232 CFQ_CFQQ_FLAG_fifo_expire,
233 CFQ_CFQQ_FLAG_idle_window,
234 CFQ_CFQQ_FLAG_prio_changed,
237 #define CFQ_CFQQ_FNS(name) \
238 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
240 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
242 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
244 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
246 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
248 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
251 CFQ_CFQQ_FNS(on_rr);
252 CFQ_CFQQ_FNS(wait_request);
253 CFQ_CFQQ_FNS(must_alloc);
254 CFQ_CFQQ_FNS(must_alloc_slice);
255 CFQ_CFQQ_FNS(must_dispatch);
256 CFQ_CFQQ_FNS(fifo_expire);
257 CFQ_CFQQ_FNS(idle_window);
258 CFQ_CFQQ_FNS(prio_changed);
259 #undef CFQ_CFQQ_FNS
261 enum cfq_rq_state_flags {
262 CFQ_CRQ_FLAG_is_sync = 0,
265 #define CFQ_CRQ_FNS(name) \
266 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
268 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
270 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
272 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
274 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
276 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
279 CFQ_CRQ_FNS(is_sync);
280 #undef CFQ_CRQ_FNS
282 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
283 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
284 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
286 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
289 * lots of deadline iosched dupes, can be abstracted later...
291 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
293 hlist_del_init(&crq->hash);
296 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
298 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
300 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
303 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
305 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
306 struct hlist_node *entry, *next;
308 hlist_for_each_safe(entry, next, hash_list) {
309 struct cfq_rq *crq = list_entry_hash(entry);
310 struct request *__rq = crq->request;
312 if (!rq_mergeable(__rq)) {
313 cfq_del_crq_hash(crq);
314 continue;
317 if (rq_hash_key(__rq) == offset)
318 return __rq;
321 return NULL;
325 * scheduler run of queue, if there are requests pending and no one in the
326 * driver that will restart queueing
328 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
330 if (cfqd->busy_queues)
331 kblockd_schedule_work(&cfqd->unplug_work);
334 static int cfq_queue_empty(request_queue_t *q)
336 struct cfq_data *cfqd = q->elevator->elevator_data;
338 return !cfqd->busy_queues;
341 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
343 if (rw == READ || process_sync(task))
344 return task->pid;
346 return CFQ_KEY_ASYNC;
350 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
351 * We choose the request that is closest to the head right now. Distance
352 * behind the head is penalized and only allowed to a certain extent.
354 static struct cfq_rq *
355 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
357 sector_t last, s1, s2, d1 = 0, d2 = 0;
358 unsigned long back_max;
359 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
360 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
361 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
363 if (crq1 == NULL || crq1 == crq2)
364 return crq2;
365 if (crq2 == NULL)
366 return crq1;
368 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
369 return crq1;
370 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
371 return crq2;
373 s1 = crq1->request->sector;
374 s2 = crq2->request->sector;
376 last = cfqd->last_sector;
379 * by definition, 1KiB is 2 sectors
381 back_max = cfqd->cfq_back_max * 2;
384 * Strict one way elevator _except_ in the case where we allow
385 * short backward seeks which are biased as twice the cost of a
386 * similar forward seek.
388 if (s1 >= last)
389 d1 = s1 - last;
390 else if (s1 + back_max >= last)
391 d1 = (last - s1) * cfqd->cfq_back_penalty;
392 else
393 wrap |= CFQ_RQ1_WRAP;
395 if (s2 >= last)
396 d2 = s2 - last;
397 else if (s2 + back_max >= last)
398 d2 = (last - s2) * cfqd->cfq_back_penalty;
399 else
400 wrap |= CFQ_RQ2_WRAP;
402 /* Found required data */
405 * By doing switch() on the bit mask "wrap" we avoid having to
406 * check two variables for all permutations: --> faster!
408 switch (wrap) {
409 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
410 if (d1 < d2)
411 return crq1;
412 else if (d2 < d1)
413 return crq2;
414 else {
415 if (s1 >= s2)
416 return crq1;
417 else
418 return crq2;
421 case CFQ_RQ2_WRAP:
422 return crq1;
423 case CFQ_RQ1_WRAP:
424 return crq2;
425 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
426 default:
428 * Since both rqs are wrapped,
429 * start with the one that's further behind head
430 * (--> only *one* back seek required),
431 * since back seek takes more time than forward.
433 if (s1 <= s2)
434 return crq1;
435 else
436 return crq2;
441 * would be nice to take fifo expire time into account as well
443 static struct cfq_rq *
444 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
445 struct cfq_rq *last)
447 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
448 struct rb_node *rbnext, *rbprev;
450 if (!(rbnext = rb_next(&last->rb_node))) {
451 rbnext = rb_first(&cfqq->sort_list);
452 if (rbnext == &last->rb_node)
453 rbnext = NULL;
456 rbprev = rb_prev(&last->rb_node);
458 if (rbprev)
459 crq_prev = rb_entry_crq(rbprev);
460 if (rbnext)
461 crq_next = rb_entry_crq(rbnext);
463 return cfq_choose_req(cfqd, crq_next, crq_prev);
466 static void cfq_update_next_crq(struct cfq_rq *crq)
468 struct cfq_queue *cfqq = crq->cfq_queue;
470 if (cfqq->next_crq == crq)
471 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
474 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
476 struct cfq_data *cfqd = cfqq->cfqd;
477 struct list_head *list, *entry;
479 BUG_ON(!cfq_cfqq_on_rr(cfqq));
481 list_del(&cfqq->cfq_list);
483 if (cfq_class_rt(cfqq))
484 list = &cfqd->cur_rr;
485 else if (cfq_class_idle(cfqq))
486 list = &cfqd->idle_rr;
487 else {
489 * if cfqq has requests in flight, don't allow it to be
490 * found in cfq_set_active_queue before it has finished them.
491 * this is done to increase fairness between a process that
492 * has lots of io pending vs one that only generates one
493 * sporadically or synchronously
495 if (cfq_cfqq_dispatched(cfqq))
496 list = &cfqd->busy_rr;
497 else
498 list = &cfqd->rr_list[cfqq->ioprio];
502 * if queue was preempted, just add to front to be fair. busy_rr
503 * isn't sorted.
505 if (preempted || list == &cfqd->busy_rr) {
506 list_add(&cfqq->cfq_list, list);
507 return;
511 * sort by when queue was last serviced
513 entry = list;
514 while ((entry = entry->prev) != list) {
515 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
517 if (!__cfqq->service_last)
518 break;
519 if (time_before(__cfqq->service_last, cfqq->service_last))
520 break;
523 list_add(&cfqq->cfq_list, entry);
527 * add to busy list of queues for service, trying to be fair in ordering
528 * the pending list according to last request service
530 static inline void
531 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
533 BUG_ON(cfq_cfqq_on_rr(cfqq));
534 cfq_mark_cfqq_on_rr(cfqq);
535 cfqd->busy_queues++;
537 cfq_resort_rr_list(cfqq, 0);
540 static inline void
541 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
543 BUG_ON(!cfq_cfqq_on_rr(cfqq));
544 cfq_clear_cfqq_on_rr(cfqq);
545 list_move(&cfqq->cfq_list, &cfqd->empty_list);
547 BUG_ON(!cfqd->busy_queues);
548 cfqd->busy_queues--;
552 * rb tree support functions
554 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
556 struct cfq_queue *cfqq = crq->cfq_queue;
557 struct cfq_data *cfqd = cfqq->cfqd;
558 const int sync = cfq_crq_is_sync(crq);
560 BUG_ON(!cfqq->queued[sync]);
561 cfqq->queued[sync]--;
563 cfq_update_next_crq(crq);
565 rb_erase(&crq->rb_node, &cfqq->sort_list);
566 RB_CLEAR_COLOR(&crq->rb_node);
568 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
569 cfq_del_cfqq_rr(cfqd, cfqq);
572 static struct cfq_rq *
573 __cfq_add_crq_rb(struct cfq_rq *crq)
575 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
576 struct rb_node *parent = NULL;
577 struct cfq_rq *__crq;
579 while (*p) {
580 parent = *p;
581 __crq = rb_entry_crq(parent);
583 if (crq->rb_key < __crq->rb_key)
584 p = &(*p)->rb_left;
585 else if (crq->rb_key > __crq->rb_key)
586 p = &(*p)->rb_right;
587 else
588 return __crq;
591 rb_link_node(&crq->rb_node, parent, p);
592 return NULL;
595 static void cfq_add_crq_rb(struct cfq_rq *crq)
597 struct cfq_queue *cfqq = crq->cfq_queue;
598 struct cfq_data *cfqd = cfqq->cfqd;
599 struct request *rq = crq->request;
600 struct cfq_rq *__alias;
602 crq->rb_key = rq_rb_key(rq);
603 cfqq->queued[cfq_crq_is_sync(crq)]++;
606 * looks a little odd, but the first insert might return an alias.
607 * if that happens, put the alias on the dispatch list
609 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
610 cfq_dispatch_insert(cfqd->queue, __alias);
612 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
614 if (!cfq_cfqq_on_rr(cfqq))
615 cfq_add_cfqq_rr(cfqd, cfqq);
618 * check if this request is a better next-serve candidate
620 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
623 static inline void
624 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
626 rb_erase(&crq->rb_node, &cfqq->sort_list);
627 cfqq->queued[cfq_crq_is_sync(crq)]--;
629 cfq_add_crq_rb(crq);
632 static struct request *
633 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
635 struct task_struct *tsk = current;
636 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
637 struct cfq_queue *cfqq;
638 struct rb_node *n;
639 sector_t sector;
641 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
642 if (!cfqq)
643 goto out;
645 sector = bio->bi_sector + bio_sectors(bio);
646 n = cfqq->sort_list.rb_node;
647 while (n) {
648 struct cfq_rq *crq = rb_entry_crq(n);
650 if (sector < crq->rb_key)
651 n = n->rb_left;
652 else if (sector > crq->rb_key)
653 n = n->rb_right;
654 else
655 return crq->request;
658 out:
659 return NULL;
662 static void cfq_activate_request(request_queue_t *q, struct request *rq)
664 struct cfq_data *cfqd = q->elevator->elevator_data;
666 cfqd->rq_in_driver++;
669 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
671 struct cfq_data *cfqd = q->elevator->elevator_data;
673 WARN_ON(!cfqd->rq_in_driver);
674 cfqd->rq_in_driver--;
677 static void cfq_remove_request(struct request *rq)
679 struct cfq_rq *crq = RQ_DATA(rq);
681 list_del_init(&rq->queuelist);
682 cfq_del_crq_rb(crq);
683 cfq_del_crq_hash(crq);
686 static int
687 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
689 struct cfq_data *cfqd = q->elevator->elevator_data;
690 struct request *__rq;
691 int ret;
693 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
694 if (__rq && elv_rq_merge_ok(__rq, bio)) {
695 ret = ELEVATOR_BACK_MERGE;
696 goto out;
699 __rq = cfq_find_rq_fmerge(cfqd, bio);
700 if (__rq && elv_rq_merge_ok(__rq, bio)) {
701 ret = ELEVATOR_FRONT_MERGE;
702 goto out;
705 return ELEVATOR_NO_MERGE;
706 out:
707 *req = __rq;
708 return ret;
711 static void cfq_merged_request(request_queue_t *q, struct request *req)
713 struct cfq_data *cfqd = q->elevator->elevator_data;
714 struct cfq_rq *crq = RQ_DATA(req);
716 cfq_del_crq_hash(crq);
717 cfq_add_crq_hash(cfqd, crq);
719 if (rq_rb_key(req) != crq->rb_key) {
720 struct cfq_queue *cfqq = crq->cfq_queue;
722 cfq_update_next_crq(crq);
723 cfq_reposition_crq_rb(cfqq, crq);
727 static void
728 cfq_merged_requests(request_queue_t *q, struct request *rq,
729 struct request *next)
731 cfq_merged_request(q, rq);
734 * reposition in fifo if next is older than rq
736 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
737 time_before(next->start_time, rq->start_time))
738 list_move(&rq->queuelist, &next->queuelist);
740 cfq_remove_request(next);
743 static inline void
744 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
746 if (cfqq) {
748 * stop potential idle class queues waiting service
750 del_timer(&cfqd->idle_class_timer);
752 cfqq->slice_start = jiffies;
753 cfqq->slice_end = 0;
754 cfqq->slice_left = 0;
755 cfq_clear_cfqq_must_alloc_slice(cfqq);
756 cfq_clear_cfqq_fifo_expire(cfqq);
759 cfqd->active_queue = cfqq;
763 * current cfqq expired its slice (or was too idle), select new one
765 static void
766 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
767 int preempted)
769 unsigned long now = jiffies;
771 if (cfq_cfqq_wait_request(cfqq))
772 del_timer(&cfqd->idle_slice_timer);
774 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
775 cfqq->service_last = now;
776 cfq_schedule_dispatch(cfqd);
779 cfq_clear_cfqq_must_dispatch(cfqq);
780 cfq_clear_cfqq_wait_request(cfqq);
783 * store what was left of this slice, if the queue idled out
784 * or was preempted
786 if (time_after(cfqq->slice_end, now))
787 cfqq->slice_left = cfqq->slice_end - now;
788 else
789 cfqq->slice_left = 0;
791 if (cfq_cfqq_on_rr(cfqq))
792 cfq_resort_rr_list(cfqq, preempted);
794 if (cfqq == cfqd->active_queue)
795 cfqd->active_queue = NULL;
797 if (cfqd->active_cic) {
798 put_io_context(cfqd->active_cic->ioc);
799 cfqd->active_cic = NULL;
802 cfqd->dispatch_slice = 0;
805 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
807 struct cfq_queue *cfqq = cfqd->active_queue;
809 if (cfqq)
810 __cfq_slice_expired(cfqd, cfqq, preempted);
815 * 0,1
816 * 0,1,2
817 * 0,1,2,3
818 * 0,1,2,3,4
819 * 0,1,2,3,4,5
820 * 0,1,2,3,4,5,6
821 * 0,1,2,3,4,5,6,7
823 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
825 int prio, wrap;
827 prio = -1;
828 wrap = 0;
829 do {
830 int p;
832 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
833 if (!list_empty(&cfqd->rr_list[p])) {
834 prio = p;
835 break;
839 if (prio != -1)
840 break;
841 cfqd->cur_prio = 0;
842 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
843 cfqd->cur_end_prio = 0;
844 if (wrap)
845 break;
846 wrap = 1;
848 } while (1);
850 if (unlikely(prio == -1))
851 return -1;
853 BUG_ON(prio >= CFQ_PRIO_LISTS);
855 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
857 cfqd->cur_prio = prio + 1;
858 if (cfqd->cur_prio > cfqd->cur_end_prio) {
859 cfqd->cur_end_prio = cfqd->cur_prio;
860 cfqd->cur_prio = 0;
862 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
863 cfqd->cur_prio = 0;
864 cfqd->cur_end_prio = 0;
867 return prio;
870 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
872 struct cfq_queue *cfqq = NULL;
875 * if current list is non-empty, grab first entry. if it is empty,
876 * get next prio level and grab first entry then if any are spliced
878 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
879 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
882 * if we have idle queues and no rt or be queues had pending
883 * requests, either allow immediate service if the grace period
884 * has passed or arm the idle grace timer
886 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
887 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
889 if (time_after_eq(jiffies, end))
890 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
891 else
892 mod_timer(&cfqd->idle_class_timer, end);
895 __cfq_set_active_queue(cfqd, cfqq);
896 return cfqq;
899 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
902 struct cfq_io_context *cic;
903 unsigned long sl;
905 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
906 WARN_ON(cfqq != cfqd->active_queue);
909 * idle is disabled, either manually or by past process history
911 if (!cfqd->cfq_slice_idle)
912 return 0;
913 if (!cfq_cfqq_idle_window(cfqq))
914 return 0;
916 * task has exited, don't wait
918 cic = cfqd->active_cic;
919 if (!cic || !cic->ioc->task)
920 return 0;
922 cfq_mark_cfqq_must_dispatch(cfqq);
923 cfq_mark_cfqq_wait_request(cfqq);
925 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
928 * we don't want to idle for seeks, but we do want to allow
929 * fair distribution of slice time for a process doing back-to-back
930 * seeks. so allow a little bit of time for him to submit a new rq
932 if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
933 sl = 2;
935 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
936 return 1;
939 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
941 struct cfq_data *cfqd = q->elevator->elevator_data;
942 struct cfq_queue *cfqq = crq->cfq_queue;
944 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
945 cfq_remove_request(crq->request);
946 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
947 elv_dispatch_sort(q, crq->request);
951 * return expired entry, or NULL to just start from scratch in rbtree
953 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
955 struct cfq_data *cfqd = cfqq->cfqd;
956 struct request *rq;
957 struct cfq_rq *crq;
959 if (cfq_cfqq_fifo_expire(cfqq))
960 return NULL;
962 if (!list_empty(&cfqq->fifo)) {
963 int fifo = cfq_cfqq_class_sync(cfqq);
965 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
966 rq = crq->request;
967 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
968 cfq_mark_cfqq_fifo_expire(cfqq);
969 return crq;
973 return NULL;
977 * Scale schedule slice based on io priority. Use the sync time slice only
978 * if a queue is marked sync and has sync io queued. A sync queue with async
979 * io only, should not get full sync slice length.
981 static inline int
982 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
984 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
986 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
988 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
991 static inline void
992 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
994 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
997 static inline int
998 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1000 const int base_rq = cfqd->cfq_slice_async_rq;
1002 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1004 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1008 * get next queue for service
1010 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1012 unsigned long now = jiffies;
1013 struct cfq_queue *cfqq;
1015 cfqq = cfqd->active_queue;
1016 if (!cfqq)
1017 goto new_queue;
1020 * slice has expired
1022 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1023 goto expire;
1026 * if queue has requests, dispatch one. if not, check if
1027 * enough slice is left to wait for one
1029 if (!RB_EMPTY(&cfqq->sort_list))
1030 goto keep_queue;
1031 else if (cfq_cfqq_class_sync(cfqq) &&
1032 time_before(now, cfqq->slice_end)) {
1033 if (cfq_arm_slice_timer(cfqd, cfqq))
1034 return NULL;
1037 expire:
1038 cfq_slice_expired(cfqd, 0);
1039 new_queue:
1040 cfqq = cfq_set_active_queue(cfqd);
1041 keep_queue:
1042 return cfqq;
1045 static int
1046 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1047 int max_dispatch)
1049 int dispatched = 0;
1051 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1053 do {
1054 struct cfq_rq *crq;
1057 * follow expired path, else get first next available
1059 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1060 crq = cfqq->next_crq;
1063 * finally, insert request into driver dispatch list
1065 cfq_dispatch_insert(cfqd->queue, crq);
1067 cfqd->dispatch_slice++;
1068 dispatched++;
1070 if (!cfqd->active_cic) {
1071 atomic_inc(&crq->io_context->ioc->refcount);
1072 cfqd->active_cic = crq->io_context;
1075 if (RB_EMPTY(&cfqq->sort_list))
1076 break;
1078 } while (dispatched < max_dispatch);
1081 * if slice end isn't set yet, set it. if at least one request was
1082 * sync, use the sync time slice value
1084 if (!cfqq->slice_end)
1085 cfq_set_prio_slice(cfqd, cfqq);
1088 * expire an async queue immediately if it has used up its slice. idle
1089 * queue always expire after 1 dispatch round.
1091 if ((!cfq_cfqq_sync(cfqq) &&
1092 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1093 cfq_class_idle(cfqq))
1094 cfq_slice_expired(cfqd, 0);
1096 return dispatched;
1099 static int
1100 cfq_forced_dispatch_cfqqs(struct list_head *list)
1102 int dispatched = 0;
1103 struct cfq_queue *cfqq, *next;
1104 struct cfq_rq *crq;
1106 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1107 while ((crq = cfqq->next_crq)) {
1108 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1109 dispatched++;
1111 BUG_ON(!list_empty(&cfqq->fifo));
1113 return dispatched;
1116 static int
1117 cfq_forced_dispatch(struct cfq_data *cfqd)
1119 int i, dispatched = 0;
1121 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1122 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1124 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1125 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1126 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1128 cfq_slice_expired(cfqd, 0);
1130 BUG_ON(cfqd->busy_queues);
1132 return dispatched;
1135 static int
1136 cfq_dispatch_requests(request_queue_t *q, int force)
1138 struct cfq_data *cfqd = q->elevator->elevator_data;
1139 struct cfq_queue *cfqq;
1141 if (!cfqd->busy_queues)
1142 return 0;
1144 if (unlikely(force))
1145 return cfq_forced_dispatch(cfqd);
1147 cfqq = cfq_select_queue(cfqd);
1148 if (cfqq) {
1149 int max_dispatch;
1151 cfq_clear_cfqq_must_dispatch(cfqq);
1152 cfq_clear_cfqq_wait_request(cfqq);
1153 del_timer(&cfqd->idle_slice_timer);
1155 max_dispatch = cfqd->cfq_quantum;
1156 if (cfq_class_idle(cfqq))
1157 max_dispatch = 1;
1159 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1162 return 0;
1166 * task holds one reference to the queue, dropped when task exits. each crq
1167 * in-flight on this queue also holds a reference, dropped when crq is freed.
1169 * queue lock must be held here.
1171 static void cfq_put_queue(struct cfq_queue *cfqq)
1173 struct cfq_data *cfqd = cfqq->cfqd;
1175 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1177 if (!atomic_dec_and_test(&cfqq->ref))
1178 return;
1180 BUG_ON(rb_first(&cfqq->sort_list));
1181 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1182 BUG_ON(cfq_cfqq_on_rr(cfqq));
1184 if (unlikely(cfqd->active_queue == cfqq))
1185 __cfq_slice_expired(cfqd, cfqq, 0);
1188 * it's on the empty list and still hashed
1190 list_del(&cfqq->cfq_list);
1191 hlist_del(&cfqq->cfq_hash);
1192 kmem_cache_free(cfq_pool, cfqq);
1195 static inline struct cfq_queue *
1196 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1197 const int hashval)
1199 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1200 struct hlist_node *entry;
1201 struct cfq_queue *__cfqq;
1203 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1204 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1206 if (__cfqq->key == key && (__p == prio || !prio))
1207 return __cfqq;
1210 return NULL;
1213 static struct cfq_queue *
1214 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1216 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1219 static void cfq_free_io_context(struct io_context *ioc)
1221 struct cfq_io_context *__cic;
1222 struct rb_node *n;
1223 int freed = 0;
1225 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1226 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1227 rb_erase(&__cic->rb_node, &ioc->cic_root);
1228 kmem_cache_free(cfq_ioc_pool, __cic);
1229 freed++;
1232 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1233 complete(ioc_gone);
1236 static void cfq_trim(struct io_context *ioc)
1238 ioc->set_ioprio = NULL;
1239 cfq_free_io_context(ioc);
1243 * Called with interrupts disabled
1245 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1247 struct cfq_data *cfqd = cic->key;
1248 request_queue_t *q;
1250 if (!cfqd)
1251 return;
1253 q = cfqd->queue;
1255 WARN_ON(!irqs_disabled());
1257 spin_lock(q->queue_lock);
1259 if (cic->cfqq[ASYNC]) {
1260 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1261 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1262 cfq_put_queue(cic->cfqq[ASYNC]);
1263 cic->cfqq[ASYNC] = NULL;
1266 if (cic->cfqq[SYNC]) {
1267 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1268 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1269 cfq_put_queue(cic->cfqq[SYNC]);
1270 cic->cfqq[SYNC] = NULL;
1273 cic->key = NULL;
1274 list_del_init(&cic->queue_list);
1275 spin_unlock(q->queue_lock);
1278 static void cfq_exit_io_context(struct io_context *ioc)
1280 struct cfq_io_context *__cic;
1281 unsigned long flags;
1282 struct rb_node *n;
1285 * put the reference this task is holding to the various queues
1287 read_lock_irqsave(&cfq_exit_lock, flags);
1289 n = rb_first(&ioc->cic_root);
1290 while (n != NULL) {
1291 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1293 cfq_exit_single_io_context(__cic);
1294 n = rb_next(n);
1297 read_unlock_irqrestore(&cfq_exit_lock, flags);
1300 static struct cfq_io_context *
1301 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1303 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1305 if (cic) {
1306 RB_CLEAR(&cic->rb_node);
1307 cic->key = NULL;
1308 cic->cfqq[ASYNC] = NULL;
1309 cic->cfqq[SYNC] = NULL;
1310 cic->last_end_request = jiffies;
1311 cic->ttime_total = 0;
1312 cic->ttime_samples = 0;
1313 cic->ttime_mean = 0;
1314 cic->dtor = cfq_free_io_context;
1315 cic->exit = cfq_exit_io_context;
1316 INIT_LIST_HEAD(&cic->queue_list);
1317 atomic_inc(&ioc_count);
1320 return cic;
1323 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1325 struct task_struct *tsk = current;
1326 int ioprio_class;
1328 if (!cfq_cfqq_prio_changed(cfqq))
1329 return;
1331 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1332 switch (ioprio_class) {
1333 default:
1334 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1335 case IOPRIO_CLASS_NONE:
1337 * no prio set, place us in the middle of the BE classes
1339 cfqq->ioprio = task_nice_ioprio(tsk);
1340 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1341 break;
1342 case IOPRIO_CLASS_RT:
1343 cfqq->ioprio = task_ioprio(tsk);
1344 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1345 break;
1346 case IOPRIO_CLASS_BE:
1347 cfqq->ioprio = task_ioprio(tsk);
1348 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1349 break;
1350 case IOPRIO_CLASS_IDLE:
1351 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1352 cfqq->ioprio = 7;
1353 cfq_clear_cfqq_idle_window(cfqq);
1354 break;
1358 * keep track of original prio settings in case we have to temporarily
1359 * elevate the priority of this queue
1361 cfqq->org_ioprio = cfqq->ioprio;
1362 cfqq->org_ioprio_class = cfqq->ioprio_class;
1364 if (cfq_cfqq_on_rr(cfqq))
1365 cfq_resort_rr_list(cfqq, 0);
1367 cfq_clear_cfqq_prio_changed(cfqq);
1370 static inline void changed_ioprio(struct cfq_io_context *cic)
1372 struct cfq_data *cfqd = cic->key;
1373 struct cfq_queue *cfqq;
1374 if (cfqd) {
1375 spin_lock(cfqd->queue->queue_lock);
1376 cfqq = cic->cfqq[ASYNC];
1377 if (cfqq) {
1378 struct cfq_queue *new_cfqq;
1379 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1380 cic->ioc->task, GFP_ATOMIC);
1381 if (new_cfqq) {
1382 cic->cfqq[ASYNC] = new_cfqq;
1383 cfq_put_queue(cfqq);
1386 cfqq = cic->cfqq[SYNC];
1387 if (cfqq) {
1388 cfq_mark_cfqq_prio_changed(cfqq);
1389 cfq_init_prio_data(cfqq);
1391 spin_unlock(cfqd->queue->queue_lock);
1396 * callback from sys_ioprio_set, irqs are disabled
1398 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1400 struct cfq_io_context *cic;
1401 struct rb_node *n;
1403 write_lock(&cfq_exit_lock);
1405 n = rb_first(&ioc->cic_root);
1406 while (n != NULL) {
1407 cic = rb_entry(n, struct cfq_io_context, rb_node);
1409 changed_ioprio(cic);
1410 n = rb_next(n);
1413 write_unlock(&cfq_exit_lock);
1415 return 0;
1418 static struct cfq_queue *
1419 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1420 gfp_t gfp_mask)
1422 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1423 struct cfq_queue *cfqq, *new_cfqq = NULL;
1424 unsigned short ioprio;
1426 retry:
1427 ioprio = tsk->ioprio;
1428 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1430 if (!cfqq) {
1431 if (new_cfqq) {
1432 cfqq = new_cfqq;
1433 new_cfqq = NULL;
1434 } else if (gfp_mask & __GFP_WAIT) {
1435 spin_unlock_irq(cfqd->queue->queue_lock);
1436 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1437 spin_lock_irq(cfqd->queue->queue_lock);
1438 goto retry;
1439 } else {
1440 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1441 if (!cfqq)
1442 goto out;
1445 memset(cfqq, 0, sizeof(*cfqq));
1447 INIT_HLIST_NODE(&cfqq->cfq_hash);
1448 INIT_LIST_HEAD(&cfqq->cfq_list);
1449 RB_CLEAR_ROOT(&cfqq->sort_list);
1450 INIT_LIST_HEAD(&cfqq->fifo);
1452 cfqq->key = key;
1453 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1454 atomic_set(&cfqq->ref, 0);
1455 cfqq->cfqd = cfqd;
1456 cfqq->service_last = 0;
1458 * set ->slice_left to allow preemption for a new process
1460 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1461 cfq_mark_cfqq_idle_window(cfqq);
1462 cfq_mark_cfqq_prio_changed(cfqq);
1463 cfq_init_prio_data(cfqq);
1466 if (new_cfqq)
1467 kmem_cache_free(cfq_pool, new_cfqq);
1469 atomic_inc(&cfqq->ref);
1470 out:
1471 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1472 return cfqq;
1475 static void
1476 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1478 read_lock(&cfq_exit_lock);
1479 rb_erase(&cic->rb_node, &ioc->cic_root);
1480 read_unlock(&cfq_exit_lock);
1481 kmem_cache_free(cfq_ioc_pool, cic);
1482 atomic_dec(&ioc_count);
1485 static struct cfq_io_context *
1486 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1488 struct rb_node *n;
1489 struct cfq_io_context *cic;
1490 void *k, *key = cfqd;
1492 restart:
1493 n = ioc->cic_root.rb_node;
1494 while (n) {
1495 cic = rb_entry(n, struct cfq_io_context, rb_node);
1496 /* ->key must be copied to avoid race with cfq_exit_queue() */
1497 k = cic->key;
1498 if (unlikely(!k)) {
1499 cfq_drop_dead_cic(ioc, cic);
1500 goto restart;
1503 if (key < k)
1504 n = n->rb_left;
1505 else if (key > k)
1506 n = n->rb_right;
1507 else
1508 return cic;
1511 return NULL;
1514 static inline void
1515 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1516 struct cfq_io_context *cic)
1518 struct rb_node **p;
1519 struct rb_node *parent;
1520 struct cfq_io_context *__cic;
1521 void *k;
1523 cic->ioc = ioc;
1524 cic->key = cfqd;
1526 ioc->set_ioprio = cfq_ioc_set_ioprio;
1527 restart:
1528 parent = NULL;
1529 p = &ioc->cic_root.rb_node;
1530 while (*p) {
1531 parent = *p;
1532 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1533 /* ->key must be copied to avoid race with cfq_exit_queue() */
1534 k = __cic->key;
1535 if (unlikely(!k)) {
1536 cfq_drop_dead_cic(ioc, cic);
1537 goto restart;
1540 if (cic->key < k)
1541 p = &(*p)->rb_left;
1542 else if (cic->key > k)
1543 p = &(*p)->rb_right;
1544 else
1545 BUG();
1548 read_lock(&cfq_exit_lock);
1549 rb_link_node(&cic->rb_node, parent, p);
1550 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1551 list_add(&cic->queue_list, &cfqd->cic_list);
1552 read_unlock(&cfq_exit_lock);
1556 * Setup general io context and cfq io context. There can be several cfq
1557 * io contexts per general io context, if this process is doing io to more
1558 * than one device managed by cfq.
1560 static struct cfq_io_context *
1561 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1563 struct io_context *ioc = NULL;
1564 struct cfq_io_context *cic;
1566 might_sleep_if(gfp_mask & __GFP_WAIT);
1568 ioc = get_io_context(gfp_mask);
1569 if (!ioc)
1570 return NULL;
1572 cic = cfq_cic_rb_lookup(cfqd, ioc);
1573 if (cic)
1574 goto out;
1576 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1577 if (cic == NULL)
1578 goto err;
1580 cfq_cic_link(cfqd, ioc, cic);
1581 out:
1582 return cic;
1583 err:
1584 put_io_context(ioc);
1585 return NULL;
1588 static void
1589 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1591 unsigned long elapsed, ttime;
1594 * if this context already has stuff queued, thinktime is from
1595 * last queue not last end
1597 #if 0
1598 if (time_after(cic->last_end_request, cic->last_queue))
1599 elapsed = jiffies - cic->last_end_request;
1600 else
1601 elapsed = jiffies - cic->last_queue;
1602 #else
1603 elapsed = jiffies - cic->last_end_request;
1604 #endif
1606 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1608 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1609 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1610 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1613 static void
1614 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1615 struct cfq_rq *crq)
1617 sector_t sdist;
1618 u64 total;
1620 if (cic->last_request_pos < crq->request->sector)
1621 sdist = crq->request->sector - cic->last_request_pos;
1622 else
1623 sdist = cic->last_request_pos - crq->request->sector;
1626 * Don't allow the seek distance to get too large from the
1627 * odd fragment, pagein, etc
1629 if (cic->seek_samples <= 60) /* second&third seek */
1630 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1631 else
1632 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1634 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1635 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1636 total = cic->seek_total + (cic->seek_samples/2);
1637 do_div(total, cic->seek_samples);
1638 cic->seek_mean = (sector_t)total;
1642 * Disable idle window if the process thinks too long or seeks so much that
1643 * it doesn't matter
1645 static void
1646 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1647 struct cfq_io_context *cic)
1649 int enable_idle = cfq_cfqq_idle_window(cfqq);
1651 if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1652 enable_idle = 0;
1653 else if (sample_valid(cic->ttime_samples)) {
1654 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1655 enable_idle = 0;
1656 else
1657 enable_idle = 1;
1660 if (enable_idle)
1661 cfq_mark_cfqq_idle_window(cfqq);
1662 else
1663 cfq_clear_cfqq_idle_window(cfqq);
1668 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1669 * no or if we aren't sure, a 1 will cause a preempt.
1671 static int
1672 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1673 struct cfq_rq *crq)
1675 struct cfq_queue *cfqq = cfqd->active_queue;
1677 if (cfq_class_idle(new_cfqq))
1678 return 0;
1680 if (!cfqq)
1681 return 1;
1683 if (cfq_class_idle(cfqq))
1684 return 1;
1685 if (!cfq_cfqq_wait_request(new_cfqq))
1686 return 0;
1688 * if it doesn't have slice left, forget it
1690 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1691 return 0;
1692 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1693 return 1;
1695 return 0;
1699 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1700 * let it have half of its nominal slice.
1702 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1704 struct cfq_queue *__cfqq, *next;
1706 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1707 cfq_resort_rr_list(__cfqq, 1);
1709 if (!cfqq->slice_left)
1710 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1712 cfqq->slice_end = cfqq->slice_left + jiffies;
1713 __cfq_slice_expired(cfqd, cfqq, 1);
1714 __cfq_set_active_queue(cfqd, cfqq);
1718 * should really be a ll_rw_blk.c helper
1720 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1722 request_queue_t *q = cfqd->queue;
1724 if (!blk_queue_plugged(q))
1725 q->request_fn(q);
1726 else
1727 __generic_unplug_device(q);
1731 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1732 * something we should do about it
1734 static void
1735 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1736 struct cfq_rq *crq)
1738 struct cfq_io_context *cic;
1740 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1743 * we never wait for an async request and we don't allow preemption
1744 * of an async request. so just return early
1746 if (!cfq_crq_is_sync(crq))
1747 return;
1749 cic = crq->io_context;
1751 cfq_update_io_thinktime(cfqd, cic);
1752 cfq_update_io_seektime(cfqd, cic, crq);
1753 cfq_update_idle_window(cfqd, cfqq, cic);
1755 cic->last_queue = jiffies;
1756 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1758 if (cfqq == cfqd->active_queue) {
1760 * if we are waiting for a request for this queue, let it rip
1761 * immediately and flag that we must not expire this queue
1762 * just now
1764 if (cfq_cfqq_wait_request(cfqq)) {
1765 cfq_mark_cfqq_must_dispatch(cfqq);
1766 del_timer(&cfqd->idle_slice_timer);
1767 cfq_start_queueing(cfqd, cfqq);
1769 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1771 * not the active queue - expire current slice if it is
1772 * idle and has expired it's mean thinktime or this new queue
1773 * has some old slice time left and is of higher priority
1775 cfq_preempt_queue(cfqd, cfqq);
1776 cfq_mark_cfqq_must_dispatch(cfqq);
1777 cfq_start_queueing(cfqd, cfqq);
1781 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1783 struct cfq_data *cfqd = q->elevator->elevator_data;
1784 struct cfq_rq *crq = RQ_DATA(rq);
1785 struct cfq_queue *cfqq = crq->cfq_queue;
1787 cfq_init_prio_data(cfqq);
1789 cfq_add_crq_rb(crq);
1791 list_add_tail(&rq->queuelist, &cfqq->fifo);
1793 if (rq_mergeable(rq))
1794 cfq_add_crq_hash(cfqd, crq);
1796 cfq_crq_enqueued(cfqd, cfqq, crq);
1799 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1801 struct cfq_rq *crq = RQ_DATA(rq);
1802 struct cfq_queue *cfqq = crq->cfq_queue;
1803 struct cfq_data *cfqd = cfqq->cfqd;
1804 const int sync = cfq_crq_is_sync(crq);
1805 unsigned long now;
1807 now = jiffies;
1809 WARN_ON(!cfqd->rq_in_driver);
1810 WARN_ON(!cfqq->on_dispatch[sync]);
1811 cfqd->rq_in_driver--;
1812 cfqq->on_dispatch[sync]--;
1814 if (!cfq_class_idle(cfqq))
1815 cfqd->last_end_request = now;
1817 if (!cfq_cfqq_dispatched(cfqq)) {
1818 if (cfq_cfqq_on_rr(cfqq)) {
1819 cfqq->service_last = now;
1820 cfq_resort_rr_list(cfqq, 0);
1822 cfq_schedule_dispatch(cfqd);
1825 if (cfq_crq_is_sync(crq))
1826 crq->io_context->last_end_request = now;
1829 static struct request *
1830 cfq_former_request(request_queue_t *q, struct request *rq)
1832 struct cfq_rq *crq = RQ_DATA(rq);
1833 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1835 if (rbprev)
1836 return rb_entry_crq(rbprev)->request;
1838 return NULL;
1841 static struct request *
1842 cfq_latter_request(request_queue_t *q, struct request *rq)
1844 struct cfq_rq *crq = RQ_DATA(rq);
1845 struct rb_node *rbnext = rb_next(&crq->rb_node);
1847 if (rbnext)
1848 return rb_entry_crq(rbnext)->request;
1850 return NULL;
1854 * we temporarily boost lower priority queues if they are holding fs exclusive
1855 * resources. they are boosted to normal prio (CLASS_BE/4)
1857 static void cfq_prio_boost(struct cfq_queue *cfqq)
1859 const int ioprio_class = cfqq->ioprio_class;
1860 const int ioprio = cfqq->ioprio;
1862 if (has_fs_excl()) {
1864 * boost idle prio on transactions that would lock out other
1865 * users of the filesystem
1867 if (cfq_class_idle(cfqq))
1868 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1869 if (cfqq->ioprio > IOPRIO_NORM)
1870 cfqq->ioprio = IOPRIO_NORM;
1871 } else {
1873 * check if we need to unboost the queue
1875 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1876 cfqq->ioprio_class = cfqq->org_ioprio_class;
1877 if (cfqq->ioprio != cfqq->org_ioprio)
1878 cfqq->ioprio = cfqq->org_ioprio;
1882 * refile between round-robin lists if we moved the priority class
1884 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1885 cfq_cfqq_on_rr(cfqq))
1886 cfq_resort_rr_list(cfqq, 0);
1889 static inline int
1890 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1891 struct task_struct *task, int rw)
1893 #if 1
1894 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1895 !cfq_cfqq_must_alloc_slice(cfqq)) {
1896 cfq_mark_cfqq_must_alloc_slice(cfqq);
1897 return ELV_MQUEUE_MUST;
1900 return ELV_MQUEUE_MAY;
1901 #else
1902 if (!cfqq || task->flags & PF_MEMALLOC)
1903 return ELV_MQUEUE_MAY;
1904 if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1905 if (cfq_cfqq_wait_request(cfqq))
1906 return ELV_MQUEUE_MUST;
1909 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1910 * can quickly flood the queue with writes from a single task
1912 if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1913 cfq_mark_cfqq_must_alloc_slice(cfqq);
1914 return ELV_MQUEUE_MUST;
1917 return ELV_MQUEUE_MAY;
1919 if (cfq_class_idle(cfqq))
1920 return ELV_MQUEUE_NO;
1921 if (cfqq->allocated[rw] >= cfqd->max_queued) {
1922 struct io_context *ioc = get_io_context(GFP_ATOMIC);
1923 int ret = ELV_MQUEUE_NO;
1925 if (ioc && ioc->nr_batch_requests)
1926 ret = ELV_MQUEUE_MAY;
1928 put_io_context(ioc);
1929 return ret;
1932 return ELV_MQUEUE_MAY;
1933 #endif
1936 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1938 struct cfq_data *cfqd = q->elevator->elevator_data;
1939 struct task_struct *tsk = current;
1940 struct cfq_queue *cfqq;
1943 * don't force setup of a queue from here, as a call to may_queue
1944 * does not necessarily imply that a request actually will be queued.
1945 * so just lookup a possibly existing queue, or return 'may queue'
1946 * if that fails
1948 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1949 if (cfqq) {
1950 cfq_init_prio_data(cfqq);
1951 cfq_prio_boost(cfqq);
1953 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1956 return ELV_MQUEUE_MAY;
1959 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1961 struct cfq_data *cfqd = q->elevator->elevator_data;
1962 struct request_list *rl = &q->rq;
1964 if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1965 smp_mb();
1966 if (waitqueue_active(&rl->wait[READ]))
1967 wake_up(&rl->wait[READ]);
1970 if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1971 smp_mb();
1972 if (waitqueue_active(&rl->wait[WRITE]))
1973 wake_up(&rl->wait[WRITE]);
1978 * queue lock held here
1980 static void cfq_put_request(request_queue_t *q, struct request *rq)
1982 struct cfq_data *cfqd = q->elevator->elevator_data;
1983 struct cfq_rq *crq = RQ_DATA(rq);
1985 if (crq) {
1986 struct cfq_queue *cfqq = crq->cfq_queue;
1987 const int rw = rq_data_dir(rq);
1989 BUG_ON(!cfqq->allocated[rw]);
1990 cfqq->allocated[rw]--;
1992 put_io_context(crq->io_context->ioc);
1994 mempool_free(crq, cfqd->crq_pool);
1995 rq->elevator_private = NULL;
1997 cfq_check_waiters(q, cfqq);
1998 cfq_put_queue(cfqq);
2003 * Allocate cfq data structures associated with this request.
2005 static int
2006 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
2007 gfp_t gfp_mask)
2009 struct cfq_data *cfqd = q->elevator->elevator_data;
2010 struct task_struct *tsk = current;
2011 struct cfq_io_context *cic;
2012 const int rw = rq_data_dir(rq);
2013 pid_t key = cfq_queue_pid(tsk, rw);
2014 struct cfq_queue *cfqq;
2015 struct cfq_rq *crq;
2016 unsigned long flags;
2017 int is_sync = key != CFQ_KEY_ASYNC;
2019 might_sleep_if(gfp_mask & __GFP_WAIT);
2021 cic = cfq_get_io_context(cfqd, gfp_mask);
2023 spin_lock_irqsave(q->queue_lock, flags);
2025 if (!cic)
2026 goto queue_fail;
2028 if (!cic->cfqq[is_sync]) {
2029 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2030 if (!cfqq)
2031 goto queue_fail;
2033 cic->cfqq[is_sync] = cfqq;
2034 } else
2035 cfqq = cic->cfqq[is_sync];
2037 cfqq->allocated[rw]++;
2038 cfq_clear_cfqq_must_alloc(cfqq);
2039 cfqd->rq_starved = 0;
2040 atomic_inc(&cfqq->ref);
2041 spin_unlock_irqrestore(q->queue_lock, flags);
2043 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2044 if (crq) {
2045 RB_CLEAR(&crq->rb_node);
2046 crq->rb_key = 0;
2047 crq->request = rq;
2048 INIT_HLIST_NODE(&crq->hash);
2049 crq->cfq_queue = cfqq;
2050 crq->io_context = cic;
2052 if (is_sync)
2053 cfq_mark_crq_is_sync(crq);
2054 else
2055 cfq_clear_crq_is_sync(crq);
2057 rq->elevator_private = crq;
2058 return 0;
2061 spin_lock_irqsave(q->queue_lock, flags);
2062 cfqq->allocated[rw]--;
2063 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2064 cfq_mark_cfqq_must_alloc(cfqq);
2065 cfq_put_queue(cfqq);
2066 queue_fail:
2067 if (cic)
2068 put_io_context(cic->ioc);
2070 * mark us rq allocation starved. we need to kickstart the process
2071 * ourselves if there are no pending requests that can do it for us.
2072 * that would be an extremely rare OOM situation
2074 cfqd->rq_starved = 1;
2075 cfq_schedule_dispatch(cfqd);
2076 spin_unlock_irqrestore(q->queue_lock, flags);
2077 return 1;
2080 static void cfq_kick_queue(void *data)
2082 request_queue_t *q = data;
2083 struct cfq_data *cfqd = q->elevator->elevator_data;
2084 unsigned long flags;
2086 spin_lock_irqsave(q->queue_lock, flags);
2088 if (cfqd->rq_starved) {
2089 struct request_list *rl = &q->rq;
2092 * we aren't guaranteed to get a request after this, but we
2093 * have to be opportunistic
2095 smp_mb();
2096 if (waitqueue_active(&rl->wait[READ]))
2097 wake_up(&rl->wait[READ]);
2098 if (waitqueue_active(&rl->wait[WRITE]))
2099 wake_up(&rl->wait[WRITE]);
2102 blk_remove_plug(q);
2103 q->request_fn(q);
2104 spin_unlock_irqrestore(q->queue_lock, flags);
2108 * Timer running if the active_queue is currently idling inside its time slice
2110 static void cfq_idle_slice_timer(unsigned long data)
2112 struct cfq_data *cfqd = (struct cfq_data *) data;
2113 struct cfq_queue *cfqq;
2114 unsigned long flags;
2116 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2118 if ((cfqq = cfqd->active_queue) != NULL) {
2119 unsigned long now = jiffies;
2122 * expired
2124 if (time_after(now, cfqq->slice_end))
2125 goto expire;
2128 * only expire and reinvoke request handler, if there are
2129 * other queues with pending requests
2131 if (!cfqd->busy_queues) {
2132 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2133 add_timer(&cfqd->idle_slice_timer);
2134 goto out_cont;
2138 * not expired and it has a request pending, let it dispatch
2140 if (!RB_EMPTY(&cfqq->sort_list)) {
2141 cfq_mark_cfqq_must_dispatch(cfqq);
2142 goto out_kick;
2145 expire:
2146 cfq_slice_expired(cfqd, 0);
2147 out_kick:
2148 cfq_schedule_dispatch(cfqd);
2149 out_cont:
2150 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2154 * Timer running if an idle class queue is waiting for service
2156 static void cfq_idle_class_timer(unsigned long data)
2158 struct cfq_data *cfqd = (struct cfq_data *) data;
2159 unsigned long flags, end;
2161 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2164 * race with a non-idle queue, reset timer
2166 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2167 if (!time_after_eq(jiffies, end)) {
2168 cfqd->idle_class_timer.expires = end;
2169 add_timer(&cfqd->idle_class_timer);
2170 } else
2171 cfq_schedule_dispatch(cfqd);
2173 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2176 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2178 del_timer_sync(&cfqd->idle_slice_timer);
2179 del_timer_sync(&cfqd->idle_class_timer);
2180 blk_sync_queue(cfqd->queue);
2183 static void cfq_exit_queue(elevator_t *e)
2185 struct cfq_data *cfqd = e->elevator_data;
2186 request_queue_t *q = cfqd->queue;
2188 cfq_shutdown_timer_wq(cfqd);
2190 write_lock(&cfq_exit_lock);
2191 spin_lock_irq(q->queue_lock);
2193 if (cfqd->active_queue)
2194 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2196 while (!list_empty(&cfqd->cic_list)) {
2197 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2198 struct cfq_io_context,
2199 queue_list);
2200 if (cic->cfqq[ASYNC]) {
2201 cfq_put_queue(cic->cfqq[ASYNC]);
2202 cic->cfqq[ASYNC] = NULL;
2204 if (cic->cfqq[SYNC]) {
2205 cfq_put_queue(cic->cfqq[SYNC]);
2206 cic->cfqq[SYNC] = NULL;
2208 cic->key = NULL;
2209 list_del_init(&cic->queue_list);
2212 spin_unlock_irq(q->queue_lock);
2213 write_unlock(&cfq_exit_lock);
2215 cfq_shutdown_timer_wq(cfqd);
2217 mempool_destroy(cfqd->crq_pool);
2218 kfree(cfqd->crq_hash);
2219 kfree(cfqd->cfq_hash);
2220 kfree(cfqd);
2223 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2225 struct cfq_data *cfqd;
2226 int i;
2228 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2229 if (!cfqd)
2230 return -ENOMEM;
2232 memset(cfqd, 0, sizeof(*cfqd));
2234 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2235 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2237 INIT_LIST_HEAD(&cfqd->busy_rr);
2238 INIT_LIST_HEAD(&cfqd->cur_rr);
2239 INIT_LIST_HEAD(&cfqd->idle_rr);
2240 INIT_LIST_HEAD(&cfqd->empty_list);
2241 INIT_LIST_HEAD(&cfqd->cic_list);
2243 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2244 if (!cfqd->crq_hash)
2245 goto out_crqhash;
2247 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2248 if (!cfqd->cfq_hash)
2249 goto out_cfqhash;
2251 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2252 if (!cfqd->crq_pool)
2253 goto out_crqpool;
2255 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2256 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2257 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2258 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2260 e->elevator_data = cfqd;
2262 cfqd->queue = q;
2264 cfqd->max_queued = q->nr_requests / 4;
2265 q->nr_batching = cfq_queued;
2267 init_timer(&cfqd->idle_slice_timer);
2268 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2269 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2271 init_timer(&cfqd->idle_class_timer);
2272 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2273 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2275 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2277 cfqd->cfq_queued = cfq_queued;
2278 cfqd->cfq_quantum = cfq_quantum;
2279 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2280 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2281 cfqd->cfq_back_max = cfq_back_max;
2282 cfqd->cfq_back_penalty = cfq_back_penalty;
2283 cfqd->cfq_slice[0] = cfq_slice_async;
2284 cfqd->cfq_slice[1] = cfq_slice_sync;
2285 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2286 cfqd->cfq_slice_idle = cfq_slice_idle;
2288 return 0;
2289 out_crqpool:
2290 kfree(cfqd->cfq_hash);
2291 out_cfqhash:
2292 kfree(cfqd->crq_hash);
2293 out_crqhash:
2294 kfree(cfqd);
2295 return -ENOMEM;
2298 static void cfq_slab_kill(void)
2300 if (crq_pool)
2301 kmem_cache_destroy(crq_pool);
2302 if (cfq_pool)
2303 kmem_cache_destroy(cfq_pool);
2304 if (cfq_ioc_pool)
2305 kmem_cache_destroy(cfq_ioc_pool);
2308 static int __init cfq_slab_setup(void)
2310 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2311 NULL, NULL);
2312 if (!crq_pool)
2313 goto fail;
2315 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2316 NULL, NULL);
2317 if (!cfq_pool)
2318 goto fail;
2320 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2321 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2322 if (!cfq_ioc_pool)
2323 goto fail;
2325 return 0;
2326 fail:
2327 cfq_slab_kill();
2328 return -ENOMEM;
2332 * sysfs parts below -->
2335 static ssize_t
2336 cfq_var_show(unsigned int var, char *page)
2338 return sprintf(page, "%d\n", var);
2341 static ssize_t
2342 cfq_var_store(unsigned int *var, const char *page, size_t count)
2344 char *p = (char *) page;
2346 *var = simple_strtoul(p, &p, 10);
2347 return count;
2350 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2351 static ssize_t __FUNC(elevator_t *e, char *page) \
2353 struct cfq_data *cfqd = e->elevator_data; \
2354 unsigned int __data = __VAR; \
2355 if (__CONV) \
2356 __data = jiffies_to_msecs(__data); \
2357 return cfq_var_show(__data, (page)); \
2359 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2360 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2361 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2362 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2363 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2364 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2365 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2366 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2367 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2368 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2369 #undef SHOW_FUNCTION
2371 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2372 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2374 struct cfq_data *cfqd = e->elevator_data; \
2375 unsigned int __data; \
2376 int ret = cfq_var_store(&__data, (page), count); \
2377 if (__data < (MIN)) \
2378 __data = (MIN); \
2379 else if (__data > (MAX)) \
2380 __data = (MAX); \
2381 if (__CONV) \
2382 *(__PTR) = msecs_to_jiffies(__data); \
2383 else \
2384 *(__PTR) = __data; \
2385 return ret; \
2387 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2388 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2389 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2390 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2391 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2392 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2393 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2394 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2395 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2396 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2397 #undef STORE_FUNCTION
2399 #define CFQ_ATTR(name) \
2400 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2402 static struct elv_fs_entry cfq_attrs[] = {
2403 CFQ_ATTR(quantum),
2404 CFQ_ATTR(queued),
2405 CFQ_ATTR(fifo_expire_sync),
2406 CFQ_ATTR(fifo_expire_async),
2407 CFQ_ATTR(back_seek_max),
2408 CFQ_ATTR(back_seek_penalty),
2409 CFQ_ATTR(slice_sync),
2410 CFQ_ATTR(slice_async),
2411 CFQ_ATTR(slice_async_rq),
2412 CFQ_ATTR(slice_idle),
2413 __ATTR_NULL
2416 static struct elevator_type iosched_cfq = {
2417 .ops = {
2418 .elevator_merge_fn = cfq_merge,
2419 .elevator_merged_fn = cfq_merged_request,
2420 .elevator_merge_req_fn = cfq_merged_requests,
2421 .elevator_dispatch_fn = cfq_dispatch_requests,
2422 .elevator_add_req_fn = cfq_insert_request,
2423 .elevator_activate_req_fn = cfq_activate_request,
2424 .elevator_deactivate_req_fn = cfq_deactivate_request,
2425 .elevator_queue_empty_fn = cfq_queue_empty,
2426 .elevator_completed_req_fn = cfq_completed_request,
2427 .elevator_former_req_fn = cfq_former_request,
2428 .elevator_latter_req_fn = cfq_latter_request,
2429 .elevator_set_req_fn = cfq_set_request,
2430 .elevator_put_req_fn = cfq_put_request,
2431 .elevator_may_queue_fn = cfq_may_queue,
2432 .elevator_init_fn = cfq_init_queue,
2433 .elevator_exit_fn = cfq_exit_queue,
2434 .trim = cfq_trim,
2436 .elevator_attrs = cfq_attrs,
2437 .elevator_name = "cfq",
2438 .elevator_owner = THIS_MODULE,
2441 static int __init cfq_init(void)
2443 int ret;
2446 * could be 0 on HZ < 1000 setups
2448 if (!cfq_slice_async)
2449 cfq_slice_async = 1;
2450 if (!cfq_slice_idle)
2451 cfq_slice_idle = 1;
2453 if (cfq_slab_setup())
2454 return -ENOMEM;
2456 ret = elv_register(&iosched_cfq);
2457 if (ret)
2458 cfq_slab_kill();
2460 return ret;
2463 static void __exit cfq_exit(void)
2465 DECLARE_COMPLETION(all_gone);
2466 elv_unregister(&iosched_cfq);
2467 ioc_gone = &all_gone;
2468 /* ioc_gone's update must be visible before reading ioc_count */
2469 smp_wmb();
2470 if (atomic_read(&ioc_count))
2471 wait_for_completion(ioc_gone);
2472 synchronize_rcu();
2473 cfq_slab_kill();
2476 module_init(cfq_init);
2477 module_exit(cfq_exit);
2479 MODULE_AUTHOR("Jens Axboe");
2480 MODULE_LICENSE("GPL");
2481 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");