[PATCH] Revert "[PATCH] identifier to nsproxy"
[linux-2.6.22.y-op.git] / kernel / sched.c
blob8a0afb97af71c99f14a01f7974a88886fd7d8f08
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
57 #include <asm/unistd.h>
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
64 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
73 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
78 * Some helpers for converting nanosecond timing to jiffy resolution
80 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
84 * These are the 'tuning knobs' of the scheduler:
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
90 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91 #define DEF_TIMESLICE (100 * HZ / 1000)
92 #define ON_RUNQUEUE_WEIGHT 30
93 #define CHILD_PENALTY 95
94 #define PARENT_PENALTY 100
95 #define EXIT_WEIGHT 3
96 #define PRIO_BONUS_RATIO 25
97 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98 #define INTERACTIVE_DELTA 2
99 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
101 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
109 * This part scales the interactivity limit depending on niceness.
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
131 #define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
135 #define GRANULARITY (10 * HZ / 1000 ? : 1)
137 #ifdef CONFIG_SMP
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141 #else
142 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #endif
146 #define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
149 #define DELTA(p) \
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
153 #define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
156 #define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
160 #define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
163 #define SCALE_PRIO(x, prio) \
164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
166 static unsigned int static_prio_timeslice(int static_prio)
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
170 else
171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
183 static inline unsigned int task_timeslice(struct task_struct *p)
185 return static_prio_timeslice(p->static_prio);
189 * These are the runqueue data structures:
192 struct prio_array {
193 unsigned int nr_active;
194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
195 struct list_head queue[MAX_PRIO];
199 * This is the main, per-CPU runqueue data structure.
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
205 struct rq {
206 spinlock_t lock;
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
212 unsigned long nr_running;
213 unsigned long raw_weighted_load;
214 #ifdef CONFIG_SMP
215 unsigned long cpu_load[3];
216 #endif
217 unsigned long long nr_switches;
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
225 unsigned long nr_uninterruptible;
227 unsigned long expired_timestamp;
228 /* Cached timestamp set by update_cpu_clock() */
229 unsigned long long most_recent_timestamp;
230 struct task_struct *curr, *idle;
231 unsigned long next_balance;
232 struct mm_struct *prev_mm;
233 struct prio_array *active, *expired, arrays[2];
234 int best_expired_prio;
235 atomic_t nr_iowait;
237 #ifdef CONFIG_SMP
238 struct sched_domain *sd;
240 /* For active balancing */
241 int active_balance;
242 int push_cpu;
243 int cpu; /* cpu of this runqueue */
245 struct task_struct *migration_thread;
246 struct list_head migration_queue;
247 #endif
249 #ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267 #endif
268 struct lock_class_key rq_lock_key;
271 static DEFINE_PER_CPU(struct rq, runqueues);
273 static inline int cpu_of(struct rq *rq)
275 #ifdef CONFIG_SMP
276 return rq->cpu;
277 #else
278 return 0;
279 #endif
283 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
284 * See detach_destroy_domains: synchronize_sched for details.
286 * The domain tree of any CPU may only be accessed from within
287 * preempt-disabled sections.
289 #define for_each_domain(cpu, __sd) \
290 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
292 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
293 #define this_rq() (&__get_cpu_var(runqueues))
294 #define task_rq(p) cpu_rq(task_cpu(p))
295 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
297 #ifndef prepare_arch_switch
298 # define prepare_arch_switch(next) do { } while (0)
299 #endif
300 #ifndef finish_arch_switch
301 # define finish_arch_switch(prev) do { } while (0)
302 #endif
304 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
305 static inline int task_running(struct rq *rq, struct task_struct *p)
307 return rq->curr == p;
310 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
314 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
316 #ifdef CONFIG_DEBUG_SPINLOCK
317 /* this is a valid case when another task releases the spinlock */
318 rq->lock.owner = current;
319 #endif
321 * If we are tracking spinlock dependencies then we have to
322 * fix up the runqueue lock - which gets 'carried over' from
323 * prev into current:
325 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
327 spin_unlock_irq(&rq->lock);
330 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
331 static inline int task_running(struct rq *rq, struct task_struct *p)
333 #ifdef CONFIG_SMP
334 return p->oncpu;
335 #else
336 return rq->curr == p;
337 #endif
340 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
342 #ifdef CONFIG_SMP
344 * We can optimise this out completely for !SMP, because the
345 * SMP rebalancing from interrupt is the only thing that cares
346 * here.
348 next->oncpu = 1;
349 #endif
350 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 spin_unlock_irq(&rq->lock);
352 #else
353 spin_unlock(&rq->lock);
354 #endif
357 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
359 #ifdef CONFIG_SMP
361 * After ->oncpu is cleared, the task can be moved to a different CPU.
362 * We must ensure this doesn't happen until the switch is completely
363 * finished.
365 smp_wmb();
366 prev->oncpu = 0;
367 #endif
368 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
369 local_irq_enable();
370 #endif
372 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
375 * __task_rq_lock - lock the runqueue a given task resides on.
376 * Must be called interrupts disabled.
378 static inline struct rq *__task_rq_lock(struct task_struct *p)
379 __acquires(rq->lock)
381 struct rq *rq;
383 repeat_lock_task:
384 rq = task_rq(p);
385 spin_lock(&rq->lock);
386 if (unlikely(rq != task_rq(p))) {
387 spin_unlock(&rq->lock);
388 goto repeat_lock_task;
390 return rq;
394 * task_rq_lock - lock the runqueue a given task resides on and disable
395 * interrupts. Note the ordering: we can safely lookup the task_rq without
396 * explicitly disabling preemption.
398 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
399 __acquires(rq->lock)
401 struct rq *rq;
403 repeat_lock_task:
404 local_irq_save(*flags);
405 rq = task_rq(p);
406 spin_lock(&rq->lock);
407 if (unlikely(rq != task_rq(p))) {
408 spin_unlock_irqrestore(&rq->lock, *flags);
409 goto repeat_lock_task;
411 return rq;
414 static inline void __task_rq_unlock(struct rq *rq)
415 __releases(rq->lock)
417 spin_unlock(&rq->lock);
420 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
421 __releases(rq->lock)
423 spin_unlock_irqrestore(&rq->lock, *flags);
426 #ifdef CONFIG_SCHEDSTATS
428 * bump this up when changing the output format or the meaning of an existing
429 * format, so that tools can adapt (or abort)
431 #define SCHEDSTAT_VERSION 14
433 static int show_schedstat(struct seq_file *seq, void *v)
435 int cpu;
437 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
438 seq_printf(seq, "timestamp %lu\n", jiffies);
439 for_each_online_cpu(cpu) {
440 struct rq *rq = cpu_rq(cpu);
441 #ifdef CONFIG_SMP
442 struct sched_domain *sd;
443 int dcnt = 0;
444 #endif
446 /* runqueue-specific stats */
447 seq_printf(seq,
448 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
449 cpu, rq->yld_both_empty,
450 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
451 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
452 rq->ttwu_cnt, rq->ttwu_local,
453 rq->rq_sched_info.cpu_time,
454 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
456 seq_printf(seq, "\n");
458 #ifdef CONFIG_SMP
459 /* domain-specific stats */
460 preempt_disable();
461 for_each_domain(cpu, sd) {
462 enum idle_type itype;
463 char mask_str[NR_CPUS];
465 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
466 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
467 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
468 itype++) {
469 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
470 "%lu",
471 sd->lb_cnt[itype],
472 sd->lb_balanced[itype],
473 sd->lb_failed[itype],
474 sd->lb_imbalance[itype],
475 sd->lb_gained[itype],
476 sd->lb_hot_gained[itype],
477 sd->lb_nobusyq[itype],
478 sd->lb_nobusyg[itype]);
480 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
481 " %lu %lu %lu\n",
482 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
483 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
484 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
485 sd->ttwu_wake_remote, sd->ttwu_move_affine,
486 sd->ttwu_move_balance);
488 preempt_enable();
489 #endif
491 return 0;
494 static int schedstat_open(struct inode *inode, struct file *file)
496 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
497 char *buf = kmalloc(size, GFP_KERNEL);
498 struct seq_file *m;
499 int res;
501 if (!buf)
502 return -ENOMEM;
503 res = single_open(file, show_schedstat, NULL);
504 if (!res) {
505 m = file->private_data;
506 m->buf = buf;
507 m->size = size;
508 } else
509 kfree(buf);
510 return res;
513 const struct file_operations proc_schedstat_operations = {
514 .open = schedstat_open,
515 .read = seq_read,
516 .llseek = seq_lseek,
517 .release = single_release,
521 * Expects runqueue lock to be held for atomicity of update
523 static inline void
524 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
526 if (rq) {
527 rq->rq_sched_info.run_delay += delta_jiffies;
528 rq->rq_sched_info.pcnt++;
533 * Expects runqueue lock to be held for atomicity of update
535 static inline void
536 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
538 if (rq)
539 rq->rq_sched_info.cpu_time += delta_jiffies;
541 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
542 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
543 #else /* !CONFIG_SCHEDSTATS */
544 static inline void
545 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
547 static inline void
548 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
550 # define schedstat_inc(rq, field) do { } while (0)
551 # define schedstat_add(rq, field, amt) do { } while (0)
552 #endif
555 * this_rq_lock - lock this runqueue and disable interrupts.
557 static inline struct rq *this_rq_lock(void)
558 __acquires(rq->lock)
560 struct rq *rq;
562 local_irq_disable();
563 rq = this_rq();
564 spin_lock(&rq->lock);
566 return rq;
569 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
571 * Called when a process is dequeued from the active array and given
572 * the cpu. We should note that with the exception of interactive
573 * tasks, the expired queue will become the active queue after the active
574 * queue is empty, without explicitly dequeuing and requeuing tasks in the
575 * expired queue. (Interactive tasks may be requeued directly to the
576 * active queue, thus delaying tasks in the expired queue from running;
577 * see scheduler_tick()).
579 * This function is only called from sched_info_arrive(), rather than
580 * dequeue_task(). Even though a task may be queued and dequeued multiple
581 * times as it is shuffled about, we're really interested in knowing how
582 * long it was from the *first* time it was queued to the time that it
583 * finally hit a cpu.
585 static inline void sched_info_dequeued(struct task_struct *t)
587 t->sched_info.last_queued = 0;
591 * Called when a task finally hits the cpu. We can now calculate how
592 * long it was waiting to run. We also note when it began so that we
593 * can keep stats on how long its timeslice is.
595 static void sched_info_arrive(struct task_struct *t)
597 unsigned long now = jiffies, delta_jiffies = 0;
599 if (t->sched_info.last_queued)
600 delta_jiffies = now - t->sched_info.last_queued;
601 sched_info_dequeued(t);
602 t->sched_info.run_delay += delta_jiffies;
603 t->sched_info.last_arrival = now;
604 t->sched_info.pcnt++;
606 rq_sched_info_arrive(task_rq(t), delta_jiffies);
610 * Called when a process is queued into either the active or expired
611 * array. The time is noted and later used to determine how long we
612 * had to wait for us to reach the cpu. Since the expired queue will
613 * become the active queue after active queue is empty, without dequeuing
614 * and requeuing any tasks, we are interested in queuing to either. It
615 * is unusual but not impossible for tasks to be dequeued and immediately
616 * requeued in the same or another array: this can happen in sched_yield(),
617 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
618 * to runqueue.
620 * This function is only called from enqueue_task(), but also only updates
621 * the timestamp if it is already not set. It's assumed that
622 * sched_info_dequeued() will clear that stamp when appropriate.
624 static inline void sched_info_queued(struct task_struct *t)
626 if (unlikely(sched_info_on()))
627 if (!t->sched_info.last_queued)
628 t->sched_info.last_queued = jiffies;
632 * Called when a process ceases being the active-running process, either
633 * voluntarily or involuntarily. Now we can calculate how long we ran.
635 static inline void sched_info_depart(struct task_struct *t)
637 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
639 t->sched_info.cpu_time += delta_jiffies;
640 rq_sched_info_depart(task_rq(t), delta_jiffies);
644 * Called when tasks are switched involuntarily due, typically, to expiring
645 * their time slice. (This may also be called when switching to or from
646 * the idle task.) We are only called when prev != next.
648 static inline void
649 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
651 struct rq *rq = task_rq(prev);
654 * prev now departs the cpu. It's not interesting to record
655 * stats about how efficient we were at scheduling the idle
656 * process, however.
658 if (prev != rq->idle)
659 sched_info_depart(prev);
661 if (next != rq->idle)
662 sched_info_arrive(next);
664 static inline void
665 sched_info_switch(struct task_struct *prev, struct task_struct *next)
667 if (unlikely(sched_info_on()))
668 __sched_info_switch(prev, next);
670 #else
671 #define sched_info_queued(t) do { } while (0)
672 #define sched_info_switch(t, next) do { } while (0)
673 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
676 * Adding/removing a task to/from a priority array:
678 static void dequeue_task(struct task_struct *p, struct prio_array *array)
680 array->nr_active--;
681 list_del(&p->run_list);
682 if (list_empty(array->queue + p->prio))
683 __clear_bit(p->prio, array->bitmap);
686 static void enqueue_task(struct task_struct *p, struct prio_array *array)
688 sched_info_queued(p);
689 list_add_tail(&p->run_list, array->queue + p->prio);
690 __set_bit(p->prio, array->bitmap);
691 array->nr_active++;
692 p->array = array;
696 * Put task to the end of the run list without the overhead of dequeue
697 * followed by enqueue.
699 static void requeue_task(struct task_struct *p, struct prio_array *array)
701 list_move_tail(&p->run_list, array->queue + p->prio);
704 static inline void
705 enqueue_task_head(struct task_struct *p, struct prio_array *array)
707 list_add(&p->run_list, array->queue + p->prio);
708 __set_bit(p->prio, array->bitmap);
709 array->nr_active++;
710 p->array = array;
714 * __normal_prio - return the priority that is based on the static
715 * priority but is modified by bonuses/penalties.
717 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
718 * into the -5 ... 0 ... +5 bonus/penalty range.
720 * We use 25% of the full 0...39 priority range so that:
722 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
723 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
725 * Both properties are important to certain workloads.
728 static inline int __normal_prio(struct task_struct *p)
730 int bonus, prio;
732 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
734 prio = p->static_prio - bonus;
735 if (prio < MAX_RT_PRIO)
736 prio = MAX_RT_PRIO;
737 if (prio > MAX_PRIO-1)
738 prio = MAX_PRIO-1;
739 return prio;
743 * To aid in avoiding the subversion of "niceness" due to uneven distribution
744 * of tasks with abnormal "nice" values across CPUs the contribution that
745 * each task makes to its run queue's load is weighted according to its
746 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
747 * scaled version of the new time slice allocation that they receive on time
748 * slice expiry etc.
752 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
753 * If static_prio_timeslice() is ever changed to break this assumption then
754 * this code will need modification
756 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
757 #define LOAD_WEIGHT(lp) \
758 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
759 #define PRIO_TO_LOAD_WEIGHT(prio) \
760 LOAD_WEIGHT(static_prio_timeslice(prio))
761 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
762 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
764 static void set_load_weight(struct task_struct *p)
766 if (has_rt_policy(p)) {
767 #ifdef CONFIG_SMP
768 if (p == task_rq(p)->migration_thread)
770 * The migration thread does the actual balancing.
771 * Giving its load any weight will skew balancing
772 * adversely.
774 p->load_weight = 0;
775 else
776 #endif
777 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
778 } else
779 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
782 static inline void
783 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
785 rq->raw_weighted_load += p->load_weight;
788 static inline void
789 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
791 rq->raw_weighted_load -= p->load_weight;
794 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
796 rq->nr_running++;
797 inc_raw_weighted_load(rq, p);
800 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
802 rq->nr_running--;
803 dec_raw_weighted_load(rq, p);
807 * Calculate the expected normal priority: i.e. priority
808 * without taking RT-inheritance into account. Might be
809 * boosted by interactivity modifiers. Changes upon fork,
810 * setprio syscalls, and whenever the interactivity
811 * estimator recalculates.
813 static inline int normal_prio(struct task_struct *p)
815 int prio;
817 if (has_rt_policy(p))
818 prio = MAX_RT_PRIO-1 - p->rt_priority;
819 else
820 prio = __normal_prio(p);
821 return prio;
825 * Calculate the current priority, i.e. the priority
826 * taken into account by the scheduler. This value might
827 * be boosted by RT tasks, or might be boosted by
828 * interactivity modifiers. Will be RT if the task got
829 * RT-boosted. If not then it returns p->normal_prio.
831 static int effective_prio(struct task_struct *p)
833 p->normal_prio = normal_prio(p);
835 * If we are RT tasks or we were boosted to RT priority,
836 * keep the priority unchanged. Otherwise, update priority
837 * to the normal priority:
839 if (!rt_prio(p->prio))
840 return p->normal_prio;
841 return p->prio;
845 * __activate_task - move a task to the runqueue.
847 static void __activate_task(struct task_struct *p, struct rq *rq)
849 struct prio_array *target = rq->active;
851 if (batch_task(p))
852 target = rq->expired;
853 enqueue_task(p, target);
854 inc_nr_running(p, rq);
858 * __activate_idle_task - move idle task to the _front_ of runqueue.
860 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
862 enqueue_task_head(p, rq->active);
863 inc_nr_running(p, rq);
867 * Recalculate p->normal_prio and p->prio after having slept,
868 * updating the sleep-average too:
870 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
872 /* Caller must always ensure 'now >= p->timestamp' */
873 unsigned long sleep_time = now - p->timestamp;
875 if (batch_task(p))
876 sleep_time = 0;
878 if (likely(sleep_time > 0)) {
880 * This ceiling is set to the lowest priority that would allow
881 * a task to be reinserted into the active array on timeslice
882 * completion.
884 unsigned long ceiling = INTERACTIVE_SLEEP(p);
886 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
888 * Prevents user tasks from achieving best priority
889 * with one single large enough sleep.
891 p->sleep_avg = ceiling;
893 * Using INTERACTIVE_SLEEP() as a ceiling places a
894 * nice(0) task 1ms sleep away from promotion, and
895 * gives it 700ms to round-robin with no chance of
896 * being demoted. This is more than generous, so
897 * mark this sleep as non-interactive to prevent the
898 * on-runqueue bonus logic from intervening should
899 * this task not receive cpu immediately.
901 p->sleep_type = SLEEP_NONINTERACTIVE;
902 } else {
904 * Tasks waking from uninterruptible sleep are
905 * limited in their sleep_avg rise as they
906 * are likely to be waiting on I/O
908 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
909 if (p->sleep_avg >= ceiling)
910 sleep_time = 0;
911 else if (p->sleep_avg + sleep_time >=
912 ceiling) {
913 p->sleep_avg = ceiling;
914 sleep_time = 0;
919 * This code gives a bonus to interactive tasks.
921 * The boost works by updating the 'average sleep time'
922 * value here, based on ->timestamp. The more time a
923 * task spends sleeping, the higher the average gets -
924 * and the higher the priority boost gets as well.
926 p->sleep_avg += sleep_time;
929 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
930 p->sleep_avg = NS_MAX_SLEEP_AVG;
933 return effective_prio(p);
937 * activate_task - move a task to the runqueue and do priority recalculation
939 * Update all the scheduling statistics stuff. (sleep average
940 * calculation, priority modifiers, etc.)
942 static void activate_task(struct task_struct *p, struct rq *rq, int local)
944 unsigned long long now;
946 if (rt_task(p))
947 goto out;
949 now = sched_clock();
950 #ifdef CONFIG_SMP
951 if (!local) {
952 /* Compensate for drifting sched_clock */
953 struct rq *this_rq = this_rq();
954 now = (now - this_rq->most_recent_timestamp)
955 + rq->most_recent_timestamp;
957 #endif
960 * Sleep time is in units of nanosecs, so shift by 20 to get a
961 * milliseconds-range estimation of the amount of time that the task
962 * spent sleeping:
964 if (unlikely(prof_on == SLEEP_PROFILING)) {
965 if (p->state == TASK_UNINTERRUPTIBLE)
966 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
967 (now - p->timestamp) >> 20);
970 p->prio = recalc_task_prio(p, now);
973 * This checks to make sure it's not an uninterruptible task
974 * that is now waking up.
976 if (p->sleep_type == SLEEP_NORMAL) {
978 * Tasks which were woken up by interrupts (ie. hw events)
979 * are most likely of interactive nature. So we give them
980 * the credit of extending their sleep time to the period
981 * of time they spend on the runqueue, waiting for execution
982 * on a CPU, first time around:
984 if (in_interrupt())
985 p->sleep_type = SLEEP_INTERRUPTED;
986 else {
988 * Normal first-time wakeups get a credit too for
989 * on-runqueue time, but it will be weighted down:
991 p->sleep_type = SLEEP_INTERACTIVE;
994 p->timestamp = now;
995 out:
996 __activate_task(p, rq);
1000 * deactivate_task - remove a task from the runqueue.
1002 static void deactivate_task(struct task_struct *p, struct rq *rq)
1004 dec_nr_running(p, rq);
1005 dequeue_task(p, p->array);
1006 p->array = NULL;
1010 * resched_task - mark a task 'to be rescheduled now'.
1012 * On UP this means the setting of the need_resched flag, on SMP it
1013 * might also involve a cross-CPU call to trigger the scheduler on
1014 * the target CPU.
1016 #ifdef CONFIG_SMP
1018 #ifndef tsk_is_polling
1019 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1020 #endif
1022 static void resched_task(struct task_struct *p)
1024 int cpu;
1026 assert_spin_locked(&task_rq(p)->lock);
1028 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1029 return;
1031 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1033 cpu = task_cpu(p);
1034 if (cpu == smp_processor_id())
1035 return;
1037 /* NEED_RESCHED must be visible before we test polling */
1038 smp_mb();
1039 if (!tsk_is_polling(p))
1040 smp_send_reschedule(cpu);
1042 #else
1043 static inline void resched_task(struct task_struct *p)
1045 assert_spin_locked(&task_rq(p)->lock);
1046 set_tsk_need_resched(p);
1048 #endif
1051 * task_curr - is this task currently executing on a CPU?
1052 * @p: the task in question.
1054 inline int task_curr(const struct task_struct *p)
1056 return cpu_curr(task_cpu(p)) == p;
1059 /* Used instead of source_load when we know the type == 0 */
1060 unsigned long weighted_cpuload(const int cpu)
1062 return cpu_rq(cpu)->raw_weighted_load;
1065 #ifdef CONFIG_SMP
1066 struct migration_req {
1067 struct list_head list;
1069 struct task_struct *task;
1070 int dest_cpu;
1072 struct completion done;
1076 * The task's runqueue lock must be held.
1077 * Returns true if you have to wait for migration thread.
1079 static int
1080 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1082 struct rq *rq = task_rq(p);
1085 * If the task is not on a runqueue (and not running), then
1086 * it is sufficient to simply update the task's cpu field.
1088 if (!p->array && !task_running(rq, p)) {
1089 set_task_cpu(p, dest_cpu);
1090 return 0;
1093 init_completion(&req->done);
1094 req->task = p;
1095 req->dest_cpu = dest_cpu;
1096 list_add(&req->list, &rq->migration_queue);
1098 return 1;
1102 * wait_task_inactive - wait for a thread to unschedule.
1104 * The caller must ensure that the task *will* unschedule sometime soon,
1105 * else this function might spin for a *long* time. This function can't
1106 * be called with interrupts off, or it may introduce deadlock with
1107 * smp_call_function() if an IPI is sent by the same process we are
1108 * waiting to become inactive.
1110 void wait_task_inactive(struct task_struct *p)
1112 unsigned long flags;
1113 struct rq *rq;
1114 int preempted;
1116 repeat:
1117 rq = task_rq_lock(p, &flags);
1118 /* Must be off runqueue entirely, not preempted. */
1119 if (unlikely(p->array || task_running(rq, p))) {
1120 /* If it's preempted, we yield. It could be a while. */
1121 preempted = !task_running(rq, p);
1122 task_rq_unlock(rq, &flags);
1123 cpu_relax();
1124 if (preempted)
1125 yield();
1126 goto repeat;
1128 task_rq_unlock(rq, &flags);
1131 /***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1138 * NOTE: this function doesnt have to take the runqueue lock,
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1144 void kick_process(struct task_struct *p)
1146 int cpu;
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1156 * Return a low guess at the load of a migration-source cpu weighted
1157 * according to the scheduling class and "nice" value.
1159 * We want to under-estimate the load of migration sources, to
1160 * balance conservatively.
1162 static inline unsigned long source_load(int cpu, int type)
1164 struct rq *rq = cpu_rq(cpu);
1166 if (type == 0)
1167 return rq->raw_weighted_load;
1169 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1173 * Return a high guess at the load of a migration-target cpu weighted
1174 * according to the scheduling class and "nice" value.
1176 static inline unsigned long target_load(int cpu, int type)
1178 struct rq *rq = cpu_rq(cpu);
1180 if (type == 0)
1181 return rq->raw_weighted_load;
1183 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1187 * Return the average load per task on the cpu's run queue
1189 static inline unsigned long cpu_avg_load_per_task(int cpu)
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long n = rq->nr_running;
1194 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1198 * find_idlest_group finds and returns the least busy CPU group within the
1199 * domain.
1201 static struct sched_group *
1202 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1204 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1205 unsigned long min_load = ULONG_MAX, this_load = 0;
1206 int load_idx = sd->forkexec_idx;
1207 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1209 do {
1210 unsigned long load, avg_load;
1211 int local_group;
1212 int i;
1214 /* Skip over this group if it has no CPUs allowed */
1215 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1216 goto nextgroup;
1218 local_group = cpu_isset(this_cpu, group->cpumask);
1220 /* Tally up the load of all CPUs in the group */
1221 avg_load = 0;
1223 for_each_cpu_mask(i, group->cpumask) {
1224 /* Bias balancing toward cpus of our domain */
1225 if (local_group)
1226 load = source_load(i, load_idx);
1227 else
1228 load = target_load(i, load_idx);
1230 avg_load += load;
1233 /* Adjust by relative CPU power of the group */
1234 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1236 if (local_group) {
1237 this_load = avg_load;
1238 this = group;
1239 } else if (avg_load < min_load) {
1240 min_load = avg_load;
1241 idlest = group;
1243 nextgroup:
1244 group = group->next;
1245 } while (group != sd->groups);
1247 if (!idlest || 100*this_load < imbalance*min_load)
1248 return NULL;
1249 return idlest;
1253 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1255 static int
1256 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1258 cpumask_t tmp;
1259 unsigned long load, min_load = ULONG_MAX;
1260 int idlest = -1;
1261 int i;
1263 /* Traverse only the allowed CPUs */
1264 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1266 for_each_cpu_mask(i, tmp) {
1267 load = weighted_cpuload(i);
1269 if (load < min_load || (load == min_load && i == this_cpu)) {
1270 min_load = load;
1271 idlest = i;
1275 return idlest;
1279 * sched_balance_self: balance the current task (running on cpu) in domains
1280 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1281 * SD_BALANCE_EXEC.
1283 * Balance, ie. select the least loaded group.
1285 * Returns the target CPU number, or the same CPU if no balancing is needed.
1287 * preempt must be disabled.
1289 static int sched_balance_self(int cpu, int flag)
1291 struct task_struct *t = current;
1292 struct sched_domain *tmp, *sd = NULL;
1294 for_each_domain(cpu, tmp) {
1296 * If power savings logic is enabled for a domain, stop there.
1298 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1299 break;
1300 if (tmp->flags & flag)
1301 sd = tmp;
1304 while (sd) {
1305 cpumask_t span;
1306 struct sched_group *group;
1307 int new_cpu, weight;
1309 if (!(sd->flags & flag)) {
1310 sd = sd->child;
1311 continue;
1314 span = sd->span;
1315 group = find_idlest_group(sd, t, cpu);
1316 if (!group) {
1317 sd = sd->child;
1318 continue;
1321 new_cpu = find_idlest_cpu(group, t, cpu);
1322 if (new_cpu == -1 || new_cpu == cpu) {
1323 /* Now try balancing at a lower domain level of cpu */
1324 sd = sd->child;
1325 continue;
1328 /* Now try balancing at a lower domain level of new_cpu */
1329 cpu = new_cpu;
1330 sd = NULL;
1331 weight = cpus_weight(span);
1332 for_each_domain(cpu, tmp) {
1333 if (weight <= cpus_weight(tmp->span))
1334 break;
1335 if (tmp->flags & flag)
1336 sd = tmp;
1338 /* while loop will break here if sd == NULL */
1341 return cpu;
1344 #endif /* CONFIG_SMP */
1347 * wake_idle() will wake a task on an idle cpu if task->cpu is
1348 * not idle and an idle cpu is available. The span of cpus to
1349 * search starts with cpus closest then further out as needed,
1350 * so we always favor a closer, idle cpu.
1352 * Returns the CPU we should wake onto.
1354 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1355 static int wake_idle(int cpu, struct task_struct *p)
1357 cpumask_t tmp;
1358 struct sched_domain *sd;
1359 int i;
1361 if (idle_cpu(cpu))
1362 return cpu;
1364 for_each_domain(cpu, sd) {
1365 if (sd->flags & SD_WAKE_IDLE) {
1366 cpus_and(tmp, sd->span, p->cpus_allowed);
1367 for_each_cpu_mask(i, tmp) {
1368 if (idle_cpu(i))
1369 return i;
1372 else
1373 break;
1375 return cpu;
1377 #else
1378 static inline int wake_idle(int cpu, struct task_struct *p)
1380 return cpu;
1382 #endif
1384 /***
1385 * try_to_wake_up - wake up a thread
1386 * @p: the to-be-woken-up thread
1387 * @state: the mask of task states that can be woken
1388 * @sync: do a synchronous wakeup?
1390 * Put it on the run-queue if it's not already there. The "current"
1391 * thread is always on the run-queue (except when the actual
1392 * re-schedule is in progress), and as such you're allowed to do
1393 * the simpler "current->state = TASK_RUNNING" to mark yourself
1394 * runnable without the overhead of this.
1396 * returns failure only if the task is already active.
1398 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1400 int cpu, this_cpu, success = 0;
1401 unsigned long flags;
1402 long old_state;
1403 struct rq *rq;
1404 #ifdef CONFIG_SMP
1405 struct sched_domain *sd, *this_sd = NULL;
1406 unsigned long load, this_load;
1407 int new_cpu;
1408 #endif
1410 rq = task_rq_lock(p, &flags);
1411 old_state = p->state;
1412 if (!(old_state & state))
1413 goto out;
1415 if (p->array)
1416 goto out_running;
1418 cpu = task_cpu(p);
1419 this_cpu = smp_processor_id();
1421 #ifdef CONFIG_SMP
1422 if (unlikely(task_running(rq, p)))
1423 goto out_activate;
1425 new_cpu = cpu;
1427 schedstat_inc(rq, ttwu_cnt);
1428 if (cpu == this_cpu) {
1429 schedstat_inc(rq, ttwu_local);
1430 goto out_set_cpu;
1433 for_each_domain(this_cpu, sd) {
1434 if (cpu_isset(cpu, sd->span)) {
1435 schedstat_inc(sd, ttwu_wake_remote);
1436 this_sd = sd;
1437 break;
1441 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1442 goto out_set_cpu;
1445 * Check for affine wakeup and passive balancing possibilities.
1447 if (this_sd) {
1448 int idx = this_sd->wake_idx;
1449 unsigned int imbalance;
1451 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1453 load = source_load(cpu, idx);
1454 this_load = target_load(this_cpu, idx);
1456 new_cpu = this_cpu; /* Wake to this CPU if we can */
1458 if (this_sd->flags & SD_WAKE_AFFINE) {
1459 unsigned long tl = this_load;
1460 unsigned long tl_per_task;
1462 tl_per_task = cpu_avg_load_per_task(this_cpu);
1465 * If sync wakeup then subtract the (maximum possible)
1466 * effect of the currently running task from the load
1467 * of the current CPU:
1469 if (sync)
1470 tl -= current->load_weight;
1472 if ((tl <= load &&
1473 tl + target_load(cpu, idx) <= tl_per_task) ||
1474 100*(tl + p->load_weight) <= imbalance*load) {
1476 * This domain has SD_WAKE_AFFINE and
1477 * p is cache cold in this domain, and
1478 * there is no bad imbalance.
1480 schedstat_inc(this_sd, ttwu_move_affine);
1481 goto out_set_cpu;
1486 * Start passive balancing when half the imbalance_pct
1487 * limit is reached.
1489 if (this_sd->flags & SD_WAKE_BALANCE) {
1490 if (imbalance*this_load <= 100*load) {
1491 schedstat_inc(this_sd, ttwu_move_balance);
1492 goto out_set_cpu;
1497 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1498 out_set_cpu:
1499 new_cpu = wake_idle(new_cpu, p);
1500 if (new_cpu != cpu) {
1501 set_task_cpu(p, new_cpu);
1502 task_rq_unlock(rq, &flags);
1503 /* might preempt at this point */
1504 rq = task_rq_lock(p, &flags);
1505 old_state = p->state;
1506 if (!(old_state & state))
1507 goto out;
1508 if (p->array)
1509 goto out_running;
1511 this_cpu = smp_processor_id();
1512 cpu = task_cpu(p);
1515 out_activate:
1516 #endif /* CONFIG_SMP */
1517 if (old_state == TASK_UNINTERRUPTIBLE) {
1518 rq->nr_uninterruptible--;
1520 * Tasks on involuntary sleep don't earn
1521 * sleep_avg beyond just interactive state.
1523 p->sleep_type = SLEEP_NONINTERACTIVE;
1524 } else
1527 * Tasks that have marked their sleep as noninteractive get
1528 * woken up with their sleep average not weighted in an
1529 * interactive way.
1531 if (old_state & TASK_NONINTERACTIVE)
1532 p->sleep_type = SLEEP_NONINTERACTIVE;
1535 activate_task(p, rq, cpu == this_cpu);
1537 * Sync wakeups (i.e. those types of wakeups where the waker
1538 * has indicated that it will leave the CPU in short order)
1539 * don't trigger a preemption, if the woken up task will run on
1540 * this cpu. (in this case the 'I will reschedule' promise of
1541 * the waker guarantees that the freshly woken up task is going
1542 * to be considered on this CPU.)
1544 if (!sync || cpu != this_cpu) {
1545 if (TASK_PREEMPTS_CURR(p, rq))
1546 resched_task(rq->curr);
1548 success = 1;
1550 out_running:
1551 p->state = TASK_RUNNING;
1552 out:
1553 task_rq_unlock(rq, &flags);
1555 return success;
1558 int fastcall wake_up_process(struct task_struct *p)
1560 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1561 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1563 EXPORT_SYMBOL(wake_up_process);
1565 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1567 return try_to_wake_up(p, state, 0);
1571 * Perform scheduler related setup for a newly forked process p.
1572 * p is forked by current.
1574 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1576 int cpu = get_cpu();
1578 #ifdef CONFIG_SMP
1579 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1580 #endif
1581 set_task_cpu(p, cpu);
1584 * We mark the process as running here, but have not actually
1585 * inserted it onto the runqueue yet. This guarantees that
1586 * nobody will actually run it, and a signal or other external
1587 * event cannot wake it up and insert it on the runqueue either.
1589 p->state = TASK_RUNNING;
1592 * Make sure we do not leak PI boosting priority to the child:
1594 p->prio = current->normal_prio;
1596 INIT_LIST_HEAD(&p->run_list);
1597 p->array = NULL;
1598 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1599 if (unlikely(sched_info_on()))
1600 memset(&p->sched_info, 0, sizeof(p->sched_info));
1601 #endif
1602 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1603 p->oncpu = 0;
1604 #endif
1605 #ifdef CONFIG_PREEMPT
1606 /* Want to start with kernel preemption disabled. */
1607 task_thread_info(p)->preempt_count = 1;
1608 #endif
1610 * Share the timeslice between parent and child, thus the
1611 * total amount of pending timeslices in the system doesn't change,
1612 * resulting in more scheduling fairness.
1614 local_irq_disable();
1615 p->time_slice = (current->time_slice + 1) >> 1;
1617 * The remainder of the first timeslice might be recovered by
1618 * the parent if the child exits early enough.
1620 p->first_time_slice = 1;
1621 current->time_slice >>= 1;
1622 p->timestamp = sched_clock();
1623 if (unlikely(!current->time_slice)) {
1625 * This case is rare, it happens when the parent has only
1626 * a single jiffy left from its timeslice. Taking the
1627 * runqueue lock is not a problem.
1629 current->time_slice = 1;
1630 scheduler_tick();
1632 local_irq_enable();
1633 put_cpu();
1637 * wake_up_new_task - wake up a newly created task for the first time.
1639 * This function will do some initial scheduler statistics housekeeping
1640 * that must be done for every newly created context, then puts the task
1641 * on the runqueue and wakes it.
1643 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1645 struct rq *rq, *this_rq;
1646 unsigned long flags;
1647 int this_cpu, cpu;
1649 rq = task_rq_lock(p, &flags);
1650 BUG_ON(p->state != TASK_RUNNING);
1651 this_cpu = smp_processor_id();
1652 cpu = task_cpu(p);
1655 * We decrease the sleep average of forking parents
1656 * and children as well, to keep max-interactive tasks
1657 * from forking tasks that are max-interactive. The parent
1658 * (current) is done further down, under its lock.
1660 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1661 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1663 p->prio = effective_prio(p);
1665 if (likely(cpu == this_cpu)) {
1666 if (!(clone_flags & CLONE_VM)) {
1668 * The VM isn't cloned, so we're in a good position to
1669 * do child-runs-first in anticipation of an exec. This
1670 * usually avoids a lot of COW overhead.
1672 if (unlikely(!current->array))
1673 __activate_task(p, rq);
1674 else {
1675 p->prio = current->prio;
1676 p->normal_prio = current->normal_prio;
1677 list_add_tail(&p->run_list, &current->run_list);
1678 p->array = current->array;
1679 p->array->nr_active++;
1680 inc_nr_running(p, rq);
1682 set_need_resched();
1683 } else
1684 /* Run child last */
1685 __activate_task(p, rq);
1687 * We skip the following code due to cpu == this_cpu
1689 * task_rq_unlock(rq, &flags);
1690 * this_rq = task_rq_lock(current, &flags);
1692 this_rq = rq;
1693 } else {
1694 this_rq = cpu_rq(this_cpu);
1697 * Not the local CPU - must adjust timestamp. This should
1698 * get optimised away in the !CONFIG_SMP case.
1700 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1701 + rq->most_recent_timestamp;
1702 __activate_task(p, rq);
1703 if (TASK_PREEMPTS_CURR(p, rq))
1704 resched_task(rq->curr);
1707 * Parent and child are on different CPUs, now get the
1708 * parent runqueue to update the parent's ->sleep_avg:
1710 task_rq_unlock(rq, &flags);
1711 this_rq = task_rq_lock(current, &flags);
1713 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1714 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1715 task_rq_unlock(this_rq, &flags);
1719 * Potentially available exiting-child timeslices are
1720 * retrieved here - this way the parent does not get
1721 * penalized for creating too many threads.
1723 * (this cannot be used to 'generate' timeslices
1724 * artificially, because any timeslice recovered here
1725 * was given away by the parent in the first place.)
1727 void fastcall sched_exit(struct task_struct *p)
1729 unsigned long flags;
1730 struct rq *rq;
1733 * If the child was a (relative-) CPU hog then decrease
1734 * the sleep_avg of the parent as well.
1736 rq = task_rq_lock(p->parent, &flags);
1737 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1738 p->parent->time_slice += p->time_slice;
1739 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1740 p->parent->time_slice = task_timeslice(p);
1742 if (p->sleep_avg < p->parent->sleep_avg)
1743 p->parent->sleep_avg = p->parent->sleep_avg /
1744 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1745 (EXIT_WEIGHT + 1);
1746 task_rq_unlock(rq, &flags);
1750 * prepare_task_switch - prepare to switch tasks
1751 * @rq: the runqueue preparing to switch
1752 * @next: the task we are going to switch to.
1754 * This is called with the rq lock held and interrupts off. It must
1755 * be paired with a subsequent finish_task_switch after the context
1756 * switch.
1758 * prepare_task_switch sets up locking and calls architecture specific
1759 * hooks.
1761 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1763 prepare_lock_switch(rq, next);
1764 prepare_arch_switch(next);
1768 * finish_task_switch - clean up after a task-switch
1769 * @rq: runqueue associated with task-switch
1770 * @prev: the thread we just switched away from.
1772 * finish_task_switch must be called after the context switch, paired
1773 * with a prepare_task_switch call before the context switch.
1774 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1775 * and do any other architecture-specific cleanup actions.
1777 * Note that we may have delayed dropping an mm in context_switch(). If
1778 * so, we finish that here outside of the runqueue lock. (Doing it
1779 * with the lock held can cause deadlocks; see schedule() for
1780 * details.)
1782 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1783 __releases(rq->lock)
1785 struct mm_struct *mm = rq->prev_mm;
1786 long prev_state;
1788 rq->prev_mm = NULL;
1791 * A task struct has one reference for the use as "current".
1792 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1793 * schedule one last time. The schedule call will never return, and
1794 * the scheduled task must drop that reference.
1795 * The test for TASK_DEAD must occur while the runqueue locks are
1796 * still held, otherwise prev could be scheduled on another cpu, die
1797 * there before we look at prev->state, and then the reference would
1798 * be dropped twice.
1799 * Manfred Spraul <manfred@colorfullife.com>
1801 prev_state = prev->state;
1802 finish_arch_switch(prev);
1803 finish_lock_switch(rq, prev);
1804 if (mm)
1805 mmdrop(mm);
1806 if (unlikely(prev_state == TASK_DEAD)) {
1808 * Remove function-return probe instances associated with this
1809 * task and put them back on the free list.
1811 kprobe_flush_task(prev);
1812 put_task_struct(prev);
1817 * schedule_tail - first thing a freshly forked thread must call.
1818 * @prev: the thread we just switched away from.
1820 asmlinkage void schedule_tail(struct task_struct *prev)
1821 __releases(rq->lock)
1823 struct rq *rq = this_rq();
1825 finish_task_switch(rq, prev);
1826 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1827 /* In this case, finish_task_switch does not reenable preemption */
1828 preempt_enable();
1829 #endif
1830 if (current->set_child_tid)
1831 put_user(current->pid, current->set_child_tid);
1835 * context_switch - switch to the new MM and the new
1836 * thread's register state.
1838 static inline struct task_struct *
1839 context_switch(struct rq *rq, struct task_struct *prev,
1840 struct task_struct *next)
1842 struct mm_struct *mm = next->mm;
1843 struct mm_struct *oldmm = prev->active_mm;
1845 if (!mm) {
1846 next->active_mm = oldmm;
1847 atomic_inc(&oldmm->mm_count);
1848 enter_lazy_tlb(oldmm, next);
1849 } else
1850 switch_mm(oldmm, mm, next);
1852 if (!prev->mm) {
1853 prev->active_mm = NULL;
1854 WARN_ON(rq->prev_mm);
1855 rq->prev_mm = oldmm;
1858 * Since the runqueue lock will be released by the next
1859 * task (which is an invalid locking op but in the case
1860 * of the scheduler it's an obvious special-case), so we
1861 * do an early lockdep release here:
1863 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1864 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1865 #endif
1867 /* Here we just switch the register state and the stack. */
1868 switch_to(prev, next, prev);
1870 return prev;
1874 * nr_running, nr_uninterruptible and nr_context_switches:
1876 * externally visible scheduler statistics: current number of runnable
1877 * threads, current number of uninterruptible-sleeping threads, total
1878 * number of context switches performed since bootup.
1880 unsigned long nr_running(void)
1882 unsigned long i, sum = 0;
1884 for_each_online_cpu(i)
1885 sum += cpu_rq(i)->nr_running;
1887 return sum;
1890 unsigned long nr_uninterruptible(void)
1892 unsigned long i, sum = 0;
1894 for_each_possible_cpu(i)
1895 sum += cpu_rq(i)->nr_uninterruptible;
1898 * Since we read the counters lockless, it might be slightly
1899 * inaccurate. Do not allow it to go below zero though:
1901 if (unlikely((long)sum < 0))
1902 sum = 0;
1904 return sum;
1907 unsigned long long nr_context_switches(void)
1909 int i;
1910 unsigned long long sum = 0;
1912 for_each_possible_cpu(i)
1913 sum += cpu_rq(i)->nr_switches;
1915 return sum;
1918 unsigned long nr_iowait(void)
1920 unsigned long i, sum = 0;
1922 for_each_possible_cpu(i)
1923 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1925 return sum;
1928 unsigned long nr_active(void)
1930 unsigned long i, running = 0, uninterruptible = 0;
1932 for_each_online_cpu(i) {
1933 running += cpu_rq(i)->nr_running;
1934 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1937 if (unlikely((long)uninterruptible < 0))
1938 uninterruptible = 0;
1940 return running + uninterruptible;
1943 #ifdef CONFIG_SMP
1946 * Is this task likely cache-hot:
1948 static inline int
1949 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1951 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1955 * double_rq_lock - safely lock two runqueues
1957 * Note this does not disable interrupts like task_rq_lock,
1958 * you need to do so manually before calling.
1960 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1961 __acquires(rq1->lock)
1962 __acquires(rq2->lock)
1964 BUG_ON(!irqs_disabled());
1965 if (rq1 == rq2) {
1966 spin_lock(&rq1->lock);
1967 __acquire(rq2->lock); /* Fake it out ;) */
1968 } else {
1969 if (rq1 < rq2) {
1970 spin_lock(&rq1->lock);
1971 spin_lock(&rq2->lock);
1972 } else {
1973 spin_lock(&rq2->lock);
1974 spin_lock(&rq1->lock);
1980 * double_rq_unlock - safely unlock two runqueues
1982 * Note this does not restore interrupts like task_rq_unlock,
1983 * you need to do so manually after calling.
1985 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1986 __releases(rq1->lock)
1987 __releases(rq2->lock)
1989 spin_unlock(&rq1->lock);
1990 if (rq1 != rq2)
1991 spin_unlock(&rq2->lock);
1992 else
1993 __release(rq2->lock);
1997 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1999 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2000 __releases(this_rq->lock)
2001 __acquires(busiest->lock)
2002 __acquires(this_rq->lock)
2004 if (unlikely(!irqs_disabled())) {
2005 /* printk() doesn't work good under rq->lock */
2006 spin_unlock(&this_rq->lock);
2007 BUG_ON(1);
2009 if (unlikely(!spin_trylock(&busiest->lock))) {
2010 if (busiest < this_rq) {
2011 spin_unlock(&this_rq->lock);
2012 spin_lock(&busiest->lock);
2013 spin_lock(&this_rq->lock);
2014 } else
2015 spin_lock(&busiest->lock);
2020 * If dest_cpu is allowed for this process, migrate the task to it.
2021 * This is accomplished by forcing the cpu_allowed mask to only
2022 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2023 * the cpu_allowed mask is restored.
2025 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2027 struct migration_req req;
2028 unsigned long flags;
2029 struct rq *rq;
2031 rq = task_rq_lock(p, &flags);
2032 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2033 || unlikely(cpu_is_offline(dest_cpu)))
2034 goto out;
2036 /* force the process onto the specified CPU */
2037 if (migrate_task(p, dest_cpu, &req)) {
2038 /* Need to wait for migration thread (might exit: take ref). */
2039 struct task_struct *mt = rq->migration_thread;
2041 get_task_struct(mt);
2042 task_rq_unlock(rq, &flags);
2043 wake_up_process(mt);
2044 put_task_struct(mt);
2045 wait_for_completion(&req.done);
2047 return;
2049 out:
2050 task_rq_unlock(rq, &flags);
2054 * sched_exec - execve() is a valuable balancing opportunity, because at
2055 * this point the task has the smallest effective memory and cache footprint.
2057 void sched_exec(void)
2059 int new_cpu, this_cpu = get_cpu();
2060 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2061 put_cpu();
2062 if (new_cpu != this_cpu)
2063 sched_migrate_task(current, new_cpu);
2067 * pull_task - move a task from a remote runqueue to the local runqueue.
2068 * Both runqueues must be locked.
2070 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2071 struct task_struct *p, struct rq *this_rq,
2072 struct prio_array *this_array, int this_cpu)
2074 dequeue_task(p, src_array);
2075 dec_nr_running(p, src_rq);
2076 set_task_cpu(p, this_cpu);
2077 inc_nr_running(p, this_rq);
2078 enqueue_task(p, this_array);
2079 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2080 + this_rq->most_recent_timestamp;
2082 * Note that idle threads have a prio of MAX_PRIO, for this test
2083 * to be always true for them.
2085 if (TASK_PREEMPTS_CURR(p, this_rq))
2086 resched_task(this_rq->curr);
2090 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2092 static
2093 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2094 struct sched_domain *sd, enum idle_type idle,
2095 int *all_pinned)
2098 * We do not migrate tasks that are:
2099 * 1) running (obviously), or
2100 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2101 * 3) are cache-hot on their current CPU.
2103 if (!cpu_isset(this_cpu, p->cpus_allowed))
2104 return 0;
2105 *all_pinned = 0;
2107 if (task_running(rq, p))
2108 return 0;
2111 * Aggressive migration if:
2112 * 1) task is cache cold, or
2113 * 2) too many balance attempts have failed.
2116 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2117 #ifdef CONFIG_SCHEDSTATS
2118 if (task_hot(p, rq->most_recent_timestamp, sd))
2119 schedstat_inc(sd, lb_hot_gained[idle]);
2120 #endif
2121 return 1;
2124 if (task_hot(p, rq->most_recent_timestamp, sd))
2125 return 0;
2126 return 1;
2129 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2132 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2133 * load from busiest to this_rq, as part of a balancing operation within
2134 * "domain". Returns the number of tasks moved.
2136 * Called with both runqueues locked.
2138 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2139 unsigned long max_nr_move, unsigned long max_load_move,
2140 struct sched_domain *sd, enum idle_type idle,
2141 int *all_pinned)
2143 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2144 best_prio_seen, skip_for_load;
2145 struct prio_array *array, *dst_array;
2146 struct list_head *head, *curr;
2147 struct task_struct *tmp;
2148 long rem_load_move;
2150 if (max_nr_move == 0 || max_load_move == 0)
2151 goto out;
2153 rem_load_move = max_load_move;
2154 pinned = 1;
2155 this_best_prio = rq_best_prio(this_rq);
2156 best_prio = rq_best_prio(busiest);
2158 * Enable handling of the case where there is more than one task
2159 * with the best priority. If the current running task is one
2160 * of those with prio==best_prio we know it won't be moved
2161 * and therefore it's safe to override the skip (based on load) of
2162 * any task we find with that prio.
2164 best_prio_seen = best_prio == busiest->curr->prio;
2167 * We first consider expired tasks. Those will likely not be
2168 * executed in the near future, and they are most likely to
2169 * be cache-cold, thus switching CPUs has the least effect
2170 * on them.
2172 if (busiest->expired->nr_active) {
2173 array = busiest->expired;
2174 dst_array = this_rq->expired;
2175 } else {
2176 array = busiest->active;
2177 dst_array = this_rq->active;
2180 new_array:
2181 /* Start searching at priority 0: */
2182 idx = 0;
2183 skip_bitmap:
2184 if (!idx)
2185 idx = sched_find_first_bit(array->bitmap);
2186 else
2187 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2188 if (idx >= MAX_PRIO) {
2189 if (array == busiest->expired && busiest->active->nr_active) {
2190 array = busiest->active;
2191 dst_array = this_rq->active;
2192 goto new_array;
2194 goto out;
2197 head = array->queue + idx;
2198 curr = head->prev;
2199 skip_queue:
2200 tmp = list_entry(curr, struct task_struct, run_list);
2202 curr = curr->prev;
2205 * To help distribute high priority tasks accross CPUs we don't
2206 * skip a task if it will be the highest priority task (i.e. smallest
2207 * prio value) on its new queue regardless of its load weight
2209 skip_for_load = tmp->load_weight > rem_load_move;
2210 if (skip_for_load && idx < this_best_prio)
2211 skip_for_load = !best_prio_seen && idx == best_prio;
2212 if (skip_for_load ||
2213 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2215 best_prio_seen |= idx == best_prio;
2216 if (curr != head)
2217 goto skip_queue;
2218 idx++;
2219 goto skip_bitmap;
2222 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2223 pulled++;
2224 rem_load_move -= tmp->load_weight;
2227 * We only want to steal up to the prescribed number of tasks
2228 * and the prescribed amount of weighted load.
2230 if (pulled < max_nr_move && rem_load_move > 0) {
2231 if (idx < this_best_prio)
2232 this_best_prio = idx;
2233 if (curr != head)
2234 goto skip_queue;
2235 idx++;
2236 goto skip_bitmap;
2238 out:
2240 * Right now, this is the only place pull_task() is called,
2241 * so we can safely collect pull_task() stats here rather than
2242 * inside pull_task().
2244 schedstat_add(sd, lb_gained[idle], pulled);
2246 if (all_pinned)
2247 *all_pinned = pinned;
2248 return pulled;
2252 * find_busiest_group finds and returns the busiest CPU group within the
2253 * domain. It calculates and returns the amount of weighted load which
2254 * should be moved to restore balance via the imbalance parameter.
2256 static struct sched_group *
2257 find_busiest_group(struct sched_domain *sd, int this_cpu,
2258 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2259 cpumask_t *cpus, int *balance)
2261 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2262 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2263 unsigned long max_pull;
2264 unsigned long busiest_load_per_task, busiest_nr_running;
2265 unsigned long this_load_per_task, this_nr_running;
2266 int load_idx;
2267 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2268 int power_savings_balance = 1;
2269 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2270 unsigned long min_nr_running = ULONG_MAX;
2271 struct sched_group *group_min = NULL, *group_leader = NULL;
2272 #endif
2274 max_load = this_load = total_load = total_pwr = 0;
2275 busiest_load_per_task = busiest_nr_running = 0;
2276 this_load_per_task = this_nr_running = 0;
2277 if (idle == NOT_IDLE)
2278 load_idx = sd->busy_idx;
2279 else if (idle == NEWLY_IDLE)
2280 load_idx = sd->newidle_idx;
2281 else
2282 load_idx = sd->idle_idx;
2284 do {
2285 unsigned long load, group_capacity;
2286 int local_group;
2287 int i;
2288 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2289 unsigned long sum_nr_running, sum_weighted_load;
2291 local_group = cpu_isset(this_cpu, group->cpumask);
2293 if (local_group)
2294 balance_cpu = first_cpu(group->cpumask);
2296 /* Tally up the load of all CPUs in the group */
2297 sum_weighted_load = sum_nr_running = avg_load = 0;
2299 for_each_cpu_mask(i, group->cpumask) {
2300 struct rq *rq;
2302 if (!cpu_isset(i, *cpus))
2303 continue;
2305 rq = cpu_rq(i);
2307 if (*sd_idle && !idle_cpu(i))
2308 *sd_idle = 0;
2310 /* Bias balancing toward cpus of our domain */
2311 if (local_group) {
2312 if (idle_cpu(i) && !first_idle_cpu) {
2313 first_idle_cpu = 1;
2314 balance_cpu = i;
2317 load = target_load(i, load_idx);
2318 } else
2319 load = source_load(i, load_idx);
2321 avg_load += load;
2322 sum_nr_running += rq->nr_running;
2323 sum_weighted_load += rq->raw_weighted_load;
2327 * First idle cpu or the first cpu(busiest) in this sched group
2328 * is eligible for doing load balancing at this and above
2329 * domains.
2331 if (local_group && balance_cpu != this_cpu && balance) {
2332 *balance = 0;
2333 goto ret;
2336 total_load += avg_load;
2337 total_pwr += group->cpu_power;
2339 /* Adjust by relative CPU power of the group */
2340 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2342 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2344 if (local_group) {
2345 this_load = avg_load;
2346 this = group;
2347 this_nr_running = sum_nr_running;
2348 this_load_per_task = sum_weighted_load;
2349 } else if (avg_load > max_load &&
2350 sum_nr_running > group_capacity) {
2351 max_load = avg_load;
2352 busiest = group;
2353 busiest_nr_running = sum_nr_running;
2354 busiest_load_per_task = sum_weighted_load;
2357 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2359 * Busy processors will not participate in power savings
2360 * balance.
2362 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2363 goto group_next;
2366 * If the local group is idle or completely loaded
2367 * no need to do power savings balance at this domain
2369 if (local_group && (this_nr_running >= group_capacity ||
2370 !this_nr_running))
2371 power_savings_balance = 0;
2374 * If a group is already running at full capacity or idle,
2375 * don't include that group in power savings calculations
2377 if (!power_savings_balance || sum_nr_running >= group_capacity
2378 || !sum_nr_running)
2379 goto group_next;
2382 * Calculate the group which has the least non-idle load.
2383 * This is the group from where we need to pick up the load
2384 * for saving power
2386 if ((sum_nr_running < min_nr_running) ||
2387 (sum_nr_running == min_nr_running &&
2388 first_cpu(group->cpumask) <
2389 first_cpu(group_min->cpumask))) {
2390 group_min = group;
2391 min_nr_running = sum_nr_running;
2392 min_load_per_task = sum_weighted_load /
2393 sum_nr_running;
2397 * Calculate the group which is almost near its
2398 * capacity but still has some space to pick up some load
2399 * from other group and save more power
2401 if (sum_nr_running <= group_capacity - 1) {
2402 if (sum_nr_running > leader_nr_running ||
2403 (sum_nr_running == leader_nr_running &&
2404 first_cpu(group->cpumask) >
2405 first_cpu(group_leader->cpumask))) {
2406 group_leader = group;
2407 leader_nr_running = sum_nr_running;
2410 group_next:
2411 #endif
2412 group = group->next;
2413 } while (group != sd->groups);
2415 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2416 goto out_balanced;
2418 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2420 if (this_load >= avg_load ||
2421 100*max_load <= sd->imbalance_pct*this_load)
2422 goto out_balanced;
2424 busiest_load_per_task /= busiest_nr_running;
2426 * We're trying to get all the cpus to the average_load, so we don't
2427 * want to push ourselves above the average load, nor do we wish to
2428 * reduce the max loaded cpu below the average load, as either of these
2429 * actions would just result in more rebalancing later, and ping-pong
2430 * tasks around. Thus we look for the minimum possible imbalance.
2431 * Negative imbalances (*we* are more loaded than anyone else) will
2432 * be counted as no imbalance for these purposes -- we can't fix that
2433 * by pulling tasks to us. Be careful of negative numbers as they'll
2434 * appear as very large values with unsigned longs.
2436 if (max_load <= busiest_load_per_task)
2437 goto out_balanced;
2440 * In the presence of smp nice balancing, certain scenarios can have
2441 * max load less than avg load(as we skip the groups at or below
2442 * its cpu_power, while calculating max_load..)
2444 if (max_load < avg_load) {
2445 *imbalance = 0;
2446 goto small_imbalance;
2449 /* Don't want to pull so many tasks that a group would go idle */
2450 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2452 /* How much load to actually move to equalise the imbalance */
2453 *imbalance = min(max_pull * busiest->cpu_power,
2454 (avg_load - this_load) * this->cpu_power)
2455 / SCHED_LOAD_SCALE;
2458 * if *imbalance is less than the average load per runnable task
2459 * there is no gaurantee that any tasks will be moved so we'll have
2460 * a think about bumping its value to force at least one task to be
2461 * moved
2463 if (*imbalance < busiest_load_per_task) {
2464 unsigned long tmp, pwr_now, pwr_move;
2465 unsigned int imbn;
2467 small_imbalance:
2468 pwr_move = pwr_now = 0;
2469 imbn = 2;
2470 if (this_nr_running) {
2471 this_load_per_task /= this_nr_running;
2472 if (busiest_load_per_task > this_load_per_task)
2473 imbn = 1;
2474 } else
2475 this_load_per_task = SCHED_LOAD_SCALE;
2477 if (max_load - this_load >= busiest_load_per_task * imbn) {
2478 *imbalance = busiest_load_per_task;
2479 return busiest;
2483 * OK, we don't have enough imbalance to justify moving tasks,
2484 * however we may be able to increase total CPU power used by
2485 * moving them.
2488 pwr_now += busiest->cpu_power *
2489 min(busiest_load_per_task, max_load);
2490 pwr_now += this->cpu_power *
2491 min(this_load_per_task, this_load);
2492 pwr_now /= SCHED_LOAD_SCALE;
2494 /* Amount of load we'd subtract */
2495 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2496 busiest->cpu_power;
2497 if (max_load > tmp)
2498 pwr_move += busiest->cpu_power *
2499 min(busiest_load_per_task, max_load - tmp);
2501 /* Amount of load we'd add */
2502 if (max_load * busiest->cpu_power <
2503 busiest_load_per_task * SCHED_LOAD_SCALE)
2504 tmp = max_load * busiest->cpu_power / this->cpu_power;
2505 else
2506 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2507 this->cpu_power;
2508 pwr_move += this->cpu_power *
2509 min(this_load_per_task, this_load + tmp);
2510 pwr_move /= SCHED_LOAD_SCALE;
2512 /* Move if we gain throughput */
2513 if (pwr_move <= pwr_now)
2514 goto out_balanced;
2516 *imbalance = busiest_load_per_task;
2519 return busiest;
2521 out_balanced:
2522 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2523 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2524 goto ret;
2526 if (this == group_leader && group_leader != group_min) {
2527 *imbalance = min_load_per_task;
2528 return group_min;
2530 #endif
2531 ret:
2532 *imbalance = 0;
2533 return NULL;
2537 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2539 static struct rq *
2540 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2541 unsigned long imbalance, cpumask_t *cpus)
2543 struct rq *busiest = NULL, *rq;
2544 unsigned long max_load = 0;
2545 int i;
2547 for_each_cpu_mask(i, group->cpumask) {
2549 if (!cpu_isset(i, *cpus))
2550 continue;
2552 rq = cpu_rq(i);
2554 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2555 continue;
2557 if (rq->raw_weighted_load > max_load) {
2558 max_load = rq->raw_weighted_load;
2559 busiest = rq;
2563 return busiest;
2567 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2568 * so long as it is large enough.
2570 #define MAX_PINNED_INTERVAL 512
2572 static inline unsigned long minus_1_or_zero(unsigned long n)
2574 return n > 0 ? n - 1 : 0;
2578 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2579 * tasks if there is an imbalance.
2581 static int load_balance(int this_cpu, struct rq *this_rq,
2582 struct sched_domain *sd, enum idle_type idle,
2583 int *balance)
2585 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2586 struct sched_group *group;
2587 unsigned long imbalance;
2588 struct rq *busiest;
2589 cpumask_t cpus = CPU_MASK_ALL;
2590 unsigned long flags;
2593 * When power savings policy is enabled for the parent domain, idle
2594 * sibling can pick up load irrespective of busy siblings. In this case,
2595 * let the state of idle sibling percolate up as IDLE, instead of
2596 * portraying it as NOT_IDLE.
2598 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2599 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2600 sd_idle = 1;
2602 schedstat_inc(sd, lb_cnt[idle]);
2604 redo:
2605 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2606 &cpus, balance);
2608 if (*balance == 0)
2609 goto out_balanced;
2611 if (!group) {
2612 schedstat_inc(sd, lb_nobusyg[idle]);
2613 goto out_balanced;
2616 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2617 if (!busiest) {
2618 schedstat_inc(sd, lb_nobusyq[idle]);
2619 goto out_balanced;
2622 BUG_ON(busiest == this_rq);
2624 schedstat_add(sd, lb_imbalance[idle], imbalance);
2626 nr_moved = 0;
2627 if (busiest->nr_running > 1) {
2629 * Attempt to move tasks. If find_busiest_group has found
2630 * an imbalance but busiest->nr_running <= 1, the group is
2631 * still unbalanced. nr_moved simply stays zero, so it is
2632 * correctly treated as an imbalance.
2634 local_irq_save(flags);
2635 double_rq_lock(this_rq, busiest);
2636 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2637 minus_1_or_zero(busiest->nr_running),
2638 imbalance, sd, idle, &all_pinned);
2639 double_rq_unlock(this_rq, busiest);
2640 local_irq_restore(flags);
2642 /* All tasks on this runqueue were pinned by CPU affinity */
2643 if (unlikely(all_pinned)) {
2644 cpu_clear(cpu_of(busiest), cpus);
2645 if (!cpus_empty(cpus))
2646 goto redo;
2647 goto out_balanced;
2651 if (!nr_moved) {
2652 schedstat_inc(sd, lb_failed[idle]);
2653 sd->nr_balance_failed++;
2655 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2657 spin_lock_irqsave(&busiest->lock, flags);
2659 /* don't kick the migration_thread, if the curr
2660 * task on busiest cpu can't be moved to this_cpu
2662 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2663 spin_unlock_irqrestore(&busiest->lock, flags);
2664 all_pinned = 1;
2665 goto out_one_pinned;
2668 if (!busiest->active_balance) {
2669 busiest->active_balance = 1;
2670 busiest->push_cpu = this_cpu;
2671 active_balance = 1;
2673 spin_unlock_irqrestore(&busiest->lock, flags);
2674 if (active_balance)
2675 wake_up_process(busiest->migration_thread);
2678 * We've kicked active balancing, reset the failure
2679 * counter.
2681 sd->nr_balance_failed = sd->cache_nice_tries+1;
2683 } else
2684 sd->nr_balance_failed = 0;
2686 if (likely(!active_balance)) {
2687 /* We were unbalanced, so reset the balancing interval */
2688 sd->balance_interval = sd->min_interval;
2689 } else {
2691 * If we've begun active balancing, start to back off. This
2692 * case may not be covered by the all_pinned logic if there
2693 * is only 1 task on the busy runqueue (because we don't call
2694 * move_tasks).
2696 if (sd->balance_interval < sd->max_interval)
2697 sd->balance_interval *= 2;
2700 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2701 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2702 return -1;
2703 return nr_moved;
2705 out_balanced:
2706 schedstat_inc(sd, lb_balanced[idle]);
2708 sd->nr_balance_failed = 0;
2710 out_one_pinned:
2711 /* tune up the balancing interval */
2712 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2713 (sd->balance_interval < sd->max_interval))
2714 sd->balance_interval *= 2;
2716 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2717 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2718 return -1;
2719 return 0;
2723 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2724 * tasks if there is an imbalance.
2726 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2727 * this_rq is locked.
2729 static int
2730 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2732 struct sched_group *group;
2733 struct rq *busiest = NULL;
2734 unsigned long imbalance;
2735 int nr_moved = 0;
2736 int sd_idle = 0;
2737 cpumask_t cpus = CPU_MASK_ALL;
2740 * When power savings policy is enabled for the parent domain, idle
2741 * sibling can pick up load irrespective of busy siblings. In this case,
2742 * let the state of idle sibling percolate up as IDLE, instead of
2743 * portraying it as NOT_IDLE.
2745 if (sd->flags & SD_SHARE_CPUPOWER &&
2746 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2747 sd_idle = 1;
2749 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2750 redo:
2751 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2752 &sd_idle, &cpus, NULL);
2753 if (!group) {
2754 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2755 goto out_balanced;
2758 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2759 &cpus);
2760 if (!busiest) {
2761 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2762 goto out_balanced;
2765 BUG_ON(busiest == this_rq);
2767 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2769 nr_moved = 0;
2770 if (busiest->nr_running > 1) {
2771 /* Attempt to move tasks */
2772 double_lock_balance(this_rq, busiest);
2773 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2774 minus_1_or_zero(busiest->nr_running),
2775 imbalance, sd, NEWLY_IDLE, NULL);
2776 spin_unlock(&busiest->lock);
2778 if (!nr_moved) {
2779 cpu_clear(cpu_of(busiest), cpus);
2780 if (!cpus_empty(cpus))
2781 goto redo;
2785 if (!nr_moved) {
2786 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2787 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2788 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2789 return -1;
2790 } else
2791 sd->nr_balance_failed = 0;
2793 return nr_moved;
2795 out_balanced:
2796 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2797 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2798 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2799 return -1;
2800 sd->nr_balance_failed = 0;
2802 return 0;
2806 * idle_balance is called by schedule() if this_cpu is about to become
2807 * idle. Attempts to pull tasks from other CPUs.
2809 static void idle_balance(int this_cpu, struct rq *this_rq)
2811 struct sched_domain *sd;
2812 int pulled_task = 0;
2813 unsigned long next_balance = jiffies + 60 * HZ;
2815 for_each_domain(this_cpu, sd) {
2816 if (sd->flags & SD_BALANCE_NEWIDLE) {
2817 /* If we've pulled tasks over stop searching: */
2818 pulled_task = load_balance_newidle(this_cpu,
2819 this_rq, sd);
2820 if (time_after(next_balance,
2821 sd->last_balance + sd->balance_interval))
2822 next_balance = sd->last_balance
2823 + sd->balance_interval;
2824 if (pulled_task)
2825 break;
2828 if (!pulled_task)
2830 * We are going idle. next_balance may be set based on
2831 * a busy processor. So reset next_balance.
2833 this_rq->next_balance = next_balance;
2837 * active_load_balance is run by migration threads. It pushes running tasks
2838 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2839 * running on each physical CPU where possible, and avoids physical /
2840 * logical imbalances.
2842 * Called with busiest_rq locked.
2844 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2846 int target_cpu = busiest_rq->push_cpu;
2847 struct sched_domain *sd;
2848 struct rq *target_rq;
2850 /* Is there any task to move? */
2851 if (busiest_rq->nr_running <= 1)
2852 return;
2854 target_rq = cpu_rq(target_cpu);
2857 * This condition is "impossible", if it occurs
2858 * we need to fix it. Originally reported by
2859 * Bjorn Helgaas on a 128-cpu setup.
2861 BUG_ON(busiest_rq == target_rq);
2863 /* move a task from busiest_rq to target_rq */
2864 double_lock_balance(busiest_rq, target_rq);
2866 /* Search for an sd spanning us and the target CPU. */
2867 for_each_domain(target_cpu, sd) {
2868 if ((sd->flags & SD_LOAD_BALANCE) &&
2869 cpu_isset(busiest_cpu, sd->span))
2870 break;
2873 if (likely(sd)) {
2874 schedstat_inc(sd, alb_cnt);
2876 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2877 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2878 NULL))
2879 schedstat_inc(sd, alb_pushed);
2880 else
2881 schedstat_inc(sd, alb_failed);
2883 spin_unlock(&target_rq->lock);
2886 static void update_load(struct rq *this_rq)
2888 unsigned long this_load;
2889 int i, scale;
2891 this_load = this_rq->raw_weighted_load;
2893 /* Update our load: */
2894 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2895 unsigned long old_load, new_load;
2897 old_load = this_rq->cpu_load[i];
2898 new_load = this_load;
2900 * Round up the averaging division if load is increasing. This
2901 * prevents us from getting stuck on 9 if the load is 10, for
2902 * example.
2904 if (new_load > old_load)
2905 new_load += scale-1;
2906 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2911 * run_rebalance_domains is triggered when needed from the scheduler tick.
2913 * It checks each scheduling domain to see if it is due to be balanced,
2914 * and initiates a balancing operation if so.
2916 * Balancing parameters are set up in arch_init_sched_domains.
2918 static DEFINE_SPINLOCK(balancing);
2920 static void run_rebalance_domains(struct softirq_action *h)
2922 int this_cpu = smp_processor_id(), balance = 1;
2923 struct rq *this_rq = cpu_rq(this_cpu);
2924 unsigned long interval;
2925 struct sched_domain *sd;
2927 * We are idle if there are no processes running. This
2928 * is valid even if we are the idle process (SMT).
2930 enum idle_type idle = !this_rq->nr_running ?
2931 SCHED_IDLE : NOT_IDLE;
2932 /* Earliest time when we have to call run_rebalance_domains again */
2933 unsigned long next_balance = jiffies + 60*HZ;
2935 for_each_domain(this_cpu, sd) {
2936 if (!(sd->flags & SD_LOAD_BALANCE))
2937 continue;
2939 interval = sd->balance_interval;
2940 if (idle != SCHED_IDLE)
2941 interval *= sd->busy_factor;
2943 /* scale ms to jiffies */
2944 interval = msecs_to_jiffies(interval);
2945 if (unlikely(!interval))
2946 interval = 1;
2948 if (sd->flags & SD_SERIALIZE) {
2949 if (!spin_trylock(&balancing))
2950 goto out;
2953 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2954 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
2956 * We've pulled tasks over so either we're no
2957 * longer idle, or one of our SMT siblings is
2958 * not idle.
2960 idle = NOT_IDLE;
2962 sd->last_balance = jiffies;
2964 if (sd->flags & SD_SERIALIZE)
2965 spin_unlock(&balancing);
2966 out:
2967 if (time_after(next_balance, sd->last_balance + interval))
2968 next_balance = sd->last_balance + interval;
2971 * Stop the load balance at this level. There is another
2972 * CPU in our sched group which is doing load balancing more
2973 * actively.
2975 if (!balance)
2976 break;
2978 this_rq->next_balance = next_balance;
2980 #else
2982 * on UP we do not need to balance between CPUs:
2984 static inline void idle_balance(int cpu, struct rq *rq)
2987 #endif
2989 static inline void wake_priority_sleeper(struct rq *rq)
2991 #ifdef CONFIG_SCHED_SMT
2992 if (!rq->nr_running)
2993 return;
2995 spin_lock(&rq->lock);
2997 * If an SMT sibling task has been put to sleep for priority
2998 * reasons reschedule the idle task to see if it can now run.
3000 if (rq->nr_running)
3001 resched_task(rq->idle);
3002 spin_unlock(&rq->lock);
3003 #endif
3006 DEFINE_PER_CPU(struct kernel_stat, kstat);
3008 EXPORT_PER_CPU_SYMBOL(kstat);
3011 * This is called on clock ticks and on context switches.
3012 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3014 static inline void
3015 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3017 p->sched_time += now - p->last_ran;
3018 p->last_ran = rq->most_recent_timestamp = now;
3022 * Return current->sched_time plus any more ns on the sched_clock
3023 * that have not yet been banked.
3025 unsigned long long current_sched_time(const struct task_struct *p)
3027 unsigned long long ns;
3028 unsigned long flags;
3030 local_irq_save(flags);
3031 ns = p->sched_time + sched_clock() - p->last_ran;
3032 local_irq_restore(flags);
3034 return ns;
3038 * We place interactive tasks back into the active array, if possible.
3040 * To guarantee that this does not starve expired tasks we ignore the
3041 * interactivity of a task if the first expired task had to wait more
3042 * than a 'reasonable' amount of time. This deadline timeout is
3043 * load-dependent, as the frequency of array switched decreases with
3044 * increasing number of running tasks. We also ignore the interactivity
3045 * if a better static_prio task has expired:
3047 static inline int expired_starving(struct rq *rq)
3049 if (rq->curr->static_prio > rq->best_expired_prio)
3050 return 1;
3051 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3052 return 0;
3053 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3054 return 1;
3055 return 0;
3059 * Account user cpu time to a process.
3060 * @p: the process that the cpu time gets accounted to
3061 * @hardirq_offset: the offset to subtract from hardirq_count()
3062 * @cputime: the cpu time spent in user space since the last update
3064 void account_user_time(struct task_struct *p, cputime_t cputime)
3066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3067 cputime64_t tmp;
3069 p->utime = cputime_add(p->utime, cputime);
3071 /* Add user time to cpustat. */
3072 tmp = cputime_to_cputime64(cputime);
3073 if (TASK_NICE(p) > 0)
3074 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3075 else
3076 cpustat->user = cputime64_add(cpustat->user, tmp);
3080 * Account system cpu time to a process.
3081 * @p: the process that the cpu time gets accounted to
3082 * @hardirq_offset: the offset to subtract from hardirq_count()
3083 * @cputime: the cpu time spent in kernel space since the last update
3085 void account_system_time(struct task_struct *p, int hardirq_offset,
3086 cputime_t cputime)
3088 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3089 struct rq *rq = this_rq();
3090 cputime64_t tmp;
3092 p->stime = cputime_add(p->stime, cputime);
3094 /* Add system time to cpustat. */
3095 tmp = cputime_to_cputime64(cputime);
3096 if (hardirq_count() - hardirq_offset)
3097 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3098 else if (softirq_count())
3099 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3100 else if (p != rq->idle)
3101 cpustat->system = cputime64_add(cpustat->system, tmp);
3102 else if (atomic_read(&rq->nr_iowait) > 0)
3103 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3104 else
3105 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3106 /* Account for system time used */
3107 acct_update_integrals(p);
3111 * Account for involuntary wait time.
3112 * @p: the process from which the cpu time has been stolen
3113 * @steal: the cpu time spent in involuntary wait
3115 void account_steal_time(struct task_struct *p, cputime_t steal)
3117 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3118 cputime64_t tmp = cputime_to_cputime64(steal);
3119 struct rq *rq = this_rq();
3121 if (p == rq->idle) {
3122 p->stime = cputime_add(p->stime, steal);
3123 if (atomic_read(&rq->nr_iowait) > 0)
3124 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3125 else
3126 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3127 } else
3128 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3131 static void task_running_tick(struct rq *rq, struct task_struct *p)
3133 if (p->array != rq->active) {
3134 /* Task has expired but was not scheduled yet */
3135 set_tsk_need_resched(p);
3136 return;
3138 spin_lock(&rq->lock);
3140 * The task was running during this tick - update the
3141 * time slice counter. Note: we do not update a thread's
3142 * priority until it either goes to sleep or uses up its
3143 * timeslice. This makes it possible for interactive tasks
3144 * to use up their timeslices at their highest priority levels.
3146 if (rt_task(p)) {
3148 * RR tasks need a special form of timeslice management.
3149 * FIFO tasks have no timeslices.
3151 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3152 p->time_slice = task_timeslice(p);
3153 p->first_time_slice = 0;
3154 set_tsk_need_resched(p);
3156 /* put it at the end of the queue: */
3157 requeue_task(p, rq->active);
3159 goto out_unlock;
3161 if (!--p->time_slice) {
3162 dequeue_task(p, rq->active);
3163 set_tsk_need_resched(p);
3164 p->prio = effective_prio(p);
3165 p->time_slice = task_timeslice(p);
3166 p->first_time_slice = 0;
3168 if (!rq->expired_timestamp)
3169 rq->expired_timestamp = jiffies;
3170 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3171 enqueue_task(p, rq->expired);
3172 if (p->static_prio < rq->best_expired_prio)
3173 rq->best_expired_prio = p->static_prio;
3174 } else
3175 enqueue_task(p, rq->active);
3176 } else {
3178 * Prevent a too long timeslice allowing a task to monopolize
3179 * the CPU. We do this by splitting up the timeslice into
3180 * smaller pieces.
3182 * Note: this does not mean the task's timeslices expire or
3183 * get lost in any way, they just might be preempted by
3184 * another task of equal priority. (one with higher
3185 * priority would have preempted this task already.) We
3186 * requeue this task to the end of the list on this priority
3187 * level, which is in essence a round-robin of tasks with
3188 * equal priority.
3190 * This only applies to tasks in the interactive
3191 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3193 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3194 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3195 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3196 (p->array == rq->active)) {
3198 requeue_task(p, rq->active);
3199 set_tsk_need_resched(p);
3202 out_unlock:
3203 spin_unlock(&rq->lock);
3207 * This function gets called by the timer code, with HZ frequency.
3208 * We call it with interrupts disabled.
3210 * It also gets called by the fork code, when changing the parent's
3211 * timeslices.
3213 void scheduler_tick(void)
3215 unsigned long long now = sched_clock();
3216 struct task_struct *p = current;
3217 int cpu = smp_processor_id();
3218 struct rq *rq = cpu_rq(cpu);
3220 update_cpu_clock(p, rq, now);
3222 if (p == rq->idle)
3223 /* Task on the idle queue */
3224 wake_priority_sleeper(rq);
3225 else
3226 task_running_tick(rq, p);
3227 #ifdef CONFIG_SMP
3228 update_load(rq);
3229 if (time_after_eq(jiffies, rq->next_balance))
3230 raise_softirq(SCHED_SOFTIRQ);
3231 #endif
3234 #ifdef CONFIG_SCHED_SMT
3235 static inline void wakeup_busy_runqueue(struct rq *rq)
3237 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3238 if (rq->curr == rq->idle && rq->nr_running)
3239 resched_task(rq->idle);
3243 * Called with interrupt disabled and this_rq's runqueue locked.
3245 static void wake_sleeping_dependent(int this_cpu)
3247 struct sched_domain *tmp, *sd = NULL;
3248 int i;
3250 for_each_domain(this_cpu, tmp) {
3251 if (tmp->flags & SD_SHARE_CPUPOWER) {
3252 sd = tmp;
3253 break;
3257 if (!sd)
3258 return;
3260 for_each_cpu_mask(i, sd->span) {
3261 struct rq *smt_rq = cpu_rq(i);
3263 if (i == this_cpu)
3264 continue;
3265 if (unlikely(!spin_trylock(&smt_rq->lock)))
3266 continue;
3268 wakeup_busy_runqueue(smt_rq);
3269 spin_unlock(&smt_rq->lock);
3274 * number of 'lost' timeslices this task wont be able to fully
3275 * utilize, if another task runs on a sibling. This models the
3276 * slowdown effect of other tasks running on siblings:
3278 static inline unsigned long
3279 smt_slice(struct task_struct *p, struct sched_domain *sd)
3281 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3285 * To minimise lock contention and not have to drop this_rq's runlock we only
3286 * trylock the sibling runqueues and bypass those runqueues if we fail to
3287 * acquire their lock. As we only trylock the normal locking order does not
3288 * need to be obeyed.
3290 static int
3291 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3293 struct sched_domain *tmp, *sd = NULL;
3294 int ret = 0, i;
3296 /* kernel/rt threads do not participate in dependent sleeping */
3297 if (!p->mm || rt_task(p))
3298 return 0;
3300 for_each_domain(this_cpu, tmp) {
3301 if (tmp->flags & SD_SHARE_CPUPOWER) {
3302 sd = tmp;
3303 break;
3307 if (!sd)
3308 return 0;
3310 for_each_cpu_mask(i, sd->span) {
3311 struct task_struct *smt_curr;
3312 struct rq *smt_rq;
3314 if (i == this_cpu)
3315 continue;
3317 smt_rq = cpu_rq(i);
3318 if (unlikely(!spin_trylock(&smt_rq->lock)))
3319 continue;
3321 smt_curr = smt_rq->curr;
3323 if (!smt_curr->mm)
3324 goto unlock;
3327 * If a user task with lower static priority than the
3328 * running task on the SMT sibling is trying to schedule,
3329 * delay it till there is proportionately less timeslice
3330 * left of the sibling task to prevent a lower priority
3331 * task from using an unfair proportion of the
3332 * physical cpu's resources. -ck
3334 if (rt_task(smt_curr)) {
3336 * With real time tasks we run non-rt tasks only
3337 * per_cpu_gain% of the time.
3339 if ((jiffies % DEF_TIMESLICE) >
3340 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3341 ret = 1;
3342 } else {
3343 if (smt_curr->static_prio < p->static_prio &&
3344 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3345 smt_slice(smt_curr, sd) > task_timeslice(p))
3346 ret = 1;
3348 unlock:
3349 spin_unlock(&smt_rq->lock);
3351 return ret;
3353 #else
3354 static inline void wake_sleeping_dependent(int this_cpu)
3357 static inline int
3358 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3360 return 0;
3362 #endif
3364 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3366 void fastcall add_preempt_count(int val)
3369 * Underflow?
3371 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3372 return;
3373 preempt_count() += val;
3375 * Spinlock count overflowing soon?
3377 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3378 PREEMPT_MASK - 10);
3380 EXPORT_SYMBOL(add_preempt_count);
3382 void fastcall sub_preempt_count(int val)
3385 * Underflow?
3387 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3388 return;
3390 * Is the spinlock portion underflowing?
3392 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3393 !(preempt_count() & PREEMPT_MASK)))
3394 return;
3396 preempt_count() -= val;
3398 EXPORT_SYMBOL(sub_preempt_count);
3400 #endif
3402 static inline int interactive_sleep(enum sleep_type sleep_type)
3404 return (sleep_type == SLEEP_INTERACTIVE ||
3405 sleep_type == SLEEP_INTERRUPTED);
3409 * schedule() is the main scheduler function.
3411 asmlinkage void __sched schedule(void)
3413 struct task_struct *prev, *next;
3414 struct prio_array *array;
3415 struct list_head *queue;
3416 unsigned long long now;
3417 unsigned long run_time;
3418 int cpu, idx, new_prio;
3419 long *switch_count;
3420 struct rq *rq;
3423 * Test if we are atomic. Since do_exit() needs to call into
3424 * schedule() atomically, we ignore that path for now.
3425 * Otherwise, whine if we are scheduling when we should not be.
3427 if (unlikely(in_atomic() && !current->exit_state)) {
3428 printk(KERN_ERR "BUG: scheduling while atomic: "
3429 "%s/0x%08x/%d\n",
3430 current->comm, preempt_count(), current->pid);
3431 debug_show_held_locks(current);
3432 dump_stack();
3434 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3436 need_resched:
3437 preempt_disable();
3438 prev = current;
3439 release_kernel_lock(prev);
3440 need_resched_nonpreemptible:
3441 rq = this_rq();
3444 * The idle thread is not allowed to schedule!
3445 * Remove this check after it has been exercised a bit.
3447 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3448 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3449 dump_stack();
3452 schedstat_inc(rq, sched_cnt);
3453 now = sched_clock();
3454 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3455 run_time = now - prev->timestamp;
3456 if (unlikely((long long)(now - prev->timestamp) < 0))
3457 run_time = 0;
3458 } else
3459 run_time = NS_MAX_SLEEP_AVG;
3462 * Tasks charged proportionately less run_time at high sleep_avg to
3463 * delay them losing their interactive status
3465 run_time /= (CURRENT_BONUS(prev) ? : 1);
3467 spin_lock_irq(&rq->lock);
3469 switch_count = &prev->nivcsw;
3470 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3471 switch_count = &prev->nvcsw;
3472 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3473 unlikely(signal_pending(prev))))
3474 prev->state = TASK_RUNNING;
3475 else {
3476 if (prev->state == TASK_UNINTERRUPTIBLE)
3477 rq->nr_uninterruptible++;
3478 deactivate_task(prev, rq);
3482 cpu = smp_processor_id();
3483 if (unlikely(!rq->nr_running)) {
3484 idle_balance(cpu, rq);
3485 if (!rq->nr_running) {
3486 next = rq->idle;
3487 rq->expired_timestamp = 0;
3488 wake_sleeping_dependent(cpu);
3489 goto switch_tasks;
3493 array = rq->active;
3494 if (unlikely(!array->nr_active)) {
3496 * Switch the active and expired arrays.
3498 schedstat_inc(rq, sched_switch);
3499 rq->active = rq->expired;
3500 rq->expired = array;
3501 array = rq->active;
3502 rq->expired_timestamp = 0;
3503 rq->best_expired_prio = MAX_PRIO;
3506 idx = sched_find_first_bit(array->bitmap);
3507 queue = array->queue + idx;
3508 next = list_entry(queue->next, struct task_struct, run_list);
3510 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3511 unsigned long long delta = now - next->timestamp;
3512 if (unlikely((long long)(now - next->timestamp) < 0))
3513 delta = 0;
3515 if (next->sleep_type == SLEEP_INTERACTIVE)
3516 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3518 array = next->array;
3519 new_prio = recalc_task_prio(next, next->timestamp + delta);
3521 if (unlikely(next->prio != new_prio)) {
3522 dequeue_task(next, array);
3523 next->prio = new_prio;
3524 enqueue_task(next, array);
3527 next->sleep_type = SLEEP_NORMAL;
3528 if (dependent_sleeper(cpu, rq, next))
3529 next = rq->idle;
3530 switch_tasks:
3531 if (next == rq->idle)
3532 schedstat_inc(rq, sched_goidle);
3533 prefetch(next);
3534 prefetch_stack(next);
3535 clear_tsk_need_resched(prev);
3536 rcu_qsctr_inc(task_cpu(prev));
3538 update_cpu_clock(prev, rq, now);
3540 prev->sleep_avg -= run_time;
3541 if ((long)prev->sleep_avg <= 0)
3542 prev->sleep_avg = 0;
3543 prev->timestamp = prev->last_ran = now;
3545 sched_info_switch(prev, next);
3546 if (likely(prev != next)) {
3547 next->timestamp = now;
3548 rq->nr_switches++;
3549 rq->curr = next;
3550 ++*switch_count;
3552 prepare_task_switch(rq, next);
3553 prev = context_switch(rq, prev, next);
3554 barrier();
3556 * this_rq must be evaluated again because prev may have moved
3557 * CPUs since it called schedule(), thus the 'rq' on its stack
3558 * frame will be invalid.
3560 finish_task_switch(this_rq(), prev);
3561 } else
3562 spin_unlock_irq(&rq->lock);
3564 prev = current;
3565 if (unlikely(reacquire_kernel_lock(prev) < 0))
3566 goto need_resched_nonpreemptible;
3567 preempt_enable_no_resched();
3568 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3569 goto need_resched;
3571 EXPORT_SYMBOL(schedule);
3573 #ifdef CONFIG_PREEMPT
3575 * this is the entry point to schedule() from in-kernel preemption
3576 * off of preempt_enable. Kernel preemptions off return from interrupt
3577 * occur there and call schedule directly.
3579 asmlinkage void __sched preempt_schedule(void)
3581 struct thread_info *ti = current_thread_info();
3582 #ifdef CONFIG_PREEMPT_BKL
3583 struct task_struct *task = current;
3584 int saved_lock_depth;
3585 #endif
3587 * If there is a non-zero preempt_count or interrupts are disabled,
3588 * we do not want to preempt the current task. Just return..
3590 if (likely(ti->preempt_count || irqs_disabled()))
3591 return;
3593 need_resched:
3594 add_preempt_count(PREEMPT_ACTIVE);
3596 * We keep the big kernel semaphore locked, but we
3597 * clear ->lock_depth so that schedule() doesnt
3598 * auto-release the semaphore:
3600 #ifdef CONFIG_PREEMPT_BKL
3601 saved_lock_depth = task->lock_depth;
3602 task->lock_depth = -1;
3603 #endif
3604 schedule();
3605 #ifdef CONFIG_PREEMPT_BKL
3606 task->lock_depth = saved_lock_depth;
3607 #endif
3608 sub_preempt_count(PREEMPT_ACTIVE);
3610 /* we could miss a preemption opportunity between schedule and now */
3611 barrier();
3612 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3613 goto need_resched;
3615 EXPORT_SYMBOL(preempt_schedule);
3618 * this is the entry point to schedule() from kernel preemption
3619 * off of irq context.
3620 * Note, that this is called and return with irqs disabled. This will
3621 * protect us against recursive calling from irq.
3623 asmlinkage void __sched preempt_schedule_irq(void)
3625 struct thread_info *ti = current_thread_info();
3626 #ifdef CONFIG_PREEMPT_BKL
3627 struct task_struct *task = current;
3628 int saved_lock_depth;
3629 #endif
3630 /* Catch callers which need to be fixed */
3631 BUG_ON(ti->preempt_count || !irqs_disabled());
3633 need_resched:
3634 add_preempt_count(PREEMPT_ACTIVE);
3636 * We keep the big kernel semaphore locked, but we
3637 * clear ->lock_depth so that schedule() doesnt
3638 * auto-release the semaphore:
3640 #ifdef CONFIG_PREEMPT_BKL
3641 saved_lock_depth = task->lock_depth;
3642 task->lock_depth = -1;
3643 #endif
3644 local_irq_enable();
3645 schedule();
3646 local_irq_disable();
3647 #ifdef CONFIG_PREEMPT_BKL
3648 task->lock_depth = saved_lock_depth;
3649 #endif
3650 sub_preempt_count(PREEMPT_ACTIVE);
3652 /* we could miss a preemption opportunity between schedule and now */
3653 barrier();
3654 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3655 goto need_resched;
3658 #endif /* CONFIG_PREEMPT */
3660 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3661 void *key)
3663 return try_to_wake_up(curr->private, mode, sync);
3665 EXPORT_SYMBOL(default_wake_function);
3668 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3669 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3670 * number) then we wake all the non-exclusive tasks and one exclusive task.
3672 * There are circumstances in which we can try to wake a task which has already
3673 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3674 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3676 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3677 int nr_exclusive, int sync, void *key)
3679 struct list_head *tmp, *next;
3681 list_for_each_safe(tmp, next, &q->task_list) {
3682 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3683 unsigned flags = curr->flags;
3685 if (curr->func(curr, mode, sync, key) &&
3686 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3687 break;
3692 * __wake_up - wake up threads blocked on a waitqueue.
3693 * @q: the waitqueue
3694 * @mode: which threads
3695 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3696 * @key: is directly passed to the wakeup function
3698 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3699 int nr_exclusive, void *key)
3701 unsigned long flags;
3703 spin_lock_irqsave(&q->lock, flags);
3704 __wake_up_common(q, mode, nr_exclusive, 0, key);
3705 spin_unlock_irqrestore(&q->lock, flags);
3707 EXPORT_SYMBOL(__wake_up);
3710 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3712 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3714 __wake_up_common(q, mode, 1, 0, NULL);
3718 * __wake_up_sync - wake up threads blocked on a waitqueue.
3719 * @q: the waitqueue
3720 * @mode: which threads
3721 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3723 * The sync wakeup differs that the waker knows that it will schedule
3724 * away soon, so while the target thread will be woken up, it will not
3725 * be migrated to another CPU - ie. the two threads are 'synchronized'
3726 * with each other. This can prevent needless bouncing between CPUs.
3728 * On UP it can prevent extra preemption.
3730 void fastcall
3731 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3733 unsigned long flags;
3734 int sync = 1;
3736 if (unlikely(!q))
3737 return;
3739 if (unlikely(!nr_exclusive))
3740 sync = 0;
3742 spin_lock_irqsave(&q->lock, flags);
3743 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3744 spin_unlock_irqrestore(&q->lock, flags);
3746 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3748 void fastcall complete(struct completion *x)
3750 unsigned long flags;
3752 spin_lock_irqsave(&x->wait.lock, flags);
3753 x->done++;
3754 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3755 1, 0, NULL);
3756 spin_unlock_irqrestore(&x->wait.lock, flags);
3758 EXPORT_SYMBOL(complete);
3760 void fastcall complete_all(struct completion *x)
3762 unsigned long flags;
3764 spin_lock_irqsave(&x->wait.lock, flags);
3765 x->done += UINT_MAX/2;
3766 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3767 0, 0, NULL);
3768 spin_unlock_irqrestore(&x->wait.lock, flags);
3770 EXPORT_SYMBOL(complete_all);
3772 void fastcall __sched wait_for_completion(struct completion *x)
3774 might_sleep();
3776 spin_lock_irq(&x->wait.lock);
3777 if (!x->done) {
3778 DECLARE_WAITQUEUE(wait, current);
3780 wait.flags |= WQ_FLAG_EXCLUSIVE;
3781 __add_wait_queue_tail(&x->wait, &wait);
3782 do {
3783 __set_current_state(TASK_UNINTERRUPTIBLE);
3784 spin_unlock_irq(&x->wait.lock);
3785 schedule();
3786 spin_lock_irq(&x->wait.lock);
3787 } while (!x->done);
3788 __remove_wait_queue(&x->wait, &wait);
3790 x->done--;
3791 spin_unlock_irq(&x->wait.lock);
3793 EXPORT_SYMBOL(wait_for_completion);
3795 unsigned long fastcall __sched
3796 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3798 might_sleep();
3800 spin_lock_irq(&x->wait.lock);
3801 if (!x->done) {
3802 DECLARE_WAITQUEUE(wait, current);
3804 wait.flags |= WQ_FLAG_EXCLUSIVE;
3805 __add_wait_queue_tail(&x->wait, &wait);
3806 do {
3807 __set_current_state(TASK_UNINTERRUPTIBLE);
3808 spin_unlock_irq(&x->wait.lock);
3809 timeout = schedule_timeout(timeout);
3810 spin_lock_irq(&x->wait.lock);
3811 if (!timeout) {
3812 __remove_wait_queue(&x->wait, &wait);
3813 goto out;
3815 } while (!x->done);
3816 __remove_wait_queue(&x->wait, &wait);
3818 x->done--;
3819 out:
3820 spin_unlock_irq(&x->wait.lock);
3821 return timeout;
3823 EXPORT_SYMBOL(wait_for_completion_timeout);
3825 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3827 int ret = 0;
3829 might_sleep();
3831 spin_lock_irq(&x->wait.lock);
3832 if (!x->done) {
3833 DECLARE_WAITQUEUE(wait, current);
3835 wait.flags |= WQ_FLAG_EXCLUSIVE;
3836 __add_wait_queue_tail(&x->wait, &wait);
3837 do {
3838 if (signal_pending(current)) {
3839 ret = -ERESTARTSYS;
3840 __remove_wait_queue(&x->wait, &wait);
3841 goto out;
3843 __set_current_state(TASK_INTERRUPTIBLE);
3844 spin_unlock_irq(&x->wait.lock);
3845 schedule();
3846 spin_lock_irq(&x->wait.lock);
3847 } while (!x->done);
3848 __remove_wait_queue(&x->wait, &wait);
3850 x->done--;
3851 out:
3852 spin_unlock_irq(&x->wait.lock);
3854 return ret;
3856 EXPORT_SYMBOL(wait_for_completion_interruptible);
3858 unsigned long fastcall __sched
3859 wait_for_completion_interruptible_timeout(struct completion *x,
3860 unsigned long timeout)
3862 might_sleep();
3864 spin_lock_irq(&x->wait.lock);
3865 if (!x->done) {
3866 DECLARE_WAITQUEUE(wait, current);
3868 wait.flags |= WQ_FLAG_EXCLUSIVE;
3869 __add_wait_queue_tail(&x->wait, &wait);
3870 do {
3871 if (signal_pending(current)) {
3872 timeout = -ERESTARTSYS;
3873 __remove_wait_queue(&x->wait, &wait);
3874 goto out;
3876 __set_current_state(TASK_INTERRUPTIBLE);
3877 spin_unlock_irq(&x->wait.lock);
3878 timeout = schedule_timeout(timeout);
3879 spin_lock_irq(&x->wait.lock);
3880 if (!timeout) {
3881 __remove_wait_queue(&x->wait, &wait);
3882 goto out;
3884 } while (!x->done);
3885 __remove_wait_queue(&x->wait, &wait);
3887 x->done--;
3888 out:
3889 spin_unlock_irq(&x->wait.lock);
3890 return timeout;
3892 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3895 #define SLEEP_ON_VAR \
3896 unsigned long flags; \
3897 wait_queue_t wait; \
3898 init_waitqueue_entry(&wait, current);
3900 #define SLEEP_ON_HEAD \
3901 spin_lock_irqsave(&q->lock,flags); \
3902 __add_wait_queue(q, &wait); \
3903 spin_unlock(&q->lock);
3905 #define SLEEP_ON_TAIL \
3906 spin_lock_irq(&q->lock); \
3907 __remove_wait_queue(q, &wait); \
3908 spin_unlock_irqrestore(&q->lock, flags);
3910 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3912 SLEEP_ON_VAR
3914 current->state = TASK_INTERRUPTIBLE;
3916 SLEEP_ON_HEAD
3917 schedule();
3918 SLEEP_ON_TAIL
3920 EXPORT_SYMBOL(interruptible_sleep_on);
3922 long fastcall __sched
3923 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3925 SLEEP_ON_VAR
3927 current->state = TASK_INTERRUPTIBLE;
3929 SLEEP_ON_HEAD
3930 timeout = schedule_timeout(timeout);
3931 SLEEP_ON_TAIL
3933 return timeout;
3935 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3937 void fastcall __sched sleep_on(wait_queue_head_t *q)
3939 SLEEP_ON_VAR
3941 current->state = TASK_UNINTERRUPTIBLE;
3943 SLEEP_ON_HEAD
3944 schedule();
3945 SLEEP_ON_TAIL
3947 EXPORT_SYMBOL(sleep_on);
3949 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3951 SLEEP_ON_VAR
3953 current->state = TASK_UNINTERRUPTIBLE;
3955 SLEEP_ON_HEAD
3956 timeout = schedule_timeout(timeout);
3957 SLEEP_ON_TAIL
3959 return timeout;
3962 EXPORT_SYMBOL(sleep_on_timeout);
3964 #ifdef CONFIG_RT_MUTEXES
3967 * rt_mutex_setprio - set the current priority of a task
3968 * @p: task
3969 * @prio: prio value (kernel-internal form)
3971 * This function changes the 'effective' priority of a task. It does
3972 * not touch ->normal_prio like __setscheduler().
3974 * Used by the rt_mutex code to implement priority inheritance logic.
3976 void rt_mutex_setprio(struct task_struct *p, int prio)
3978 struct prio_array *array;
3979 unsigned long flags;
3980 struct rq *rq;
3981 int oldprio;
3983 BUG_ON(prio < 0 || prio > MAX_PRIO);
3985 rq = task_rq_lock(p, &flags);
3987 oldprio = p->prio;
3988 array = p->array;
3989 if (array)
3990 dequeue_task(p, array);
3991 p->prio = prio;
3993 if (array) {
3995 * If changing to an RT priority then queue it
3996 * in the active array!
3998 if (rt_task(p))
3999 array = rq->active;
4000 enqueue_task(p, array);
4002 * Reschedule if we are currently running on this runqueue and
4003 * our priority decreased, or if we are not currently running on
4004 * this runqueue and our priority is higher than the current's
4006 if (task_running(rq, p)) {
4007 if (p->prio > oldprio)
4008 resched_task(rq->curr);
4009 } else if (TASK_PREEMPTS_CURR(p, rq))
4010 resched_task(rq->curr);
4012 task_rq_unlock(rq, &flags);
4015 #endif
4017 void set_user_nice(struct task_struct *p, long nice)
4019 struct prio_array *array;
4020 int old_prio, delta;
4021 unsigned long flags;
4022 struct rq *rq;
4024 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4025 return;
4027 * We have to be careful, if called from sys_setpriority(),
4028 * the task might be in the middle of scheduling on another CPU.
4030 rq = task_rq_lock(p, &flags);
4032 * The RT priorities are set via sched_setscheduler(), but we still
4033 * allow the 'normal' nice value to be set - but as expected
4034 * it wont have any effect on scheduling until the task is
4035 * not SCHED_NORMAL/SCHED_BATCH:
4037 if (has_rt_policy(p)) {
4038 p->static_prio = NICE_TO_PRIO(nice);
4039 goto out_unlock;
4041 array = p->array;
4042 if (array) {
4043 dequeue_task(p, array);
4044 dec_raw_weighted_load(rq, p);
4047 p->static_prio = NICE_TO_PRIO(nice);
4048 set_load_weight(p);
4049 old_prio = p->prio;
4050 p->prio = effective_prio(p);
4051 delta = p->prio - old_prio;
4053 if (array) {
4054 enqueue_task(p, array);
4055 inc_raw_weighted_load(rq, p);
4057 * If the task increased its priority or is running and
4058 * lowered its priority, then reschedule its CPU:
4060 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4061 resched_task(rq->curr);
4063 out_unlock:
4064 task_rq_unlock(rq, &flags);
4066 EXPORT_SYMBOL(set_user_nice);
4069 * can_nice - check if a task can reduce its nice value
4070 * @p: task
4071 * @nice: nice value
4073 int can_nice(const struct task_struct *p, const int nice)
4075 /* convert nice value [19,-20] to rlimit style value [1,40] */
4076 int nice_rlim = 20 - nice;
4078 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4079 capable(CAP_SYS_NICE));
4082 #ifdef __ARCH_WANT_SYS_NICE
4085 * sys_nice - change the priority of the current process.
4086 * @increment: priority increment
4088 * sys_setpriority is a more generic, but much slower function that
4089 * does similar things.
4091 asmlinkage long sys_nice(int increment)
4093 long nice, retval;
4096 * Setpriority might change our priority at the same moment.
4097 * We don't have to worry. Conceptually one call occurs first
4098 * and we have a single winner.
4100 if (increment < -40)
4101 increment = -40;
4102 if (increment > 40)
4103 increment = 40;
4105 nice = PRIO_TO_NICE(current->static_prio) + increment;
4106 if (nice < -20)
4107 nice = -20;
4108 if (nice > 19)
4109 nice = 19;
4111 if (increment < 0 && !can_nice(current, nice))
4112 return -EPERM;
4114 retval = security_task_setnice(current, nice);
4115 if (retval)
4116 return retval;
4118 set_user_nice(current, nice);
4119 return 0;
4122 #endif
4125 * task_prio - return the priority value of a given task.
4126 * @p: the task in question.
4128 * This is the priority value as seen by users in /proc.
4129 * RT tasks are offset by -200. Normal tasks are centered
4130 * around 0, value goes from -16 to +15.
4132 int task_prio(const struct task_struct *p)
4134 return p->prio - MAX_RT_PRIO;
4138 * task_nice - return the nice value of a given task.
4139 * @p: the task in question.
4141 int task_nice(const struct task_struct *p)
4143 return TASK_NICE(p);
4145 EXPORT_SYMBOL_GPL(task_nice);
4148 * idle_cpu - is a given cpu idle currently?
4149 * @cpu: the processor in question.
4151 int idle_cpu(int cpu)
4153 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4157 * idle_task - return the idle task for a given cpu.
4158 * @cpu: the processor in question.
4160 struct task_struct *idle_task(int cpu)
4162 return cpu_rq(cpu)->idle;
4166 * find_process_by_pid - find a process with a matching PID value.
4167 * @pid: the pid in question.
4169 static inline struct task_struct *find_process_by_pid(pid_t pid)
4171 return pid ? find_task_by_pid(pid) : current;
4174 /* Actually do priority change: must hold rq lock. */
4175 static void __setscheduler(struct task_struct *p, int policy, int prio)
4177 BUG_ON(p->array);
4179 p->policy = policy;
4180 p->rt_priority = prio;
4181 p->normal_prio = normal_prio(p);
4182 /* we are holding p->pi_lock already */
4183 p->prio = rt_mutex_getprio(p);
4185 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4187 if (policy == SCHED_BATCH)
4188 p->sleep_avg = 0;
4189 set_load_weight(p);
4193 * sched_setscheduler - change the scheduling policy and/or RT priority of
4194 * a thread.
4195 * @p: the task in question.
4196 * @policy: new policy.
4197 * @param: structure containing the new RT priority.
4199 * NOTE: the task may be already dead
4201 int sched_setscheduler(struct task_struct *p, int policy,
4202 struct sched_param *param)
4204 int retval, oldprio, oldpolicy = -1;
4205 struct prio_array *array;
4206 unsigned long flags;
4207 struct rq *rq;
4209 /* may grab non-irq protected spin_locks */
4210 BUG_ON(in_interrupt());
4211 recheck:
4212 /* double check policy once rq lock held */
4213 if (policy < 0)
4214 policy = oldpolicy = p->policy;
4215 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4216 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4217 return -EINVAL;
4219 * Valid priorities for SCHED_FIFO and SCHED_RR are
4220 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4221 * SCHED_BATCH is 0.
4223 if (param->sched_priority < 0 ||
4224 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4225 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4226 return -EINVAL;
4227 if (is_rt_policy(policy) != (param->sched_priority != 0))
4228 return -EINVAL;
4231 * Allow unprivileged RT tasks to decrease priority:
4233 if (!capable(CAP_SYS_NICE)) {
4234 if (is_rt_policy(policy)) {
4235 unsigned long rlim_rtprio;
4236 unsigned long flags;
4238 if (!lock_task_sighand(p, &flags))
4239 return -ESRCH;
4240 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4241 unlock_task_sighand(p, &flags);
4243 /* can't set/change the rt policy */
4244 if (policy != p->policy && !rlim_rtprio)
4245 return -EPERM;
4247 /* can't increase priority */
4248 if (param->sched_priority > p->rt_priority &&
4249 param->sched_priority > rlim_rtprio)
4250 return -EPERM;
4253 /* can't change other user's priorities */
4254 if ((current->euid != p->euid) &&
4255 (current->euid != p->uid))
4256 return -EPERM;
4259 retval = security_task_setscheduler(p, policy, param);
4260 if (retval)
4261 return retval;
4263 * make sure no PI-waiters arrive (or leave) while we are
4264 * changing the priority of the task:
4266 spin_lock_irqsave(&p->pi_lock, flags);
4268 * To be able to change p->policy safely, the apropriate
4269 * runqueue lock must be held.
4271 rq = __task_rq_lock(p);
4272 /* recheck policy now with rq lock held */
4273 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4274 policy = oldpolicy = -1;
4275 __task_rq_unlock(rq);
4276 spin_unlock_irqrestore(&p->pi_lock, flags);
4277 goto recheck;
4279 array = p->array;
4280 if (array)
4281 deactivate_task(p, rq);
4282 oldprio = p->prio;
4283 __setscheduler(p, policy, param->sched_priority);
4284 if (array) {
4285 __activate_task(p, rq);
4287 * Reschedule if we are currently running on this runqueue and
4288 * our priority decreased, or if we are not currently running on
4289 * this runqueue and our priority is higher than the current's
4291 if (task_running(rq, p)) {
4292 if (p->prio > oldprio)
4293 resched_task(rq->curr);
4294 } else if (TASK_PREEMPTS_CURR(p, rq))
4295 resched_task(rq->curr);
4297 __task_rq_unlock(rq);
4298 spin_unlock_irqrestore(&p->pi_lock, flags);
4300 rt_mutex_adjust_pi(p);
4302 return 0;
4304 EXPORT_SYMBOL_GPL(sched_setscheduler);
4306 static int
4307 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4309 struct sched_param lparam;
4310 struct task_struct *p;
4311 int retval;
4313 if (!param || pid < 0)
4314 return -EINVAL;
4315 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4316 return -EFAULT;
4318 rcu_read_lock();
4319 retval = -ESRCH;
4320 p = find_process_by_pid(pid);
4321 if (p != NULL)
4322 retval = sched_setscheduler(p, policy, &lparam);
4323 rcu_read_unlock();
4325 return retval;
4329 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4330 * @pid: the pid in question.
4331 * @policy: new policy.
4332 * @param: structure containing the new RT priority.
4334 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4335 struct sched_param __user *param)
4337 /* negative values for policy are not valid */
4338 if (policy < 0)
4339 return -EINVAL;
4341 return do_sched_setscheduler(pid, policy, param);
4345 * sys_sched_setparam - set/change the RT priority of a thread
4346 * @pid: the pid in question.
4347 * @param: structure containing the new RT priority.
4349 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4351 return do_sched_setscheduler(pid, -1, param);
4355 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4356 * @pid: the pid in question.
4358 asmlinkage long sys_sched_getscheduler(pid_t pid)
4360 struct task_struct *p;
4361 int retval = -EINVAL;
4363 if (pid < 0)
4364 goto out_nounlock;
4366 retval = -ESRCH;
4367 read_lock(&tasklist_lock);
4368 p = find_process_by_pid(pid);
4369 if (p) {
4370 retval = security_task_getscheduler(p);
4371 if (!retval)
4372 retval = p->policy;
4374 read_unlock(&tasklist_lock);
4376 out_nounlock:
4377 return retval;
4381 * sys_sched_getscheduler - get the RT priority of a thread
4382 * @pid: the pid in question.
4383 * @param: structure containing the RT priority.
4385 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4387 struct sched_param lp;
4388 struct task_struct *p;
4389 int retval = -EINVAL;
4391 if (!param || pid < 0)
4392 goto out_nounlock;
4394 read_lock(&tasklist_lock);
4395 p = find_process_by_pid(pid);
4396 retval = -ESRCH;
4397 if (!p)
4398 goto out_unlock;
4400 retval = security_task_getscheduler(p);
4401 if (retval)
4402 goto out_unlock;
4404 lp.sched_priority = p->rt_priority;
4405 read_unlock(&tasklist_lock);
4408 * This one might sleep, we cannot do it with a spinlock held ...
4410 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4412 out_nounlock:
4413 return retval;
4415 out_unlock:
4416 read_unlock(&tasklist_lock);
4417 return retval;
4420 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4422 cpumask_t cpus_allowed;
4423 struct task_struct *p;
4424 int retval;
4426 lock_cpu_hotplug();
4427 read_lock(&tasklist_lock);
4429 p = find_process_by_pid(pid);
4430 if (!p) {
4431 read_unlock(&tasklist_lock);
4432 unlock_cpu_hotplug();
4433 return -ESRCH;
4437 * It is not safe to call set_cpus_allowed with the
4438 * tasklist_lock held. We will bump the task_struct's
4439 * usage count and then drop tasklist_lock.
4441 get_task_struct(p);
4442 read_unlock(&tasklist_lock);
4444 retval = -EPERM;
4445 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4446 !capable(CAP_SYS_NICE))
4447 goto out_unlock;
4449 retval = security_task_setscheduler(p, 0, NULL);
4450 if (retval)
4451 goto out_unlock;
4453 cpus_allowed = cpuset_cpus_allowed(p);
4454 cpus_and(new_mask, new_mask, cpus_allowed);
4455 retval = set_cpus_allowed(p, new_mask);
4457 out_unlock:
4458 put_task_struct(p);
4459 unlock_cpu_hotplug();
4460 return retval;
4463 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4464 cpumask_t *new_mask)
4466 if (len < sizeof(cpumask_t)) {
4467 memset(new_mask, 0, sizeof(cpumask_t));
4468 } else if (len > sizeof(cpumask_t)) {
4469 len = sizeof(cpumask_t);
4471 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4475 * sys_sched_setaffinity - set the cpu affinity of a process
4476 * @pid: pid of the process
4477 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4478 * @user_mask_ptr: user-space pointer to the new cpu mask
4480 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4481 unsigned long __user *user_mask_ptr)
4483 cpumask_t new_mask;
4484 int retval;
4486 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4487 if (retval)
4488 return retval;
4490 return sched_setaffinity(pid, new_mask);
4494 * Represents all cpu's present in the system
4495 * In systems capable of hotplug, this map could dynamically grow
4496 * as new cpu's are detected in the system via any platform specific
4497 * method, such as ACPI for e.g.
4500 cpumask_t cpu_present_map __read_mostly;
4501 EXPORT_SYMBOL(cpu_present_map);
4503 #ifndef CONFIG_SMP
4504 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4505 EXPORT_SYMBOL(cpu_online_map);
4507 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4508 EXPORT_SYMBOL(cpu_possible_map);
4509 #endif
4511 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4513 struct task_struct *p;
4514 int retval;
4516 lock_cpu_hotplug();
4517 read_lock(&tasklist_lock);
4519 retval = -ESRCH;
4520 p = find_process_by_pid(pid);
4521 if (!p)
4522 goto out_unlock;
4524 retval = security_task_getscheduler(p);
4525 if (retval)
4526 goto out_unlock;
4528 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4530 out_unlock:
4531 read_unlock(&tasklist_lock);
4532 unlock_cpu_hotplug();
4533 if (retval)
4534 return retval;
4536 return 0;
4540 * sys_sched_getaffinity - get the cpu affinity of a process
4541 * @pid: pid of the process
4542 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4543 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4545 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4546 unsigned long __user *user_mask_ptr)
4548 int ret;
4549 cpumask_t mask;
4551 if (len < sizeof(cpumask_t))
4552 return -EINVAL;
4554 ret = sched_getaffinity(pid, &mask);
4555 if (ret < 0)
4556 return ret;
4558 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4559 return -EFAULT;
4561 return sizeof(cpumask_t);
4565 * sys_sched_yield - yield the current processor to other threads.
4567 * this function yields the current CPU by moving the calling thread
4568 * to the expired array. If there are no other threads running on this
4569 * CPU then this function will return.
4571 asmlinkage long sys_sched_yield(void)
4573 struct rq *rq = this_rq_lock();
4574 struct prio_array *array = current->array, *target = rq->expired;
4576 schedstat_inc(rq, yld_cnt);
4578 * We implement yielding by moving the task into the expired
4579 * queue.
4581 * (special rule: RT tasks will just roundrobin in the active
4582 * array.)
4584 if (rt_task(current))
4585 target = rq->active;
4587 if (array->nr_active == 1) {
4588 schedstat_inc(rq, yld_act_empty);
4589 if (!rq->expired->nr_active)
4590 schedstat_inc(rq, yld_both_empty);
4591 } else if (!rq->expired->nr_active)
4592 schedstat_inc(rq, yld_exp_empty);
4594 if (array != target) {
4595 dequeue_task(current, array);
4596 enqueue_task(current, target);
4597 } else
4599 * requeue_task is cheaper so perform that if possible.
4601 requeue_task(current, array);
4604 * Since we are going to call schedule() anyway, there's
4605 * no need to preempt or enable interrupts:
4607 __release(rq->lock);
4608 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4609 _raw_spin_unlock(&rq->lock);
4610 preempt_enable_no_resched();
4612 schedule();
4614 return 0;
4617 static inline int __resched_legal(int expected_preempt_count)
4619 if (unlikely(preempt_count() != expected_preempt_count))
4620 return 0;
4621 if (unlikely(system_state != SYSTEM_RUNNING))
4622 return 0;
4623 return 1;
4626 static void __cond_resched(void)
4628 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4629 __might_sleep(__FILE__, __LINE__);
4630 #endif
4632 * The BKS might be reacquired before we have dropped
4633 * PREEMPT_ACTIVE, which could trigger a second
4634 * cond_resched() call.
4636 do {
4637 add_preempt_count(PREEMPT_ACTIVE);
4638 schedule();
4639 sub_preempt_count(PREEMPT_ACTIVE);
4640 } while (need_resched());
4643 int __sched cond_resched(void)
4645 if (need_resched() && __resched_legal(0)) {
4646 __cond_resched();
4647 return 1;
4649 return 0;
4651 EXPORT_SYMBOL(cond_resched);
4654 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4655 * call schedule, and on return reacquire the lock.
4657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4658 * operations here to prevent schedule() from being called twice (once via
4659 * spin_unlock(), once by hand).
4661 int cond_resched_lock(spinlock_t *lock)
4663 int ret = 0;
4665 if (need_lockbreak(lock)) {
4666 spin_unlock(lock);
4667 cpu_relax();
4668 ret = 1;
4669 spin_lock(lock);
4671 if (need_resched() && __resched_legal(1)) {
4672 spin_release(&lock->dep_map, 1, _THIS_IP_);
4673 _raw_spin_unlock(lock);
4674 preempt_enable_no_resched();
4675 __cond_resched();
4676 ret = 1;
4677 spin_lock(lock);
4679 return ret;
4681 EXPORT_SYMBOL(cond_resched_lock);
4683 int __sched cond_resched_softirq(void)
4685 BUG_ON(!in_softirq());
4687 if (need_resched() && __resched_legal(0)) {
4688 raw_local_irq_disable();
4689 _local_bh_enable();
4690 raw_local_irq_enable();
4691 __cond_resched();
4692 local_bh_disable();
4693 return 1;
4695 return 0;
4697 EXPORT_SYMBOL(cond_resched_softirq);
4700 * yield - yield the current processor to other threads.
4702 * this is a shortcut for kernel-space yielding - it marks the
4703 * thread runnable and calls sys_sched_yield().
4705 void __sched yield(void)
4707 set_current_state(TASK_RUNNING);
4708 sys_sched_yield();
4710 EXPORT_SYMBOL(yield);
4713 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4714 * that process accounting knows that this is a task in IO wait state.
4716 * But don't do that if it is a deliberate, throttling IO wait (this task
4717 * has set its backing_dev_info: the queue against which it should throttle)
4719 void __sched io_schedule(void)
4721 struct rq *rq = &__raw_get_cpu_var(runqueues);
4723 delayacct_blkio_start();
4724 atomic_inc(&rq->nr_iowait);
4725 schedule();
4726 atomic_dec(&rq->nr_iowait);
4727 delayacct_blkio_end();
4729 EXPORT_SYMBOL(io_schedule);
4731 long __sched io_schedule_timeout(long timeout)
4733 struct rq *rq = &__raw_get_cpu_var(runqueues);
4734 long ret;
4736 delayacct_blkio_start();
4737 atomic_inc(&rq->nr_iowait);
4738 ret = schedule_timeout(timeout);
4739 atomic_dec(&rq->nr_iowait);
4740 delayacct_blkio_end();
4741 return ret;
4745 * sys_sched_get_priority_max - return maximum RT priority.
4746 * @policy: scheduling class.
4748 * this syscall returns the maximum rt_priority that can be used
4749 * by a given scheduling class.
4751 asmlinkage long sys_sched_get_priority_max(int policy)
4753 int ret = -EINVAL;
4755 switch (policy) {
4756 case SCHED_FIFO:
4757 case SCHED_RR:
4758 ret = MAX_USER_RT_PRIO-1;
4759 break;
4760 case SCHED_NORMAL:
4761 case SCHED_BATCH:
4762 ret = 0;
4763 break;
4765 return ret;
4769 * sys_sched_get_priority_min - return minimum RT priority.
4770 * @policy: scheduling class.
4772 * this syscall returns the minimum rt_priority that can be used
4773 * by a given scheduling class.
4775 asmlinkage long sys_sched_get_priority_min(int policy)
4777 int ret = -EINVAL;
4779 switch (policy) {
4780 case SCHED_FIFO:
4781 case SCHED_RR:
4782 ret = 1;
4783 break;
4784 case SCHED_NORMAL:
4785 case SCHED_BATCH:
4786 ret = 0;
4788 return ret;
4792 * sys_sched_rr_get_interval - return the default timeslice of a process.
4793 * @pid: pid of the process.
4794 * @interval: userspace pointer to the timeslice value.
4796 * this syscall writes the default timeslice value of a given process
4797 * into the user-space timespec buffer. A value of '0' means infinity.
4799 asmlinkage
4800 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4802 struct task_struct *p;
4803 int retval = -EINVAL;
4804 struct timespec t;
4806 if (pid < 0)
4807 goto out_nounlock;
4809 retval = -ESRCH;
4810 read_lock(&tasklist_lock);
4811 p = find_process_by_pid(pid);
4812 if (!p)
4813 goto out_unlock;
4815 retval = security_task_getscheduler(p);
4816 if (retval)
4817 goto out_unlock;
4819 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4820 0 : task_timeslice(p), &t);
4821 read_unlock(&tasklist_lock);
4822 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4823 out_nounlock:
4824 return retval;
4825 out_unlock:
4826 read_unlock(&tasklist_lock);
4827 return retval;
4830 static inline struct task_struct *eldest_child(struct task_struct *p)
4832 if (list_empty(&p->children))
4833 return NULL;
4834 return list_entry(p->children.next,struct task_struct,sibling);
4837 static inline struct task_struct *older_sibling(struct task_struct *p)
4839 if (p->sibling.prev==&p->parent->children)
4840 return NULL;
4841 return list_entry(p->sibling.prev,struct task_struct,sibling);
4844 static inline struct task_struct *younger_sibling(struct task_struct *p)
4846 if (p->sibling.next==&p->parent->children)
4847 return NULL;
4848 return list_entry(p->sibling.next,struct task_struct,sibling);
4851 static const char stat_nam[] = "RSDTtZX";
4853 static void show_task(struct task_struct *p)
4855 struct task_struct *relative;
4856 unsigned long free = 0;
4857 unsigned state;
4859 state = p->state ? __ffs(p->state) + 1 : 0;
4860 printk("%-13.13s %c", p->comm,
4861 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4862 #if (BITS_PER_LONG == 32)
4863 if (state == TASK_RUNNING)
4864 printk(" running ");
4865 else
4866 printk(" %08lX ", thread_saved_pc(p));
4867 #else
4868 if (state == TASK_RUNNING)
4869 printk(" running task ");
4870 else
4871 printk(" %016lx ", thread_saved_pc(p));
4872 #endif
4873 #ifdef CONFIG_DEBUG_STACK_USAGE
4875 unsigned long *n = end_of_stack(p);
4876 while (!*n)
4877 n++;
4878 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4880 #endif
4881 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4882 if ((relative = eldest_child(p)))
4883 printk("%5d ", relative->pid);
4884 else
4885 printk(" ");
4886 if ((relative = younger_sibling(p)))
4887 printk("%7d", relative->pid);
4888 else
4889 printk(" ");
4890 if ((relative = older_sibling(p)))
4891 printk(" %5d", relative->pid);
4892 else
4893 printk(" ");
4894 if (!p->mm)
4895 printk(" (L-TLB)\n");
4896 else
4897 printk(" (NOTLB)\n");
4899 if (state != TASK_RUNNING)
4900 show_stack(p, NULL);
4903 void show_state_filter(unsigned long state_filter)
4905 struct task_struct *g, *p;
4907 #if (BITS_PER_LONG == 32)
4908 printk("\n"
4909 " free sibling\n");
4910 printk(" task PC stack pid father child younger older\n");
4911 #else
4912 printk("\n"
4913 " free sibling\n");
4914 printk(" task PC stack pid father child younger older\n");
4915 #endif
4916 read_lock(&tasklist_lock);
4917 do_each_thread(g, p) {
4919 * reset the NMI-timeout, listing all files on a slow
4920 * console might take alot of time:
4922 touch_nmi_watchdog();
4923 if (p->state & state_filter)
4924 show_task(p);
4925 } while_each_thread(g, p);
4927 read_unlock(&tasklist_lock);
4929 * Only show locks if all tasks are dumped:
4931 if (state_filter == -1)
4932 debug_show_all_locks();
4936 * init_idle - set up an idle thread for a given CPU
4937 * @idle: task in question
4938 * @cpu: cpu the idle task belongs to
4940 * NOTE: this function does not set the idle thread's NEED_RESCHED
4941 * flag, to make booting more robust.
4943 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4945 struct rq *rq = cpu_rq(cpu);
4946 unsigned long flags;
4948 idle->timestamp = sched_clock();
4949 idle->sleep_avg = 0;
4950 idle->array = NULL;
4951 idle->prio = idle->normal_prio = MAX_PRIO;
4952 idle->state = TASK_RUNNING;
4953 idle->cpus_allowed = cpumask_of_cpu(cpu);
4954 set_task_cpu(idle, cpu);
4956 spin_lock_irqsave(&rq->lock, flags);
4957 rq->curr = rq->idle = idle;
4958 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4959 idle->oncpu = 1;
4960 #endif
4961 spin_unlock_irqrestore(&rq->lock, flags);
4963 /* Set the preempt count _outside_ the spinlocks! */
4964 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4965 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4966 #else
4967 task_thread_info(idle)->preempt_count = 0;
4968 #endif
4972 * In a system that switches off the HZ timer nohz_cpu_mask
4973 * indicates which cpus entered this state. This is used
4974 * in the rcu update to wait only for active cpus. For system
4975 * which do not switch off the HZ timer nohz_cpu_mask should
4976 * always be CPU_MASK_NONE.
4978 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4980 #ifdef CONFIG_SMP
4982 * This is how migration works:
4984 * 1) we queue a struct migration_req structure in the source CPU's
4985 * runqueue and wake up that CPU's migration thread.
4986 * 2) we down() the locked semaphore => thread blocks.
4987 * 3) migration thread wakes up (implicitly it forces the migrated
4988 * thread off the CPU)
4989 * 4) it gets the migration request and checks whether the migrated
4990 * task is still in the wrong runqueue.
4991 * 5) if it's in the wrong runqueue then the migration thread removes
4992 * it and puts it into the right queue.
4993 * 6) migration thread up()s the semaphore.
4994 * 7) we wake up and the migration is done.
4998 * Change a given task's CPU affinity. Migrate the thread to a
4999 * proper CPU and schedule it away if the CPU it's executing on
5000 * is removed from the allowed bitmask.
5002 * NOTE: the caller must have a valid reference to the task, the
5003 * task must not exit() & deallocate itself prematurely. The
5004 * call is not atomic; no spinlocks may be held.
5006 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5008 struct migration_req req;
5009 unsigned long flags;
5010 struct rq *rq;
5011 int ret = 0;
5013 rq = task_rq_lock(p, &flags);
5014 if (!cpus_intersects(new_mask, cpu_online_map)) {
5015 ret = -EINVAL;
5016 goto out;
5019 p->cpus_allowed = new_mask;
5020 /* Can the task run on the task's current CPU? If so, we're done */
5021 if (cpu_isset(task_cpu(p), new_mask))
5022 goto out;
5024 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5025 /* Need help from migration thread: drop lock and wait. */
5026 task_rq_unlock(rq, &flags);
5027 wake_up_process(rq->migration_thread);
5028 wait_for_completion(&req.done);
5029 tlb_migrate_finish(p->mm);
5030 return 0;
5032 out:
5033 task_rq_unlock(rq, &flags);
5035 return ret;
5037 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5040 * Move (not current) task off this cpu, onto dest cpu. We're doing
5041 * this because either it can't run here any more (set_cpus_allowed()
5042 * away from this CPU, or CPU going down), or because we're
5043 * attempting to rebalance this task on exec (sched_exec).
5045 * So we race with normal scheduler movements, but that's OK, as long
5046 * as the task is no longer on this CPU.
5048 * Returns non-zero if task was successfully migrated.
5050 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5052 struct rq *rq_dest, *rq_src;
5053 int ret = 0;
5055 if (unlikely(cpu_is_offline(dest_cpu)))
5056 return ret;
5058 rq_src = cpu_rq(src_cpu);
5059 rq_dest = cpu_rq(dest_cpu);
5061 double_rq_lock(rq_src, rq_dest);
5062 /* Already moved. */
5063 if (task_cpu(p) != src_cpu)
5064 goto out;
5065 /* Affinity changed (again). */
5066 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5067 goto out;
5069 set_task_cpu(p, dest_cpu);
5070 if (p->array) {
5072 * Sync timestamp with rq_dest's before activating.
5073 * The same thing could be achieved by doing this step
5074 * afterwards, and pretending it was a local activate.
5075 * This way is cleaner and logically correct.
5077 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5078 + rq_dest->most_recent_timestamp;
5079 deactivate_task(p, rq_src);
5080 __activate_task(p, rq_dest);
5081 if (TASK_PREEMPTS_CURR(p, rq_dest))
5082 resched_task(rq_dest->curr);
5084 ret = 1;
5085 out:
5086 double_rq_unlock(rq_src, rq_dest);
5087 return ret;
5091 * migration_thread - this is a highprio system thread that performs
5092 * thread migration by bumping thread off CPU then 'pushing' onto
5093 * another runqueue.
5095 static int migration_thread(void *data)
5097 int cpu = (long)data;
5098 struct rq *rq;
5100 rq = cpu_rq(cpu);
5101 BUG_ON(rq->migration_thread != current);
5103 set_current_state(TASK_INTERRUPTIBLE);
5104 while (!kthread_should_stop()) {
5105 struct migration_req *req;
5106 struct list_head *head;
5108 try_to_freeze();
5110 spin_lock_irq(&rq->lock);
5112 if (cpu_is_offline(cpu)) {
5113 spin_unlock_irq(&rq->lock);
5114 goto wait_to_die;
5117 if (rq->active_balance) {
5118 active_load_balance(rq, cpu);
5119 rq->active_balance = 0;
5122 head = &rq->migration_queue;
5124 if (list_empty(head)) {
5125 spin_unlock_irq(&rq->lock);
5126 schedule();
5127 set_current_state(TASK_INTERRUPTIBLE);
5128 continue;
5130 req = list_entry(head->next, struct migration_req, list);
5131 list_del_init(head->next);
5133 spin_unlock(&rq->lock);
5134 __migrate_task(req->task, cpu, req->dest_cpu);
5135 local_irq_enable();
5137 complete(&req->done);
5139 __set_current_state(TASK_RUNNING);
5140 return 0;
5142 wait_to_die:
5143 /* Wait for kthread_stop */
5144 set_current_state(TASK_INTERRUPTIBLE);
5145 while (!kthread_should_stop()) {
5146 schedule();
5147 set_current_state(TASK_INTERRUPTIBLE);
5149 __set_current_state(TASK_RUNNING);
5150 return 0;
5153 #ifdef CONFIG_HOTPLUG_CPU
5155 * Figure out where task on dead CPU should go, use force if neccessary.
5156 * NOTE: interrupts should be disabled by the caller
5158 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5160 unsigned long flags;
5161 cpumask_t mask;
5162 struct rq *rq;
5163 int dest_cpu;
5165 restart:
5166 /* On same node? */
5167 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5168 cpus_and(mask, mask, p->cpus_allowed);
5169 dest_cpu = any_online_cpu(mask);
5171 /* On any allowed CPU? */
5172 if (dest_cpu == NR_CPUS)
5173 dest_cpu = any_online_cpu(p->cpus_allowed);
5175 /* No more Mr. Nice Guy. */
5176 if (dest_cpu == NR_CPUS) {
5177 rq = task_rq_lock(p, &flags);
5178 cpus_setall(p->cpus_allowed);
5179 dest_cpu = any_online_cpu(p->cpus_allowed);
5180 task_rq_unlock(rq, &flags);
5183 * Don't tell them about moving exiting tasks or
5184 * kernel threads (both mm NULL), since they never
5185 * leave kernel.
5187 if (p->mm && printk_ratelimit())
5188 printk(KERN_INFO "process %d (%s) no "
5189 "longer affine to cpu%d\n",
5190 p->pid, p->comm, dead_cpu);
5192 if (!__migrate_task(p, dead_cpu, dest_cpu))
5193 goto restart;
5197 * While a dead CPU has no uninterruptible tasks queued at this point,
5198 * it might still have a nonzero ->nr_uninterruptible counter, because
5199 * for performance reasons the counter is not stricly tracking tasks to
5200 * their home CPUs. So we just add the counter to another CPU's counter,
5201 * to keep the global sum constant after CPU-down:
5203 static void migrate_nr_uninterruptible(struct rq *rq_src)
5205 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5206 unsigned long flags;
5208 local_irq_save(flags);
5209 double_rq_lock(rq_src, rq_dest);
5210 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5211 rq_src->nr_uninterruptible = 0;
5212 double_rq_unlock(rq_src, rq_dest);
5213 local_irq_restore(flags);
5216 /* Run through task list and migrate tasks from the dead cpu. */
5217 static void migrate_live_tasks(int src_cpu)
5219 struct task_struct *p, *t;
5221 write_lock_irq(&tasklist_lock);
5223 do_each_thread(t, p) {
5224 if (p == current)
5225 continue;
5227 if (task_cpu(p) == src_cpu)
5228 move_task_off_dead_cpu(src_cpu, p);
5229 } while_each_thread(t, p);
5231 write_unlock_irq(&tasklist_lock);
5234 /* Schedules idle task to be the next runnable task on current CPU.
5235 * It does so by boosting its priority to highest possible and adding it to
5236 * the _front_ of the runqueue. Used by CPU offline code.
5238 void sched_idle_next(void)
5240 int this_cpu = smp_processor_id();
5241 struct rq *rq = cpu_rq(this_cpu);
5242 struct task_struct *p = rq->idle;
5243 unsigned long flags;
5245 /* cpu has to be offline */
5246 BUG_ON(cpu_online(this_cpu));
5249 * Strictly not necessary since rest of the CPUs are stopped by now
5250 * and interrupts disabled on the current cpu.
5252 spin_lock_irqsave(&rq->lock, flags);
5254 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5256 /* Add idle task to the _front_ of its priority queue: */
5257 __activate_idle_task(p, rq);
5259 spin_unlock_irqrestore(&rq->lock, flags);
5263 * Ensures that the idle task is using init_mm right before its cpu goes
5264 * offline.
5266 void idle_task_exit(void)
5268 struct mm_struct *mm = current->active_mm;
5270 BUG_ON(cpu_online(smp_processor_id()));
5272 if (mm != &init_mm)
5273 switch_mm(mm, &init_mm, current);
5274 mmdrop(mm);
5277 /* called under rq->lock with disabled interrupts */
5278 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5280 struct rq *rq = cpu_rq(dead_cpu);
5282 /* Must be exiting, otherwise would be on tasklist. */
5283 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5285 /* Cannot have done final schedule yet: would have vanished. */
5286 BUG_ON(p->state == TASK_DEAD);
5288 get_task_struct(p);
5291 * Drop lock around migration; if someone else moves it,
5292 * that's OK. No task can be added to this CPU, so iteration is
5293 * fine.
5294 * NOTE: interrupts should be left disabled --dev@
5296 spin_unlock(&rq->lock);
5297 move_task_off_dead_cpu(dead_cpu, p);
5298 spin_lock(&rq->lock);
5300 put_task_struct(p);
5303 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5304 static void migrate_dead_tasks(unsigned int dead_cpu)
5306 struct rq *rq = cpu_rq(dead_cpu);
5307 unsigned int arr, i;
5309 for (arr = 0; arr < 2; arr++) {
5310 for (i = 0; i < MAX_PRIO; i++) {
5311 struct list_head *list = &rq->arrays[arr].queue[i];
5313 while (!list_empty(list))
5314 migrate_dead(dead_cpu, list_entry(list->next,
5315 struct task_struct, run_list));
5319 #endif /* CONFIG_HOTPLUG_CPU */
5322 * migration_call - callback that gets triggered when a CPU is added.
5323 * Here we can start up the necessary migration thread for the new CPU.
5325 static int __cpuinit
5326 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5328 struct task_struct *p;
5329 int cpu = (long)hcpu;
5330 unsigned long flags;
5331 struct rq *rq;
5333 switch (action) {
5334 case CPU_UP_PREPARE:
5335 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5336 if (IS_ERR(p))
5337 return NOTIFY_BAD;
5338 p->flags |= PF_NOFREEZE;
5339 kthread_bind(p, cpu);
5340 /* Must be high prio: stop_machine expects to yield to it. */
5341 rq = task_rq_lock(p, &flags);
5342 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5343 task_rq_unlock(rq, &flags);
5344 cpu_rq(cpu)->migration_thread = p;
5345 break;
5347 case CPU_ONLINE:
5348 /* Strictly unneccessary, as first user will wake it. */
5349 wake_up_process(cpu_rq(cpu)->migration_thread);
5350 break;
5352 #ifdef CONFIG_HOTPLUG_CPU
5353 case CPU_UP_CANCELED:
5354 if (!cpu_rq(cpu)->migration_thread)
5355 break;
5356 /* Unbind it from offline cpu so it can run. Fall thru. */
5357 kthread_bind(cpu_rq(cpu)->migration_thread,
5358 any_online_cpu(cpu_online_map));
5359 kthread_stop(cpu_rq(cpu)->migration_thread);
5360 cpu_rq(cpu)->migration_thread = NULL;
5361 break;
5363 case CPU_DEAD:
5364 migrate_live_tasks(cpu);
5365 rq = cpu_rq(cpu);
5366 kthread_stop(rq->migration_thread);
5367 rq->migration_thread = NULL;
5368 /* Idle task back to normal (off runqueue, low prio) */
5369 rq = task_rq_lock(rq->idle, &flags);
5370 deactivate_task(rq->idle, rq);
5371 rq->idle->static_prio = MAX_PRIO;
5372 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5373 migrate_dead_tasks(cpu);
5374 task_rq_unlock(rq, &flags);
5375 migrate_nr_uninterruptible(rq);
5376 BUG_ON(rq->nr_running != 0);
5378 /* No need to migrate the tasks: it was best-effort if
5379 * they didn't do lock_cpu_hotplug(). Just wake up
5380 * the requestors. */
5381 spin_lock_irq(&rq->lock);
5382 while (!list_empty(&rq->migration_queue)) {
5383 struct migration_req *req;
5385 req = list_entry(rq->migration_queue.next,
5386 struct migration_req, list);
5387 list_del_init(&req->list);
5388 complete(&req->done);
5390 spin_unlock_irq(&rq->lock);
5391 break;
5392 #endif
5394 return NOTIFY_OK;
5397 /* Register at highest priority so that task migration (migrate_all_tasks)
5398 * happens before everything else.
5400 static struct notifier_block __cpuinitdata migration_notifier = {
5401 .notifier_call = migration_call,
5402 .priority = 10
5405 int __init migration_init(void)
5407 void *cpu = (void *)(long)smp_processor_id();
5408 int err;
5410 /* Start one for the boot CPU: */
5411 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5412 BUG_ON(err == NOTIFY_BAD);
5413 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5414 register_cpu_notifier(&migration_notifier);
5416 return 0;
5418 #endif
5420 #ifdef CONFIG_SMP
5421 #undef SCHED_DOMAIN_DEBUG
5422 #ifdef SCHED_DOMAIN_DEBUG
5423 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5425 int level = 0;
5427 if (!sd) {
5428 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5429 return;
5432 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5434 do {
5435 int i;
5436 char str[NR_CPUS];
5437 struct sched_group *group = sd->groups;
5438 cpumask_t groupmask;
5440 cpumask_scnprintf(str, NR_CPUS, sd->span);
5441 cpus_clear(groupmask);
5443 printk(KERN_DEBUG);
5444 for (i = 0; i < level + 1; i++)
5445 printk(" ");
5446 printk("domain %d: ", level);
5448 if (!(sd->flags & SD_LOAD_BALANCE)) {
5449 printk("does not load-balance\n");
5450 if (sd->parent)
5451 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5452 " has parent");
5453 break;
5456 printk("span %s\n", str);
5458 if (!cpu_isset(cpu, sd->span))
5459 printk(KERN_ERR "ERROR: domain->span does not contain "
5460 "CPU%d\n", cpu);
5461 if (!cpu_isset(cpu, group->cpumask))
5462 printk(KERN_ERR "ERROR: domain->groups does not contain"
5463 " CPU%d\n", cpu);
5465 printk(KERN_DEBUG);
5466 for (i = 0; i < level + 2; i++)
5467 printk(" ");
5468 printk("groups:");
5469 do {
5470 if (!group) {
5471 printk("\n");
5472 printk(KERN_ERR "ERROR: group is NULL\n");
5473 break;
5476 if (!group->cpu_power) {
5477 printk("\n");
5478 printk(KERN_ERR "ERROR: domain->cpu_power not "
5479 "set\n");
5482 if (!cpus_weight(group->cpumask)) {
5483 printk("\n");
5484 printk(KERN_ERR "ERROR: empty group\n");
5487 if (cpus_intersects(groupmask, group->cpumask)) {
5488 printk("\n");
5489 printk(KERN_ERR "ERROR: repeated CPUs\n");
5492 cpus_or(groupmask, groupmask, group->cpumask);
5494 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5495 printk(" %s", str);
5497 group = group->next;
5498 } while (group != sd->groups);
5499 printk("\n");
5501 if (!cpus_equal(sd->span, groupmask))
5502 printk(KERN_ERR "ERROR: groups don't span "
5503 "domain->span\n");
5505 level++;
5506 sd = sd->parent;
5507 if (!sd)
5508 continue;
5510 if (!cpus_subset(groupmask, sd->span))
5511 printk(KERN_ERR "ERROR: parent span is not a superset "
5512 "of domain->span\n");
5514 } while (sd);
5516 #else
5517 # define sched_domain_debug(sd, cpu) do { } while (0)
5518 #endif
5520 static int sd_degenerate(struct sched_domain *sd)
5522 if (cpus_weight(sd->span) == 1)
5523 return 1;
5525 /* Following flags need at least 2 groups */
5526 if (sd->flags & (SD_LOAD_BALANCE |
5527 SD_BALANCE_NEWIDLE |
5528 SD_BALANCE_FORK |
5529 SD_BALANCE_EXEC |
5530 SD_SHARE_CPUPOWER |
5531 SD_SHARE_PKG_RESOURCES)) {
5532 if (sd->groups != sd->groups->next)
5533 return 0;
5536 /* Following flags don't use groups */
5537 if (sd->flags & (SD_WAKE_IDLE |
5538 SD_WAKE_AFFINE |
5539 SD_WAKE_BALANCE))
5540 return 0;
5542 return 1;
5545 static int
5546 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5548 unsigned long cflags = sd->flags, pflags = parent->flags;
5550 if (sd_degenerate(parent))
5551 return 1;
5553 if (!cpus_equal(sd->span, parent->span))
5554 return 0;
5556 /* Does parent contain flags not in child? */
5557 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5558 if (cflags & SD_WAKE_AFFINE)
5559 pflags &= ~SD_WAKE_BALANCE;
5560 /* Flags needing groups don't count if only 1 group in parent */
5561 if (parent->groups == parent->groups->next) {
5562 pflags &= ~(SD_LOAD_BALANCE |
5563 SD_BALANCE_NEWIDLE |
5564 SD_BALANCE_FORK |
5565 SD_BALANCE_EXEC |
5566 SD_SHARE_CPUPOWER |
5567 SD_SHARE_PKG_RESOURCES);
5569 if (~cflags & pflags)
5570 return 0;
5572 return 1;
5576 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5577 * hold the hotplug lock.
5579 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5581 struct rq *rq = cpu_rq(cpu);
5582 struct sched_domain *tmp;
5584 /* Remove the sched domains which do not contribute to scheduling. */
5585 for (tmp = sd; tmp; tmp = tmp->parent) {
5586 struct sched_domain *parent = tmp->parent;
5587 if (!parent)
5588 break;
5589 if (sd_parent_degenerate(tmp, parent)) {
5590 tmp->parent = parent->parent;
5591 if (parent->parent)
5592 parent->parent->child = tmp;
5596 if (sd && sd_degenerate(sd)) {
5597 sd = sd->parent;
5598 if (sd)
5599 sd->child = NULL;
5602 sched_domain_debug(sd, cpu);
5604 rcu_assign_pointer(rq->sd, sd);
5607 /* cpus with isolated domains */
5608 static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
5610 /* Setup the mask of cpus configured for isolated domains */
5611 static int __init isolated_cpu_setup(char *str)
5613 int ints[NR_CPUS], i;
5615 str = get_options(str, ARRAY_SIZE(ints), ints);
5616 cpus_clear(cpu_isolated_map);
5617 for (i = 1; i <= ints[0]; i++)
5618 if (ints[i] < NR_CPUS)
5619 cpu_set(ints[i], cpu_isolated_map);
5620 return 1;
5623 __setup ("isolcpus=", isolated_cpu_setup);
5626 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5627 * to a function which identifies what group(along with sched group) a CPU
5628 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5629 * (due to the fact that we keep track of groups covered with a cpumask_t).
5631 * init_sched_build_groups will build a circular linked list of the groups
5632 * covered by the given span, and will set each group's ->cpumask correctly,
5633 * and ->cpu_power to 0.
5635 static void
5636 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5637 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5638 struct sched_group **sg))
5640 struct sched_group *first = NULL, *last = NULL;
5641 cpumask_t covered = CPU_MASK_NONE;
5642 int i;
5644 for_each_cpu_mask(i, span) {
5645 struct sched_group *sg;
5646 int group = group_fn(i, cpu_map, &sg);
5647 int j;
5649 if (cpu_isset(i, covered))
5650 continue;
5652 sg->cpumask = CPU_MASK_NONE;
5653 sg->cpu_power = 0;
5655 for_each_cpu_mask(j, span) {
5656 if (group_fn(j, cpu_map, NULL) != group)
5657 continue;
5659 cpu_set(j, covered);
5660 cpu_set(j, sg->cpumask);
5662 if (!first)
5663 first = sg;
5664 if (last)
5665 last->next = sg;
5666 last = sg;
5668 last->next = first;
5671 #define SD_NODES_PER_DOMAIN 16
5674 * Self-tuning task migration cost measurement between source and target CPUs.
5676 * This is done by measuring the cost of manipulating buffers of varying
5677 * sizes. For a given buffer-size here are the steps that are taken:
5679 * 1) the source CPU reads+dirties a shared buffer
5680 * 2) the target CPU reads+dirties the same shared buffer
5682 * We measure how long they take, in the following 4 scenarios:
5684 * - source: CPU1, target: CPU2 | cost1
5685 * - source: CPU2, target: CPU1 | cost2
5686 * - source: CPU1, target: CPU1 | cost3
5687 * - source: CPU2, target: CPU2 | cost4
5689 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5690 * the cost of migration.
5692 * We then start off from a small buffer-size and iterate up to larger
5693 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5694 * doing a maximum search for the cost. (The maximum cost for a migration
5695 * normally occurs when the working set size is around the effective cache
5696 * size.)
5698 #define SEARCH_SCOPE 2
5699 #define MIN_CACHE_SIZE (64*1024U)
5700 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5701 #define ITERATIONS 1
5702 #define SIZE_THRESH 130
5703 #define COST_THRESH 130
5706 * The migration cost is a function of 'domain distance'. Domain
5707 * distance is the number of steps a CPU has to iterate down its
5708 * domain tree to share a domain with the other CPU. The farther
5709 * two CPUs are from each other, the larger the distance gets.
5711 * Note that we use the distance only to cache measurement results,
5712 * the distance value is not used numerically otherwise. When two
5713 * CPUs have the same distance it is assumed that the migration
5714 * cost is the same. (this is a simplification but quite practical)
5716 #define MAX_DOMAIN_DISTANCE 32
5718 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5719 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5721 * Architectures may override the migration cost and thus avoid
5722 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5723 * virtualized hardware:
5725 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5726 CONFIG_DEFAULT_MIGRATION_COST
5727 #else
5728 -1LL
5729 #endif
5733 * Allow override of migration cost - in units of microseconds.
5734 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5735 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5737 static int __init migration_cost_setup(char *str)
5739 int ints[MAX_DOMAIN_DISTANCE+1], i;
5741 str = get_options(str, ARRAY_SIZE(ints), ints);
5743 printk("#ints: %d\n", ints[0]);
5744 for (i = 1; i <= ints[0]; i++) {
5745 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5746 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5748 return 1;
5751 __setup ("migration_cost=", migration_cost_setup);
5754 * Global multiplier (divisor) for migration-cutoff values,
5755 * in percentiles. E.g. use a value of 150 to get 1.5 times
5756 * longer cache-hot cutoff times.
5758 * (We scale it from 100 to 128 to long long handling easier.)
5761 #define MIGRATION_FACTOR_SCALE 128
5763 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5765 static int __init setup_migration_factor(char *str)
5767 get_option(&str, &migration_factor);
5768 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5769 return 1;
5772 __setup("migration_factor=", setup_migration_factor);
5775 * Estimated distance of two CPUs, measured via the number of domains
5776 * we have to pass for the two CPUs to be in the same span:
5778 static unsigned long domain_distance(int cpu1, int cpu2)
5780 unsigned long distance = 0;
5781 struct sched_domain *sd;
5783 for_each_domain(cpu1, sd) {
5784 WARN_ON(!cpu_isset(cpu1, sd->span));
5785 if (cpu_isset(cpu2, sd->span))
5786 return distance;
5787 distance++;
5789 if (distance >= MAX_DOMAIN_DISTANCE) {
5790 WARN_ON(1);
5791 distance = MAX_DOMAIN_DISTANCE-1;
5794 return distance;
5797 static unsigned int migration_debug;
5799 static int __init setup_migration_debug(char *str)
5801 get_option(&str, &migration_debug);
5802 return 1;
5805 __setup("migration_debug=", setup_migration_debug);
5808 * Maximum cache-size that the scheduler should try to measure.
5809 * Architectures with larger caches should tune this up during
5810 * bootup. Gets used in the domain-setup code (i.e. during SMP
5811 * bootup).
5813 unsigned int max_cache_size;
5815 static int __init setup_max_cache_size(char *str)
5817 get_option(&str, &max_cache_size);
5818 return 1;
5821 __setup("max_cache_size=", setup_max_cache_size);
5824 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5825 * is the operation that is timed, so we try to generate unpredictable
5826 * cachemisses that still end up filling the L2 cache:
5828 static void touch_cache(void *__cache, unsigned long __size)
5830 unsigned long size = __size / sizeof(long);
5831 unsigned long chunk1 = size / 3;
5832 unsigned long chunk2 = 2 * size / 3;
5833 unsigned long *cache = __cache;
5834 int i;
5836 for (i = 0; i < size/6; i += 8) {
5837 switch (i % 6) {
5838 case 0: cache[i]++;
5839 case 1: cache[size-1-i]++;
5840 case 2: cache[chunk1-i]++;
5841 case 3: cache[chunk1+i]++;
5842 case 4: cache[chunk2-i]++;
5843 case 5: cache[chunk2+i]++;
5849 * Measure the cache-cost of one task migration. Returns in units of nsec.
5851 static unsigned long long
5852 measure_one(void *cache, unsigned long size, int source, int target)
5854 cpumask_t mask, saved_mask;
5855 unsigned long long t0, t1, t2, t3, cost;
5857 saved_mask = current->cpus_allowed;
5860 * Flush source caches to RAM and invalidate them:
5862 sched_cacheflush();
5865 * Migrate to the source CPU:
5867 mask = cpumask_of_cpu(source);
5868 set_cpus_allowed(current, mask);
5869 WARN_ON(smp_processor_id() != source);
5872 * Dirty the working set:
5874 t0 = sched_clock();
5875 touch_cache(cache, size);
5876 t1 = sched_clock();
5879 * Migrate to the target CPU, dirty the L2 cache and access
5880 * the shared buffer. (which represents the working set
5881 * of a migrated task.)
5883 mask = cpumask_of_cpu(target);
5884 set_cpus_allowed(current, mask);
5885 WARN_ON(smp_processor_id() != target);
5887 t2 = sched_clock();
5888 touch_cache(cache, size);
5889 t3 = sched_clock();
5891 cost = t1-t0 + t3-t2;
5893 if (migration_debug >= 2)
5894 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5895 source, target, t1-t0, t1-t0, t3-t2, cost);
5897 * Flush target caches to RAM and invalidate them:
5899 sched_cacheflush();
5901 set_cpus_allowed(current, saved_mask);
5903 return cost;
5907 * Measure a series of task migrations and return the average
5908 * result. Since this code runs early during bootup the system
5909 * is 'undisturbed' and the average latency makes sense.
5911 * The algorithm in essence auto-detects the relevant cache-size,
5912 * so it will properly detect different cachesizes for different
5913 * cache-hierarchies, depending on how the CPUs are connected.
5915 * Architectures can prime the upper limit of the search range via
5916 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5918 static unsigned long long
5919 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5921 unsigned long long cost1, cost2;
5922 int i;
5925 * Measure the migration cost of 'size' bytes, over an
5926 * average of 10 runs:
5928 * (We perturb the cache size by a small (0..4k)
5929 * value to compensate size/alignment related artifacts.
5930 * We also subtract the cost of the operation done on
5931 * the same CPU.)
5933 cost1 = 0;
5936 * dry run, to make sure we start off cache-cold on cpu1,
5937 * and to get any vmalloc pagefaults in advance:
5939 measure_one(cache, size, cpu1, cpu2);
5940 for (i = 0; i < ITERATIONS; i++)
5941 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
5943 measure_one(cache, size, cpu2, cpu1);
5944 for (i = 0; i < ITERATIONS; i++)
5945 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
5948 * (We measure the non-migrating [cached] cost on both
5949 * cpu1 and cpu2, to handle CPUs with different speeds)
5951 cost2 = 0;
5953 measure_one(cache, size, cpu1, cpu1);
5954 for (i = 0; i < ITERATIONS; i++)
5955 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
5957 measure_one(cache, size, cpu2, cpu2);
5958 for (i = 0; i < ITERATIONS; i++)
5959 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
5962 * Get the per-iteration migration cost:
5964 do_div(cost1, 2 * ITERATIONS);
5965 do_div(cost2, 2 * ITERATIONS);
5967 return cost1 - cost2;
5970 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5972 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5973 unsigned int max_size, size, size_found = 0;
5974 long long cost = 0, prev_cost;
5975 void *cache;
5978 * Search from max_cache_size*5 down to 64K - the real relevant
5979 * cachesize has to lie somewhere inbetween.
5981 if (max_cache_size) {
5982 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5983 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5984 } else {
5986 * Since we have no estimation about the relevant
5987 * search range
5989 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5990 size = MIN_CACHE_SIZE;
5993 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5994 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5995 return 0;
5999 * Allocate the working set:
6001 cache = vmalloc(max_size);
6002 if (!cache) {
6003 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6004 return 1000000; /* return 1 msec on very small boxen */
6007 while (size <= max_size) {
6008 prev_cost = cost;
6009 cost = measure_cost(cpu1, cpu2, cache, size);
6012 * Update the max:
6014 if (cost > 0) {
6015 if (max_cost < cost) {
6016 max_cost = cost;
6017 size_found = size;
6021 * Calculate average fluctuation, we use this to prevent
6022 * noise from triggering an early break out of the loop:
6024 fluct = abs(cost - prev_cost);
6025 avg_fluct = (avg_fluct + fluct)/2;
6027 if (migration_debug)
6028 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6029 "(%8Ld %8Ld)\n",
6030 cpu1, cpu2, size,
6031 (long)cost / 1000000,
6032 ((long)cost / 100000) % 10,
6033 (long)max_cost / 1000000,
6034 ((long)max_cost / 100000) % 10,
6035 domain_distance(cpu1, cpu2),
6036 cost, avg_fluct);
6039 * If we iterated at least 20% past the previous maximum,
6040 * and the cost has dropped by more than 20% already,
6041 * (taking fluctuations into account) then we assume to
6042 * have found the maximum and break out of the loop early:
6044 if (size_found && (size*100 > size_found*SIZE_THRESH))
6045 if (cost+avg_fluct <= 0 ||
6046 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6048 if (migration_debug)
6049 printk("-> found max.\n");
6050 break;
6053 * Increase the cachesize in 10% steps:
6055 size = size * 10 / 9;
6058 if (migration_debug)
6059 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6060 cpu1, cpu2, size_found, max_cost);
6062 vfree(cache);
6065 * A task is considered 'cache cold' if at least 2 times
6066 * the worst-case cost of migration has passed.
6068 * (this limit is only listened to if the load-balancing
6069 * situation is 'nice' - if there is a large imbalance we
6070 * ignore it for the sake of CPU utilization and
6071 * processing fairness.)
6073 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6076 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6078 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6079 unsigned long j0, j1, distance, max_distance = 0;
6080 struct sched_domain *sd;
6082 j0 = jiffies;
6085 * First pass - calculate the cacheflush times:
6087 for_each_cpu_mask(cpu1, *cpu_map) {
6088 for_each_cpu_mask(cpu2, *cpu_map) {
6089 if (cpu1 == cpu2)
6090 continue;
6091 distance = domain_distance(cpu1, cpu2);
6092 max_distance = max(max_distance, distance);
6094 * No result cached yet?
6096 if (migration_cost[distance] == -1LL)
6097 migration_cost[distance] =
6098 measure_migration_cost(cpu1, cpu2);
6102 * Second pass - update the sched domain hierarchy with
6103 * the new cache-hot-time estimations:
6105 for_each_cpu_mask(cpu, *cpu_map) {
6106 distance = 0;
6107 for_each_domain(cpu, sd) {
6108 sd->cache_hot_time = migration_cost[distance];
6109 distance++;
6113 * Print the matrix:
6115 if (migration_debug)
6116 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6117 max_cache_size,
6118 #ifdef CONFIG_X86
6119 cpu_khz/1000
6120 #else
6122 #endif
6124 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6125 printk("migration_cost=");
6126 for (distance = 0; distance <= max_distance; distance++) {
6127 if (distance)
6128 printk(",");
6129 printk("%ld", (long)migration_cost[distance] / 1000);
6131 printk("\n");
6133 j1 = jiffies;
6134 if (migration_debug)
6135 printk("migration: %ld seconds\n", (j1-j0) / HZ);
6138 * Move back to the original CPU. NUMA-Q gets confused
6139 * if we migrate to another quad during bootup.
6141 if (raw_smp_processor_id() != orig_cpu) {
6142 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6143 saved_mask = current->cpus_allowed;
6145 set_cpus_allowed(current, mask);
6146 set_cpus_allowed(current, saved_mask);
6150 #ifdef CONFIG_NUMA
6153 * find_next_best_node - find the next node to include in a sched_domain
6154 * @node: node whose sched_domain we're building
6155 * @used_nodes: nodes already in the sched_domain
6157 * Find the next node to include in a given scheduling domain. Simply
6158 * finds the closest node not already in the @used_nodes map.
6160 * Should use nodemask_t.
6162 static int find_next_best_node(int node, unsigned long *used_nodes)
6164 int i, n, val, min_val, best_node = 0;
6166 min_val = INT_MAX;
6168 for (i = 0; i < MAX_NUMNODES; i++) {
6169 /* Start at @node */
6170 n = (node + i) % MAX_NUMNODES;
6172 if (!nr_cpus_node(n))
6173 continue;
6175 /* Skip already used nodes */
6176 if (test_bit(n, used_nodes))
6177 continue;
6179 /* Simple min distance search */
6180 val = node_distance(node, n);
6182 if (val < min_val) {
6183 min_val = val;
6184 best_node = n;
6188 set_bit(best_node, used_nodes);
6189 return best_node;
6193 * sched_domain_node_span - get a cpumask for a node's sched_domain
6194 * @node: node whose cpumask we're constructing
6195 * @size: number of nodes to include in this span
6197 * Given a node, construct a good cpumask for its sched_domain to span. It
6198 * should be one that prevents unnecessary balancing, but also spreads tasks
6199 * out optimally.
6201 static cpumask_t sched_domain_node_span(int node)
6203 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6204 cpumask_t span, nodemask;
6205 int i;
6207 cpus_clear(span);
6208 bitmap_zero(used_nodes, MAX_NUMNODES);
6210 nodemask = node_to_cpumask(node);
6211 cpus_or(span, span, nodemask);
6212 set_bit(node, used_nodes);
6214 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6215 int next_node = find_next_best_node(node, used_nodes);
6217 nodemask = node_to_cpumask(next_node);
6218 cpus_or(span, span, nodemask);
6221 return span;
6223 #endif
6225 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6228 * SMT sched-domains:
6230 #ifdef CONFIG_SCHED_SMT
6231 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6232 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6234 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6235 struct sched_group **sg)
6237 if (sg)
6238 *sg = &per_cpu(sched_group_cpus, cpu);
6239 return cpu;
6241 #endif
6244 * multi-core sched-domains:
6246 #ifdef CONFIG_SCHED_MC
6247 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6248 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6249 #endif
6251 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6252 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6253 struct sched_group **sg)
6255 int group;
6256 cpumask_t mask = cpu_sibling_map[cpu];
6257 cpus_and(mask, mask, *cpu_map);
6258 group = first_cpu(mask);
6259 if (sg)
6260 *sg = &per_cpu(sched_group_core, group);
6261 return group;
6263 #elif defined(CONFIG_SCHED_MC)
6264 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6265 struct sched_group **sg)
6267 if (sg)
6268 *sg = &per_cpu(sched_group_core, cpu);
6269 return cpu;
6271 #endif
6273 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6274 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6276 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6277 struct sched_group **sg)
6279 int group;
6280 #ifdef CONFIG_SCHED_MC
6281 cpumask_t mask = cpu_coregroup_map(cpu);
6282 cpus_and(mask, mask, *cpu_map);
6283 group = first_cpu(mask);
6284 #elif defined(CONFIG_SCHED_SMT)
6285 cpumask_t mask = cpu_sibling_map[cpu];
6286 cpus_and(mask, mask, *cpu_map);
6287 group = first_cpu(mask);
6288 #else
6289 group = cpu;
6290 #endif
6291 if (sg)
6292 *sg = &per_cpu(sched_group_phys, group);
6293 return group;
6296 #ifdef CONFIG_NUMA
6298 * The init_sched_build_groups can't handle what we want to do with node
6299 * groups, so roll our own. Now each node has its own list of groups which
6300 * gets dynamically allocated.
6302 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6303 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6305 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6306 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6308 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6309 struct sched_group **sg)
6311 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6312 int group;
6314 cpus_and(nodemask, nodemask, *cpu_map);
6315 group = first_cpu(nodemask);
6317 if (sg)
6318 *sg = &per_cpu(sched_group_allnodes, group);
6319 return group;
6322 static void init_numa_sched_groups_power(struct sched_group *group_head)
6324 struct sched_group *sg = group_head;
6325 int j;
6327 if (!sg)
6328 return;
6329 next_sg:
6330 for_each_cpu_mask(j, sg->cpumask) {
6331 struct sched_domain *sd;
6333 sd = &per_cpu(phys_domains, j);
6334 if (j != first_cpu(sd->groups->cpumask)) {
6336 * Only add "power" once for each
6337 * physical package.
6339 continue;
6342 sg->cpu_power += sd->groups->cpu_power;
6344 sg = sg->next;
6345 if (sg != group_head)
6346 goto next_sg;
6348 #endif
6350 #ifdef CONFIG_NUMA
6351 /* Free memory allocated for various sched_group structures */
6352 static void free_sched_groups(const cpumask_t *cpu_map)
6354 int cpu, i;
6356 for_each_cpu_mask(cpu, *cpu_map) {
6357 struct sched_group **sched_group_nodes
6358 = sched_group_nodes_bycpu[cpu];
6360 if (!sched_group_nodes)
6361 continue;
6363 for (i = 0; i < MAX_NUMNODES; i++) {
6364 cpumask_t nodemask = node_to_cpumask(i);
6365 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6367 cpus_and(nodemask, nodemask, *cpu_map);
6368 if (cpus_empty(nodemask))
6369 continue;
6371 if (sg == NULL)
6372 continue;
6373 sg = sg->next;
6374 next_sg:
6375 oldsg = sg;
6376 sg = sg->next;
6377 kfree(oldsg);
6378 if (oldsg != sched_group_nodes[i])
6379 goto next_sg;
6381 kfree(sched_group_nodes);
6382 sched_group_nodes_bycpu[cpu] = NULL;
6385 #else
6386 static void free_sched_groups(const cpumask_t *cpu_map)
6389 #endif
6392 * Initialize sched groups cpu_power.
6394 * cpu_power indicates the capacity of sched group, which is used while
6395 * distributing the load between different sched groups in a sched domain.
6396 * Typically cpu_power for all the groups in a sched domain will be same unless
6397 * there are asymmetries in the topology. If there are asymmetries, group
6398 * having more cpu_power will pickup more load compared to the group having
6399 * less cpu_power.
6401 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6402 * the maximum number of tasks a group can handle in the presence of other idle
6403 * or lightly loaded groups in the same sched domain.
6405 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6407 struct sched_domain *child;
6408 struct sched_group *group;
6410 WARN_ON(!sd || !sd->groups);
6412 if (cpu != first_cpu(sd->groups->cpumask))
6413 return;
6415 child = sd->child;
6418 * For perf policy, if the groups in child domain share resources
6419 * (for example cores sharing some portions of the cache hierarchy
6420 * or SMT), then set this domain groups cpu_power such that each group
6421 * can handle only one task, when there are other idle groups in the
6422 * same sched domain.
6424 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6425 (child->flags &
6426 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6427 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6428 return;
6431 sd->groups->cpu_power = 0;
6434 * add cpu_power of each child group to this groups cpu_power
6436 group = child->groups;
6437 do {
6438 sd->groups->cpu_power += group->cpu_power;
6439 group = group->next;
6440 } while (group != child->groups);
6444 * Build sched domains for a given set of cpus and attach the sched domains
6445 * to the individual cpus
6447 static int build_sched_domains(const cpumask_t *cpu_map)
6449 int i;
6450 struct sched_domain *sd;
6451 #ifdef CONFIG_NUMA
6452 struct sched_group **sched_group_nodes = NULL;
6453 int sd_allnodes = 0;
6456 * Allocate the per-node list of sched groups
6458 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6459 GFP_KERNEL);
6460 if (!sched_group_nodes) {
6461 printk(KERN_WARNING "Can not alloc sched group node list\n");
6462 return -ENOMEM;
6464 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6465 #endif
6468 * Set up domains for cpus specified by the cpu_map.
6470 for_each_cpu_mask(i, *cpu_map) {
6471 struct sched_domain *sd = NULL, *p;
6472 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6474 cpus_and(nodemask, nodemask, *cpu_map);
6476 #ifdef CONFIG_NUMA
6477 if (cpus_weight(*cpu_map)
6478 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6479 sd = &per_cpu(allnodes_domains, i);
6480 *sd = SD_ALLNODES_INIT;
6481 sd->span = *cpu_map;
6482 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6483 p = sd;
6484 sd_allnodes = 1;
6485 } else
6486 p = NULL;
6488 sd = &per_cpu(node_domains, i);
6489 *sd = SD_NODE_INIT;
6490 sd->span = sched_domain_node_span(cpu_to_node(i));
6491 sd->parent = p;
6492 if (p)
6493 p->child = sd;
6494 cpus_and(sd->span, sd->span, *cpu_map);
6495 #endif
6497 p = sd;
6498 sd = &per_cpu(phys_domains, i);
6499 *sd = SD_CPU_INIT;
6500 sd->span = nodemask;
6501 sd->parent = p;
6502 if (p)
6503 p->child = sd;
6504 cpu_to_phys_group(i, cpu_map, &sd->groups);
6506 #ifdef CONFIG_SCHED_MC
6507 p = sd;
6508 sd = &per_cpu(core_domains, i);
6509 *sd = SD_MC_INIT;
6510 sd->span = cpu_coregroup_map(i);
6511 cpus_and(sd->span, sd->span, *cpu_map);
6512 sd->parent = p;
6513 p->child = sd;
6514 cpu_to_core_group(i, cpu_map, &sd->groups);
6515 #endif
6517 #ifdef CONFIG_SCHED_SMT
6518 p = sd;
6519 sd = &per_cpu(cpu_domains, i);
6520 *sd = SD_SIBLING_INIT;
6521 sd->span = cpu_sibling_map[i];
6522 cpus_and(sd->span, sd->span, *cpu_map);
6523 sd->parent = p;
6524 p->child = sd;
6525 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6526 #endif
6529 #ifdef CONFIG_SCHED_SMT
6530 /* Set up CPU (sibling) groups */
6531 for_each_cpu_mask(i, *cpu_map) {
6532 cpumask_t this_sibling_map = cpu_sibling_map[i];
6533 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6534 if (i != first_cpu(this_sibling_map))
6535 continue;
6537 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6539 #endif
6541 #ifdef CONFIG_SCHED_MC
6542 /* Set up multi-core groups */
6543 for_each_cpu_mask(i, *cpu_map) {
6544 cpumask_t this_core_map = cpu_coregroup_map(i);
6545 cpus_and(this_core_map, this_core_map, *cpu_map);
6546 if (i != first_cpu(this_core_map))
6547 continue;
6548 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6550 #endif
6553 /* Set up physical groups */
6554 for (i = 0; i < MAX_NUMNODES; i++) {
6555 cpumask_t nodemask = node_to_cpumask(i);
6557 cpus_and(nodemask, nodemask, *cpu_map);
6558 if (cpus_empty(nodemask))
6559 continue;
6561 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6564 #ifdef CONFIG_NUMA
6565 /* Set up node groups */
6566 if (sd_allnodes)
6567 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6569 for (i = 0; i < MAX_NUMNODES; i++) {
6570 /* Set up node groups */
6571 struct sched_group *sg, *prev;
6572 cpumask_t nodemask = node_to_cpumask(i);
6573 cpumask_t domainspan;
6574 cpumask_t covered = CPU_MASK_NONE;
6575 int j;
6577 cpus_and(nodemask, nodemask, *cpu_map);
6578 if (cpus_empty(nodemask)) {
6579 sched_group_nodes[i] = NULL;
6580 continue;
6583 domainspan = sched_domain_node_span(i);
6584 cpus_and(domainspan, domainspan, *cpu_map);
6586 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6587 if (!sg) {
6588 printk(KERN_WARNING "Can not alloc domain group for "
6589 "node %d\n", i);
6590 goto error;
6592 sched_group_nodes[i] = sg;
6593 for_each_cpu_mask(j, nodemask) {
6594 struct sched_domain *sd;
6595 sd = &per_cpu(node_domains, j);
6596 sd->groups = sg;
6598 sg->cpu_power = 0;
6599 sg->cpumask = nodemask;
6600 sg->next = sg;
6601 cpus_or(covered, covered, nodemask);
6602 prev = sg;
6604 for (j = 0; j < MAX_NUMNODES; j++) {
6605 cpumask_t tmp, notcovered;
6606 int n = (i + j) % MAX_NUMNODES;
6608 cpus_complement(notcovered, covered);
6609 cpus_and(tmp, notcovered, *cpu_map);
6610 cpus_and(tmp, tmp, domainspan);
6611 if (cpus_empty(tmp))
6612 break;
6614 nodemask = node_to_cpumask(n);
6615 cpus_and(tmp, tmp, nodemask);
6616 if (cpus_empty(tmp))
6617 continue;
6619 sg = kmalloc_node(sizeof(struct sched_group),
6620 GFP_KERNEL, i);
6621 if (!sg) {
6622 printk(KERN_WARNING
6623 "Can not alloc domain group for node %d\n", j);
6624 goto error;
6626 sg->cpu_power = 0;
6627 sg->cpumask = tmp;
6628 sg->next = prev->next;
6629 cpus_or(covered, covered, tmp);
6630 prev->next = sg;
6631 prev = sg;
6634 #endif
6636 /* Calculate CPU power for physical packages and nodes */
6637 #ifdef CONFIG_SCHED_SMT
6638 for_each_cpu_mask(i, *cpu_map) {
6639 sd = &per_cpu(cpu_domains, i);
6640 init_sched_groups_power(i, sd);
6642 #endif
6643 #ifdef CONFIG_SCHED_MC
6644 for_each_cpu_mask(i, *cpu_map) {
6645 sd = &per_cpu(core_domains, i);
6646 init_sched_groups_power(i, sd);
6648 #endif
6650 for_each_cpu_mask(i, *cpu_map) {
6651 sd = &per_cpu(phys_domains, i);
6652 init_sched_groups_power(i, sd);
6655 #ifdef CONFIG_NUMA
6656 for (i = 0; i < MAX_NUMNODES; i++)
6657 init_numa_sched_groups_power(sched_group_nodes[i]);
6659 if (sd_allnodes) {
6660 struct sched_group *sg;
6662 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6663 init_numa_sched_groups_power(sg);
6665 #endif
6667 /* Attach the domains */
6668 for_each_cpu_mask(i, *cpu_map) {
6669 struct sched_domain *sd;
6670 #ifdef CONFIG_SCHED_SMT
6671 sd = &per_cpu(cpu_domains, i);
6672 #elif defined(CONFIG_SCHED_MC)
6673 sd = &per_cpu(core_domains, i);
6674 #else
6675 sd = &per_cpu(phys_domains, i);
6676 #endif
6677 cpu_attach_domain(sd, i);
6680 * Tune cache-hot values:
6682 calibrate_migration_costs(cpu_map);
6684 return 0;
6686 #ifdef CONFIG_NUMA
6687 error:
6688 free_sched_groups(cpu_map);
6689 return -ENOMEM;
6690 #endif
6693 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6695 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6697 cpumask_t cpu_default_map;
6698 int err;
6701 * Setup mask for cpus without special case scheduling requirements.
6702 * For now this just excludes isolated cpus, but could be used to
6703 * exclude other special cases in the future.
6705 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6707 err = build_sched_domains(&cpu_default_map);
6709 return err;
6712 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6714 free_sched_groups(cpu_map);
6718 * Detach sched domains from a group of cpus specified in cpu_map
6719 * These cpus will now be attached to the NULL domain
6721 static void detach_destroy_domains(const cpumask_t *cpu_map)
6723 int i;
6725 for_each_cpu_mask(i, *cpu_map)
6726 cpu_attach_domain(NULL, i);
6727 synchronize_sched();
6728 arch_destroy_sched_domains(cpu_map);
6732 * Partition sched domains as specified by the cpumasks below.
6733 * This attaches all cpus from the cpumasks to the NULL domain,
6734 * waits for a RCU quiescent period, recalculates sched
6735 * domain information and then attaches them back to the
6736 * correct sched domains
6737 * Call with hotplug lock held
6739 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6741 cpumask_t change_map;
6742 int err = 0;
6744 cpus_and(*partition1, *partition1, cpu_online_map);
6745 cpus_and(*partition2, *partition2, cpu_online_map);
6746 cpus_or(change_map, *partition1, *partition2);
6748 /* Detach sched domains from all of the affected cpus */
6749 detach_destroy_domains(&change_map);
6750 if (!cpus_empty(*partition1))
6751 err = build_sched_domains(partition1);
6752 if (!err && !cpus_empty(*partition2))
6753 err = build_sched_domains(partition2);
6755 return err;
6758 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6759 int arch_reinit_sched_domains(void)
6761 int err;
6763 lock_cpu_hotplug();
6764 detach_destroy_domains(&cpu_online_map);
6765 err = arch_init_sched_domains(&cpu_online_map);
6766 unlock_cpu_hotplug();
6768 return err;
6771 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6773 int ret;
6775 if (buf[0] != '0' && buf[0] != '1')
6776 return -EINVAL;
6778 if (smt)
6779 sched_smt_power_savings = (buf[0] == '1');
6780 else
6781 sched_mc_power_savings = (buf[0] == '1');
6783 ret = arch_reinit_sched_domains();
6785 return ret ? ret : count;
6788 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6790 int err = 0;
6792 #ifdef CONFIG_SCHED_SMT
6793 if (smt_capable())
6794 err = sysfs_create_file(&cls->kset.kobj,
6795 &attr_sched_smt_power_savings.attr);
6796 #endif
6797 #ifdef CONFIG_SCHED_MC
6798 if (!err && mc_capable())
6799 err = sysfs_create_file(&cls->kset.kobj,
6800 &attr_sched_mc_power_savings.attr);
6801 #endif
6802 return err;
6804 #endif
6806 #ifdef CONFIG_SCHED_MC
6807 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6809 return sprintf(page, "%u\n", sched_mc_power_savings);
6811 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6812 const char *buf, size_t count)
6814 return sched_power_savings_store(buf, count, 0);
6816 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6817 sched_mc_power_savings_store);
6818 #endif
6820 #ifdef CONFIG_SCHED_SMT
6821 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6823 return sprintf(page, "%u\n", sched_smt_power_savings);
6825 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6826 const char *buf, size_t count)
6828 return sched_power_savings_store(buf, count, 1);
6830 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6831 sched_smt_power_savings_store);
6832 #endif
6835 * Force a reinitialization of the sched domains hierarchy. The domains
6836 * and groups cannot be updated in place without racing with the balancing
6837 * code, so we temporarily attach all running cpus to the NULL domain
6838 * which will prevent rebalancing while the sched domains are recalculated.
6840 static int update_sched_domains(struct notifier_block *nfb,
6841 unsigned long action, void *hcpu)
6843 switch (action) {
6844 case CPU_UP_PREPARE:
6845 case CPU_DOWN_PREPARE:
6846 detach_destroy_domains(&cpu_online_map);
6847 return NOTIFY_OK;
6849 case CPU_UP_CANCELED:
6850 case CPU_DOWN_FAILED:
6851 case CPU_ONLINE:
6852 case CPU_DEAD:
6854 * Fall through and re-initialise the domains.
6856 break;
6857 default:
6858 return NOTIFY_DONE;
6861 /* The hotplug lock is already held by cpu_up/cpu_down */
6862 arch_init_sched_domains(&cpu_online_map);
6864 return NOTIFY_OK;
6867 void __init sched_init_smp(void)
6869 cpumask_t non_isolated_cpus;
6871 lock_cpu_hotplug();
6872 arch_init_sched_domains(&cpu_online_map);
6873 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6874 if (cpus_empty(non_isolated_cpus))
6875 cpu_set(smp_processor_id(), non_isolated_cpus);
6876 unlock_cpu_hotplug();
6877 /* XXX: Theoretical race here - CPU may be hotplugged now */
6878 hotcpu_notifier(update_sched_domains, 0);
6880 /* Move init over to a non-isolated CPU */
6881 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6882 BUG();
6884 #else
6885 void __init sched_init_smp(void)
6888 #endif /* CONFIG_SMP */
6890 int in_sched_functions(unsigned long addr)
6892 /* Linker adds these: start and end of __sched functions */
6893 extern char __sched_text_start[], __sched_text_end[];
6895 return in_lock_functions(addr) ||
6896 (addr >= (unsigned long)__sched_text_start
6897 && addr < (unsigned long)__sched_text_end);
6900 void __init sched_init(void)
6902 int i, j, k;
6904 for_each_possible_cpu(i) {
6905 struct prio_array *array;
6906 struct rq *rq;
6908 rq = cpu_rq(i);
6909 spin_lock_init(&rq->lock);
6910 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6911 rq->nr_running = 0;
6912 rq->active = rq->arrays;
6913 rq->expired = rq->arrays + 1;
6914 rq->best_expired_prio = MAX_PRIO;
6916 #ifdef CONFIG_SMP
6917 rq->sd = NULL;
6918 for (j = 1; j < 3; j++)
6919 rq->cpu_load[j] = 0;
6920 rq->active_balance = 0;
6921 rq->push_cpu = 0;
6922 rq->cpu = i;
6923 rq->migration_thread = NULL;
6924 INIT_LIST_HEAD(&rq->migration_queue);
6925 #endif
6926 atomic_set(&rq->nr_iowait, 0);
6928 for (j = 0; j < 2; j++) {
6929 array = rq->arrays + j;
6930 for (k = 0; k < MAX_PRIO; k++) {
6931 INIT_LIST_HEAD(array->queue + k);
6932 __clear_bit(k, array->bitmap);
6934 // delimiter for bitsearch
6935 __set_bit(MAX_PRIO, array->bitmap);
6939 set_load_weight(&init_task);
6941 #ifdef CONFIG_SMP
6942 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6943 #endif
6945 #ifdef CONFIG_RT_MUTEXES
6946 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6947 #endif
6950 * The boot idle thread does lazy MMU switching as well:
6952 atomic_inc(&init_mm.mm_count);
6953 enter_lazy_tlb(&init_mm, current);
6956 * Make us the idle thread. Technically, schedule() should not be
6957 * called from this thread, however somewhere below it might be,
6958 * but because we are the idle thread, we just pick up running again
6959 * when this runqueue becomes "idle".
6961 init_idle(current, smp_processor_id());
6964 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6965 void __might_sleep(char *file, int line)
6967 #ifdef in_atomic
6968 static unsigned long prev_jiffy; /* ratelimiting */
6970 if ((in_atomic() || irqs_disabled()) &&
6971 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6972 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6973 return;
6974 prev_jiffy = jiffies;
6975 printk(KERN_ERR "BUG: sleeping function called from invalid"
6976 " context at %s:%d\n", file, line);
6977 printk("in_atomic():%d, irqs_disabled():%d\n",
6978 in_atomic(), irqs_disabled());
6979 debug_show_held_locks(current);
6980 dump_stack();
6982 #endif
6984 EXPORT_SYMBOL(__might_sleep);
6985 #endif
6987 #ifdef CONFIG_MAGIC_SYSRQ
6988 void normalize_rt_tasks(void)
6990 struct prio_array *array;
6991 struct task_struct *p;
6992 unsigned long flags;
6993 struct rq *rq;
6995 read_lock_irq(&tasklist_lock);
6996 for_each_process(p) {
6997 if (!rt_task(p))
6998 continue;
7000 spin_lock_irqsave(&p->pi_lock, flags);
7001 rq = __task_rq_lock(p);
7003 array = p->array;
7004 if (array)
7005 deactivate_task(p, task_rq(p));
7006 __setscheduler(p, SCHED_NORMAL, 0);
7007 if (array) {
7008 __activate_task(p, task_rq(p));
7009 resched_task(rq->curr);
7012 __task_rq_unlock(rq);
7013 spin_unlock_irqrestore(&p->pi_lock, flags);
7015 read_unlock_irq(&tasklist_lock);
7018 #endif /* CONFIG_MAGIC_SYSRQ */
7020 #ifdef CONFIG_IA64
7022 * These functions are only useful for the IA64 MCA handling.
7024 * They can only be called when the whole system has been
7025 * stopped - every CPU needs to be quiescent, and no scheduling
7026 * activity can take place. Using them for anything else would
7027 * be a serious bug, and as a result, they aren't even visible
7028 * under any other configuration.
7032 * curr_task - return the current task for a given cpu.
7033 * @cpu: the processor in question.
7035 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7037 struct task_struct *curr_task(int cpu)
7039 return cpu_curr(cpu);
7043 * set_curr_task - set the current task for a given cpu.
7044 * @cpu: the processor in question.
7045 * @p: the task pointer to set.
7047 * Description: This function must only be used when non-maskable interrupts
7048 * are serviced on a separate stack. It allows the architecture to switch the
7049 * notion of the current task on a cpu in a non-blocking manner. This function
7050 * must be called with all CPU's synchronized, and interrupts disabled, the
7051 * and caller must save the original value of the current task (see
7052 * curr_task() above) and restore that value before reenabling interrupts and
7053 * re-starting the system.
7055 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7057 void set_curr_task(int cpu, struct task_struct *p)
7059 cpu_curr(cpu) = p;
7062 #endif