AFS: further write support fixes
[linux-2.6.22.y-op.git] / mm / slub.c
blobb07a1cab4f280871df87353b47639fd199a0836e
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 * The cpu slab may be equipped with an additioanl
85 * lockless_freelist that allows lockless access to
86 * free objects in addition to the regular freelist
87 * that requires the slab lock.
89 * PageError Slab requires special handling due to debug
90 * options set. This moves slab handling out of
91 * the fast path and disables lockless freelists.
94 static inline int SlabDebug(struct page *page)
96 #ifdef CONFIG_SLUB_DEBUG
97 return PageError(page);
98 #else
99 return 0;
100 #endif
103 static inline void SetSlabDebug(struct page *page)
105 #ifdef CONFIG_SLUB_DEBUG
106 SetPageError(page);
107 #endif
110 static inline void ClearSlabDebug(struct page *page)
112 #ifdef CONFIG_SLUB_DEBUG
113 ClearPageError(page);
114 #endif
118 * Issues still to be resolved:
120 * - The per cpu array is updated for each new slab and and is a remote
121 * cacheline for most nodes. This could become a bouncing cacheline given
122 * enough frequent updates. There are 16 pointers in a cacheline, so at
123 * max 16 cpus could compete for the cacheline which may be okay.
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 * - Variable sizing of the per node arrays
130 /* Enable to test recovery from slab corruption on boot */
131 #undef SLUB_RESILIENCY_TEST
133 #if PAGE_SHIFT <= 12
136 * Small page size. Make sure that we do not fragment memory
138 #define DEFAULT_MAX_ORDER 1
139 #define DEFAULT_MIN_OBJECTS 4
141 #else
144 * Large page machines are customarily able to handle larger
145 * page orders.
147 #define DEFAULT_MAX_ORDER 2
148 #define DEFAULT_MIN_OBJECTS 8
150 #endif
153 * Mininum number of partial slabs. These will be left on the partial
154 * lists even if they are empty. kmem_cache_shrink may reclaim them.
156 #define MIN_PARTIAL 2
159 * Maximum number of desirable partial slabs.
160 * The existence of more partial slabs makes kmem_cache_shrink
161 * sort the partial list by the number of objects in the.
163 #define MAX_PARTIAL 10
165 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_STORE_USER)
169 * Set of flags that will prevent slab merging
171 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
172 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
174 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
175 SLAB_CACHE_DMA)
177 #ifndef ARCH_KMALLOC_MINALIGN
178 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
179 #endif
181 #ifndef ARCH_SLAB_MINALIGN
182 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
183 #endif
185 /* Internal SLUB flags */
186 #define __OBJECT_POISON 0x80000000 /* Poison object */
188 /* Not all arches define cache_line_size */
189 #ifndef cache_line_size
190 #define cache_line_size() L1_CACHE_BYTES
191 #endif
193 static int kmem_size = sizeof(struct kmem_cache);
195 #ifdef CONFIG_SMP
196 static struct notifier_block slab_notifier;
197 #endif
199 static enum {
200 DOWN, /* No slab functionality available */
201 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
202 UP, /* Everything works but does not show up in sysfs */
203 SYSFS /* Sysfs up */
204 } slab_state = DOWN;
206 /* A list of all slab caches on the system */
207 static DECLARE_RWSEM(slub_lock);
208 LIST_HEAD(slab_caches);
211 * Tracking user of a slab.
213 struct track {
214 void *addr; /* Called from address */
215 int cpu; /* Was running on cpu */
216 int pid; /* Pid context */
217 unsigned long when; /* When did the operation occur */
220 enum track_item { TRACK_ALLOC, TRACK_FREE };
222 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
223 static int sysfs_slab_add(struct kmem_cache *);
224 static int sysfs_slab_alias(struct kmem_cache *, const char *);
225 static void sysfs_slab_remove(struct kmem_cache *);
226 #else
227 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
228 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
229 static void sysfs_slab_remove(struct kmem_cache *s) {}
230 #endif
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
236 int slab_is_available(void)
238 return slab_state >= UP;
241 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
243 #ifdef CONFIG_NUMA
244 return s->node[node];
245 #else
246 return &s->local_node;
247 #endif
250 static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
253 void *base;
255 if (!object)
256 return 1;
258 base = page_address(page);
259 if (object < base || object >= base + s->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
264 return 1;
268 * Slow version of get and set free pointer.
270 * This version requires touching the cache lines of kmem_cache which
271 * we avoid to do in the fast alloc free paths. There we obtain the offset
272 * from the page struct.
274 static inline void *get_freepointer(struct kmem_cache *s, void *object)
276 return *(void **)(object + s->offset);
279 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 *(void **)(object + s->offset) = fp;
284 /* Loop over all objects in a slab */
285 #define for_each_object(__p, __s, __addr) \
286 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
287 __p += (__s)->size)
289 /* Scan freelist */
290 #define for_each_free_object(__p, __s, __free) \
291 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
293 /* Determine object index from a given position */
294 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296 return (p - addr) / s->size;
299 #ifdef CONFIG_SLUB_DEBUG
301 * Debug settings:
303 static int slub_debug;
305 static char *slub_debug_slabs;
308 * Object debugging
310 static void print_section(char *text, u8 *addr, unsigned int length)
312 int i, offset;
313 int newline = 1;
314 char ascii[17];
316 ascii[16] = 0;
318 for (i = 0; i < length; i++) {
319 if (newline) {
320 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
321 newline = 0;
323 printk(" %02x", addr[i]);
324 offset = i % 16;
325 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
326 if (offset == 15) {
327 printk(" %s\n",ascii);
328 newline = 1;
331 if (!newline) {
332 i %= 16;
333 while (i < 16) {
334 printk(" ");
335 ascii[i] = ' ';
336 i++;
338 printk(" %s\n", ascii);
342 static struct track *get_track(struct kmem_cache *s, void *object,
343 enum track_item alloc)
345 struct track *p;
347 if (s->offset)
348 p = object + s->offset + sizeof(void *);
349 else
350 p = object + s->inuse;
352 return p + alloc;
355 static void set_track(struct kmem_cache *s, void *object,
356 enum track_item alloc, void *addr)
358 struct track *p;
360 if (s->offset)
361 p = object + s->offset + sizeof(void *);
362 else
363 p = object + s->inuse;
365 p += alloc;
366 if (addr) {
367 p->addr = addr;
368 p->cpu = smp_processor_id();
369 p->pid = current ? current->pid : -1;
370 p->when = jiffies;
371 } else
372 memset(p, 0, sizeof(struct track));
375 static void init_tracking(struct kmem_cache *s, void *object)
377 if (s->flags & SLAB_STORE_USER) {
378 set_track(s, object, TRACK_FREE, NULL);
379 set_track(s, object, TRACK_ALLOC, NULL);
383 static void print_track(const char *s, struct track *t)
385 if (!t->addr)
386 return;
388 printk(KERN_ERR "%s: ", s);
389 __print_symbol("%s", (unsigned long)t->addr);
390 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
393 static void print_trailer(struct kmem_cache *s, u8 *p)
395 unsigned int off; /* Offset of last byte */
397 if (s->flags & SLAB_RED_ZONE)
398 print_section("Redzone", p + s->objsize,
399 s->inuse - s->objsize);
401 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
402 p + s->offset,
403 get_freepointer(s, p));
405 if (s->offset)
406 off = s->offset + sizeof(void *);
407 else
408 off = s->inuse;
410 if (s->flags & SLAB_STORE_USER) {
411 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
412 print_track("Last free ", get_track(s, p, TRACK_FREE));
413 off += 2 * sizeof(struct track);
416 if (off != s->size)
417 /* Beginning of the filler is the free pointer */
418 print_section("Filler", p + off, s->size - off);
421 static void object_err(struct kmem_cache *s, struct page *page,
422 u8 *object, char *reason)
424 u8 *addr = page_address(page);
426 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
427 s->name, reason, object, page);
428 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
429 object - addr, page->flags, page->inuse, page->freelist);
430 if (object > addr + 16)
431 print_section("Bytes b4", object - 16, 16);
432 print_section("Object", object, min(s->objsize, 128));
433 print_trailer(s, object);
434 dump_stack();
437 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
439 va_list args;
440 char buf[100];
442 va_start(args, reason);
443 vsnprintf(buf, sizeof(buf), reason, args);
444 va_end(args);
445 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
446 page);
447 dump_stack();
450 static void init_object(struct kmem_cache *s, void *object, int active)
452 u8 *p = object;
454 if (s->flags & __OBJECT_POISON) {
455 memset(p, POISON_FREE, s->objsize - 1);
456 p[s->objsize -1] = POISON_END;
459 if (s->flags & SLAB_RED_ZONE)
460 memset(p + s->objsize,
461 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
462 s->inuse - s->objsize);
465 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
467 while (bytes) {
468 if (*start != (u8)value)
469 return 0;
470 start++;
471 bytes--;
473 return 1;
477 * Object layout:
479 * object address
480 * Bytes of the object to be managed.
481 * If the freepointer may overlay the object then the free
482 * pointer is the first word of the object.
484 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
485 * 0xa5 (POISON_END)
487 * object + s->objsize
488 * Padding to reach word boundary. This is also used for Redzoning.
489 * Padding is extended by another word if Redzoning is enabled and
490 * objsize == inuse.
492 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
493 * 0xcc (RED_ACTIVE) for objects in use.
495 * object + s->inuse
496 * Meta data starts here.
498 * A. Free pointer (if we cannot overwrite object on free)
499 * B. Tracking data for SLAB_STORE_USER
500 * C. Padding to reach required alignment boundary or at mininum
501 * one word if debuggin is on to be able to detect writes
502 * before the word boundary.
504 * Padding is done using 0x5a (POISON_INUSE)
506 * object + s->size
507 * Nothing is used beyond s->size.
509 * If slabcaches are merged then the objsize and inuse boundaries are mostly
510 * ignored. And therefore no slab options that rely on these boundaries
511 * may be used with merged slabcaches.
514 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
515 void *from, void *to)
517 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
518 s->name, message, data, from, to - 1);
519 memset(from, data, to - from);
522 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
524 unsigned long off = s->inuse; /* The end of info */
526 if (s->offset)
527 /* Freepointer is placed after the object. */
528 off += sizeof(void *);
530 if (s->flags & SLAB_STORE_USER)
531 /* We also have user information there */
532 off += 2 * sizeof(struct track);
534 if (s->size == off)
535 return 1;
537 if (check_bytes(p + off, POISON_INUSE, s->size - off))
538 return 1;
540 object_err(s, page, p, "Object padding check fails");
543 * Restore padding
545 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
546 return 0;
549 static int slab_pad_check(struct kmem_cache *s, struct page *page)
551 u8 *p;
552 int length, remainder;
554 if (!(s->flags & SLAB_POISON))
555 return 1;
557 p = page_address(page);
558 length = s->objects * s->size;
559 remainder = (PAGE_SIZE << s->order) - length;
560 if (!remainder)
561 return 1;
563 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
564 slab_err(s, page, "Padding check failed");
565 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
566 p + length + remainder);
567 return 0;
569 return 1;
572 static int check_object(struct kmem_cache *s, struct page *page,
573 void *object, int active)
575 u8 *p = object;
576 u8 *endobject = object + s->objsize;
578 if (s->flags & SLAB_RED_ZONE) {
579 unsigned int red =
580 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
582 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
583 object_err(s, page, object,
584 active ? "Redzone Active" : "Redzone Inactive");
585 restore_bytes(s, "redzone", red,
586 endobject, object + s->inuse);
587 return 0;
589 } else {
590 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
591 !check_bytes(endobject, POISON_INUSE,
592 s->inuse - s->objsize)) {
593 object_err(s, page, p, "Alignment padding check fails");
595 * Fix it so that there will not be another report.
597 * Hmmm... We may be corrupting an object that now expects
598 * to be longer than allowed.
600 restore_bytes(s, "alignment padding", POISON_INUSE,
601 endobject, object + s->inuse);
605 if (s->flags & SLAB_POISON) {
606 if (!active && (s->flags & __OBJECT_POISON) &&
607 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
608 p[s->objsize - 1] != POISON_END)) {
610 object_err(s, page, p, "Poison check failed");
611 restore_bytes(s, "Poison", POISON_FREE,
612 p, p + s->objsize -1);
613 restore_bytes(s, "Poison", POISON_END,
614 p + s->objsize - 1, p + s->objsize);
615 return 0;
618 * check_pad_bytes cleans up on its own.
620 check_pad_bytes(s, page, p);
623 if (!s->offset && active)
625 * Object and freepointer overlap. Cannot check
626 * freepointer while object is allocated.
628 return 1;
630 /* Check free pointer validity */
631 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
632 object_err(s, page, p, "Freepointer corrupt");
634 * No choice but to zap it and thus loose the remainder
635 * of the free objects in this slab. May cause
636 * another error because the object count is now wrong.
638 set_freepointer(s, p, NULL);
639 return 0;
641 return 1;
644 static int check_slab(struct kmem_cache *s, struct page *page)
646 VM_BUG_ON(!irqs_disabled());
648 if (!PageSlab(page)) {
649 slab_err(s, page, "Not a valid slab page flags=%lx "
650 "mapping=0x%p count=%d", page->flags, page->mapping,
651 page_count(page));
652 return 0;
654 if (page->offset * sizeof(void *) != s->offset) {
655 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
656 "mapping=0x%p count=%d",
657 (unsigned long)(page->offset * sizeof(void *)),
658 page->flags,
659 page->mapping,
660 page_count(page));
661 return 0;
663 if (page->inuse > s->objects) {
664 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
665 "mapping=0x%p count=%d",
666 s->name, page->inuse, s->objects, page->flags,
667 page->mapping, page_count(page));
668 return 0;
670 /* Slab_pad_check fixes things up after itself */
671 slab_pad_check(s, page);
672 return 1;
676 * Determine if a certain object on a page is on the freelist. Must hold the
677 * slab lock to guarantee that the chains are in a consistent state.
679 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
681 int nr = 0;
682 void *fp = page->freelist;
683 void *object = NULL;
685 while (fp && nr <= s->objects) {
686 if (fp == search)
687 return 1;
688 if (!check_valid_pointer(s, page, fp)) {
689 if (object) {
690 object_err(s, page, object,
691 "Freechain corrupt");
692 set_freepointer(s, object, NULL);
693 break;
694 } else {
695 slab_err(s, page, "Freepointer 0x%p corrupt",
696 fp);
697 page->freelist = NULL;
698 page->inuse = s->objects;
699 printk(KERN_ERR "@@@ SLUB %s: Freelist "
700 "cleared. Slab 0x%p\n",
701 s->name, page);
702 return 0;
704 break;
706 object = fp;
707 fp = get_freepointer(s, object);
708 nr++;
711 if (page->inuse != s->objects - nr) {
712 slab_err(s, page, "Wrong object count. Counter is %d but "
713 "counted were %d", s, page, page->inuse,
714 s->objects - nr);
715 page->inuse = s->objects - nr;
716 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
717 "Slab @0x%p\n", s->name, page);
719 return search == NULL;
723 * Tracking of fully allocated slabs for debugging purposes.
725 static void add_full(struct kmem_cache_node *n, struct page *page)
727 spin_lock(&n->list_lock);
728 list_add(&page->lru, &n->full);
729 spin_unlock(&n->list_lock);
732 static void remove_full(struct kmem_cache *s, struct page *page)
734 struct kmem_cache_node *n;
736 if (!(s->flags & SLAB_STORE_USER))
737 return;
739 n = get_node(s, page_to_nid(page));
741 spin_lock(&n->list_lock);
742 list_del(&page->lru);
743 spin_unlock(&n->list_lock);
746 static int alloc_object_checks(struct kmem_cache *s, struct page *page,
747 void *object)
749 if (!check_slab(s, page))
750 goto bad;
752 if (object && !on_freelist(s, page, object)) {
753 slab_err(s, page, "Object 0x%p already allocated", object);
754 goto bad;
757 if (!check_valid_pointer(s, page, object)) {
758 object_err(s, page, object, "Freelist Pointer check fails");
759 goto bad;
762 if (!object)
763 return 1;
765 if (!check_object(s, page, object, 0))
766 goto bad;
768 return 1;
769 bad:
770 if (PageSlab(page)) {
772 * If this is a slab page then lets do the best we can
773 * to avoid issues in the future. Marking all objects
774 * as used avoids touching the remaining objects.
776 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
777 s->name, page);
778 page->inuse = s->objects;
779 page->freelist = NULL;
780 /* Fix up fields that may be corrupted */
781 page->offset = s->offset / sizeof(void *);
783 return 0;
786 static int free_object_checks(struct kmem_cache *s, struct page *page,
787 void *object)
789 if (!check_slab(s, page))
790 goto fail;
792 if (!check_valid_pointer(s, page, object)) {
793 slab_err(s, page, "Invalid object pointer 0x%p", object);
794 goto fail;
797 if (on_freelist(s, page, object)) {
798 slab_err(s, page, "Object 0x%p already free", object);
799 goto fail;
802 if (!check_object(s, page, object, 1))
803 return 0;
805 if (unlikely(s != page->slab)) {
806 if (!PageSlab(page))
807 slab_err(s, page, "Attempt to free object(0x%p) "
808 "outside of slab", object);
809 else
810 if (!page->slab) {
811 printk(KERN_ERR
812 "SLUB <none>: no slab for object 0x%p.\n",
813 object);
814 dump_stack();
816 else
817 slab_err(s, page, "object at 0x%p belongs "
818 "to slab %s", object, page->slab->name);
819 goto fail;
821 return 1;
822 fail:
823 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
824 s->name, page, object);
825 return 0;
828 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
830 if (s->flags & SLAB_TRACE) {
831 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
832 s->name,
833 alloc ? "alloc" : "free",
834 object, page->inuse,
835 page->freelist);
837 if (!alloc)
838 print_section("Object", (void *)object, s->objsize);
840 dump_stack();
844 static int __init setup_slub_debug(char *str)
846 if (!str || *str != '=')
847 slub_debug = DEBUG_DEFAULT_FLAGS;
848 else {
849 str++;
850 if (*str == 0 || *str == ',')
851 slub_debug = DEBUG_DEFAULT_FLAGS;
852 else
853 for( ;*str && *str != ','; str++)
854 switch (*str) {
855 case 'f' : case 'F' :
856 slub_debug |= SLAB_DEBUG_FREE;
857 break;
858 case 'z' : case 'Z' :
859 slub_debug |= SLAB_RED_ZONE;
860 break;
861 case 'p' : case 'P' :
862 slub_debug |= SLAB_POISON;
863 break;
864 case 'u' : case 'U' :
865 slub_debug |= SLAB_STORE_USER;
866 break;
867 case 't' : case 'T' :
868 slub_debug |= SLAB_TRACE;
869 break;
870 default:
871 printk(KERN_ERR "slub_debug option '%c' "
872 "unknown. skipped\n",*str);
876 if (*str == ',')
877 slub_debug_slabs = str + 1;
878 return 1;
881 __setup("slub_debug", setup_slub_debug);
883 static void kmem_cache_open_debug_check(struct kmem_cache *s)
886 * The page->offset field is only 16 bit wide. This is an offset
887 * in units of words from the beginning of an object. If the slab
888 * size is bigger then we cannot move the free pointer behind the
889 * object anymore.
891 * On 32 bit platforms the limit is 256k. On 64bit platforms
892 * the limit is 512k.
894 * Debugging or ctor/dtors may create a need to move the free
895 * pointer. Fail if this happens.
897 if (s->size >= 65535 * sizeof(void *)) {
898 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
899 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
900 BUG_ON(s->ctor || s->dtor);
902 else
904 * Enable debugging if selected on the kernel commandline.
906 if (slub_debug && (!slub_debug_slabs ||
907 strncmp(slub_debug_slabs, s->name,
908 strlen(slub_debug_slabs)) == 0))
909 s->flags |= slub_debug;
911 #else
913 static inline int alloc_object_checks(struct kmem_cache *s,
914 struct page *page, void *object) { return 0; }
916 static inline int free_object_checks(struct kmem_cache *s,
917 struct page *page, void *object) { return 0; }
919 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
920 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
921 static inline void trace(struct kmem_cache *s, struct page *page,
922 void *object, int alloc) {}
923 static inline void init_object(struct kmem_cache *s,
924 void *object, int active) {}
925 static inline void init_tracking(struct kmem_cache *s, void *object) {}
926 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
927 { return 1; }
928 static inline int check_object(struct kmem_cache *s, struct page *page,
929 void *object, int active) { return 1; }
930 static inline void set_track(struct kmem_cache *s, void *object,
931 enum track_item alloc, void *addr) {}
932 static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
933 #define slub_debug 0
934 #endif
936 * Slab allocation and freeing
938 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
940 struct page * page;
941 int pages = 1 << s->order;
943 if (s->order)
944 flags |= __GFP_COMP;
946 if (s->flags & SLAB_CACHE_DMA)
947 flags |= SLUB_DMA;
949 if (node == -1)
950 page = alloc_pages(flags, s->order);
951 else
952 page = alloc_pages_node(node, flags, s->order);
954 if (!page)
955 return NULL;
957 mod_zone_page_state(page_zone(page),
958 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
959 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
960 pages);
962 return page;
965 static void setup_object(struct kmem_cache *s, struct page *page,
966 void *object)
968 if (SlabDebug(page)) {
969 init_object(s, object, 0);
970 init_tracking(s, object);
973 if (unlikely(s->ctor))
974 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
977 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
979 struct page *page;
980 struct kmem_cache_node *n;
981 void *start;
982 void *end;
983 void *last;
984 void *p;
986 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
988 if (flags & __GFP_WAIT)
989 local_irq_enable();
991 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
992 if (!page)
993 goto out;
995 n = get_node(s, page_to_nid(page));
996 if (n)
997 atomic_long_inc(&n->nr_slabs);
998 page->offset = s->offset / sizeof(void *);
999 page->slab = s;
1000 page->flags |= 1 << PG_slab;
1001 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1002 SLAB_STORE_USER | SLAB_TRACE))
1003 SetSlabDebug(page);
1005 start = page_address(page);
1006 end = start + s->objects * s->size;
1008 if (unlikely(s->flags & SLAB_POISON))
1009 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1011 last = start;
1012 for_each_object(p, s, start) {
1013 setup_object(s, page, last);
1014 set_freepointer(s, last, p);
1015 last = p;
1017 setup_object(s, page, last);
1018 set_freepointer(s, last, NULL);
1020 page->freelist = start;
1021 page->lockless_freelist = NULL;
1022 page->inuse = 0;
1023 out:
1024 if (flags & __GFP_WAIT)
1025 local_irq_disable();
1026 return page;
1029 static void __free_slab(struct kmem_cache *s, struct page *page)
1031 int pages = 1 << s->order;
1033 if (unlikely(SlabDebug(page) || s->dtor)) {
1034 void *p;
1036 slab_pad_check(s, page);
1037 for_each_object(p, s, page_address(page)) {
1038 if (s->dtor)
1039 s->dtor(p, s, 0);
1040 check_object(s, page, p, 0);
1044 mod_zone_page_state(page_zone(page),
1045 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1046 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1047 - pages);
1049 page->mapping = NULL;
1050 __free_pages(page, s->order);
1053 static void rcu_free_slab(struct rcu_head *h)
1055 struct page *page;
1057 page = container_of((struct list_head *)h, struct page, lru);
1058 __free_slab(page->slab, page);
1061 static void free_slab(struct kmem_cache *s, struct page *page)
1063 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1065 * RCU free overloads the RCU head over the LRU
1067 struct rcu_head *head = (void *)&page->lru;
1069 call_rcu(head, rcu_free_slab);
1070 } else
1071 __free_slab(s, page);
1074 static void discard_slab(struct kmem_cache *s, struct page *page)
1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1078 atomic_long_dec(&n->nr_slabs);
1079 reset_page_mapcount(page);
1080 ClearSlabDebug(page);
1081 __ClearPageSlab(page);
1082 free_slab(s, page);
1086 * Per slab locking using the pagelock
1088 static __always_inline void slab_lock(struct page *page)
1090 bit_spin_lock(PG_locked, &page->flags);
1093 static __always_inline void slab_unlock(struct page *page)
1095 bit_spin_unlock(PG_locked, &page->flags);
1098 static __always_inline int slab_trylock(struct page *page)
1100 int rc = 1;
1102 rc = bit_spin_trylock(PG_locked, &page->flags);
1103 return rc;
1107 * Management of partially allocated slabs
1109 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1111 spin_lock(&n->list_lock);
1112 n->nr_partial++;
1113 list_add_tail(&page->lru, &n->partial);
1114 spin_unlock(&n->list_lock);
1117 static void add_partial(struct kmem_cache_node *n, struct page *page)
1119 spin_lock(&n->list_lock);
1120 n->nr_partial++;
1121 list_add(&page->lru, &n->partial);
1122 spin_unlock(&n->list_lock);
1125 static void remove_partial(struct kmem_cache *s,
1126 struct page *page)
1128 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1130 spin_lock(&n->list_lock);
1131 list_del(&page->lru);
1132 n->nr_partial--;
1133 spin_unlock(&n->list_lock);
1137 * Lock slab and remove from the partial list.
1139 * Must hold list_lock.
1141 static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
1143 if (slab_trylock(page)) {
1144 list_del(&page->lru);
1145 n->nr_partial--;
1146 return 1;
1148 return 0;
1152 * Try to allocate a partial slab from a specific node.
1154 static struct page *get_partial_node(struct kmem_cache_node *n)
1156 struct page *page;
1159 * Racy check. If we mistakenly see no partial slabs then we
1160 * just allocate an empty slab. If we mistakenly try to get a
1161 * partial slab and there is none available then get_partials()
1162 * will return NULL.
1164 if (!n || !n->nr_partial)
1165 return NULL;
1167 spin_lock(&n->list_lock);
1168 list_for_each_entry(page, &n->partial, lru)
1169 if (lock_and_del_slab(n, page))
1170 goto out;
1171 page = NULL;
1172 out:
1173 spin_unlock(&n->list_lock);
1174 return page;
1178 * Get a page from somewhere. Search in increasing NUMA distances.
1180 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1182 #ifdef CONFIG_NUMA
1183 struct zonelist *zonelist;
1184 struct zone **z;
1185 struct page *page;
1188 * The defrag ratio allows a configuration of the tradeoffs between
1189 * inter node defragmentation and node local allocations. A lower
1190 * defrag_ratio increases the tendency to do local allocations
1191 * instead of attempting to obtain partial slabs from other nodes.
1193 * If the defrag_ratio is set to 0 then kmalloc() always
1194 * returns node local objects. If the ratio is higher then kmalloc()
1195 * may return off node objects because partial slabs are obtained
1196 * from other nodes and filled up.
1198 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1199 * defrag_ratio = 1000) then every (well almost) allocation will
1200 * first attempt to defrag slab caches on other nodes. This means
1201 * scanning over all nodes to look for partial slabs which may be
1202 * expensive if we do it every time we are trying to find a slab
1203 * with available objects.
1205 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1206 return NULL;
1208 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1209 ->node_zonelists[gfp_zone(flags)];
1210 for (z = zonelist->zones; *z; z++) {
1211 struct kmem_cache_node *n;
1213 n = get_node(s, zone_to_nid(*z));
1215 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1216 n->nr_partial > MIN_PARTIAL) {
1217 page = get_partial_node(n);
1218 if (page)
1219 return page;
1222 #endif
1223 return NULL;
1227 * Get a partial page, lock it and return it.
1229 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1231 struct page *page;
1232 int searchnode = (node == -1) ? numa_node_id() : node;
1234 page = get_partial_node(get_node(s, searchnode));
1235 if (page || (flags & __GFP_THISNODE))
1236 return page;
1238 return get_any_partial(s, flags);
1242 * Move a page back to the lists.
1244 * Must be called with the slab lock held.
1246 * On exit the slab lock will have been dropped.
1248 static void putback_slab(struct kmem_cache *s, struct page *page)
1250 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252 if (page->inuse) {
1254 if (page->freelist)
1255 add_partial(n, page);
1256 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1257 add_full(n, page);
1258 slab_unlock(page);
1260 } else {
1261 if (n->nr_partial < MIN_PARTIAL) {
1263 * Adding an empty slab to the partial slabs in order
1264 * to avoid page allocator overhead. This slab needs
1265 * to come after the other slabs with objects in
1266 * order to fill them up. That way the size of the
1267 * partial list stays small. kmem_cache_shrink can
1268 * reclaim empty slabs from the partial list.
1270 add_partial_tail(n, page);
1271 slab_unlock(page);
1272 } else {
1273 slab_unlock(page);
1274 discard_slab(s, page);
1280 * Remove the cpu slab
1282 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1285 * Merge cpu freelist into freelist. Typically we get here
1286 * because both freelists are empty. So this is unlikely
1287 * to occur.
1289 while (unlikely(page->lockless_freelist)) {
1290 void **object;
1292 /* Retrieve object from cpu_freelist */
1293 object = page->lockless_freelist;
1294 page->lockless_freelist = page->lockless_freelist[page->offset];
1296 /* And put onto the regular freelist */
1297 object[page->offset] = page->freelist;
1298 page->freelist = object;
1299 page->inuse--;
1301 s->cpu_slab[cpu] = NULL;
1302 ClearPageActive(page);
1304 putback_slab(s, page);
1307 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1309 slab_lock(page);
1310 deactivate_slab(s, page, cpu);
1314 * Flush cpu slab.
1315 * Called from IPI handler with interrupts disabled.
1317 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1319 struct page *page = s->cpu_slab[cpu];
1321 if (likely(page))
1322 flush_slab(s, page, cpu);
1325 static void flush_cpu_slab(void *d)
1327 struct kmem_cache *s = d;
1328 int cpu = smp_processor_id();
1330 __flush_cpu_slab(s, cpu);
1333 static void flush_all(struct kmem_cache *s)
1335 #ifdef CONFIG_SMP
1336 on_each_cpu(flush_cpu_slab, s, 1, 1);
1337 #else
1338 unsigned long flags;
1340 local_irq_save(flags);
1341 flush_cpu_slab(s);
1342 local_irq_restore(flags);
1343 #endif
1347 * Slow path. The lockless freelist is empty or we need to perform
1348 * debugging duties.
1350 * Interrupts are disabled.
1352 * Processing is still very fast if new objects have been freed to the
1353 * regular freelist. In that case we simply take over the regular freelist
1354 * as the lockless freelist and zap the regular freelist.
1356 * If that is not working then we fall back to the partial lists. We take the
1357 * first element of the freelist as the object to allocate now and move the
1358 * rest of the freelist to the lockless freelist.
1360 * And if we were unable to get a new slab from the partial slab lists then
1361 * we need to allocate a new slab. This is slowest path since we may sleep.
1363 static void *__slab_alloc(struct kmem_cache *s,
1364 gfp_t gfpflags, int node, void *addr, struct page *page)
1366 void **object;
1367 int cpu = smp_processor_id();
1369 if (!page)
1370 goto new_slab;
1372 slab_lock(page);
1373 if (unlikely(node != -1 && page_to_nid(page) != node))
1374 goto another_slab;
1375 load_freelist:
1376 object = page->freelist;
1377 if (unlikely(!object))
1378 goto another_slab;
1379 if (unlikely(SlabDebug(page)))
1380 goto debug;
1382 object = page->freelist;
1383 page->lockless_freelist = object[page->offset];
1384 page->inuse = s->objects;
1385 page->freelist = NULL;
1386 slab_unlock(page);
1387 return object;
1389 another_slab:
1390 deactivate_slab(s, page, cpu);
1392 new_slab:
1393 page = get_partial(s, gfpflags, node);
1394 if (page) {
1395 have_slab:
1396 s->cpu_slab[cpu] = page;
1397 SetPageActive(page);
1398 goto load_freelist;
1401 page = new_slab(s, gfpflags, node);
1402 if (page) {
1403 cpu = smp_processor_id();
1404 if (s->cpu_slab[cpu]) {
1406 * Someone else populated the cpu_slab while we
1407 * enabled interrupts, or we have gotten scheduled
1408 * on another cpu. The page may not be on the
1409 * requested node even if __GFP_THISNODE was
1410 * specified. So we need to recheck.
1412 if (node == -1 ||
1413 page_to_nid(s->cpu_slab[cpu]) == node) {
1415 * Current cpuslab is acceptable and we
1416 * want the current one since its cache hot
1418 discard_slab(s, page);
1419 page = s->cpu_slab[cpu];
1420 slab_lock(page);
1421 goto load_freelist;
1423 /* New slab does not fit our expectations */
1424 flush_slab(s, s->cpu_slab[cpu], cpu);
1426 slab_lock(page);
1427 goto have_slab;
1429 return NULL;
1430 debug:
1431 object = page->freelist;
1432 if (!alloc_object_checks(s, page, object))
1433 goto another_slab;
1434 if (s->flags & SLAB_STORE_USER)
1435 set_track(s, object, TRACK_ALLOC, addr);
1436 trace(s, page, object, 1);
1437 init_object(s, object, 1);
1439 page->inuse++;
1440 page->freelist = object[page->offset];
1441 slab_unlock(page);
1442 return object;
1446 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1447 * have the fastpath folded into their functions. So no function call
1448 * overhead for requests that can be satisfied on the fastpath.
1450 * The fastpath works by first checking if the lockless freelist can be used.
1451 * If not then __slab_alloc is called for slow processing.
1453 * Otherwise we can simply pick the next object from the lockless free list.
1455 static void __always_inline *slab_alloc(struct kmem_cache *s,
1456 gfp_t gfpflags, int node, void *addr)
1458 struct page *page;
1459 void **object;
1460 unsigned long flags;
1462 local_irq_save(flags);
1463 page = s->cpu_slab[smp_processor_id()];
1464 if (unlikely(!page || !page->lockless_freelist ||
1465 (node != -1 && page_to_nid(page) != node)))
1467 object = __slab_alloc(s, gfpflags, node, addr, page);
1469 else {
1470 object = page->lockless_freelist;
1471 page->lockless_freelist = object[page->offset];
1473 local_irq_restore(flags);
1474 return object;
1477 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1479 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1481 EXPORT_SYMBOL(kmem_cache_alloc);
1483 #ifdef CONFIG_NUMA
1484 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1486 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1488 EXPORT_SYMBOL(kmem_cache_alloc_node);
1489 #endif
1492 * Slow patch handling. This may still be called frequently since objects
1493 * have a longer lifetime than the cpu slabs in most processing loads.
1495 * So we still attempt to reduce cache line usage. Just take the slab
1496 * lock and free the item. If there is no additional partial page
1497 * handling required then we can return immediately.
1499 static void __slab_free(struct kmem_cache *s, struct page *page,
1500 void *x, void *addr)
1502 void *prior;
1503 void **object = (void *)x;
1505 slab_lock(page);
1507 if (unlikely(SlabDebug(page)))
1508 goto debug;
1509 checks_ok:
1510 prior = object[page->offset] = page->freelist;
1511 page->freelist = object;
1512 page->inuse--;
1514 if (unlikely(PageActive(page)))
1516 * Cpu slabs are never on partial lists and are
1517 * never freed.
1519 goto out_unlock;
1521 if (unlikely(!page->inuse))
1522 goto slab_empty;
1525 * Objects left in the slab. If it
1526 * was not on the partial list before
1527 * then add it.
1529 if (unlikely(!prior))
1530 add_partial(get_node(s, page_to_nid(page)), page);
1532 out_unlock:
1533 slab_unlock(page);
1534 return;
1536 slab_empty:
1537 if (prior)
1539 * Slab still on the partial list.
1541 remove_partial(s, page);
1543 slab_unlock(page);
1544 discard_slab(s, page);
1545 return;
1547 debug:
1548 if (!free_object_checks(s, page, x))
1549 goto out_unlock;
1550 if (!PageActive(page) && !page->freelist)
1551 remove_full(s, page);
1552 if (s->flags & SLAB_STORE_USER)
1553 set_track(s, x, TRACK_FREE, addr);
1554 trace(s, page, object, 0);
1555 init_object(s, object, 0);
1556 goto checks_ok;
1560 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1561 * can perform fastpath freeing without additional function calls.
1563 * The fastpath is only possible if we are freeing to the current cpu slab
1564 * of this processor. This typically the case if we have just allocated
1565 * the item before.
1567 * If fastpath is not possible then fall back to __slab_free where we deal
1568 * with all sorts of special processing.
1570 static void __always_inline slab_free(struct kmem_cache *s,
1571 struct page *page, void *x, void *addr)
1573 void **object = (void *)x;
1574 unsigned long flags;
1576 local_irq_save(flags);
1577 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1578 !SlabDebug(page))) {
1579 object[page->offset] = page->lockless_freelist;
1580 page->lockless_freelist = object;
1581 } else
1582 __slab_free(s, page, x, addr);
1584 local_irq_restore(flags);
1587 void kmem_cache_free(struct kmem_cache *s, void *x)
1589 struct page *page;
1591 page = virt_to_head_page(x);
1593 slab_free(s, page, x, __builtin_return_address(0));
1595 EXPORT_SYMBOL(kmem_cache_free);
1597 /* Figure out on which slab object the object resides */
1598 static struct page *get_object_page(const void *x)
1600 struct page *page = virt_to_head_page(x);
1602 if (!PageSlab(page))
1603 return NULL;
1605 return page;
1609 * Object placement in a slab is made very easy because we always start at
1610 * offset 0. If we tune the size of the object to the alignment then we can
1611 * get the required alignment by putting one properly sized object after
1612 * another.
1614 * Notice that the allocation order determines the sizes of the per cpu
1615 * caches. Each processor has always one slab available for allocations.
1616 * Increasing the allocation order reduces the number of times that slabs
1617 * must be moved on and off the partial lists and is therefore a factor in
1618 * locking overhead.
1622 * Mininum / Maximum order of slab pages. This influences locking overhead
1623 * and slab fragmentation. A higher order reduces the number of partial slabs
1624 * and increases the number of allocations possible without having to
1625 * take the list_lock.
1627 static int slub_min_order;
1628 static int slub_max_order = DEFAULT_MAX_ORDER;
1629 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1632 * Merge control. If this is set then no merging of slab caches will occur.
1633 * (Could be removed. This was introduced to pacify the merge skeptics.)
1635 static int slub_nomerge;
1638 * Calculate the order of allocation given an slab object size.
1640 * The order of allocation has significant impact on performance and other
1641 * system components. Generally order 0 allocations should be preferred since
1642 * order 0 does not cause fragmentation in the page allocator. Larger objects
1643 * be problematic to put into order 0 slabs because there may be too much
1644 * unused space left. We go to a higher order if more than 1/8th of the slab
1645 * would be wasted.
1647 * In order to reach satisfactory performance we must ensure that a minimum
1648 * number of objects is in one slab. Otherwise we may generate too much
1649 * activity on the partial lists which requires taking the list_lock. This is
1650 * less a concern for large slabs though which are rarely used.
1652 * slub_max_order specifies the order where we begin to stop considering the
1653 * number of objects in a slab as critical. If we reach slub_max_order then
1654 * we try to keep the page order as low as possible. So we accept more waste
1655 * of space in favor of a small page order.
1657 * Higher order allocations also allow the placement of more objects in a
1658 * slab and thereby reduce object handling overhead. If the user has
1659 * requested a higher mininum order then we start with that one instead of
1660 * the smallest order which will fit the object.
1662 static inline int slab_order(int size, int min_objects,
1663 int max_order, int fract_leftover)
1665 int order;
1666 int rem;
1668 for (order = max(slub_min_order,
1669 fls(min_objects * size - 1) - PAGE_SHIFT);
1670 order <= max_order; order++) {
1672 unsigned long slab_size = PAGE_SIZE << order;
1674 if (slab_size < min_objects * size)
1675 continue;
1677 rem = slab_size % size;
1679 if (rem <= slab_size / fract_leftover)
1680 break;
1684 return order;
1687 static inline int calculate_order(int size)
1689 int order;
1690 int min_objects;
1691 int fraction;
1694 * Attempt to find best configuration for a slab. This
1695 * works by first attempting to generate a layout with
1696 * the best configuration and backing off gradually.
1698 * First we reduce the acceptable waste in a slab. Then
1699 * we reduce the minimum objects required in a slab.
1701 min_objects = slub_min_objects;
1702 while (min_objects > 1) {
1703 fraction = 8;
1704 while (fraction >= 4) {
1705 order = slab_order(size, min_objects,
1706 slub_max_order, fraction);
1707 if (order <= slub_max_order)
1708 return order;
1709 fraction /= 2;
1711 min_objects /= 2;
1715 * We were unable to place multiple objects in a slab. Now
1716 * lets see if we can place a single object there.
1718 order = slab_order(size, 1, slub_max_order, 1);
1719 if (order <= slub_max_order)
1720 return order;
1723 * Doh this slab cannot be placed using slub_max_order.
1725 order = slab_order(size, 1, MAX_ORDER, 1);
1726 if (order <= MAX_ORDER)
1727 return order;
1728 return -ENOSYS;
1732 * Figure out what the alignment of the objects will be.
1734 static unsigned long calculate_alignment(unsigned long flags,
1735 unsigned long align, unsigned long size)
1738 * If the user wants hardware cache aligned objects then
1739 * follow that suggestion if the object is sufficiently
1740 * large.
1742 * The hardware cache alignment cannot override the
1743 * specified alignment though. If that is greater
1744 * then use it.
1746 if ((flags & SLAB_HWCACHE_ALIGN) &&
1747 size > cache_line_size() / 2)
1748 return max_t(unsigned long, align, cache_line_size());
1750 if (align < ARCH_SLAB_MINALIGN)
1751 return ARCH_SLAB_MINALIGN;
1753 return ALIGN(align, sizeof(void *));
1756 static void init_kmem_cache_node(struct kmem_cache_node *n)
1758 n->nr_partial = 0;
1759 atomic_long_set(&n->nr_slabs, 0);
1760 spin_lock_init(&n->list_lock);
1761 INIT_LIST_HEAD(&n->partial);
1762 INIT_LIST_HEAD(&n->full);
1765 #ifdef CONFIG_NUMA
1767 * No kmalloc_node yet so do it by hand. We know that this is the first
1768 * slab on the node for this slabcache. There are no concurrent accesses
1769 * possible.
1771 * Note that this function only works on the kmalloc_node_cache
1772 * when allocating for the kmalloc_node_cache.
1774 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1775 int node)
1777 struct page *page;
1778 struct kmem_cache_node *n;
1780 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1782 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1783 /* new_slab() disables interupts */
1784 local_irq_enable();
1786 BUG_ON(!page);
1787 n = page->freelist;
1788 BUG_ON(!n);
1789 page->freelist = get_freepointer(kmalloc_caches, n);
1790 page->inuse++;
1791 kmalloc_caches->node[node] = n;
1792 init_object(kmalloc_caches, n, 1);
1793 init_kmem_cache_node(n);
1794 atomic_long_inc(&n->nr_slabs);
1795 add_partial(n, page);
1796 return n;
1799 static void free_kmem_cache_nodes(struct kmem_cache *s)
1801 int node;
1803 for_each_online_node(node) {
1804 struct kmem_cache_node *n = s->node[node];
1805 if (n && n != &s->local_node)
1806 kmem_cache_free(kmalloc_caches, n);
1807 s->node[node] = NULL;
1811 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1813 int node;
1814 int local_node;
1816 if (slab_state >= UP)
1817 local_node = page_to_nid(virt_to_page(s));
1818 else
1819 local_node = 0;
1821 for_each_online_node(node) {
1822 struct kmem_cache_node *n;
1824 if (local_node == node)
1825 n = &s->local_node;
1826 else {
1827 if (slab_state == DOWN) {
1828 n = early_kmem_cache_node_alloc(gfpflags,
1829 node);
1830 continue;
1832 n = kmem_cache_alloc_node(kmalloc_caches,
1833 gfpflags, node);
1835 if (!n) {
1836 free_kmem_cache_nodes(s);
1837 return 0;
1841 s->node[node] = n;
1842 init_kmem_cache_node(n);
1844 return 1;
1846 #else
1847 static void free_kmem_cache_nodes(struct kmem_cache *s)
1851 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1853 init_kmem_cache_node(&s->local_node);
1854 return 1;
1856 #endif
1859 * calculate_sizes() determines the order and the distribution of data within
1860 * a slab object.
1862 static int calculate_sizes(struct kmem_cache *s)
1864 unsigned long flags = s->flags;
1865 unsigned long size = s->objsize;
1866 unsigned long align = s->align;
1869 * Determine if we can poison the object itself. If the user of
1870 * the slab may touch the object after free or before allocation
1871 * then we should never poison the object itself.
1873 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1874 !s->ctor && !s->dtor)
1875 s->flags |= __OBJECT_POISON;
1876 else
1877 s->flags &= ~__OBJECT_POISON;
1880 * Round up object size to the next word boundary. We can only
1881 * place the free pointer at word boundaries and this determines
1882 * the possible location of the free pointer.
1884 size = ALIGN(size, sizeof(void *));
1886 #ifdef CONFIG_SLUB_DEBUG
1888 * If we are Redzoning then check if there is some space between the
1889 * end of the object and the free pointer. If not then add an
1890 * additional word to have some bytes to store Redzone information.
1892 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1893 size += sizeof(void *);
1894 #endif
1897 * With that we have determined the number of bytes in actual use
1898 * by the object. This is the potential offset to the free pointer.
1900 s->inuse = size;
1902 #ifdef CONFIG_SLUB_DEBUG
1903 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1904 s->ctor || s->dtor)) {
1906 * Relocate free pointer after the object if it is not
1907 * permitted to overwrite the first word of the object on
1908 * kmem_cache_free.
1910 * This is the case if we do RCU, have a constructor or
1911 * destructor or are poisoning the objects.
1913 s->offset = size;
1914 size += sizeof(void *);
1917 if (flags & SLAB_STORE_USER)
1919 * Need to store information about allocs and frees after
1920 * the object.
1922 size += 2 * sizeof(struct track);
1924 if (flags & SLAB_RED_ZONE)
1926 * Add some empty padding so that we can catch
1927 * overwrites from earlier objects rather than let
1928 * tracking information or the free pointer be
1929 * corrupted if an user writes before the start
1930 * of the object.
1932 size += sizeof(void *);
1933 #endif
1936 * Determine the alignment based on various parameters that the
1937 * user specified and the dynamic determination of cache line size
1938 * on bootup.
1940 align = calculate_alignment(flags, align, s->objsize);
1943 * SLUB stores one object immediately after another beginning from
1944 * offset 0. In order to align the objects we have to simply size
1945 * each object to conform to the alignment.
1947 size = ALIGN(size, align);
1948 s->size = size;
1950 s->order = calculate_order(size);
1951 if (s->order < 0)
1952 return 0;
1955 * Determine the number of objects per slab
1957 s->objects = (PAGE_SIZE << s->order) / size;
1960 * Verify that the number of objects is within permitted limits.
1961 * The page->inuse field is only 16 bit wide! So we cannot have
1962 * more than 64k objects per slab.
1964 if (!s->objects || s->objects > 65535)
1965 return 0;
1966 return 1;
1970 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1971 const char *name, size_t size,
1972 size_t align, unsigned long flags,
1973 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1974 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1976 memset(s, 0, kmem_size);
1977 s->name = name;
1978 s->ctor = ctor;
1979 s->dtor = dtor;
1980 s->objsize = size;
1981 s->flags = flags;
1982 s->align = align;
1983 kmem_cache_open_debug_check(s);
1985 if (!calculate_sizes(s))
1986 goto error;
1988 s->refcount = 1;
1989 #ifdef CONFIG_NUMA
1990 s->defrag_ratio = 100;
1991 #endif
1993 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1994 return 1;
1995 error:
1996 if (flags & SLAB_PANIC)
1997 panic("Cannot create slab %s size=%lu realsize=%u "
1998 "order=%u offset=%u flags=%lx\n",
1999 s->name, (unsigned long)size, s->size, s->order,
2000 s->offset, flags);
2001 return 0;
2003 EXPORT_SYMBOL(kmem_cache_open);
2006 * Check if a given pointer is valid
2008 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2010 struct page * page;
2012 page = get_object_page(object);
2014 if (!page || s != page->slab)
2015 /* No slab or wrong slab */
2016 return 0;
2018 if (!check_valid_pointer(s, page, object))
2019 return 0;
2022 * We could also check if the object is on the slabs freelist.
2023 * But this would be too expensive and it seems that the main
2024 * purpose of kmem_ptr_valid is to check if the object belongs
2025 * to a certain slab.
2027 return 1;
2029 EXPORT_SYMBOL(kmem_ptr_validate);
2032 * Determine the size of a slab object
2034 unsigned int kmem_cache_size(struct kmem_cache *s)
2036 return s->objsize;
2038 EXPORT_SYMBOL(kmem_cache_size);
2040 const char *kmem_cache_name(struct kmem_cache *s)
2042 return s->name;
2044 EXPORT_SYMBOL(kmem_cache_name);
2047 * Attempt to free all slabs on a node. Return the number of slabs we
2048 * were unable to free.
2050 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2051 struct list_head *list)
2053 int slabs_inuse = 0;
2054 unsigned long flags;
2055 struct page *page, *h;
2057 spin_lock_irqsave(&n->list_lock, flags);
2058 list_for_each_entry_safe(page, h, list, lru)
2059 if (!page->inuse) {
2060 list_del(&page->lru);
2061 discard_slab(s, page);
2062 } else
2063 slabs_inuse++;
2064 spin_unlock_irqrestore(&n->list_lock, flags);
2065 return slabs_inuse;
2069 * Release all resources used by a slab cache.
2071 static int kmem_cache_close(struct kmem_cache *s)
2073 int node;
2075 flush_all(s);
2077 /* Attempt to free all objects */
2078 for_each_online_node(node) {
2079 struct kmem_cache_node *n = get_node(s, node);
2081 n->nr_partial -= free_list(s, n, &n->partial);
2082 if (atomic_long_read(&n->nr_slabs))
2083 return 1;
2085 free_kmem_cache_nodes(s);
2086 return 0;
2090 * Close a cache and release the kmem_cache structure
2091 * (must be used for caches created using kmem_cache_create)
2093 void kmem_cache_destroy(struct kmem_cache *s)
2095 down_write(&slub_lock);
2096 s->refcount--;
2097 if (!s->refcount) {
2098 list_del(&s->list);
2099 if (kmem_cache_close(s))
2100 WARN_ON(1);
2101 sysfs_slab_remove(s);
2102 kfree(s);
2104 up_write(&slub_lock);
2106 EXPORT_SYMBOL(kmem_cache_destroy);
2108 /********************************************************************
2109 * Kmalloc subsystem
2110 *******************************************************************/
2112 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2113 EXPORT_SYMBOL(kmalloc_caches);
2115 #ifdef CONFIG_ZONE_DMA
2116 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2117 #endif
2119 static int __init setup_slub_min_order(char *str)
2121 get_option (&str, &slub_min_order);
2123 return 1;
2126 __setup("slub_min_order=", setup_slub_min_order);
2128 static int __init setup_slub_max_order(char *str)
2130 get_option (&str, &slub_max_order);
2132 return 1;
2135 __setup("slub_max_order=", setup_slub_max_order);
2137 static int __init setup_slub_min_objects(char *str)
2139 get_option (&str, &slub_min_objects);
2141 return 1;
2144 __setup("slub_min_objects=", setup_slub_min_objects);
2146 static int __init setup_slub_nomerge(char *str)
2148 slub_nomerge = 1;
2149 return 1;
2152 __setup("slub_nomerge", setup_slub_nomerge);
2154 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2155 const char *name, int size, gfp_t gfp_flags)
2157 unsigned int flags = 0;
2159 if (gfp_flags & SLUB_DMA)
2160 flags = SLAB_CACHE_DMA;
2162 down_write(&slub_lock);
2163 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2164 flags, NULL, NULL))
2165 goto panic;
2167 list_add(&s->list, &slab_caches);
2168 up_write(&slub_lock);
2169 if (sysfs_slab_add(s))
2170 goto panic;
2171 return s;
2173 panic:
2174 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2177 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2179 int index = kmalloc_index(size);
2181 if (!index)
2182 return NULL;
2184 /* Allocation too large? */
2185 BUG_ON(index < 0);
2187 #ifdef CONFIG_ZONE_DMA
2188 if ((flags & SLUB_DMA)) {
2189 struct kmem_cache *s;
2190 struct kmem_cache *x;
2191 char *text;
2192 size_t realsize;
2194 s = kmalloc_caches_dma[index];
2195 if (s)
2196 return s;
2198 /* Dynamically create dma cache */
2199 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2200 if (!x)
2201 panic("Unable to allocate memory for dma cache\n");
2203 if (index <= KMALLOC_SHIFT_HIGH)
2204 realsize = 1 << index;
2205 else {
2206 if (index == 1)
2207 realsize = 96;
2208 else
2209 realsize = 192;
2212 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2213 (unsigned int)realsize);
2214 s = create_kmalloc_cache(x, text, realsize, flags);
2215 kmalloc_caches_dma[index] = s;
2216 return s;
2218 #endif
2219 return &kmalloc_caches[index];
2222 void *__kmalloc(size_t size, gfp_t flags)
2224 struct kmem_cache *s = get_slab(size, flags);
2226 if (s)
2227 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2228 return NULL;
2230 EXPORT_SYMBOL(__kmalloc);
2232 #ifdef CONFIG_NUMA
2233 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2235 struct kmem_cache *s = get_slab(size, flags);
2237 if (s)
2238 return slab_alloc(s, flags, node, __builtin_return_address(0));
2239 return NULL;
2241 EXPORT_SYMBOL(__kmalloc_node);
2242 #endif
2244 size_t ksize(const void *object)
2246 struct page *page = get_object_page(object);
2247 struct kmem_cache *s;
2249 BUG_ON(!page);
2250 s = page->slab;
2251 BUG_ON(!s);
2254 * Debugging requires use of the padding between object
2255 * and whatever may come after it.
2257 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2258 return s->objsize;
2261 * If we have the need to store the freelist pointer
2262 * back there or track user information then we can
2263 * only use the space before that information.
2265 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2266 return s->inuse;
2269 * Else we can use all the padding etc for the allocation
2271 return s->size;
2273 EXPORT_SYMBOL(ksize);
2275 void kfree(const void *x)
2277 struct kmem_cache *s;
2278 struct page *page;
2280 if (!x)
2281 return;
2283 page = virt_to_head_page(x);
2284 s = page->slab;
2286 slab_free(s, page, (void *)x, __builtin_return_address(0));
2288 EXPORT_SYMBOL(kfree);
2291 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2292 * the remaining slabs by the number of items in use. The slabs with the
2293 * most items in use come first. New allocations will then fill those up
2294 * and thus they can be removed from the partial lists.
2296 * The slabs with the least items are placed last. This results in them
2297 * being allocated from last increasing the chance that the last objects
2298 * are freed in them.
2300 int kmem_cache_shrink(struct kmem_cache *s)
2302 int node;
2303 int i;
2304 struct kmem_cache_node *n;
2305 struct page *page;
2306 struct page *t;
2307 struct list_head *slabs_by_inuse =
2308 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2309 unsigned long flags;
2311 if (!slabs_by_inuse)
2312 return -ENOMEM;
2314 flush_all(s);
2315 for_each_online_node(node) {
2316 n = get_node(s, node);
2318 if (!n->nr_partial)
2319 continue;
2321 for (i = 0; i < s->objects; i++)
2322 INIT_LIST_HEAD(slabs_by_inuse + i);
2324 spin_lock_irqsave(&n->list_lock, flags);
2327 * Build lists indexed by the items in use in each slab.
2329 * Note that concurrent frees may occur while we hold the
2330 * list_lock. page->inuse here is the upper limit.
2332 list_for_each_entry_safe(page, t, &n->partial, lru) {
2333 if (!page->inuse && slab_trylock(page)) {
2335 * Must hold slab lock here because slab_free
2336 * may have freed the last object and be
2337 * waiting to release the slab.
2339 list_del(&page->lru);
2340 n->nr_partial--;
2341 slab_unlock(page);
2342 discard_slab(s, page);
2343 } else {
2344 if (n->nr_partial > MAX_PARTIAL)
2345 list_move(&page->lru,
2346 slabs_by_inuse + page->inuse);
2350 if (n->nr_partial <= MAX_PARTIAL)
2351 goto out;
2354 * Rebuild the partial list with the slabs filled up most
2355 * first and the least used slabs at the end.
2357 for (i = s->objects - 1; i >= 0; i--)
2358 list_splice(slabs_by_inuse + i, n->partial.prev);
2360 out:
2361 spin_unlock_irqrestore(&n->list_lock, flags);
2364 kfree(slabs_by_inuse);
2365 return 0;
2367 EXPORT_SYMBOL(kmem_cache_shrink);
2370 * krealloc - reallocate memory. The contents will remain unchanged.
2371 * @p: object to reallocate memory for.
2372 * @new_size: how many bytes of memory are required.
2373 * @flags: the type of memory to allocate.
2375 * The contents of the object pointed to are preserved up to the
2376 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2377 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2378 * %NULL pointer, the object pointed to is freed.
2380 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2382 void *ret;
2383 size_t ks;
2385 if (unlikely(!p))
2386 return kmalloc(new_size, flags);
2388 if (unlikely(!new_size)) {
2389 kfree(p);
2390 return NULL;
2393 ks = ksize(p);
2394 if (ks >= new_size)
2395 return (void *)p;
2397 ret = kmalloc(new_size, flags);
2398 if (ret) {
2399 memcpy(ret, p, min(new_size, ks));
2400 kfree(p);
2402 return ret;
2404 EXPORT_SYMBOL(krealloc);
2406 /********************************************************************
2407 * Basic setup of slabs
2408 *******************************************************************/
2410 void __init kmem_cache_init(void)
2412 int i;
2414 #ifdef CONFIG_NUMA
2416 * Must first have the slab cache available for the allocations of the
2417 * struct kmem_cache_node's. There is special bootstrap code in
2418 * kmem_cache_open for slab_state == DOWN.
2420 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2421 sizeof(struct kmem_cache_node), GFP_KERNEL);
2422 #endif
2424 /* Able to allocate the per node structures */
2425 slab_state = PARTIAL;
2427 /* Caches that are not of the two-to-the-power-of size */
2428 create_kmalloc_cache(&kmalloc_caches[1],
2429 "kmalloc-96", 96, GFP_KERNEL);
2430 create_kmalloc_cache(&kmalloc_caches[2],
2431 "kmalloc-192", 192, GFP_KERNEL);
2433 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2434 create_kmalloc_cache(&kmalloc_caches[i],
2435 "kmalloc", 1 << i, GFP_KERNEL);
2437 slab_state = UP;
2439 /* Provide the correct kmalloc names now that the caches are up */
2440 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2441 kmalloc_caches[i]. name =
2442 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2444 #ifdef CONFIG_SMP
2445 register_cpu_notifier(&slab_notifier);
2446 #endif
2448 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2449 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2450 + nr_cpu_ids * sizeof(struct page *);
2452 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2453 " Processors=%d, Nodes=%d\n",
2454 KMALLOC_SHIFT_HIGH, cache_line_size(),
2455 slub_min_order, slub_max_order, slub_min_objects,
2456 nr_cpu_ids, nr_node_ids);
2460 * Find a mergeable slab cache
2462 static int slab_unmergeable(struct kmem_cache *s)
2464 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2465 return 1;
2467 if (s->ctor || s->dtor)
2468 return 1;
2470 return 0;
2473 static struct kmem_cache *find_mergeable(size_t size,
2474 size_t align, unsigned long flags,
2475 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2476 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2478 struct list_head *h;
2480 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2481 return NULL;
2483 if (ctor || dtor)
2484 return NULL;
2486 size = ALIGN(size, sizeof(void *));
2487 align = calculate_alignment(flags, align, size);
2488 size = ALIGN(size, align);
2490 list_for_each(h, &slab_caches) {
2491 struct kmem_cache *s =
2492 container_of(h, struct kmem_cache, list);
2494 if (slab_unmergeable(s))
2495 continue;
2497 if (size > s->size)
2498 continue;
2500 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2501 (s->flags & SLUB_MERGE_SAME))
2502 continue;
2504 * Check if alignment is compatible.
2505 * Courtesy of Adrian Drzewiecki
2507 if ((s->size & ~(align -1)) != s->size)
2508 continue;
2510 if (s->size - size >= sizeof(void *))
2511 continue;
2513 return s;
2515 return NULL;
2518 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2519 size_t align, unsigned long flags,
2520 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2521 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2523 struct kmem_cache *s;
2525 down_write(&slub_lock);
2526 s = find_mergeable(size, align, flags, dtor, ctor);
2527 if (s) {
2528 s->refcount++;
2530 * Adjust the object sizes so that we clear
2531 * the complete object on kzalloc.
2533 s->objsize = max(s->objsize, (int)size);
2534 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2535 if (sysfs_slab_alias(s, name))
2536 goto err;
2537 } else {
2538 s = kmalloc(kmem_size, GFP_KERNEL);
2539 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2540 size, align, flags, ctor, dtor)) {
2541 if (sysfs_slab_add(s)) {
2542 kfree(s);
2543 goto err;
2545 list_add(&s->list, &slab_caches);
2546 } else
2547 kfree(s);
2549 up_write(&slub_lock);
2550 return s;
2552 err:
2553 up_write(&slub_lock);
2554 if (flags & SLAB_PANIC)
2555 panic("Cannot create slabcache %s\n", name);
2556 else
2557 s = NULL;
2558 return s;
2560 EXPORT_SYMBOL(kmem_cache_create);
2562 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2564 void *x;
2566 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2567 if (x)
2568 memset(x, 0, s->objsize);
2569 return x;
2571 EXPORT_SYMBOL(kmem_cache_zalloc);
2573 #ifdef CONFIG_SMP
2574 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2576 struct list_head *h;
2578 down_read(&slub_lock);
2579 list_for_each(h, &slab_caches) {
2580 struct kmem_cache *s =
2581 container_of(h, struct kmem_cache, list);
2583 func(s, cpu);
2585 up_read(&slub_lock);
2589 * Use the cpu notifier to insure that the cpu slabs are flushed when
2590 * necessary.
2592 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2593 unsigned long action, void *hcpu)
2595 long cpu = (long)hcpu;
2597 switch (action) {
2598 case CPU_UP_CANCELED:
2599 case CPU_UP_CANCELED_FROZEN:
2600 case CPU_DEAD:
2601 case CPU_DEAD_FROZEN:
2602 for_all_slabs(__flush_cpu_slab, cpu);
2603 break;
2604 default:
2605 break;
2607 return NOTIFY_OK;
2610 static struct notifier_block __cpuinitdata slab_notifier =
2611 { &slab_cpuup_callback, NULL, 0 };
2613 #endif
2615 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2617 struct kmem_cache *s = get_slab(size, gfpflags);
2619 if (!s)
2620 return NULL;
2622 return slab_alloc(s, gfpflags, -1, caller);
2625 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2626 int node, void *caller)
2628 struct kmem_cache *s = get_slab(size, gfpflags);
2630 if (!s)
2631 return NULL;
2633 return slab_alloc(s, gfpflags, node, caller);
2636 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2637 static int validate_slab(struct kmem_cache *s, struct page *page)
2639 void *p;
2640 void *addr = page_address(page);
2641 DECLARE_BITMAP(map, s->objects);
2643 if (!check_slab(s, page) ||
2644 !on_freelist(s, page, NULL))
2645 return 0;
2647 /* Now we know that a valid freelist exists */
2648 bitmap_zero(map, s->objects);
2650 for_each_free_object(p, s, page->freelist) {
2651 set_bit(slab_index(p, s, addr), map);
2652 if (!check_object(s, page, p, 0))
2653 return 0;
2656 for_each_object(p, s, addr)
2657 if (!test_bit(slab_index(p, s, addr), map))
2658 if (!check_object(s, page, p, 1))
2659 return 0;
2660 return 1;
2663 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2665 if (slab_trylock(page)) {
2666 validate_slab(s, page);
2667 slab_unlock(page);
2668 } else
2669 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2670 s->name, page);
2672 if (s->flags & DEBUG_DEFAULT_FLAGS) {
2673 if (!SlabDebug(page))
2674 printk(KERN_ERR "SLUB %s: SlabDebug not set "
2675 "on slab 0x%p\n", s->name, page);
2676 } else {
2677 if (SlabDebug(page))
2678 printk(KERN_ERR "SLUB %s: SlabDebug set on "
2679 "slab 0x%p\n", s->name, page);
2683 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2685 unsigned long count = 0;
2686 struct page *page;
2687 unsigned long flags;
2689 spin_lock_irqsave(&n->list_lock, flags);
2691 list_for_each_entry(page, &n->partial, lru) {
2692 validate_slab_slab(s, page);
2693 count++;
2695 if (count != n->nr_partial)
2696 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2697 "counter=%ld\n", s->name, count, n->nr_partial);
2699 if (!(s->flags & SLAB_STORE_USER))
2700 goto out;
2702 list_for_each_entry(page, &n->full, lru) {
2703 validate_slab_slab(s, page);
2704 count++;
2706 if (count != atomic_long_read(&n->nr_slabs))
2707 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2708 "counter=%ld\n", s->name, count,
2709 atomic_long_read(&n->nr_slabs));
2711 out:
2712 spin_unlock_irqrestore(&n->list_lock, flags);
2713 return count;
2716 static unsigned long validate_slab_cache(struct kmem_cache *s)
2718 int node;
2719 unsigned long count = 0;
2721 flush_all(s);
2722 for_each_online_node(node) {
2723 struct kmem_cache_node *n = get_node(s, node);
2725 count += validate_slab_node(s, n);
2727 return count;
2730 #ifdef SLUB_RESILIENCY_TEST
2731 static void resiliency_test(void)
2733 u8 *p;
2735 printk(KERN_ERR "SLUB resiliency testing\n");
2736 printk(KERN_ERR "-----------------------\n");
2737 printk(KERN_ERR "A. Corruption after allocation\n");
2739 p = kzalloc(16, GFP_KERNEL);
2740 p[16] = 0x12;
2741 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2742 " 0x12->0x%p\n\n", p + 16);
2744 validate_slab_cache(kmalloc_caches + 4);
2746 /* Hmmm... The next two are dangerous */
2747 p = kzalloc(32, GFP_KERNEL);
2748 p[32 + sizeof(void *)] = 0x34;
2749 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2750 " 0x34 -> -0x%p\n", p);
2751 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2753 validate_slab_cache(kmalloc_caches + 5);
2754 p = kzalloc(64, GFP_KERNEL);
2755 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2756 *p = 0x56;
2757 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2759 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2760 validate_slab_cache(kmalloc_caches + 6);
2762 printk(KERN_ERR "\nB. Corruption after free\n");
2763 p = kzalloc(128, GFP_KERNEL);
2764 kfree(p);
2765 *p = 0x78;
2766 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2767 validate_slab_cache(kmalloc_caches + 7);
2769 p = kzalloc(256, GFP_KERNEL);
2770 kfree(p);
2771 p[50] = 0x9a;
2772 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2773 validate_slab_cache(kmalloc_caches + 8);
2775 p = kzalloc(512, GFP_KERNEL);
2776 kfree(p);
2777 p[512] = 0xab;
2778 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2779 validate_slab_cache(kmalloc_caches + 9);
2781 #else
2782 static void resiliency_test(void) {};
2783 #endif
2786 * Generate lists of code addresses where slabcache objects are allocated
2787 * and freed.
2790 struct location {
2791 unsigned long count;
2792 void *addr;
2793 long long sum_time;
2794 long min_time;
2795 long max_time;
2796 long min_pid;
2797 long max_pid;
2798 cpumask_t cpus;
2799 nodemask_t nodes;
2802 struct loc_track {
2803 unsigned long max;
2804 unsigned long count;
2805 struct location *loc;
2808 static void free_loc_track(struct loc_track *t)
2810 if (t->max)
2811 free_pages((unsigned long)t->loc,
2812 get_order(sizeof(struct location) * t->max));
2815 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2817 struct location *l;
2818 int order;
2820 if (!max)
2821 max = PAGE_SIZE / sizeof(struct location);
2823 order = get_order(sizeof(struct location) * max);
2825 l = (void *)__get_free_pages(GFP_KERNEL, order);
2827 if (!l)
2828 return 0;
2830 if (t->count) {
2831 memcpy(l, t->loc, sizeof(struct location) * t->count);
2832 free_loc_track(t);
2834 t->max = max;
2835 t->loc = l;
2836 return 1;
2839 static int add_location(struct loc_track *t, struct kmem_cache *s,
2840 const struct track *track)
2842 long start, end, pos;
2843 struct location *l;
2844 void *caddr;
2845 unsigned long age = jiffies - track->when;
2847 start = -1;
2848 end = t->count;
2850 for ( ; ; ) {
2851 pos = start + (end - start + 1) / 2;
2854 * There is nothing at "end". If we end up there
2855 * we need to add something to before end.
2857 if (pos == end)
2858 break;
2860 caddr = t->loc[pos].addr;
2861 if (track->addr == caddr) {
2863 l = &t->loc[pos];
2864 l->count++;
2865 if (track->when) {
2866 l->sum_time += age;
2867 if (age < l->min_time)
2868 l->min_time = age;
2869 if (age > l->max_time)
2870 l->max_time = age;
2872 if (track->pid < l->min_pid)
2873 l->min_pid = track->pid;
2874 if (track->pid > l->max_pid)
2875 l->max_pid = track->pid;
2877 cpu_set(track->cpu, l->cpus);
2879 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2880 return 1;
2883 if (track->addr < caddr)
2884 end = pos;
2885 else
2886 start = pos;
2890 * Not found. Insert new tracking element.
2892 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2893 return 0;
2895 l = t->loc + pos;
2896 if (pos < t->count)
2897 memmove(l + 1, l,
2898 (t->count - pos) * sizeof(struct location));
2899 t->count++;
2900 l->count = 1;
2901 l->addr = track->addr;
2902 l->sum_time = age;
2903 l->min_time = age;
2904 l->max_time = age;
2905 l->min_pid = track->pid;
2906 l->max_pid = track->pid;
2907 cpus_clear(l->cpus);
2908 cpu_set(track->cpu, l->cpus);
2909 nodes_clear(l->nodes);
2910 node_set(page_to_nid(virt_to_page(track)), l->nodes);
2911 return 1;
2914 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2915 struct page *page, enum track_item alloc)
2917 void *addr = page_address(page);
2918 DECLARE_BITMAP(map, s->objects);
2919 void *p;
2921 bitmap_zero(map, s->objects);
2922 for_each_free_object(p, s, page->freelist)
2923 set_bit(slab_index(p, s, addr), map);
2925 for_each_object(p, s, addr)
2926 if (!test_bit(slab_index(p, s, addr), map))
2927 add_location(t, s, get_track(s, p, alloc));
2930 static int list_locations(struct kmem_cache *s, char *buf,
2931 enum track_item alloc)
2933 int n = 0;
2934 unsigned long i;
2935 struct loc_track t;
2936 int node;
2938 t.count = 0;
2939 t.max = 0;
2941 /* Push back cpu slabs */
2942 flush_all(s);
2944 for_each_online_node(node) {
2945 struct kmem_cache_node *n = get_node(s, node);
2946 unsigned long flags;
2947 struct page *page;
2949 if (!atomic_read(&n->nr_slabs))
2950 continue;
2952 spin_lock_irqsave(&n->list_lock, flags);
2953 list_for_each_entry(page, &n->partial, lru)
2954 process_slab(&t, s, page, alloc);
2955 list_for_each_entry(page, &n->full, lru)
2956 process_slab(&t, s, page, alloc);
2957 spin_unlock_irqrestore(&n->list_lock, flags);
2960 for (i = 0; i < t.count; i++) {
2961 struct location *l = &t.loc[i];
2963 if (n > PAGE_SIZE - 100)
2964 break;
2965 n += sprintf(buf + n, "%7ld ", l->count);
2967 if (l->addr)
2968 n += sprint_symbol(buf + n, (unsigned long)l->addr);
2969 else
2970 n += sprintf(buf + n, "<not-available>");
2972 if (l->sum_time != l->min_time) {
2973 unsigned long remainder;
2975 n += sprintf(buf + n, " age=%ld/%ld/%ld",
2976 l->min_time,
2977 div_long_long_rem(l->sum_time, l->count, &remainder),
2978 l->max_time);
2979 } else
2980 n += sprintf(buf + n, " age=%ld",
2981 l->min_time);
2983 if (l->min_pid != l->max_pid)
2984 n += sprintf(buf + n, " pid=%ld-%ld",
2985 l->min_pid, l->max_pid);
2986 else
2987 n += sprintf(buf + n, " pid=%ld",
2988 l->min_pid);
2990 if (num_online_cpus() > 1 && !cpus_empty(l->cpus)) {
2991 n += sprintf(buf + n, " cpus=");
2992 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
2993 l->cpus);
2996 if (num_online_nodes() > 1 && !nodes_empty(l->nodes)) {
2997 n += sprintf(buf + n, " nodes=");
2998 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
2999 l->nodes);
3002 n += sprintf(buf + n, "\n");
3005 free_loc_track(&t);
3006 if (!t.count)
3007 n += sprintf(buf, "No data\n");
3008 return n;
3011 static unsigned long count_partial(struct kmem_cache_node *n)
3013 unsigned long flags;
3014 unsigned long x = 0;
3015 struct page *page;
3017 spin_lock_irqsave(&n->list_lock, flags);
3018 list_for_each_entry(page, &n->partial, lru)
3019 x += page->inuse;
3020 spin_unlock_irqrestore(&n->list_lock, flags);
3021 return x;
3024 enum slab_stat_type {
3025 SL_FULL,
3026 SL_PARTIAL,
3027 SL_CPU,
3028 SL_OBJECTS
3031 #define SO_FULL (1 << SL_FULL)
3032 #define SO_PARTIAL (1 << SL_PARTIAL)
3033 #define SO_CPU (1 << SL_CPU)
3034 #define SO_OBJECTS (1 << SL_OBJECTS)
3036 static unsigned long slab_objects(struct kmem_cache *s,
3037 char *buf, unsigned long flags)
3039 unsigned long total = 0;
3040 int cpu;
3041 int node;
3042 int x;
3043 unsigned long *nodes;
3044 unsigned long *per_cpu;
3046 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3047 per_cpu = nodes + nr_node_ids;
3049 for_each_possible_cpu(cpu) {
3050 struct page *page = s->cpu_slab[cpu];
3051 int node;
3053 if (page) {
3054 node = page_to_nid(page);
3055 if (flags & SO_CPU) {
3056 int x = 0;
3058 if (flags & SO_OBJECTS)
3059 x = page->inuse;
3060 else
3061 x = 1;
3062 total += x;
3063 nodes[node] += x;
3065 per_cpu[node]++;
3069 for_each_online_node(node) {
3070 struct kmem_cache_node *n = get_node(s, node);
3072 if (flags & SO_PARTIAL) {
3073 if (flags & SO_OBJECTS)
3074 x = count_partial(n);
3075 else
3076 x = n->nr_partial;
3077 total += x;
3078 nodes[node] += x;
3081 if (flags & SO_FULL) {
3082 int full_slabs = atomic_read(&n->nr_slabs)
3083 - per_cpu[node]
3084 - n->nr_partial;
3086 if (flags & SO_OBJECTS)
3087 x = full_slabs * s->objects;
3088 else
3089 x = full_slabs;
3090 total += x;
3091 nodes[node] += x;
3095 x = sprintf(buf, "%lu", total);
3096 #ifdef CONFIG_NUMA
3097 for_each_online_node(node)
3098 if (nodes[node])
3099 x += sprintf(buf + x, " N%d=%lu",
3100 node, nodes[node]);
3101 #endif
3102 kfree(nodes);
3103 return x + sprintf(buf + x, "\n");
3106 static int any_slab_objects(struct kmem_cache *s)
3108 int node;
3109 int cpu;
3111 for_each_possible_cpu(cpu)
3112 if (s->cpu_slab[cpu])
3113 return 1;
3115 for_each_node(node) {
3116 struct kmem_cache_node *n = get_node(s, node);
3118 if (n->nr_partial || atomic_read(&n->nr_slabs))
3119 return 1;
3121 return 0;
3124 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3125 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3127 struct slab_attribute {
3128 struct attribute attr;
3129 ssize_t (*show)(struct kmem_cache *s, char *buf);
3130 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3133 #define SLAB_ATTR_RO(_name) \
3134 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3136 #define SLAB_ATTR(_name) \
3137 static struct slab_attribute _name##_attr = \
3138 __ATTR(_name, 0644, _name##_show, _name##_store)
3140 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3142 return sprintf(buf, "%d\n", s->size);
3144 SLAB_ATTR_RO(slab_size);
3146 static ssize_t align_show(struct kmem_cache *s, char *buf)
3148 return sprintf(buf, "%d\n", s->align);
3150 SLAB_ATTR_RO(align);
3152 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3154 return sprintf(buf, "%d\n", s->objsize);
3156 SLAB_ATTR_RO(object_size);
3158 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3160 return sprintf(buf, "%d\n", s->objects);
3162 SLAB_ATTR_RO(objs_per_slab);
3164 static ssize_t order_show(struct kmem_cache *s, char *buf)
3166 return sprintf(buf, "%d\n", s->order);
3168 SLAB_ATTR_RO(order);
3170 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3172 if (s->ctor) {
3173 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3175 return n + sprintf(buf + n, "\n");
3177 return 0;
3179 SLAB_ATTR_RO(ctor);
3181 static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3183 if (s->dtor) {
3184 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3186 return n + sprintf(buf + n, "\n");
3188 return 0;
3190 SLAB_ATTR_RO(dtor);
3192 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3194 return sprintf(buf, "%d\n", s->refcount - 1);
3196 SLAB_ATTR_RO(aliases);
3198 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3200 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3202 SLAB_ATTR_RO(slabs);
3204 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3206 return slab_objects(s, buf, SO_PARTIAL);
3208 SLAB_ATTR_RO(partial);
3210 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3212 return slab_objects(s, buf, SO_CPU);
3214 SLAB_ATTR_RO(cpu_slabs);
3216 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3218 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3220 SLAB_ATTR_RO(objects);
3222 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3224 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3227 static ssize_t sanity_checks_store(struct kmem_cache *s,
3228 const char *buf, size_t length)
3230 s->flags &= ~SLAB_DEBUG_FREE;
3231 if (buf[0] == '1')
3232 s->flags |= SLAB_DEBUG_FREE;
3233 return length;
3235 SLAB_ATTR(sanity_checks);
3237 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3239 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3242 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3243 size_t length)
3245 s->flags &= ~SLAB_TRACE;
3246 if (buf[0] == '1')
3247 s->flags |= SLAB_TRACE;
3248 return length;
3250 SLAB_ATTR(trace);
3252 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3254 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3257 static ssize_t reclaim_account_store(struct kmem_cache *s,
3258 const char *buf, size_t length)
3260 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3261 if (buf[0] == '1')
3262 s->flags |= SLAB_RECLAIM_ACCOUNT;
3263 return length;
3265 SLAB_ATTR(reclaim_account);
3267 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3269 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3271 SLAB_ATTR_RO(hwcache_align);
3273 #ifdef CONFIG_ZONE_DMA
3274 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3276 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3278 SLAB_ATTR_RO(cache_dma);
3279 #endif
3281 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3283 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3285 SLAB_ATTR_RO(destroy_by_rcu);
3287 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3289 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3292 static ssize_t red_zone_store(struct kmem_cache *s,
3293 const char *buf, size_t length)
3295 if (any_slab_objects(s))
3296 return -EBUSY;
3298 s->flags &= ~SLAB_RED_ZONE;
3299 if (buf[0] == '1')
3300 s->flags |= SLAB_RED_ZONE;
3301 calculate_sizes(s);
3302 return length;
3304 SLAB_ATTR(red_zone);
3306 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3308 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3311 static ssize_t poison_store(struct kmem_cache *s,
3312 const char *buf, size_t length)
3314 if (any_slab_objects(s))
3315 return -EBUSY;
3317 s->flags &= ~SLAB_POISON;
3318 if (buf[0] == '1')
3319 s->flags |= SLAB_POISON;
3320 calculate_sizes(s);
3321 return length;
3323 SLAB_ATTR(poison);
3325 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3327 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3330 static ssize_t store_user_store(struct kmem_cache *s,
3331 const char *buf, size_t length)
3333 if (any_slab_objects(s))
3334 return -EBUSY;
3336 s->flags &= ~SLAB_STORE_USER;
3337 if (buf[0] == '1')
3338 s->flags |= SLAB_STORE_USER;
3339 calculate_sizes(s);
3340 return length;
3342 SLAB_ATTR(store_user);
3344 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3346 return 0;
3349 static ssize_t validate_store(struct kmem_cache *s,
3350 const char *buf, size_t length)
3352 if (buf[0] == '1')
3353 validate_slab_cache(s);
3354 else
3355 return -EINVAL;
3356 return length;
3358 SLAB_ATTR(validate);
3360 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3362 return 0;
3365 static ssize_t shrink_store(struct kmem_cache *s,
3366 const char *buf, size_t length)
3368 if (buf[0] == '1') {
3369 int rc = kmem_cache_shrink(s);
3371 if (rc)
3372 return rc;
3373 } else
3374 return -EINVAL;
3375 return length;
3377 SLAB_ATTR(shrink);
3379 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3381 if (!(s->flags & SLAB_STORE_USER))
3382 return -ENOSYS;
3383 return list_locations(s, buf, TRACK_ALLOC);
3385 SLAB_ATTR_RO(alloc_calls);
3387 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3389 if (!(s->flags & SLAB_STORE_USER))
3390 return -ENOSYS;
3391 return list_locations(s, buf, TRACK_FREE);
3393 SLAB_ATTR_RO(free_calls);
3395 #ifdef CONFIG_NUMA
3396 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3398 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3401 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3402 const char *buf, size_t length)
3404 int n = simple_strtoul(buf, NULL, 10);
3406 if (n < 100)
3407 s->defrag_ratio = n * 10;
3408 return length;
3410 SLAB_ATTR(defrag_ratio);
3411 #endif
3413 static struct attribute * slab_attrs[] = {
3414 &slab_size_attr.attr,
3415 &object_size_attr.attr,
3416 &objs_per_slab_attr.attr,
3417 &order_attr.attr,
3418 &objects_attr.attr,
3419 &slabs_attr.attr,
3420 &partial_attr.attr,
3421 &cpu_slabs_attr.attr,
3422 &ctor_attr.attr,
3423 &dtor_attr.attr,
3424 &aliases_attr.attr,
3425 &align_attr.attr,
3426 &sanity_checks_attr.attr,
3427 &trace_attr.attr,
3428 &hwcache_align_attr.attr,
3429 &reclaim_account_attr.attr,
3430 &destroy_by_rcu_attr.attr,
3431 &red_zone_attr.attr,
3432 &poison_attr.attr,
3433 &store_user_attr.attr,
3434 &validate_attr.attr,
3435 &shrink_attr.attr,
3436 &alloc_calls_attr.attr,
3437 &free_calls_attr.attr,
3438 #ifdef CONFIG_ZONE_DMA
3439 &cache_dma_attr.attr,
3440 #endif
3441 #ifdef CONFIG_NUMA
3442 &defrag_ratio_attr.attr,
3443 #endif
3444 NULL
3447 static struct attribute_group slab_attr_group = {
3448 .attrs = slab_attrs,
3451 static ssize_t slab_attr_show(struct kobject *kobj,
3452 struct attribute *attr,
3453 char *buf)
3455 struct slab_attribute *attribute;
3456 struct kmem_cache *s;
3457 int err;
3459 attribute = to_slab_attr(attr);
3460 s = to_slab(kobj);
3462 if (!attribute->show)
3463 return -EIO;
3465 err = attribute->show(s, buf);
3467 return err;
3470 static ssize_t slab_attr_store(struct kobject *kobj,
3471 struct attribute *attr,
3472 const char *buf, size_t len)
3474 struct slab_attribute *attribute;
3475 struct kmem_cache *s;
3476 int err;
3478 attribute = to_slab_attr(attr);
3479 s = to_slab(kobj);
3481 if (!attribute->store)
3482 return -EIO;
3484 err = attribute->store(s, buf, len);
3486 return err;
3489 static struct sysfs_ops slab_sysfs_ops = {
3490 .show = slab_attr_show,
3491 .store = slab_attr_store,
3494 static struct kobj_type slab_ktype = {
3495 .sysfs_ops = &slab_sysfs_ops,
3498 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3500 struct kobj_type *ktype = get_ktype(kobj);
3502 if (ktype == &slab_ktype)
3503 return 1;
3504 return 0;
3507 static struct kset_uevent_ops slab_uevent_ops = {
3508 .filter = uevent_filter,
3511 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3513 #define ID_STR_LENGTH 64
3515 /* Create a unique string id for a slab cache:
3516 * format
3517 * :[flags-]size:[memory address of kmemcache]
3519 static char *create_unique_id(struct kmem_cache *s)
3521 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3522 char *p = name;
3524 BUG_ON(!name);
3526 *p++ = ':';
3528 * First flags affecting slabcache operations. We will only
3529 * get here for aliasable slabs so we do not need to support
3530 * too many flags. The flags here must cover all flags that
3531 * are matched during merging to guarantee that the id is
3532 * unique.
3534 if (s->flags & SLAB_CACHE_DMA)
3535 *p++ = 'd';
3536 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3537 *p++ = 'a';
3538 if (s->flags & SLAB_DEBUG_FREE)
3539 *p++ = 'F';
3540 if (p != name + 1)
3541 *p++ = '-';
3542 p += sprintf(p, "%07d", s->size);
3543 BUG_ON(p > name + ID_STR_LENGTH - 1);
3544 return name;
3547 static int sysfs_slab_add(struct kmem_cache *s)
3549 int err;
3550 const char *name;
3551 int unmergeable;
3553 if (slab_state < SYSFS)
3554 /* Defer until later */
3555 return 0;
3557 unmergeable = slab_unmergeable(s);
3558 if (unmergeable) {
3560 * Slabcache can never be merged so we can use the name proper.
3561 * This is typically the case for debug situations. In that
3562 * case we can catch duplicate names easily.
3564 sysfs_remove_link(&slab_subsys.kobj, s->name);
3565 name = s->name;
3566 } else {
3568 * Create a unique name for the slab as a target
3569 * for the symlinks.
3571 name = create_unique_id(s);
3574 kobj_set_kset_s(s, slab_subsys);
3575 kobject_set_name(&s->kobj, name);
3576 kobject_init(&s->kobj);
3577 err = kobject_add(&s->kobj);
3578 if (err)
3579 return err;
3581 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3582 if (err)
3583 return err;
3584 kobject_uevent(&s->kobj, KOBJ_ADD);
3585 if (!unmergeable) {
3586 /* Setup first alias */
3587 sysfs_slab_alias(s, s->name);
3588 kfree(name);
3590 return 0;
3593 static void sysfs_slab_remove(struct kmem_cache *s)
3595 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3596 kobject_del(&s->kobj);
3600 * Need to buffer aliases during bootup until sysfs becomes
3601 * available lest we loose that information.
3603 struct saved_alias {
3604 struct kmem_cache *s;
3605 const char *name;
3606 struct saved_alias *next;
3609 struct saved_alias *alias_list;
3611 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3613 struct saved_alias *al;
3615 if (slab_state == SYSFS) {
3617 * If we have a leftover link then remove it.
3619 sysfs_remove_link(&slab_subsys.kobj, name);
3620 return sysfs_create_link(&slab_subsys.kobj,
3621 &s->kobj, name);
3624 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3625 if (!al)
3626 return -ENOMEM;
3628 al->s = s;
3629 al->name = name;
3630 al->next = alias_list;
3631 alias_list = al;
3632 return 0;
3635 static int __init slab_sysfs_init(void)
3637 struct list_head *h;
3638 int err;
3640 err = subsystem_register(&slab_subsys);
3641 if (err) {
3642 printk(KERN_ERR "Cannot register slab subsystem.\n");
3643 return -ENOSYS;
3646 slab_state = SYSFS;
3648 list_for_each(h, &slab_caches) {
3649 struct kmem_cache *s =
3650 container_of(h, struct kmem_cache, list);
3652 err = sysfs_slab_add(s);
3653 BUG_ON(err);
3656 while (alias_list) {
3657 struct saved_alias *al = alias_list;
3659 alias_list = alias_list->next;
3660 err = sysfs_slab_alias(al->s, al->name);
3661 BUG_ON(err);
3662 kfree(al);
3665 resiliency_test();
3666 return 0;
3669 __initcall(slab_sysfs_init);
3670 #endif