WorkStruct: Separate delayable and non-delayable events.
[linux-2.6.22.y-op.git] / kernel / workqueue.c
blob44fc54b7decf9d17ccef37ecdc05b985a0ac289d
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
34 * The per-CPU workqueue (if single thread, we always use the first
35 * possible cpu).
37 * The sequence counters are for flush_scheduled_work(). It wants to wait
38 * until all currently-scheduled works are completed, but it doesn't
39 * want to be livelocked by new, incoming ones. So it waits until
40 * remove_sequence is >= the insert_sequence which pertained when
41 * flush_scheduled_work() was called.
43 struct cpu_workqueue_struct {
45 spinlock_t lock;
47 long remove_sequence; /* Least-recently added (next to run) */
48 long insert_sequence; /* Next to add */
50 struct list_head worklist;
51 wait_queue_head_t more_work;
52 wait_queue_head_t work_done;
54 struct workqueue_struct *wq;
55 struct task_struct *thread;
57 int run_depth; /* Detect run_workqueue() recursion depth */
58 } ____cacheline_aligned;
61 * The externally visible workqueue abstraction is an array of
62 * per-CPU workqueues:
64 struct workqueue_struct {
65 struct cpu_workqueue_struct *cpu_wq;
66 const char *name;
67 struct list_head list; /* Empty if single thread */
70 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
71 threads to each one as cpus come/go. */
72 static DEFINE_MUTEX(workqueue_mutex);
73 static LIST_HEAD(workqueues);
75 static int singlethread_cpu;
77 /* If it's single threaded, it isn't in the list of workqueues. */
78 static inline int is_single_threaded(struct workqueue_struct *wq)
80 return list_empty(&wq->list);
83 /* Preempt must be disabled. */
84 static void __queue_work(struct cpu_workqueue_struct *cwq,
85 struct work_struct *work)
87 unsigned long flags;
89 spin_lock_irqsave(&cwq->lock, flags);
90 work->wq_data = cwq;
91 list_add_tail(&work->entry, &cwq->worklist);
92 cwq->insert_sequence++;
93 wake_up(&cwq->more_work);
94 spin_unlock_irqrestore(&cwq->lock, flags);
97 /**
98 * queue_work - queue work on a workqueue
99 * @wq: workqueue to use
100 * @work: work to queue
102 * Returns 0 if @work was already on a queue, non-zero otherwise.
104 * We queue the work to the CPU it was submitted, but there is no
105 * guarantee that it will be processed by that CPU.
107 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
109 int ret = 0, cpu = get_cpu();
111 if (!test_and_set_bit(0, &work->pending)) {
112 if (unlikely(is_single_threaded(wq)))
113 cpu = singlethread_cpu;
114 BUG_ON(!list_empty(&work->entry));
115 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
116 ret = 1;
118 put_cpu();
119 return ret;
121 EXPORT_SYMBOL_GPL(queue_work);
123 static void delayed_work_timer_fn(unsigned long __data)
125 struct delayed_work *dwork = (struct delayed_work *)__data;
126 struct workqueue_struct *wq = dwork->work.wq_data;
127 int cpu = smp_processor_id();
129 if (unlikely(is_single_threaded(wq)))
130 cpu = singlethread_cpu;
132 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
136 * queue_delayed_work - queue work on a workqueue after delay
137 * @wq: workqueue to use
138 * @work: delayable work to queue
139 * @delay: number of jiffies to wait before queueing
141 * Returns 0 if @work was already on a queue, non-zero otherwise.
143 int fastcall queue_delayed_work(struct workqueue_struct *wq,
144 struct delayed_work *dwork, unsigned long delay)
146 int ret = 0;
147 struct timer_list *timer = &dwork->timer;
148 struct work_struct *work = &dwork->work;
150 if (delay == 0)
151 return queue_work(wq, work);
153 if (!test_and_set_bit(0, &work->pending)) {
154 BUG_ON(timer_pending(timer));
155 BUG_ON(!list_empty(&work->entry));
157 /* This stores wq for the moment, for the timer_fn */
158 work->wq_data = wq;
159 timer->expires = jiffies + delay;
160 timer->data = (unsigned long)dwork;
161 timer->function = delayed_work_timer_fn;
162 add_timer(timer);
163 ret = 1;
165 return ret;
167 EXPORT_SYMBOL_GPL(queue_delayed_work);
170 * queue_delayed_work_on - queue work on specific CPU after delay
171 * @cpu: CPU number to execute work on
172 * @wq: workqueue to use
173 * @work: work to queue
174 * @delay: number of jiffies to wait before queueing
176 * Returns 0 if @work was already on a queue, non-zero otherwise.
178 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
179 struct delayed_work *dwork, unsigned long delay)
181 int ret = 0;
182 struct timer_list *timer = &dwork->timer;
183 struct work_struct *work = &dwork->work;
185 if (!test_and_set_bit(0, &work->pending)) {
186 BUG_ON(timer_pending(timer));
187 BUG_ON(!list_empty(&work->entry));
189 /* This stores wq for the moment, for the timer_fn */
190 work->wq_data = wq;
191 timer->expires = jiffies + delay;
192 timer->data = (unsigned long)dwork;
193 timer->function = delayed_work_timer_fn;
194 add_timer_on(timer, cpu);
195 ret = 1;
197 return ret;
199 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
201 static void run_workqueue(struct cpu_workqueue_struct *cwq)
203 unsigned long flags;
206 * Keep taking off work from the queue until
207 * done.
209 spin_lock_irqsave(&cwq->lock, flags);
210 cwq->run_depth++;
211 if (cwq->run_depth > 3) {
212 /* morton gets to eat his hat */
213 printk("%s: recursion depth exceeded: %d\n",
214 __FUNCTION__, cwq->run_depth);
215 dump_stack();
217 while (!list_empty(&cwq->worklist)) {
218 struct work_struct *work = list_entry(cwq->worklist.next,
219 struct work_struct, entry);
220 void (*f) (void *) = work->func;
221 void *data = work->data;
223 list_del_init(cwq->worklist.next);
224 spin_unlock_irqrestore(&cwq->lock, flags);
226 BUG_ON(work->wq_data != cwq);
227 clear_bit(0, &work->pending);
228 f(data);
230 spin_lock_irqsave(&cwq->lock, flags);
231 cwq->remove_sequence++;
232 wake_up(&cwq->work_done);
234 cwq->run_depth--;
235 spin_unlock_irqrestore(&cwq->lock, flags);
238 static int worker_thread(void *__cwq)
240 struct cpu_workqueue_struct *cwq = __cwq;
241 DECLARE_WAITQUEUE(wait, current);
242 struct k_sigaction sa;
243 sigset_t blocked;
245 current->flags |= PF_NOFREEZE;
247 set_user_nice(current, -5);
249 /* Block and flush all signals */
250 sigfillset(&blocked);
251 sigprocmask(SIG_BLOCK, &blocked, NULL);
252 flush_signals(current);
255 * We inherited MPOL_INTERLEAVE from the booting kernel.
256 * Set MPOL_DEFAULT to insure node local allocations.
258 numa_default_policy();
260 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
261 sa.sa.sa_handler = SIG_IGN;
262 sa.sa.sa_flags = 0;
263 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
264 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
266 set_current_state(TASK_INTERRUPTIBLE);
267 while (!kthread_should_stop()) {
268 add_wait_queue(&cwq->more_work, &wait);
269 if (list_empty(&cwq->worklist))
270 schedule();
271 else
272 __set_current_state(TASK_RUNNING);
273 remove_wait_queue(&cwq->more_work, &wait);
275 if (!list_empty(&cwq->worklist))
276 run_workqueue(cwq);
277 set_current_state(TASK_INTERRUPTIBLE);
279 __set_current_state(TASK_RUNNING);
280 return 0;
283 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
285 if (cwq->thread == current) {
287 * Probably keventd trying to flush its own queue. So simply run
288 * it by hand rather than deadlocking.
290 run_workqueue(cwq);
291 } else {
292 DEFINE_WAIT(wait);
293 long sequence_needed;
295 spin_lock_irq(&cwq->lock);
296 sequence_needed = cwq->insert_sequence;
298 while (sequence_needed - cwq->remove_sequence > 0) {
299 prepare_to_wait(&cwq->work_done, &wait,
300 TASK_UNINTERRUPTIBLE);
301 spin_unlock_irq(&cwq->lock);
302 schedule();
303 spin_lock_irq(&cwq->lock);
305 finish_wait(&cwq->work_done, &wait);
306 spin_unlock_irq(&cwq->lock);
311 * flush_workqueue - ensure that any scheduled work has run to completion.
312 * @wq: workqueue to flush
314 * Forces execution of the workqueue and blocks until its completion.
315 * This is typically used in driver shutdown handlers.
317 * This function will sample each workqueue's current insert_sequence number and
318 * will sleep until the head sequence is greater than or equal to that. This
319 * means that we sleep until all works which were queued on entry have been
320 * handled, but we are not livelocked by new incoming ones.
322 * This function used to run the workqueues itself. Now we just wait for the
323 * helper threads to do it.
325 void fastcall flush_workqueue(struct workqueue_struct *wq)
327 might_sleep();
329 if (is_single_threaded(wq)) {
330 /* Always use first cpu's area. */
331 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
332 } else {
333 int cpu;
335 mutex_lock(&workqueue_mutex);
336 for_each_online_cpu(cpu)
337 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
338 mutex_unlock(&workqueue_mutex);
341 EXPORT_SYMBOL_GPL(flush_workqueue);
343 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
344 int cpu)
346 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
347 struct task_struct *p;
349 spin_lock_init(&cwq->lock);
350 cwq->wq = wq;
351 cwq->thread = NULL;
352 cwq->insert_sequence = 0;
353 cwq->remove_sequence = 0;
354 INIT_LIST_HEAD(&cwq->worklist);
355 init_waitqueue_head(&cwq->more_work);
356 init_waitqueue_head(&cwq->work_done);
358 if (is_single_threaded(wq))
359 p = kthread_create(worker_thread, cwq, "%s", wq->name);
360 else
361 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
362 if (IS_ERR(p))
363 return NULL;
364 cwq->thread = p;
365 return p;
368 struct workqueue_struct *__create_workqueue(const char *name,
369 int singlethread)
371 int cpu, destroy = 0;
372 struct workqueue_struct *wq;
373 struct task_struct *p;
375 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
376 if (!wq)
377 return NULL;
379 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
380 if (!wq->cpu_wq) {
381 kfree(wq);
382 return NULL;
385 wq->name = name;
386 mutex_lock(&workqueue_mutex);
387 if (singlethread) {
388 INIT_LIST_HEAD(&wq->list);
389 p = create_workqueue_thread(wq, singlethread_cpu);
390 if (!p)
391 destroy = 1;
392 else
393 wake_up_process(p);
394 } else {
395 list_add(&wq->list, &workqueues);
396 for_each_online_cpu(cpu) {
397 p = create_workqueue_thread(wq, cpu);
398 if (p) {
399 kthread_bind(p, cpu);
400 wake_up_process(p);
401 } else
402 destroy = 1;
405 mutex_unlock(&workqueue_mutex);
408 * Was there any error during startup? If yes then clean up:
410 if (destroy) {
411 destroy_workqueue(wq);
412 wq = NULL;
414 return wq;
416 EXPORT_SYMBOL_GPL(__create_workqueue);
418 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
420 struct cpu_workqueue_struct *cwq;
421 unsigned long flags;
422 struct task_struct *p;
424 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
425 spin_lock_irqsave(&cwq->lock, flags);
426 p = cwq->thread;
427 cwq->thread = NULL;
428 spin_unlock_irqrestore(&cwq->lock, flags);
429 if (p)
430 kthread_stop(p);
434 * destroy_workqueue - safely terminate a workqueue
435 * @wq: target workqueue
437 * Safely destroy a workqueue. All work currently pending will be done first.
439 void destroy_workqueue(struct workqueue_struct *wq)
441 int cpu;
443 flush_workqueue(wq);
445 /* We don't need the distraction of CPUs appearing and vanishing. */
446 mutex_lock(&workqueue_mutex);
447 if (is_single_threaded(wq))
448 cleanup_workqueue_thread(wq, singlethread_cpu);
449 else {
450 for_each_online_cpu(cpu)
451 cleanup_workqueue_thread(wq, cpu);
452 list_del(&wq->list);
454 mutex_unlock(&workqueue_mutex);
455 free_percpu(wq->cpu_wq);
456 kfree(wq);
458 EXPORT_SYMBOL_GPL(destroy_workqueue);
460 static struct workqueue_struct *keventd_wq;
463 * schedule_work - put work task in global workqueue
464 * @work: job to be done
466 * This puts a job in the kernel-global workqueue.
468 int fastcall schedule_work(struct work_struct *work)
470 return queue_work(keventd_wq, work);
472 EXPORT_SYMBOL(schedule_work);
475 * schedule_delayed_work - put work task in global workqueue after delay
476 * @dwork: job to be done
477 * @delay: number of jiffies to wait or 0 for immediate execution
479 * After waiting for a given time this puts a job in the kernel-global
480 * workqueue.
482 int fastcall schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
484 return queue_delayed_work(keventd_wq, dwork, delay);
486 EXPORT_SYMBOL(schedule_delayed_work);
489 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
490 * @cpu: cpu to use
491 * @dwork: job to be done
492 * @delay: number of jiffies to wait
494 * After waiting for a given time this puts a job in the kernel-global
495 * workqueue on the specified CPU.
497 int schedule_delayed_work_on(int cpu,
498 struct delayed_work *dwork, unsigned long delay)
500 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
502 EXPORT_SYMBOL(schedule_delayed_work_on);
505 * schedule_on_each_cpu - call a function on each online CPU from keventd
506 * @func: the function to call
507 * @info: a pointer to pass to func()
509 * Returns zero on success.
510 * Returns -ve errno on failure.
512 * Appears to be racy against CPU hotplug.
514 * schedule_on_each_cpu() is very slow.
516 int schedule_on_each_cpu(void (*func)(void *info), void *info)
518 int cpu;
519 struct work_struct *works;
521 works = alloc_percpu(struct work_struct);
522 if (!works)
523 return -ENOMEM;
525 mutex_lock(&workqueue_mutex);
526 for_each_online_cpu(cpu) {
527 INIT_WORK(per_cpu_ptr(works, cpu), func, info);
528 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
529 per_cpu_ptr(works, cpu));
531 mutex_unlock(&workqueue_mutex);
532 flush_workqueue(keventd_wq);
533 free_percpu(works);
534 return 0;
537 void flush_scheduled_work(void)
539 flush_workqueue(keventd_wq);
541 EXPORT_SYMBOL(flush_scheduled_work);
544 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
545 * work whose handler rearms the delayed work.
546 * @wq: the controlling workqueue structure
547 * @dwork: the delayed work struct
549 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
550 struct delayed_work *dwork)
552 while (!cancel_delayed_work(dwork))
553 flush_workqueue(wq);
555 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
558 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
559 * work whose handler rearms the delayed work.
560 * @dwork: the delayed work struct
562 void cancel_rearming_delayed_work(struct delayed_work *dwork)
564 cancel_rearming_delayed_workqueue(keventd_wq, dwork);
566 EXPORT_SYMBOL(cancel_rearming_delayed_work);
569 * execute_in_process_context - reliably execute the routine with user context
570 * @fn: the function to execute
571 * @data: data to pass to the function
572 * @ew: guaranteed storage for the execute work structure (must
573 * be available when the work executes)
575 * Executes the function immediately if process context is available,
576 * otherwise schedules the function for delayed execution.
578 * Returns: 0 - function was executed
579 * 1 - function was scheduled for execution
581 int execute_in_process_context(void (*fn)(void *data), void *data,
582 struct execute_work *ew)
584 if (!in_interrupt()) {
585 fn(data);
586 return 0;
589 INIT_WORK(&ew->work, fn, data);
590 schedule_work(&ew->work);
592 return 1;
594 EXPORT_SYMBOL_GPL(execute_in_process_context);
596 int keventd_up(void)
598 return keventd_wq != NULL;
601 int current_is_keventd(void)
603 struct cpu_workqueue_struct *cwq;
604 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
605 int ret = 0;
607 BUG_ON(!keventd_wq);
609 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
610 if (current == cwq->thread)
611 ret = 1;
613 return ret;
617 #ifdef CONFIG_HOTPLUG_CPU
618 /* Take the work from this (downed) CPU. */
619 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
621 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
622 struct list_head list;
623 struct work_struct *work;
625 spin_lock_irq(&cwq->lock);
626 list_replace_init(&cwq->worklist, &list);
628 while (!list_empty(&list)) {
629 printk("Taking work for %s\n", wq->name);
630 work = list_entry(list.next,struct work_struct,entry);
631 list_del(&work->entry);
632 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
634 spin_unlock_irq(&cwq->lock);
637 /* We're holding the cpucontrol mutex here */
638 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
639 unsigned long action,
640 void *hcpu)
642 unsigned int hotcpu = (unsigned long)hcpu;
643 struct workqueue_struct *wq;
645 switch (action) {
646 case CPU_UP_PREPARE:
647 mutex_lock(&workqueue_mutex);
648 /* Create a new workqueue thread for it. */
649 list_for_each_entry(wq, &workqueues, list) {
650 if (!create_workqueue_thread(wq, hotcpu)) {
651 printk("workqueue for %i failed\n", hotcpu);
652 return NOTIFY_BAD;
655 break;
657 case CPU_ONLINE:
658 /* Kick off worker threads. */
659 list_for_each_entry(wq, &workqueues, list) {
660 struct cpu_workqueue_struct *cwq;
662 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
663 kthread_bind(cwq->thread, hotcpu);
664 wake_up_process(cwq->thread);
666 mutex_unlock(&workqueue_mutex);
667 break;
669 case CPU_UP_CANCELED:
670 list_for_each_entry(wq, &workqueues, list) {
671 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
672 continue;
673 /* Unbind so it can run. */
674 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
675 any_online_cpu(cpu_online_map));
676 cleanup_workqueue_thread(wq, hotcpu);
678 mutex_unlock(&workqueue_mutex);
679 break;
681 case CPU_DOWN_PREPARE:
682 mutex_lock(&workqueue_mutex);
683 break;
685 case CPU_DOWN_FAILED:
686 mutex_unlock(&workqueue_mutex);
687 break;
689 case CPU_DEAD:
690 list_for_each_entry(wq, &workqueues, list)
691 cleanup_workqueue_thread(wq, hotcpu);
692 list_for_each_entry(wq, &workqueues, list)
693 take_over_work(wq, hotcpu);
694 mutex_unlock(&workqueue_mutex);
695 break;
698 return NOTIFY_OK;
700 #endif
702 void init_workqueues(void)
704 singlethread_cpu = first_cpu(cpu_possible_map);
705 hotcpu_notifier(workqueue_cpu_callback, 0);
706 keventd_wq = create_workqueue("events");
707 BUG_ON(!keventd_wq);