security: revalidate rw permissions for sys_splice and sys_vmsplice
[linux-2.6.22.y-op.git] / include / asm-xtensa / pgtable.h
blob2d4b5db6ea6340406c62e99be1bc1398daa5770d
1 /*
2 * linux/include/asm-xtensa/pgtable.h
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version2 as
6 * published by the Free Software Foundation.
8 * Copyright (C) 2001 - 2005 Tensilica Inc.
9 */
11 #ifndef _XTENSA_PGTABLE_H
12 #define _XTENSA_PGTABLE_H
14 #include <asm-generic/pgtable-nopmd.h>
15 #include <asm/page.h>
18 * We only use two ring levels, user and kernel space.
21 #define USER_RING 1 /* user ring level */
22 #define KERNEL_RING 0 /* kernel ring level */
25 * The Xtensa architecture port of Linux has a two-level page table system,
26 * i.e. the logical three-level Linux page table layout are folded.
27 * Each task has the following memory page tables:
29 * PGD table (page directory), ie. 3rd-level page table:
30 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
31 * (Architectures that don't have the PMD folded point to the PMD tables)
33 * The pointer to the PGD table for a given task can be retrieved from
34 * the task structure (struct task_struct*) t, e.g. current():
35 * (t->mm ? t->mm : t->active_mm)->pgd
37 * PMD tables (page middle-directory), ie. 2nd-level page tables:
38 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
40 * PTE tables (page table entry), ie. 1st-level page tables:
41 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
42 * invalid_pte_table for absent mappings.
44 * The individual pages are 4 kB big with special pages for the empty_zero_page.
46 #define PGDIR_SHIFT 22
47 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
48 #define PGDIR_MASK (~(PGDIR_SIZE-1))
51 * Entries per page directory level: we use two-level, so
52 * we don't really have any PMD directory physically.
54 #define PTRS_PER_PTE 1024
55 #define PTRS_PER_PTE_SHIFT 10
56 #define PTRS_PER_PMD 1
57 #define PTRS_PER_PGD 1024
58 #define PGD_ORDER 0
59 #define PMD_ORDER 0
60 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
61 #define FIRST_USER_ADDRESS 0
62 #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
64 /* virtual memory area. We keep a distance to other memory regions to be
65 * on the safe side. We also use this area for cache aliasing.
68 // FIXME: virtual memory area must be configuration-dependent
70 #define VMALLOC_START 0xC0000000
71 #define VMALLOC_END 0xC7FF0000
73 /* Xtensa Linux config PTE layout (when present):
74 * 31-12: PPN
75 * 11-6: Software
76 * 5-4: RING
77 * 3-0: CA
79 * Similar to the Alpha and MIPS ports, we need to keep track of the ref
80 * and mod bits in software. We have a software "you can read
81 * from this page" bit, and a hardware one which actually lets the
82 * process read from the page. On the same token we have a software
83 * writable bit and the real hardware one which actually lets the
84 * process write to the page.
86 * See further below for PTE layout for swapped-out pages.
89 #define _PAGE_VALID (1<<0) /* hardware: page is accessible */
90 #define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */
92 /* None of these cache modes include MP coherency: */
93 #define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */
94 #if XCHAL_DCACHE_IS_WRITEBACK
95 # define _PAGE_WRITEBACK (1<<2) /* write back */
96 # define _PAGE_WRITETHRU (2<<2) /* write through */
97 #else
98 # define _PAGE_WRITEBACK (1<<2) /* assume write through */
99 # define _PAGE_WRITETHRU (1<<2)
100 #endif
101 #define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */
102 #define _CACHE_MASK (3<<2)
104 #define _PAGE_USER (1<<4) /* user access (ring=1) */
105 #define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */
107 /* Software */
108 #define _PAGE_RW (1<<6) /* software: page writable */
109 #define _PAGE_DIRTY (1<<7) /* software: page dirty */
110 #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
111 #define _PAGE_FILE (1<<9) /* nonlinear file mapping*/
113 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY)
114 #define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED)
116 #ifdef CONFIG_MMU
118 # define PAGE_NONE __pgprot(_PAGE_PRESENT)
119 # define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW)
120 # define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
121 # define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
122 # define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE)
123 # define PAGE_INVALID __pgprot(_PAGE_USER)
125 # if (DCACHE_WAY_SIZE > PAGE_SIZE)
126 # define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL)
127 # else
128 # define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL)
129 # endif
131 #else /* no mmu */
133 # define PAGE_NONE __pgprot(0)
134 # define PAGE_SHARED __pgprot(0)
135 # define PAGE_COPY __pgprot(0)
136 # define PAGE_READONLY __pgprot(0)
137 # define PAGE_KERNEL __pgprot(0)
139 #endif
142 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
143 * the MMU can't do page protection for execute, and considers that the same as
144 * read. Also, write permissions may imply read permissions.
145 * What follows is the closest we can get by reasonable means..
146 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
148 #define __P000 PAGE_NONE /* private --- */
149 #define __P001 PAGE_READONLY /* private --r */
150 #define __P010 PAGE_COPY /* private -w- */
151 #define __P011 PAGE_COPY /* private -wr */
152 #define __P100 PAGE_READONLY /* private x-- */
153 #define __P101 PAGE_READONLY /* private x-r */
154 #define __P110 PAGE_COPY /* private xw- */
155 #define __P111 PAGE_COPY /* private xwr */
157 #define __S000 PAGE_NONE /* shared --- */
158 #define __S001 PAGE_READONLY /* shared --r */
159 #define __S010 PAGE_SHARED /* shared -w- */
160 #define __S011 PAGE_SHARED /* shared -wr */
161 #define __S100 PAGE_READONLY /* shared x-- */
162 #define __S101 PAGE_READONLY /* shared x-r */
163 #define __S110 PAGE_SHARED /* shared xw- */
164 #define __S111 PAGE_SHARED /* shared xwr */
166 #ifndef __ASSEMBLY__
168 #define pte_ERROR(e) \
169 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
170 #define pgd_ERROR(e) \
171 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
173 extern unsigned long empty_zero_page[1024];
175 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
177 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
180 * The pmd contains the kernel virtual address of the pte page.
182 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
183 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
186 * The following only work if pte_present() is true.
188 #define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER))
189 #define pte_present(pte) (pte_val(pte) & _PAGE_VALID)
190 #define pte_clear(mm,addr,ptep) \
191 do { update_pte(ptep, __pte(_PAGE_USER)); } while(0)
193 #define pmd_none(pmd) (!pmd_val(pmd))
194 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
195 #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
196 #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
198 /* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */
200 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
201 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
202 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
203 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
204 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
205 static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; }
206 static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
207 static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
208 static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
209 static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
210 static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
211 static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
212 static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
215 * Conversion functions: convert a page and protection to a page entry,
216 * and a page entry and page directory to the page they refer to.
218 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
219 #define pte_same(a,b) (pte_val(a) == pte_val(b))
220 #define pte_page(x) pfn_to_page(pte_pfn(x))
221 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
222 #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
224 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
226 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
230 * Certain architectures need to do special things when pte's
231 * within a page table are directly modified. Thus, the following
232 * hook is made available.
234 static inline void update_pte(pte_t *ptep, pte_t pteval)
236 *ptep = pteval;
237 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
238 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep));
239 #endif
242 struct mm_struct;
244 static inline void
245 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
247 update_pte(ptep, pteval);
251 static inline void
252 set_pmd(pmd_t *pmdp, pmd_t pmdval)
254 *pmdp = pmdval;
255 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
256 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp));
257 #endif
260 struct vm_area_struct;
262 static inline int
263 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
264 pte_t *ptep)
266 pte_t pte = *ptep;
267 if (!pte_young(pte))
268 return 0;
269 update_pte(ptep, pte_mkold(pte));
270 return 1;
273 static inline int
274 ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
275 pte_t *ptep)
277 pte_t pte = *ptep;
278 if (!pte_dirty(pte))
279 return 0;
280 update_pte(ptep, pte_mkclean(pte));
281 return 1;
284 static inline pte_t
285 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
287 pte_t pte = *ptep;
288 pte_clear(mm, addr, ptep);
289 return pte;
292 static inline void
293 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
295 pte_t pte = *ptep;
296 update_pte(ptep, pte_wrprotect(pte));
299 /* to find an entry in a kernel page-table-directory */
300 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
302 /* to find an entry in a page-table-directory */
303 #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
305 #define pgd_index(address) ((address) >> PGDIR_SHIFT)
307 /* Find an entry in the second-level page table.. */
308 #define pmd_offset(dir,address) ((pmd_t*)(dir))
310 /* Find an entry in the third-level page table.. */
311 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
312 #define pte_offset_kernel(dir,addr) \
313 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
314 #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
315 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr))
317 #define pte_unmap(pte) do { } while (0)
318 #define pte_unmap_nested(pte) do { } while (0)
322 * Encode and decode a swap entry.
323 * Each PTE in a process VM's page table is either:
324 * "present" -- valid and not swapped out, protection bits are meaningful;
325 * "not present" -- which further subdivides in these two cases:
326 * "none" -- no mapping at all; identified by pte_none(), set by pte_clear(
327 * "swapped out" -- the page is swapped out, and the SWP macros below
328 * are used to store swap file info in the PTE itself.
330 * In the Xtensa processor MMU, any PTE entries in user space (or anywhere
331 * in virtual memory that can map differently across address spaces)
332 * must have a correct ring value that represents the RASID field that
333 * is changed when switching address spaces. Eg. such PTE entries cannot
334 * be set to ring zero, because that can cause a (global) kernel ASID
335 * entry to be created in the TLBs (even with invalid cache attribute),
336 * potentially causing a multihit exception when going back to another
337 * address space that mapped the same virtual address at another ring.
339 * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs.
340 * We also avoid using the _PAGE_VALID bit which must be zero for non-present
341 * pages.
343 * We end up with the following available bits: 1..3 and 7..31.
344 * We don't bother with 1..3 for now (we can use them later if needed),
345 * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits
346 * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it
347 * is currently implemented as an index into swap_info[MAX_SWAPFILES]
348 * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>.
349 * However, for some reason all other architectures in the 2.4 kernel
350 * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :)
351 * SWP_OFFSET is an offset into the swap file in page-size units, so
352 * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB.
354 * FIXME: 2 GB isn't very big. Other bits can be used to allow
355 * larger swap sizes. In the meantime, it appears relatively easy to get
356 * around the 2 GB limitation by simply using multiple swap files.
359 #define __swp_type(entry) (((entry).val >> 7) & 0x3f)
360 #define __swp_offset(entry) ((entry).val >> 13)
361 #define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)})
362 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
363 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
365 #define PTE_FILE_MAX_BITS 29
366 #define pte_to_pgoff(pte) (pte_val(pte) >> 3)
367 #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
370 #endif /* !defined (__ASSEMBLY__) */
373 #ifdef __ASSEMBLY__
375 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
376 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
377 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
378 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
380 * Note: We require an additional temporary register which can be the same as
381 * the register that holds the address.
383 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
386 #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
387 #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
389 #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
390 _PGD_INDEX(tmp, adr); \
391 addx4 mm, tmp, mm
393 #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
394 srli pmd, pmd, PAGE_SHIFT; \
395 slli pmd, pmd, PAGE_SHIFT; \
396 addx4 pmd, tmp, pmd
398 #else
400 extern void paging_init(void);
402 #define kern_addr_valid(addr) (1)
404 extern void update_mmu_cache(struct vm_area_struct * vma,
405 unsigned long address, pte_t pte);
408 * remap a physical page `pfn' of size `size' with page protection `prot'
409 * into virtual address `from'
411 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
412 remap_pfn_range(vma, from, pfn, size, prot)
415 /* No page table caches to init */
417 #define pgtable_cache_init() do { } while (0)
419 typedef pte_t *pte_addr_t;
421 #endif /* !defined (__ASSEMBLY__) */
423 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
424 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
425 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
426 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
427 #define __HAVE_ARCH_PTEP_MKDIRTY
428 #define __HAVE_ARCH_PTE_SAME
430 #include <asm-generic/pgtable.h>
432 #endif /* _XTENSA_PGTABLE_H */