v2.6.22.24-op1
[linux-2.6.22.y-op.git] / arch / i386 / kernel / traps.c
blob4995b92a4453df4f3b945658886a3af0cfd3ef5f
1 /*
2 * linux/arch/i386/traps.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/highmem.h>
25 #include <linux/kallsyms.h>
26 #include <linux/ptrace.h>
27 #include <linux/utsname.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31 #include <linux/uaccess.h>
32 #include <linux/nmi.h>
33 #include <linux/bug.h>
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
44 #include <asm/processor.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/atomic.h>
48 #include <asm/debugreg.h>
49 #include <asm/desc.h>
50 #include <asm/i387.h>
51 #include <asm/nmi.h>
52 #include <asm/unwind.h>
53 #include <asm/smp.h>
54 #include <asm/arch_hooks.h>
55 #include <linux/kdebug.h>
56 #include <asm/stacktrace.h>
58 #include <linux/module.h>
60 #include "mach_traps.h"
62 int panic_on_unrecovered_nmi;
64 asmlinkage int system_call(void);
66 /* Do we ignore FPU interrupts ? */
67 char ignore_fpu_irq = 0;
70 * The IDT has to be page-aligned to simplify the Pentium
71 * F0 0F bug workaround.. We have a special link segment
72 * for this.
74 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
76 asmlinkage void divide_error(void);
77 asmlinkage void debug(void);
78 asmlinkage void nmi(void);
79 asmlinkage void int3(void);
80 asmlinkage void overflow(void);
81 asmlinkage void bounds(void);
82 asmlinkage void invalid_op(void);
83 asmlinkage void device_not_available(void);
84 asmlinkage void coprocessor_segment_overrun(void);
85 asmlinkage void invalid_TSS(void);
86 asmlinkage void segment_not_present(void);
87 asmlinkage void stack_segment(void);
88 asmlinkage void general_protection(void);
89 asmlinkage void page_fault(void);
90 asmlinkage void coprocessor_error(void);
91 asmlinkage void simd_coprocessor_error(void);
92 asmlinkage void alignment_check(void);
93 asmlinkage void spurious_interrupt_bug(void);
94 asmlinkage void machine_check(void);
96 int kstack_depth_to_print = 24;
97 static unsigned int code_bytes = 64;
99 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
101 return p > (void *)tinfo &&
102 p < (void *)tinfo + THREAD_SIZE - 3;
105 static inline unsigned long print_context_stack(struct thread_info *tinfo,
106 unsigned long *stack, unsigned long ebp,
107 struct stacktrace_ops *ops, void *data)
109 unsigned long addr;
111 #ifdef CONFIG_FRAME_POINTER
112 while (valid_stack_ptr(tinfo, (void *)ebp)) {
113 unsigned long new_ebp;
114 addr = *(unsigned long *)(ebp + 4);
115 ops->address(data, addr);
117 * break out of recursive entries (such as
118 * end_of_stack_stop_unwind_function). Also,
119 * we can never allow a frame pointer to
120 * move downwards!
122 new_ebp = *(unsigned long *)ebp;
123 if (new_ebp <= ebp)
124 break;
125 ebp = new_ebp;
127 #else
128 while (valid_stack_ptr(tinfo, stack)) {
129 addr = *stack++;
130 if (__kernel_text_address(addr))
131 ops->address(data, addr);
133 #endif
134 return ebp;
137 #define MSG(msg) ops->warning(data, msg)
139 void dump_trace(struct task_struct *task, struct pt_regs *regs,
140 unsigned long *stack,
141 struct stacktrace_ops *ops, void *data)
143 unsigned long ebp = 0;
145 if (!task)
146 task = current;
148 if (!stack) {
149 unsigned long dummy;
150 stack = &dummy;
151 if (task && task != current)
152 stack = (unsigned long *)task->thread.esp;
155 #ifdef CONFIG_FRAME_POINTER
156 if (!ebp) {
157 if (task == current) {
158 /* Grab ebp right from our regs */
159 asm ("movl %%ebp, %0" : "=r" (ebp) : );
160 } else {
161 /* ebp is the last reg pushed by switch_to */
162 ebp = *(unsigned long *) task->thread.esp;
165 #endif
167 while (1) {
168 struct thread_info *context;
169 context = (struct thread_info *)
170 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
171 ebp = print_context_stack(context, stack, ebp, ops, data);
172 /* Should be after the line below, but somewhere
173 in early boot context comes out corrupted and we
174 can't reference it -AK */
175 if (ops->stack(data, "IRQ") < 0)
176 break;
177 stack = (unsigned long*)context->previous_esp;
178 if (!stack)
179 break;
180 touch_nmi_watchdog();
183 EXPORT_SYMBOL(dump_trace);
185 static void
186 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
188 printk(data);
189 print_symbol(msg, symbol);
190 printk("\n");
193 static void print_trace_warning(void *data, char *msg)
195 printk("%s%s\n", (char *)data, msg);
198 static int print_trace_stack(void *data, char *name)
200 return 0;
204 * Print one address/symbol entries per line.
206 static void print_trace_address(void *data, unsigned long addr)
208 printk("%s [<%08lx>] ", (char *)data, addr);
209 print_symbol("%s\n", addr);
212 static struct stacktrace_ops print_trace_ops = {
213 .warning = print_trace_warning,
214 .warning_symbol = print_trace_warning_symbol,
215 .stack = print_trace_stack,
216 .address = print_trace_address,
219 static void
220 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
221 unsigned long * stack, char *log_lvl)
223 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
224 printk("%s =======================\n", log_lvl);
227 void show_trace(struct task_struct *task, struct pt_regs *regs,
228 unsigned long * stack)
230 show_trace_log_lvl(task, regs, stack, "");
233 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
234 unsigned long *esp, char *log_lvl)
236 unsigned long *stack;
237 int i;
239 if (esp == NULL) {
240 if (task)
241 esp = (unsigned long*)task->thread.esp;
242 else
243 esp = (unsigned long *)&esp;
246 stack = esp;
247 for(i = 0; i < kstack_depth_to_print; i++) {
248 if (kstack_end(stack))
249 break;
250 if (i && ((i % 8) == 0))
251 printk("\n%s ", log_lvl);
252 printk("%08lx ", *stack++);
254 printk("\n%sCall Trace:\n", log_lvl);
255 show_trace_log_lvl(task, regs, esp, log_lvl);
258 void show_stack(struct task_struct *task, unsigned long *esp)
260 printk(" ");
261 show_stack_log_lvl(task, NULL, esp, "");
265 * The architecture-independent dump_stack generator
267 void dump_stack(void)
269 unsigned long stack;
271 show_trace(current, NULL, &stack);
274 EXPORT_SYMBOL(dump_stack);
276 void show_registers(struct pt_regs *regs)
278 int i;
279 int in_kernel = 1;
280 unsigned long esp;
281 unsigned short ss, gs;
283 esp = (unsigned long) (&regs->esp);
284 savesegment(ss, ss);
285 savesegment(gs, gs);
286 if (user_mode_vm(regs)) {
287 in_kernel = 0;
288 esp = regs->esp;
289 ss = regs->xss & 0xffff;
291 print_modules();
292 printk(KERN_EMERG "CPU: %d\n"
293 KERN_EMERG "EIP: %04x:[<%08lx>] %s VLI\n"
294 KERN_EMERG "EFLAGS: %08lx (%s %.*s)\n",
295 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
296 print_tainted(), regs->eflags, init_utsname()->release,
297 (int)strcspn(init_utsname()->version, " "),
298 init_utsname()->version);
299 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
300 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
301 regs->eax, regs->ebx, regs->ecx, regs->edx);
302 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
303 regs->esi, regs->edi, regs->ebp, esp);
304 printk(KERN_EMERG "ds: %04x es: %04x fs: %04x gs: %04x ss: %04x\n",
305 regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss);
306 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
307 TASK_COMM_LEN, current->comm, current->pid,
308 current_thread_info(), current, task_thread_info(current));
310 * When in-kernel, we also print out the stack and code at the
311 * time of the fault..
313 if (in_kernel) {
314 u8 *eip;
315 unsigned int code_prologue = code_bytes * 43 / 64;
316 unsigned int code_len = code_bytes;
317 unsigned char c;
319 printk("\n" KERN_EMERG "Stack: ");
320 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
322 printk(KERN_EMERG "Code: ");
324 eip = (u8 *)regs->eip - code_prologue;
325 if (eip < (u8 *)PAGE_OFFSET ||
326 probe_kernel_address(eip, c)) {
327 /* try starting at EIP */
328 eip = (u8 *)regs->eip;
329 code_len = code_len - code_prologue + 1;
331 for (i = 0; i < code_len; i++, eip++) {
332 if (eip < (u8 *)PAGE_OFFSET ||
333 probe_kernel_address(eip, c)) {
334 printk(" Bad EIP value.");
335 break;
337 if (eip == (u8 *)regs->eip)
338 printk("<%02x> ", c);
339 else
340 printk("%02x ", c);
343 printk("\n");
346 int is_valid_bugaddr(unsigned long eip)
348 unsigned short ud2;
350 if (eip < PAGE_OFFSET)
351 return 0;
352 if (probe_kernel_address((unsigned short *)eip, ud2))
353 return 0;
355 return ud2 == 0x0b0f;
359 * This is gone through when something in the kernel has done something bad and
360 * is about to be terminated.
362 void die(const char * str, struct pt_regs * regs, long err)
364 static struct {
365 spinlock_t lock;
366 u32 lock_owner;
367 int lock_owner_depth;
368 } die = {
369 .lock = __SPIN_LOCK_UNLOCKED(die.lock),
370 .lock_owner = -1,
371 .lock_owner_depth = 0
373 static int die_counter;
374 unsigned long flags;
376 oops_enter();
378 if (die.lock_owner != raw_smp_processor_id()) {
379 console_verbose();
380 spin_lock_irqsave(&die.lock, flags);
381 die.lock_owner = smp_processor_id();
382 die.lock_owner_depth = 0;
383 bust_spinlocks(1);
385 else
386 local_save_flags(flags);
388 if (++die.lock_owner_depth < 3) {
389 int nl = 0;
390 unsigned long esp;
391 unsigned short ss;
393 report_bug(regs->eip);
395 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
396 #ifdef CONFIG_PREEMPT
397 printk(KERN_EMERG "PREEMPT ");
398 nl = 1;
399 #endif
400 #ifdef CONFIG_SMP
401 if (!nl)
402 printk(KERN_EMERG);
403 printk("SMP ");
404 nl = 1;
405 #endif
406 #ifdef CONFIG_DEBUG_PAGEALLOC
407 if (!nl)
408 printk(KERN_EMERG);
409 printk("DEBUG_PAGEALLOC");
410 nl = 1;
411 #endif
412 if (nl)
413 printk("\n");
414 if (notify_die(DIE_OOPS, str, regs, err,
415 current->thread.trap_no, SIGSEGV) !=
416 NOTIFY_STOP) {
417 show_registers(regs);
418 /* Executive summary in case the oops scrolled away */
419 esp = (unsigned long) (&regs->esp);
420 savesegment(ss, ss);
421 if (user_mode(regs)) {
422 esp = regs->esp;
423 ss = regs->xss & 0xffff;
425 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
426 print_symbol("%s", regs->eip);
427 printk(" SS:ESP %04x:%08lx\n", ss, esp);
429 else
430 regs = NULL;
431 } else
432 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
434 bust_spinlocks(0);
435 die.lock_owner = -1;
436 spin_unlock_irqrestore(&die.lock, flags);
438 if (!regs)
439 return;
441 if (kexec_should_crash(current))
442 crash_kexec(regs);
444 if (in_interrupt())
445 panic("Fatal exception in interrupt");
447 if (panic_on_oops)
448 panic("Fatal exception");
450 oops_exit();
451 do_exit(SIGSEGV);
454 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
456 if (!user_mode_vm(regs))
457 die(str, regs, err);
460 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
461 struct pt_regs * regs, long error_code,
462 siginfo_t *info)
464 struct task_struct *tsk = current;
466 if (regs->eflags & VM_MASK) {
467 if (vm86)
468 goto vm86_trap;
469 goto trap_signal;
472 if (!user_mode(regs))
473 goto kernel_trap;
475 trap_signal: {
477 * We want error_code and trap_no set for userspace faults and
478 * kernelspace faults which result in die(), but not
479 * kernelspace faults which are fixed up. die() gives the
480 * process no chance to handle the signal and notice the
481 * kernel fault information, so that won't result in polluting
482 * the information about previously queued, but not yet
483 * delivered, faults. See also do_general_protection below.
485 tsk->thread.error_code = error_code;
486 tsk->thread.trap_no = trapnr;
488 if (info)
489 force_sig_info(signr, info, tsk);
490 else
491 force_sig(signr, tsk);
492 return;
495 kernel_trap: {
496 if (!fixup_exception(regs)) {
497 tsk->thread.error_code = error_code;
498 tsk->thread.trap_no = trapnr;
499 die(str, regs, error_code);
501 return;
504 vm86_trap: {
505 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
506 if (ret) goto trap_signal;
507 return;
511 #define DO_ERROR(trapnr, signr, str, name) \
512 fastcall void do_##name(struct pt_regs * regs, long error_code) \
514 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
515 == NOTIFY_STOP) \
516 return; \
517 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
520 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
521 fastcall void do_##name(struct pt_regs * regs, long error_code) \
523 siginfo_t info; \
524 if (irq) \
525 local_irq_enable(); \
526 info.si_signo = signr; \
527 info.si_errno = 0; \
528 info.si_code = sicode; \
529 info.si_addr = (void __user *)siaddr; \
530 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
531 == NOTIFY_STOP) \
532 return; \
533 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
536 #define DO_VM86_ERROR(trapnr, signr, str, name) \
537 fastcall void do_##name(struct pt_regs * regs, long error_code) \
539 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
540 == NOTIFY_STOP) \
541 return; \
542 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
545 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
546 fastcall void do_##name(struct pt_regs * regs, long error_code) \
548 siginfo_t info; \
549 info.si_signo = signr; \
550 info.si_errno = 0; \
551 info.si_code = sicode; \
552 info.si_addr = (void __user *)siaddr; \
553 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
554 == NOTIFY_STOP) \
555 return; \
556 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
559 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
560 #ifndef CONFIG_KPROBES
561 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
562 #endif
563 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
564 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
565 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip, 0)
566 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
567 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
568 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
569 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
570 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
571 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
573 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
574 long error_code)
576 int cpu = get_cpu();
577 struct tss_struct *tss = &per_cpu(init_tss, cpu);
578 struct thread_struct *thread = &current->thread;
581 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
582 * invalid offset set (the LAZY one) and the faulting thread has
583 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
584 * and we set the offset field correctly. Then we let the CPU to
585 * restart the faulting instruction.
587 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
588 thread->io_bitmap_ptr) {
589 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
590 thread->io_bitmap_max);
592 * If the previously set map was extending to higher ports
593 * than the current one, pad extra space with 0xff (no access).
595 if (thread->io_bitmap_max < tss->io_bitmap_max)
596 memset((char *) tss->io_bitmap +
597 thread->io_bitmap_max, 0xff,
598 tss->io_bitmap_max - thread->io_bitmap_max);
599 tss->io_bitmap_max = thread->io_bitmap_max;
600 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
601 tss->io_bitmap_owner = thread;
602 put_cpu();
603 return;
605 put_cpu();
607 if (regs->eflags & VM_MASK)
608 goto gp_in_vm86;
610 if (!user_mode(regs))
611 goto gp_in_kernel;
613 current->thread.error_code = error_code;
614 current->thread.trap_no = 13;
615 force_sig(SIGSEGV, current);
616 return;
618 gp_in_vm86:
619 local_irq_enable();
620 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
621 return;
623 gp_in_kernel:
624 if (!fixup_exception(regs)) {
625 current->thread.error_code = error_code;
626 current->thread.trap_no = 13;
627 if (notify_die(DIE_GPF, "general protection fault", regs,
628 error_code, 13, SIGSEGV) == NOTIFY_STOP)
629 return;
630 die("general protection fault", regs, error_code);
634 static __kprobes void
635 mem_parity_error(unsigned char reason, struct pt_regs * regs)
637 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
638 "CPU %d.\n", reason, smp_processor_id());
639 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
640 if (panic_on_unrecovered_nmi)
641 panic("NMI: Not continuing");
643 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
645 /* Clear and disable the memory parity error line. */
646 clear_mem_error(reason);
649 static __kprobes void
650 io_check_error(unsigned char reason, struct pt_regs * regs)
652 unsigned long i;
654 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
655 show_registers(regs);
657 /* Re-enable the IOCK line, wait for a few seconds */
658 reason = (reason & 0xf) | 8;
659 outb(reason, 0x61);
660 i = 2000;
661 while (--i) udelay(1000);
662 reason &= ~8;
663 outb(reason, 0x61);
666 static __kprobes void
667 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
669 #ifdef CONFIG_MCA
670 /* Might actually be able to figure out what the guilty party
671 * is. */
672 if( MCA_bus ) {
673 mca_handle_nmi();
674 return;
676 #endif
677 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
678 "CPU %d.\n", reason, smp_processor_id());
679 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
680 if (panic_on_unrecovered_nmi)
681 panic("NMI: Not continuing");
683 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
686 static DEFINE_SPINLOCK(nmi_print_lock);
688 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
690 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
691 NOTIFY_STOP)
692 return;
694 spin_lock(&nmi_print_lock);
696 * We are in trouble anyway, lets at least try
697 * to get a message out.
699 bust_spinlocks(1);
700 printk(KERN_EMERG "%s", msg);
701 printk(" on CPU%d, eip %08lx, registers:\n",
702 smp_processor_id(), regs->eip);
703 show_registers(regs);
704 console_silent();
705 spin_unlock(&nmi_print_lock);
706 bust_spinlocks(0);
708 /* If we are in kernel we are probably nested up pretty bad
709 * and might aswell get out now while we still can.
711 if (!user_mode_vm(regs)) {
712 current->thread.trap_no = 2;
713 crash_kexec(regs);
716 do_exit(SIGSEGV);
719 static __kprobes void default_do_nmi(struct pt_regs * regs)
721 unsigned char reason = 0;
723 /* Only the BSP gets external NMIs from the system. */
724 if (!smp_processor_id())
725 reason = get_nmi_reason();
727 if (!(reason & 0xc0)) {
728 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
729 == NOTIFY_STOP)
730 return;
731 #ifdef CONFIG_X86_LOCAL_APIC
733 * Ok, so this is none of the documented NMI sources,
734 * so it must be the NMI watchdog.
736 if (nmi_watchdog_tick(regs, reason))
737 return;
738 if (!do_nmi_callback(regs, smp_processor_id()))
739 #endif
740 unknown_nmi_error(reason, regs);
742 return;
744 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
745 return;
746 if (reason & 0x80)
747 mem_parity_error(reason, regs);
748 if (reason & 0x40)
749 io_check_error(reason, regs);
751 * Reassert NMI in case it became active meanwhile
752 * as it's edge-triggered.
754 reassert_nmi();
757 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
759 int cpu;
761 nmi_enter();
763 cpu = smp_processor_id();
765 ++nmi_count(cpu);
767 default_do_nmi(regs);
769 nmi_exit();
772 #ifdef CONFIG_KPROBES
773 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
775 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
776 == NOTIFY_STOP)
777 return;
778 /* This is an interrupt gate, because kprobes wants interrupts
779 disabled. Normal trap handlers don't. */
780 restore_interrupts(regs);
781 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
783 #endif
786 * Our handling of the processor debug registers is non-trivial.
787 * We do not clear them on entry and exit from the kernel. Therefore
788 * it is possible to get a watchpoint trap here from inside the kernel.
789 * However, the code in ./ptrace.c has ensured that the user can
790 * only set watchpoints on userspace addresses. Therefore the in-kernel
791 * watchpoint trap can only occur in code which is reading/writing
792 * from user space. Such code must not hold kernel locks (since it
793 * can equally take a page fault), therefore it is safe to call
794 * force_sig_info even though that claims and releases locks.
796 * Code in ./signal.c ensures that the debug control register
797 * is restored before we deliver any signal, and therefore that
798 * user code runs with the correct debug control register even though
799 * we clear it here.
801 * Being careful here means that we don't have to be as careful in a
802 * lot of more complicated places (task switching can be a bit lazy
803 * about restoring all the debug state, and ptrace doesn't have to
804 * find every occurrence of the TF bit that could be saved away even
805 * by user code)
807 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
809 unsigned int condition;
810 struct task_struct *tsk = current;
812 get_debugreg(condition, 6);
814 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
815 SIGTRAP) == NOTIFY_STOP)
816 return;
817 /* It's safe to allow irq's after DR6 has been saved */
818 if (regs->eflags & X86_EFLAGS_IF)
819 local_irq_enable();
821 /* Mask out spurious debug traps due to lazy DR7 setting */
822 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
823 if (!tsk->thread.debugreg[7])
824 goto clear_dr7;
827 if (regs->eflags & VM_MASK)
828 goto debug_vm86;
830 /* Save debug status register where ptrace can see it */
831 tsk->thread.debugreg[6] = condition;
834 * Single-stepping through TF: make sure we ignore any events in
835 * kernel space (but re-enable TF when returning to user mode).
837 if (condition & DR_STEP) {
839 * We already checked v86 mode above, so we can
840 * check for kernel mode by just checking the CPL
841 * of CS.
843 if (!user_mode(regs))
844 goto clear_TF_reenable;
847 /* Ok, finally something we can handle */
848 send_sigtrap(tsk, regs, error_code);
850 /* Disable additional traps. They'll be re-enabled when
851 * the signal is delivered.
853 clear_dr7:
854 set_debugreg(0, 7);
855 return;
857 debug_vm86:
858 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
859 return;
861 clear_TF_reenable:
862 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
863 regs->eflags &= ~TF_MASK;
864 return;
868 * Note that we play around with the 'TS' bit in an attempt to get
869 * the correct behaviour even in the presence of the asynchronous
870 * IRQ13 behaviour
872 void math_error(void __user *eip)
874 struct task_struct * task;
875 siginfo_t info;
876 unsigned short cwd, swd;
879 * Save the info for the exception handler and clear the error.
881 task = current;
882 save_init_fpu(task);
883 task->thread.trap_no = 16;
884 task->thread.error_code = 0;
885 info.si_signo = SIGFPE;
886 info.si_errno = 0;
887 info.si_code = __SI_FAULT;
888 info.si_addr = eip;
890 * (~cwd & swd) will mask out exceptions that are not set to unmasked
891 * status. 0x3f is the exception bits in these regs, 0x200 is the
892 * C1 reg you need in case of a stack fault, 0x040 is the stack
893 * fault bit. We should only be taking one exception at a time,
894 * so if this combination doesn't produce any single exception,
895 * then we have a bad program that isn't syncronizing its FPU usage
896 * and it will suffer the consequences since we won't be able to
897 * fully reproduce the context of the exception
899 cwd = get_fpu_cwd(task);
900 swd = get_fpu_swd(task);
901 switch (swd & ~cwd & 0x3f) {
902 case 0x000: /* No unmasked exception */
903 return;
904 default: /* Multiple exceptions */
905 break;
906 case 0x001: /* Invalid Op */
908 * swd & 0x240 == 0x040: Stack Underflow
909 * swd & 0x240 == 0x240: Stack Overflow
910 * User must clear the SF bit (0x40) if set
912 info.si_code = FPE_FLTINV;
913 break;
914 case 0x002: /* Denormalize */
915 case 0x010: /* Underflow */
916 info.si_code = FPE_FLTUND;
917 break;
918 case 0x004: /* Zero Divide */
919 info.si_code = FPE_FLTDIV;
920 break;
921 case 0x008: /* Overflow */
922 info.si_code = FPE_FLTOVF;
923 break;
924 case 0x020: /* Precision */
925 info.si_code = FPE_FLTRES;
926 break;
928 force_sig_info(SIGFPE, &info, task);
931 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
933 ignore_fpu_irq = 1;
934 math_error((void __user *)regs->eip);
937 static void simd_math_error(void __user *eip)
939 struct task_struct * task;
940 siginfo_t info;
941 unsigned short mxcsr;
944 * Save the info for the exception handler and clear the error.
946 task = current;
947 save_init_fpu(task);
948 task->thread.trap_no = 19;
949 task->thread.error_code = 0;
950 info.si_signo = SIGFPE;
951 info.si_errno = 0;
952 info.si_code = __SI_FAULT;
953 info.si_addr = eip;
955 * The SIMD FPU exceptions are handled a little differently, as there
956 * is only a single status/control register. Thus, to determine which
957 * unmasked exception was caught we must mask the exception mask bits
958 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
960 mxcsr = get_fpu_mxcsr(task);
961 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
962 case 0x000:
963 default:
964 break;
965 case 0x001: /* Invalid Op */
966 info.si_code = FPE_FLTINV;
967 break;
968 case 0x002: /* Denormalize */
969 case 0x010: /* Underflow */
970 info.si_code = FPE_FLTUND;
971 break;
972 case 0x004: /* Zero Divide */
973 info.si_code = FPE_FLTDIV;
974 break;
975 case 0x008: /* Overflow */
976 info.si_code = FPE_FLTOVF;
977 break;
978 case 0x020: /* Precision */
979 info.si_code = FPE_FLTRES;
980 break;
982 force_sig_info(SIGFPE, &info, task);
985 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
986 long error_code)
988 if (cpu_has_xmm) {
989 /* Handle SIMD FPU exceptions on PIII+ processors. */
990 ignore_fpu_irq = 1;
991 simd_math_error((void __user *)regs->eip);
992 } else {
994 * Handle strange cache flush from user space exception
995 * in all other cases. This is undocumented behaviour.
997 if (regs->eflags & VM_MASK) {
998 handle_vm86_fault((struct kernel_vm86_regs *)regs,
999 error_code);
1000 return;
1002 current->thread.trap_no = 19;
1003 current->thread.error_code = error_code;
1004 die_if_kernel("cache flush denied", regs, error_code);
1005 force_sig(SIGSEGV, current);
1009 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1010 long error_code)
1012 #if 0
1013 /* No need to warn about this any longer. */
1014 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1015 #endif
1018 fastcall unsigned long patch_espfix_desc(unsigned long uesp,
1019 unsigned long kesp)
1021 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1022 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1023 unsigned long new_kesp = kesp - base;
1024 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1025 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1026 /* Set up base for espfix segment */
1027 desc &= 0x00f0ff0000000000ULL;
1028 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1029 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1030 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1031 (lim_pages & 0xffff);
1032 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1033 return new_kesp;
1037 * 'math_state_restore()' saves the current math information in the
1038 * old math state array, and gets the new ones from the current task
1040 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1041 * Don't touch unless you *really* know how it works.
1043 * Must be called with kernel preemption disabled (in this case,
1044 * local interrupts are disabled at the call-site in entry.S).
1046 asmlinkage void math_state_restore(void)
1048 struct thread_info *thread = current_thread_info();
1049 struct task_struct *tsk = thread->task;
1051 clts(); /* Allow maths ops (or we recurse) */
1052 if (!tsk_used_math(tsk))
1053 init_fpu(tsk);
1054 restore_fpu(tsk);
1055 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1056 tsk->fpu_counter++;
1059 #ifndef CONFIG_MATH_EMULATION
1061 asmlinkage void math_emulate(long arg)
1063 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1064 printk(KERN_EMERG "killing %s.\n",current->comm);
1065 force_sig(SIGFPE,current);
1066 schedule();
1069 #endif /* CONFIG_MATH_EMULATION */
1071 #ifdef CONFIG_X86_F00F_BUG
1072 void __init trap_init_f00f_bug(void)
1074 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1077 * Update the IDT descriptor and reload the IDT so that
1078 * it uses the read-only mapped virtual address.
1080 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1081 load_idt(&idt_descr);
1083 #endif
1086 * This needs to use 'idt_table' rather than 'idt', and
1087 * thus use the _nonmapped_ version of the IDT, as the
1088 * Pentium F0 0F bugfix can have resulted in the mapped
1089 * IDT being write-protected.
1091 void set_intr_gate(unsigned int n, void *addr)
1093 _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
1097 * This routine sets up an interrupt gate at directory privilege level 3.
1099 static inline void set_system_intr_gate(unsigned int n, void *addr)
1101 _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
1104 static void __init set_trap_gate(unsigned int n, void *addr)
1106 _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
1109 static void __init set_system_gate(unsigned int n, void *addr)
1111 _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
1114 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1116 _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
1120 void __init trap_init(void)
1122 #ifdef CONFIG_EISA
1123 void __iomem *p = ioremap(0x0FFFD9, 4);
1124 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1125 EISA_bus = 1;
1127 iounmap(p);
1128 #endif
1130 #ifdef CONFIG_X86_LOCAL_APIC
1131 init_apic_mappings();
1132 #endif
1134 set_trap_gate(0,&divide_error);
1135 set_intr_gate(1,&debug);
1136 set_intr_gate(2,&nmi);
1137 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1138 set_system_gate(4,&overflow);
1139 set_trap_gate(5,&bounds);
1140 set_trap_gate(6,&invalid_op);
1141 set_trap_gate(7,&device_not_available);
1142 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1143 set_trap_gate(9,&coprocessor_segment_overrun);
1144 set_trap_gate(10,&invalid_TSS);
1145 set_trap_gate(11,&segment_not_present);
1146 set_trap_gate(12,&stack_segment);
1147 set_trap_gate(13,&general_protection);
1148 set_intr_gate(14,&page_fault);
1149 set_trap_gate(15,&spurious_interrupt_bug);
1150 set_trap_gate(16,&coprocessor_error);
1151 set_trap_gate(17,&alignment_check);
1152 #ifdef CONFIG_X86_MCE
1153 set_trap_gate(18,&machine_check);
1154 #endif
1155 set_trap_gate(19,&simd_coprocessor_error);
1157 if (cpu_has_fxsr) {
1159 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1160 * Generates a compile-time "error: zero width for bit-field" if
1161 * the alignment is wrong.
1163 struct fxsrAlignAssert {
1164 int _:!(offsetof(struct task_struct,
1165 thread.i387.fxsave) & 15);
1168 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1169 set_in_cr4(X86_CR4_OSFXSR);
1170 printk("done.\n");
1172 if (cpu_has_xmm) {
1173 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1174 "support... ");
1175 set_in_cr4(X86_CR4_OSXMMEXCPT);
1176 printk("done.\n");
1179 set_system_gate(SYSCALL_VECTOR,&system_call);
1182 * Should be a barrier for any external CPU state.
1184 cpu_init();
1186 trap_init_hook();
1189 static int __init kstack_setup(char *s)
1191 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1192 return 1;
1194 __setup("kstack=", kstack_setup);
1196 static int __init code_bytes_setup(char *s)
1198 code_bytes = simple_strtoul(s, NULL, 0);
1199 if (code_bytes > 8192)
1200 code_bytes = 8192;
1202 return 1;
1204 __setup("code_bytes=", code_bytes_setup);