2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
20 * Updated: Chad Sellers <csellers@tresys.com>
22 * Added validation of kernel classes and permissions
24 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License as published by
30 * the Free Software Foundation, version 2.
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
43 #include <net/netlabel.h>
53 #include "conditional.h"
56 #include "selinux_netlabel.h"
59 extern void selnl_notify_policyload(u32 seqno
);
60 unsigned int policydb_loaded_version
;
63 * This is declared in avc.c
65 extern const struct selinux_class_perm selinux_class_perm
;
67 static DEFINE_RWLOCK(policy_rwlock
);
68 #define POLICY_RDLOCK read_lock(&policy_rwlock)
69 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
70 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
71 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
73 static DEFINE_MUTEX(load_mutex
);
74 #define LOAD_LOCK mutex_lock(&load_mutex)
75 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
77 static struct sidtab sidtab
;
78 struct policydb policydb
;
79 int ss_initialized
= 0;
82 * The largest sequence number that has been used when
83 * providing an access decision to the access vector cache.
84 * The sequence number only changes when a policy change
87 static u32 latest_granting
= 0;
89 /* Forward declaration. */
90 static int context_struct_to_string(struct context
*context
, char **scontext
,
94 * Return the boolean value of a constraint expression
95 * when it is applied to the specified source and target
98 * xcontext is a special beast... It is used by the validatetrans rules
99 * only. For these rules, scontext is the context before the transition,
100 * tcontext is the context after the transition, and xcontext is the context
101 * of the process performing the transition. All other callers of
102 * constraint_expr_eval should pass in NULL for xcontext.
104 static int constraint_expr_eval(struct context
*scontext
,
105 struct context
*tcontext
,
106 struct context
*xcontext
,
107 struct constraint_expr
*cexpr
)
111 struct role_datum
*r1
, *r2
;
112 struct mls_level
*l1
, *l2
;
113 struct constraint_expr
*e
;
114 int s
[CEXPR_MAXDEPTH
];
117 for (e
= cexpr
; e
; e
= e
->next
) {
118 switch (e
->expr_type
) {
134 if (sp
== (CEXPR_MAXDEPTH
-1))
138 val1
= scontext
->user
;
139 val2
= tcontext
->user
;
142 val1
= scontext
->type
;
143 val2
= tcontext
->type
;
146 val1
= scontext
->role
;
147 val2
= tcontext
->role
;
148 r1
= policydb
.role_val_to_struct
[val1
- 1];
149 r2
= policydb
.role_val_to_struct
[val2
- 1];
152 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
156 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
160 s
[++sp
] = ( !ebitmap_get_bit(&r1
->dominates
,
162 !ebitmap_get_bit(&r2
->dominates
,
170 l1
= &(scontext
->range
.level
[0]);
171 l2
= &(tcontext
->range
.level
[0]);
174 l1
= &(scontext
->range
.level
[0]);
175 l2
= &(tcontext
->range
.level
[1]);
178 l1
= &(scontext
->range
.level
[1]);
179 l2
= &(tcontext
->range
.level
[0]);
182 l1
= &(scontext
->range
.level
[1]);
183 l2
= &(tcontext
->range
.level
[1]);
186 l1
= &(scontext
->range
.level
[0]);
187 l2
= &(scontext
->range
.level
[1]);
190 l1
= &(tcontext
->range
.level
[0]);
191 l2
= &(tcontext
->range
.level
[1]);
196 s
[++sp
] = mls_level_eq(l1
, l2
);
199 s
[++sp
] = !mls_level_eq(l1
, l2
);
202 s
[++sp
] = mls_level_dom(l1
, l2
);
205 s
[++sp
] = mls_level_dom(l2
, l1
);
208 s
[++sp
] = mls_level_incomp(l2
, l1
);
222 s
[++sp
] = (val1
== val2
);
225 s
[++sp
] = (val1
!= val2
);
233 if (sp
== (CEXPR_MAXDEPTH
-1))
236 if (e
->attr
& CEXPR_TARGET
)
238 else if (e
->attr
& CEXPR_XTARGET
) {
245 if (e
->attr
& CEXPR_USER
)
247 else if (e
->attr
& CEXPR_ROLE
)
249 else if (e
->attr
& CEXPR_TYPE
)
258 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
261 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
279 * Compute access vectors based on a context structure pair for
280 * the permissions in a particular class.
282 static int context_struct_compute_av(struct context
*scontext
,
283 struct context
*tcontext
,
286 struct av_decision
*avd
)
288 struct constraint_node
*constraint
;
289 struct role_allow
*ra
;
290 struct avtab_key avkey
;
291 struct avtab_node
*node
;
292 struct class_datum
*tclass_datum
;
293 struct ebitmap
*sattr
, *tattr
;
294 struct ebitmap_node
*snode
, *tnode
;
298 * Remap extended Netlink classes for old policy versions.
299 * Do this here rather than socket_type_to_security_class()
300 * in case a newer policy version is loaded, allowing sockets
301 * to remain in the correct class.
303 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
304 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
305 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
306 tclass
= SECCLASS_NETLINK_SOCKET
;
308 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
309 printk(KERN_ERR
"security_compute_av: unrecognized class %d\n",
313 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
316 * Initialize the access vectors to the default values.
319 avd
->decided
= 0xffffffff;
321 avd
->auditdeny
= 0xffffffff;
322 avd
->seqno
= latest_granting
;
325 * If a specific type enforcement rule was defined for
326 * this permission check, then use it.
328 avkey
.target_class
= tclass
;
329 avkey
.specified
= AVTAB_AV
;
330 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
331 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
332 ebitmap_for_each_bit(sattr
, snode
, i
) {
333 if (!ebitmap_node_get_bit(snode
, i
))
335 ebitmap_for_each_bit(tattr
, tnode
, j
) {
336 if (!ebitmap_node_get_bit(tnode
, j
))
338 avkey
.source_type
= i
+ 1;
339 avkey
.target_type
= j
+ 1;
340 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
342 node
= avtab_search_node_next(node
, avkey
.specified
)) {
343 if (node
->key
.specified
== AVTAB_ALLOWED
)
344 avd
->allowed
|= node
->datum
.data
;
345 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
346 avd
->auditallow
|= node
->datum
.data
;
347 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
348 avd
->auditdeny
&= node
->datum
.data
;
351 /* Check conditional av table for additional permissions */
352 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
358 * Remove any permissions prohibited by a constraint (this includes
361 constraint
= tclass_datum
->constraints
;
363 if ((constraint
->permissions
& (avd
->allowed
)) &&
364 !constraint_expr_eval(scontext
, tcontext
, NULL
,
366 avd
->allowed
= (avd
->allowed
) & ~(constraint
->permissions
);
368 constraint
= constraint
->next
;
372 * If checking process transition permission and the
373 * role is changing, then check the (current_role, new_role)
376 if (tclass
== SECCLASS_PROCESS
&&
377 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
378 scontext
->role
!= tcontext
->role
) {
379 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
380 if (scontext
->role
== ra
->role
&&
381 tcontext
->role
== ra
->new_role
)
385 avd
->allowed
= (avd
->allowed
) & ~(PROCESS__TRANSITION
|
386 PROCESS__DYNTRANSITION
);
392 static int security_validtrans_handle_fail(struct context
*ocontext
,
393 struct context
*ncontext
,
394 struct context
*tcontext
,
397 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
398 u32 olen
, nlen
, tlen
;
400 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
402 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
404 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
406 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
407 "security_validate_transition: denied for"
408 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
409 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
415 if (!selinux_enforcing
)
420 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
423 struct context
*ocontext
;
424 struct context
*ncontext
;
425 struct context
*tcontext
;
426 struct class_datum
*tclass_datum
;
427 struct constraint_node
*constraint
;
436 * Remap extended Netlink classes for old policy versions.
437 * Do this here rather than socket_type_to_security_class()
438 * in case a newer policy version is loaded, allowing sockets
439 * to remain in the correct class.
441 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
442 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
443 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
444 tclass
= SECCLASS_NETLINK_SOCKET
;
446 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
447 printk(KERN_ERR
"security_validate_transition: "
448 "unrecognized class %d\n", tclass
);
452 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
454 ocontext
= sidtab_search(&sidtab
, oldsid
);
456 printk(KERN_ERR
"security_validate_transition: "
457 " unrecognized SID %d\n", oldsid
);
462 ncontext
= sidtab_search(&sidtab
, newsid
);
464 printk(KERN_ERR
"security_validate_transition: "
465 " unrecognized SID %d\n", newsid
);
470 tcontext
= sidtab_search(&sidtab
, tasksid
);
472 printk(KERN_ERR
"security_validate_transition: "
473 " unrecognized SID %d\n", tasksid
);
478 constraint
= tclass_datum
->validatetrans
;
480 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
482 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
486 constraint
= constraint
->next
;
495 * security_compute_av - Compute access vector decisions.
496 * @ssid: source security identifier
497 * @tsid: target security identifier
498 * @tclass: target security class
499 * @requested: requested permissions
500 * @avd: access vector decisions
502 * Compute a set of access vector decisions based on the
503 * SID pair (@ssid, @tsid) for the permissions in @tclass.
504 * Return -%EINVAL if any of the parameters are invalid or %0
505 * if the access vector decisions were computed successfully.
507 int security_compute_av(u32 ssid
,
511 struct av_decision
*avd
)
513 struct context
*scontext
= NULL
, *tcontext
= NULL
;
516 if (!ss_initialized
) {
517 avd
->allowed
= 0xffffffff;
518 avd
->decided
= 0xffffffff;
520 avd
->auditdeny
= 0xffffffff;
521 avd
->seqno
= latest_granting
;
527 scontext
= sidtab_search(&sidtab
, ssid
);
529 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
534 tcontext
= sidtab_search(&sidtab
, tsid
);
536 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
542 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
550 * Write the security context string representation of
551 * the context structure `context' into a dynamically
552 * allocated string of the correct size. Set `*scontext'
553 * to point to this string and set `*scontext_len' to
554 * the length of the string.
556 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
563 /* Compute the size of the context. */
564 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
565 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
566 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
567 *scontext_len
+= mls_compute_context_len(context
);
569 /* Allocate space for the context; caller must free this space. */
570 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
574 *scontext
= scontextp
;
577 * Copy the user name, role name and type name into the context.
579 sprintf(scontextp
, "%s:%s:%s",
580 policydb
.p_user_val_to_name
[context
->user
- 1],
581 policydb
.p_role_val_to_name
[context
->role
- 1],
582 policydb
.p_type_val_to_name
[context
->type
- 1]);
583 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
584 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
585 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
587 mls_sid_to_context(context
, &scontextp
);
594 #include "initial_sid_to_string.h"
597 * security_sid_to_context - Obtain a context for a given SID.
598 * @sid: security identifier, SID
599 * @scontext: security context
600 * @scontext_len: length in bytes
602 * Write the string representation of the context associated with @sid
603 * into a dynamically allocated string of the correct size. Set @scontext
604 * to point to this string and set @scontext_len to the length of the string.
606 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
608 struct context
*context
;
611 if (!ss_initialized
) {
612 if (sid
<= SECINITSID_NUM
) {
615 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
616 scontextp
= kmalloc(*scontext_len
,GFP_ATOMIC
);
621 strcpy(scontextp
, initial_sid_to_string
[sid
]);
622 *scontext
= scontextp
;
625 printk(KERN_ERR
"security_sid_to_context: called before initial "
626 "load_policy on unknown SID %d\n", sid
);
631 context
= sidtab_search(&sidtab
, sid
);
633 printk(KERN_ERR
"security_sid_to_context: unrecognized SID "
638 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
646 static int security_context_to_sid_core(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
649 struct context context
;
650 struct role_datum
*role
;
651 struct type_datum
*typdatum
;
652 struct user_datum
*usrdatum
;
653 char *scontextp
, *p
, oldc
;
656 if (!ss_initialized
) {
659 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
660 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
665 *sid
= SECINITSID_KERNEL
;
670 /* Copy the string so that we can modify the copy as we parse it.
671 The string should already by null terminated, but we append a
672 null suffix to the copy to avoid problems with the existing
673 attr package, which doesn't view the null terminator as part
674 of the attribute value. */
675 scontext2
= kmalloc(scontext_len
+1,GFP_KERNEL
);
680 memcpy(scontext2
, scontext
, scontext_len
);
681 scontext2
[scontext_len
] = 0;
683 context_init(&context
);
688 /* Parse the security context. */
691 scontextp
= (char *) scontext2
;
693 /* Extract the user. */
695 while (*p
&& *p
!= ':')
703 usrdatum
= hashtab_search(policydb
.p_users
.table
, scontextp
);
707 context
.user
= usrdatum
->value
;
711 while (*p
&& *p
!= ':')
719 role
= hashtab_search(policydb
.p_roles
.table
, scontextp
);
722 context
.role
= role
->value
;
726 while (*p
&& *p
!= ':')
731 typdatum
= hashtab_search(policydb
.p_types
.table
, scontextp
);
735 context
.type
= typdatum
->value
;
737 rc
= mls_context_to_sid(oldc
, &p
, &context
, &sidtab
, def_sid
);
741 if ((p
- scontext2
) < scontext_len
) {
746 /* Check the validity of the new context. */
747 if (!policydb_context_isvalid(&policydb
, &context
)) {
751 /* Obtain the new sid. */
752 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
755 context_destroy(&context
);
762 * security_context_to_sid - Obtain a SID for a given security context.
763 * @scontext: security context
764 * @scontext_len: length in bytes
765 * @sid: security identifier, SID
767 * Obtains a SID associated with the security context that
768 * has the string representation specified by @scontext.
769 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
770 * memory is available, or 0 on success.
772 int security_context_to_sid(char *scontext
, u32 scontext_len
, u32
*sid
)
774 return security_context_to_sid_core(scontext
, scontext_len
,
779 * security_context_to_sid_default - Obtain a SID for a given security context,
780 * falling back to specified default if needed.
782 * @scontext: security context
783 * @scontext_len: length in bytes
784 * @sid: security identifier, SID
785 * @def_sid: default SID to assign on errror
787 * Obtains a SID associated with the security context that
788 * has the string representation specified by @scontext.
789 * The default SID is passed to the MLS layer to be used to allow
790 * kernel labeling of the MLS field if the MLS field is not present
791 * (for upgrading to MLS without full relabel).
792 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
793 * memory is available, or 0 on success.
795 int security_context_to_sid_default(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
797 return security_context_to_sid_core(scontext
, scontext_len
,
801 static int compute_sid_handle_invalid_context(
802 struct context
*scontext
,
803 struct context
*tcontext
,
805 struct context
*newcontext
)
807 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
808 u32 slen
, tlen
, nlen
;
810 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
812 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
814 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
816 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
817 "security_compute_sid: invalid context %s"
821 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
826 if (!selinux_enforcing
)
831 static int security_compute_sid(u32 ssid
,
837 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
838 struct role_trans
*roletr
= NULL
;
839 struct avtab_key avkey
;
840 struct avtab_datum
*avdatum
;
841 struct avtab_node
*node
;
844 if (!ss_initialized
) {
846 case SECCLASS_PROCESS
:
856 context_init(&newcontext
);
860 scontext
= sidtab_search(&sidtab
, ssid
);
862 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
867 tcontext
= sidtab_search(&sidtab
, tsid
);
869 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
875 /* Set the user identity. */
877 case AVTAB_TRANSITION
:
879 /* Use the process user identity. */
880 newcontext
.user
= scontext
->user
;
883 /* Use the related object owner. */
884 newcontext
.user
= tcontext
->user
;
888 /* Set the role and type to default values. */
890 case SECCLASS_PROCESS
:
891 /* Use the current role and type of process. */
892 newcontext
.role
= scontext
->role
;
893 newcontext
.type
= scontext
->type
;
896 /* Use the well-defined object role. */
897 newcontext
.role
= OBJECT_R_VAL
;
898 /* Use the type of the related object. */
899 newcontext
.type
= tcontext
->type
;
902 /* Look for a type transition/member/change rule. */
903 avkey
.source_type
= scontext
->type
;
904 avkey
.target_type
= tcontext
->type
;
905 avkey
.target_class
= tclass
;
906 avkey
.specified
= specified
;
907 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
909 /* If no permanent rule, also check for enabled conditional rules */
911 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
912 for (; node
!= NULL
; node
= avtab_search_node_next(node
, specified
)) {
913 if (node
->key
.specified
& AVTAB_ENABLED
) {
914 avdatum
= &node
->datum
;
921 /* Use the type from the type transition/member/change rule. */
922 newcontext
.type
= avdatum
->data
;
925 /* Check for class-specific changes. */
927 case SECCLASS_PROCESS
:
928 if (specified
& AVTAB_TRANSITION
) {
929 /* Look for a role transition rule. */
930 for (roletr
= policydb
.role_tr
; roletr
;
931 roletr
= roletr
->next
) {
932 if (roletr
->role
== scontext
->role
&&
933 roletr
->type
== tcontext
->type
) {
934 /* Use the role transition rule. */
935 newcontext
.role
= roletr
->new_role
;
945 /* Set the MLS attributes.
946 This is done last because it may allocate memory. */
947 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
951 /* Check the validity of the context. */
952 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
953 rc
= compute_sid_handle_invalid_context(scontext
,
960 /* Obtain the sid for the context. */
961 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
964 context_destroy(&newcontext
);
970 * security_transition_sid - Compute the SID for a new subject/object.
971 * @ssid: source security identifier
972 * @tsid: target security identifier
973 * @tclass: target security class
974 * @out_sid: security identifier for new subject/object
976 * Compute a SID to use for labeling a new subject or object in the
977 * class @tclass based on a SID pair (@ssid, @tsid).
978 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
979 * if insufficient memory is available, or %0 if the new SID was
980 * computed successfully.
982 int security_transition_sid(u32 ssid
,
987 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
991 * security_member_sid - Compute the SID for member selection.
992 * @ssid: source security identifier
993 * @tsid: target security identifier
994 * @tclass: target security class
995 * @out_sid: security identifier for selected member
997 * Compute a SID to use when selecting a member of a polyinstantiated
998 * object of class @tclass based on a SID pair (@ssid, @tsid).
999 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1000 * if insufficient memory is available, or %0 if the SID was
1001 * computed successfully.
1003 int security_member_sid(u32 ssid
,
1008 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1012 * security_change_sid - Compute the SID for object relabeling.
1013 * @ssid: source security identifier
1014 * @tsid: target security identifier
1015 * @tclass: target security class
1016 * @out_sid: security identifier for selected member
1018 * Compute a SID to use for relabeling an object of class @tclass
1019 * based on a SID pair (@ssid, @tsid).
1020 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1021 * if insufficient memory is available, or %0 if the SID was
1022 * computed successfully.
1024 int security_change_sid(u32 ssid
,
1029 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1033 * Verify that each kernel class that is defined in the
1036 static int validate_classes(struct policydb
*p
)
1039 struct class_datum
*cladatum
;
1040 struct perm_datum
*perdatum
;
1041 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1043 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1044 const char *def_class
, *def_perm
, *pol_class
;
1045 struct symtab
*perms
;
1047 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1048 def_class
= kdefs
->class_to_string
[i
];
1049 if (i
> p
->p_classes
.nprim
) {
1051 "security: class %s not defined in policy\n",
1055 pol_class
= p
->p_class_val_to_name
[i
-1];
1056 if (strcmp(pol_class
, def_class
)) {
1058 "security: class %d is incorrect, found %s but should be %s\n",
1059 i
, pol_class
, def_class
);
1063 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1064 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1065 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1066 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1067 if (class_val
> p
->p_classes
.nprim
)
1069 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1070 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1072 perms
= &cladatum
->permissions
;
1073 nprim
= 1 << (perms
->nprim
- 1);
1074 if (perm_val
> nprim
) {
1076 "security: permission %s in class %s not defined in policy\n",
1077 def_perm
, pol_class
);
1080 perdatum
= hashtab_search(perms
->table
, def_perm
);
1081 if (perdatum
== NULL
) {
1083 "security: permission %s in class %s not found in policy\n",
1084 def_perm
, pol_class
);
1087 pol_val
= 1 << (perdatum
->value
- 1);
1088 if (pol_val
!= perm_val
) {
1090 "security: permission %s in class %s has incorrect value\n",
1091 def_perm
, pol_class
);
1095 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1096 class_val
= kdefs
->av_inherit
[i
].tclass
;
1097 if (class_val
> p
->p_classes
.nprim
)
1099 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1100 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1102 if (!cladatum
->comdatum
) {
1104 "security: class %s should have an inherits clause but does not\n",
1108 tmp
= kdefs
->av_inherit
[i
].common_base
;
1110 while (!(tmp
& 0x01)) {
1114 perms
= &cladatum
->comdatum
->permissions
;
1115 for (j
= 0; j
< common_pts_len
; j
++) {
1116 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1117 if (j
>= perms
->nprim
) {
1119 "security: permission %s in class %s not defined in policy\n",
1120 def_perm
, pol_class
);
1123 perdatum
= hashtab_search(perms
->table
, def_perm
);
1124 if (perdatum
== NULL
) {
1126 "security: permission %s in class %s not found in policy\n",
1127 def_perm
, pol_class
);
1130 if (perdatum
->value
!= j
+ 1) {
1132 "security: permission %s in class %s has incorrect value\n",
1133 def_perm
, pol_class
);
1141 /* Clone the SID into the new SID table. */
1142 static int clone_sid(u32 sid
,
1143 struct context
*context
,
1146 struct sidtab
*s
= arg
;
1148 return sidtab_insert(s
, sid
, context
);
1151 static inline int convert_context_handle_invalid_context(struct context
*context
)
1155 if (selinux_enforcing
) {
1161 context_struct_to_string(context
, &s
, &len
);
1162 printk(KERN_ERR
"security: context %s is invalid\n", s
);
1168 struct convert_context_args
{
1169 struct policydb
*oldp
;
1170 struct policydb
*newp
;
1174 * Convert the values in the security context
1175 * structure `c' from the values specified
1176 * in the policy `p->oldp' to the values specified
1177 * in the policy `p->newp'. Verify that the
1178 * context is valid under the new policy.
1180 static int convert_context(u32 key
,
1184 struct convert_context_args
*args
;
1185 struct context oldc
;
1186 struct role_datum
*role
;
1187 struct type_datum
*typdatum
;
1188 struct user_datum
*usrdatum
;
1195 rc
= context_cpy(&oldc
, c
);
1201 /* Convert the user. */
1202 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1203 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1207 c
->user
= usrdatum
->value
;
1209 /* Convert the role. */
1210 role
= hashtab_search(args
->newp
->p_roles
.table
,
1211 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1215 c
->role
= role
->value
;
1217 /* Convert the type. */
1218 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1219 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1223 c
->type
= typdatum
->value
;
1225 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1229 /* Check the validity of the new context. */
1230 if (!policydb_context_isvalid(args
->newp
, c
)) {
1231 rc
= convert_context_handle_invalid_context(&oldc
);
1236 context_destroy(&oldc
);
1240 context_struct_to_string(&oldc
, &s
, &len
);
1241 context_destroy(&oldc
);
1242 printk(KERN_ERR
"security: invalidating context %s\n", s
);
1247 extern void selinux_complete_init(void);
1250 * security_load_policy - Load a security policy configuration.
1251 * @data: binary policy data
1252 * @len: length of data in bytes
1254 * Load a new set of security policy configuration data,
1255 * validate it and convert the SID table as necessary.
1256 * This function will flush the access vector cache after
1257 * loading the new policy.
1259 int security_load_policy(void *data
, size_t len
)
1261 struct policydb oldpolicydb
, newpolicydb
;
1262 struct sidtab oldsidtab
, newsidtab
;
1263 struct convert_context_args args
;
1266 struct policy_file file
= { data
, len
}, *fp
= &file
;
1270 if (!ss_initialized
) {
1272 if (policydb_read(&policydb
, fp
)) {
1274 avtab_cache_destroy();
1277 if (policydb_load_isids(&policydb
, &sidtab
)) {
1279 policydb_destroy(&policydb
);
1280 avtab_cache_destroy();
1283 /* Verify that the kernel defined classes are correct. */
1284 if (validate_classes(&policydb
)) {
1286 "security: the definition of a class is incorrect\n");
1288 sidtab_destroy(&sidtab
);
1289 policydb_destroy(&policydb
);
1290 avtab_cache_destroy();
1293 policydb_loaded_version
= policydb
.policyvers
;
1295 seqno
= ++latest_granting
;
1297 selinux_complete_init();
1298 avc_ss_reset(seqno
);
1299 selnl_notify_policyload(seqno
);
1300 selinux_netlbl_cache_invalidate();
1305 sidtab_hash_eval(&sidtab
, "sids");
1308 if (policydb_read(&newpolicydb
, fp
)) {
1313 sidtab_init(&newsidtab
);
1315 /* Verify that the kernel defined classes are correct. */
1316 if (validate_classes(&newpolicydb
)) {
1318 "security: the definition of a class is incorrect\n");
1323 /* Clone the SID table. */
1324 sidtab_shutdown(&sidtab
);
1325 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1330 /* Convert the internal representations of contexts
1331 in the new SID table and remove invalid SIDs. */
1332 args
.oldp
= &policydb
;
1333 args
.newp
= &newpolicydb
;
1334 sidtab_map_remove_on_error(&newsidtab
, convert_context
, &args
);
1336 /* Save the old policydb and SID table to free later. */
1337 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1338 sidtab_set(&oldsidtab
, &sidtab
);
1340 /* Install the new policydb and SID table. */
1342 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1343 sidtab_set(&sidtab
, &newsidtab
);
1344 seqno
= ++latest_granting
;
1345 policydb_loaded_version
= policydb
.policyvers
;
1349 /* Free the old policydb and SID table. */
1350 policydb_destroy(&oldpolicydb
);
1351 sidtab_destroy(&oldsidtab
);
1353 avc_ss_reset(seqno
);
1354 selnl_notify_policyload(seqno
);
1355 selinux_netlbl_cache_invalidate();
1361 sidtab_destroy(&newsidtab
);
1362 policydb_destroy(&newpolicydb
);
1368 * security_port_sid - Obtain the SID for a port.
1369 * @domain: communication domain aka address family
1370 * @type: socket type
1371 * @protocol: protocol number
1372 * @port: port number
1373 * @out_sid: security identifier
1375 int security_port_sid(u16 domain
,
1386 c
= policydb
.ocontexts
[OCON_PORT
];
1388 if (c
->u
.port
.protocol
== protocol
&&
1389 c
->u
.port
.low_port
<= port
&&
1390 c
->u
.port
.high_port
>= port
)
1397 rc
= sidtab_context_to_sid(&sidtab
,
1403 *out_sid
= c
->sid
[0];
1405 *out_sid
= SECINITSID_PORT
;
1414 * security_netif_sid - Obtain the SID for a network interface.
1415 * @name: interface name
1416 * @if_sid: interface SID
1417 * @msg_sid: default SID for received packets
1419 int security_netif_sid(char *name
,
1428 c
= policydb
.ocontexts
[OCON_NETIF
];
1430 if (strcmp(name
, c
->u
.name
) == 0)
1436 if (!c
->sid
[0] || !c
->sid
[1]) {
1437 rc
= sidtab_context_to_sid(&sidtab
,
1442 rc
= sidtab_context_to_sid(&sidtab
,
1448 *if_sid
= c
->sid
[0];
1449 *msg_sid
= c
->sid
[1];
1451 *if_sid
= SECINITSID_NETIF
;
1452 *msg_sid
= SECINITSID_NETMSG
;
1460 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1464 for(i
= 0; i
< 4; i
++)
1465 if(addr
[i
] != (input
[i
] & mask
[i
])) {
1474 * security_node_sid - Obtain the SID for a node (host).
1475 * @domain: communication domain aka address family
1477 * @addrlen: address length in bytes
1478 * @out_sid: security identifier
1480 int security_node_sid(u16 domain
,
1494 if (addrlen
!= sizeof(u32
)) {
1499 addr
= *((u32
*)addrp
);
1501 c
= policydb
.ocontexts
[OCON_NODE
];
1503 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1511 if (addrlen
!= sizeof(u64
) * 2) {
1515 c
= policydb
.ocontexts
[OCON_NODE6
];
1517 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1525 *out_sid
= SECINITSID_NODE
;
1531 rc
= sidtab_context_to_sid(&sidtab
,
1537 *out_sid
= c
->sid
[0];
1539 *out_sid
= SECINITSID_NODE
;
1550 * security_get_user_sids - Obtain reachable SIDs for a user.
1551 * @fromsid: starting SID
1552 * @username: username
1553 * @sids: array of reachable SIDs for user
1554 * @nel: number of elements in @sids
1556 * Generate the set of SIDs for legal security contexts
1557 * for a given user that can be reached by @fromsid.
1558 * Set *@sids to point to a dynamically allocated
1559 * array containing the set of SIDs. Set *@nel to the
1560 * number of elements in the array.
1563 int security_get_user_sids(u32 fromsid
,
1568 struct context
*fromcon
, usercon
;
1569 u32
*mysids
, *mysids2
, sid
;
1570 u32 mynel
= 0, maxnel
= SIDS_NEL
;
1571 struct user_datum
*user
;
1572 struct role_datum
*role
;
1573 struct av_decision avd
;
1574 struct ebitmap_node
*rnode
, *tnode
;
1577 if (!ss_initialized
) {
1585 fromcon
= sidtab_search(&sidtab
, fromsid
);
1591 user
= hashtab_search(policydb
.p_users
.table
, username
);
1596 usercon
.user
= user
->value
;
1598 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
1604 ebitmap_for_each_bit(&user
->roles
, rnode
, i
) {
1605 if (!ebitmap_node_get_bit(rnode
, i
))
1607 role
= policydb
.role_val_to_struct
[i
];
1609 ebitmap_for_each_bit(&role
->types
, tnode
, j
) {
1610 if (!ebitmap_node_get_bit(tnode
, j
))
1614 if (mls_setup_user_range(fromcon
, user
, &usercon
))
1617 rc
= context_struct_compute_av(fromcon
, &usercon
,
1619 PROCESS__TRANSITION
,
1621 if (rc
|| !(avd
.allowed
& PROCESS__TRANSITION
))
1623 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
1628 if (mynel
< maxnel
) {
1629 mysids
[mynel
++] = sid
;
1632 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
1638 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
1641 mysids
[mynel
++] = sid
;
1656 * security_genfs_sid - Obtain a SID for a file in a filesystem
1657 * @fstype: filesystem type
1658 * @path: path from root of mount
1659 * @sclass: file security class
1660 * @sid: SID for path
1662 * Obtain a SID to use for a file in a filesystem that
1663 * cannot support xattr or use a fixed labeling behavior like
1664 * transition SIDs or task SIDs.
1666 int security_genfs_sid(const char *fstype
,
1672 struct genfs
*genfs
;
1674 int rc
= 0, cmp
= 0;
1678 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
1679 cmp
= strcmp(fstype
, genfs
->fstype
);
1684 if (!genfs
|| cmp
) {
1685 *sid
= SECINITSID_UNLABELED
;
1690 for (c
= genfs
->head
; c
; c
= c
->next
) {
1691 len
= strlen(c
->u
.name
);
1692 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
1693 (strncmp(c
->u
.name
, path
, len
) == 0))
1698 *sid
= SECINITSID_UNLABELED
;
1704 rc
= sidtab_context_to_sid(&sidtab
,
1718 * security_fs_use - Determine how to handle labeling for a filesystem.
1719 * @fstype: filesystem type
1720 * @behavior: labeling behavior
1721 * @sid: SID for filesystem (superblock)
1723 int security_fs_use(
1725 unsigned int *behavior
,
1733 c
= policydb
.ocontexts
[OCON_FSUSE
];
1735 if (strcmp(fstype
, c
->u
.name
) == 0)
1741 *behavior
= c
->v
.behavior
;
1743 rc
= sidtab_context_to_sid(&sidtab
,
1751 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
1753 *behavior
= SECURITY_FS_USE_NONE
;
1756 *behavior
= SECURITY_FS_USE_GENFS
;
1765 int security_get_bools(int *len
, char ***names
, int **values
)
1767 int i
, rc
= -ENOMEM
;
1773 *len
= policydb
.p_bools
.nprim
;
1779 *names
= kcalloc(*len
, sizeof(char*), GFP_ATOMIC
);
1783 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
1787 for (i
= 0; i
< *len
; i
++) {
1789 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
1790 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
1791 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
1794 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
1795 (*names
)[i
][name_len
- 1] = 0;
1803 for (i
= 0; i
< *len
; i
++)
1811 int security_set_bools(int len
, int *values
)
1814 int lenp
, seqno
= 0;
1815 struct cond_node
*cur
;
1819 lenp
= policydb
.p_bools
.nprim
;
1825 for (i
= 0; i
< len
; i
++) {
1826 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
1827 audit_log(current
->audit_context
, GFP_ATOMIC
,
1828 AUDIT_MAC_CONFIG_CHANGE
,
1829 "bool=%s val=%d old_val=%d auid=%u",
1830 policydb
.p_bool_val_to_name
[i
],
1832 policydb
.bool_val_to_struct
[i
]->state
,
1833 audit_get_loginuid(current
->audit_context
));
1836 policydb
.bool_val_to_struct
[i
]->state
= 1;
1838 policydb
.bool_val_to_struct
[i
]->state
= 0;
1842 for (cur
= policydb
.cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1843 rc
= evaluate_cond_node(&policydb
, cur
);
1848 seqno
= ++latest_granting
;
1853 avc_ss_reset(seqno
);
1854 selnl_notify_policyload(seqno
);
1859 int security_get_bool_value(int bool)
1866 len
= policydb
.p_bools
.nprim
;
1872 rc
= policydb
.bool_val_to_struct
[bool]->state
;
1879 * security_sid_mls_copy() - computes a new sid based on the given
1880 * sid and the mls portion of mls_sid.
1882 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
1884 struct context
*context1
;
1885 struct context
*context2
;
1886 struct context newcon
;
1891 if (!ss_initialized
|| !selinux_mls_enabled
) {
1896 context_init(&newcon
);
1899 context1
= sidtab_search(&sidtab
, sid
);
1901 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
1907 context2
= sidtab_search(&sidtab
, mls_sid
);
1909 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
1915 newcon
.user
= context1
->user
;
1916 newcon
.role
= context1
->role
;
1917 newcon
.type
= context1
->type
;
1918 rc
= mls_copy_context(&newcon
, context2
);
1923 /* Check the validity of the new context. */
1924 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
1925 rc
= convert_context_handle_invalid_context(&newcon
);
1930 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
1934 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
1935 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1936 "security_sid_mls_copy: invalid context %s", s
);
1942 context_destroy(&newcon
);
1947 struct selinux_audit_rule
{
1949 struct context au_ctxt
;
1952 void selinux_audit_rule_free(struct selinux_audit_rule
*rule
)
1955 context_destroy(&rule
->au_ctxt
);
1960 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
,
1961 struct selinux_audit_rule
**rule
)
1963 struct selinux_audit_rule
*tmprule
;
1964 struct role_datum
*roledatum
;
1965 struct type_datum
*typedatum
;
1966 struct user_datum
*userdatum
;
1971 if (!ss_initialized
)
1975 case AUDIT_SUBJ_USER
:
1976 case AUDIT_SUBJ_ROLE
:
1977 case AUDIT_SUBJ_TYPE
:
1978 case AUDIT_OBJ_USER
:
1979 case AUDIT_OBJ_ROLE
:
1980 case AUDIT_OBJ_TYPE
:
1981 /* only 'equals' and 'not equals' fit user, role, and type */
1982 if (op
!= AUDIT_EQUAL
&& op
!= AUDIT_NOT_EQUAL
)
1985 case AUDIT_SUBJ_SEN
:
1986 case AUDIT_SUBJ_CLR
:
1987 case AUDIT_OBJ_LEV_LOW
:
1988 case AUDIT_OBJ_LEV_HIGH
:
1989 /* we do not allow a range, indicated by the presense of '-' */
1990 if (strchr(rulestr
, '-'))
1994 /* only the above fields are valid */
1998 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2002 context_init(&tmprule
->au_ctxt
);
2006 tmprule
->au_seqno
= latest_granting
;
2009 case AUDIT_SUBJ_USER
:
2010 case AUDIT_OBJ_USER
:
2011 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2015 tmprule
->au_ctxt
.user
= userdatum
->value
;
2017 case AUDIT_SUBJ_ROLE
:
2018 case AUDIT_OBJ_ROLE
:
2019 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2023 tmprule
->au_ctxt
.role
= roledatum
->value
;
2025 case AUDIT_SUBJ_TYPE
:
2026 case AUDIT_OBJ_TYPE
:
2027 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2031 tmprule
->au_ctxt
.type
= typedatum
->value
;
2033 case AUDIT_SUBJ_SEN
:
2034 case AUDIT_SUBJ_CLR
:
2035 case AUDIT_OBJ_LEV_LOW
:
2036 case AUDIT_OBJ_LEV_HIGH
:
2037 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2044 selinux_audit_rule_free(tmprule
);
2053 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
,
2054 struct selinux_audit_rule
*rule
,
2055 struct audit_context
*actx
)
2057 struct context
*ctxt
;
2058 struct mls_level
*level
;
2062 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2063 "selinux_audit_rule_match: missing rule\n");
2069 if (rule
->au_seqno
< latest_granting
) {
2070 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2071 "selinux_audit_rule_match: stale rule\n");
2076 ctxt
= sidtab_search(&sidtab
, sid
);
2078 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2079 "selinux_audit_rule_match: unrecognized SID %d\n",
2085 /* a field/op pair that is not caught here will simply fall through
2088 case AUDIT_SUBJ_USER
:
2089 case AUDIT_OBJ_USER
:
2092 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2094 case AUDIT_NOT_EQUAL
:
2095 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2099 case AUDIT_SUBJ_ROLE
:
2100 case AUDIT_OBJ_ROLE
:
2103 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2105 case AUDIT_NOT_EQUAL
:
2106 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2110 case AUDIT_SUBJ_TYPE
:
2111 case AUDIT_OBJ_TYPE
:
2114 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2116 case AUDIT_NOT_EQUAL
:
2117 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2121 case AUDIT_SUBJ_SEN
:
2122 case AUDIT_SUBJ_CLR
:
2123 case AUDIT_OBJ_LEV_LOW
:
2124 case AUDIT_OBJ_LEV_HIGH
:
2125 level
= ((field
== AUDIT_SUBJ_SEN
||
2126 field
== AUDIT_OBJ_LEV_LOW
) ?
2127 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2130 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2133 case AUDIT_NOT_EQUAL
:
2134 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2137 case AUDIT_LESS_THAN
:
2138 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2140 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2143 case AUDIT_LESS_THAN_OR_EQUAL
:
2144 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2147 case AUDIT_GREATER_THAN
:
2148 match
= (mls_level_dom(level
,
2149 &rule
->au_ctxt
.range
.level
[0]) &&
2150 !mls_level_eq(level
,
2151 &rule
->au_ctxt
.range
.level
[0]));
2153 case AUDIT_GREATER_THAN_OR_EQUAL
:
2154 match
= mls_level_dom(level
,
2155 &rule
->au_ctxt
.range
.level
[0]);
2165 static int (*aurule_callback
)(void) = NULL
;
2167 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2168 u16
class, u32 perms
, u32
*retained
)
2172 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2173 err
= aurule_callback();
2177 static int __init
aurule_init(void)
2181 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2182 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2184 panic("avc_add_callback() failed, error %d\n", err
);
2188 __initcall(aurule_init
);
2190 void selinux_audit_set_callback(int (*callback
)(void))
2192 aurule_callback
= callback
;
2196 * security_skb_extlbl_sid - Determine the external label of a packet
2198 * @base_sid: the SELinux SID to use as a context for MLS only external labels
2199 * @sid: the packet's SID
2202 * Check the various different forms of external packet labeling and determine
2203 * the external SID for the packet.
2206 void security_skb_extlbl_sid(struct sk_buff
*skb
, u32 base_sid
, u32
*sid
)
2211 selinux_skb_xfrm_sid(skb
, &xfrm_sid
);
2212 if (selinux_netlbl_skbuff_getsid(skb
,
2213 (xfrm_sid
== SECSID_NULL
?
2214 base_sid
: xfrm_sid
),
2216 nlbl_sid
= SECSID_NULL
;
2218 *sid
= (nlbl_sid
== SECSID_NULL
? xfrm_sid
: nlbl_sid
);
2221 #ifdef CONFIG_NETLABEL
2223 * This is the structure we store inside the NetLabel cache block.
2225 #define NETLBL_CACHE(x) ((struct netlbl_cache *)(x))
2226 #define NETLBL_CACHE_T_NONE 0
2227 #define NETLBL_CACHE_T_SID 1
2228 #define NETLBL_CACHE_T_MLS 2
2229 struct netlbl_cache
{
2233 struct mls_range mls_label
;
2238 * selinux_netlbl_cache_free - Free the NetLabel cached data
2239 * @data: the data to free
2242 * This function is intended to be used as the free() callback inside the
2243 * netlbl_lsm_cache structure.
2246 static void selinux_netlbl_cache_free(const void *data
)
2248 struct netlbl_cache
*cache
;
2253 cache
= NETLBL_CACHE(data
);
2254 switch (cache
->type
) {
2255 case NETLBL_CACHE_T_MLS
:
2256 ebitmap_destroy(&cache
->data
.mls_label
.level
[0].cat
);
2263 * selinux_netlbl_cache_add - Add an entry to the NetLabel cache
2265 * @ctx: the SELinux context
2268 * Attempt to cache the context in @ctx, which was derived from the packet in
2269 * @skb, in the NetLabel subsystem cache.
2272 static void selinux_netlbl_cache_add(struct sk_buff
*skb
, struct context
*ctx
)
2274 struct netlbl_cache
*cache
= NULL
;
2275 struct netlbl_lsm_secattr secattr
;
2277 netlbl_secattr_init(&secattr
);
2278 secattr
.cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2279 if (secattr
.cache
== NULL
)
2280 goto netlbl_cache_add_return
;
2282 cache
= kzalloc(sizeof(*cache
), GFP_ATOMIC
);
2284 goto netlbl_cache_add_return
;
2286 cache
->type
= NETLBL_CACHE_T_MLS
;
2287 if (ebitmap_cpy(&cache
->data
.mls_label
.level
[0].cat
,
2288 &ctx
->range
.level
[0].cat
) != 0)
2289 goto netlbl_cache_add_return
;
2290 cache
->data
.mls_label
.level
[1].cat
.highbit
=
2291 cache
->data
.mls_label
.level
[0].cat
.highbit
;
2292 cache
->data
.mls_label
.level
[1].cat
.node
=
2293 cache
->data
.mls_label
.level
[0].cat
.node
;
2294 cache
->data
.mls_label
.level
[0].sens
= ctx
->range
.level
[0].sens
;
2295 cache
->data
.mls_label
.level
[1].sens
= ctx
->range
.level
[0].sens
;
2297 secattr
.cache
->free
= selinux_netlbl_cache_free
;
2298 secattr
.cache
->data
= (void *)cache
;
2299 secattr
.flags
= NETLBL_SECATTR_CACHE
;
2301 netlbl_cache_add(skb
, &secattr
);
2303 netlbl_cache_add_return
:
2304 netlbl_secattr_destroy(&secattr
);
2308 * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache
2311 * Invalidate the NetLabel security attribute mapping cache.
2314 void selinux_netlbl_cache_invalidate(void)
2316 netlbl_cache_invalidate();
2320 * selinux_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2321 * @skb: the network packet
2322 * @secattr: the NetLabel packet security attributes
2323 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2324 * @sid: the SELinux SID
2327 * Convert the given NetLabel packet security attributes in @secattr into a
2328 * SELinux SID. If the @secattr field does not contain a full SELinux
2329 * SID/context then use the context in @base_sid as the foundation. If @skb
2330 * is not NULL attempt to cache as much data as possibile. Returns zero on
2331 * success, negative values on failure.
2334 static int selinux_netlbl_secattr_to_sid(struct sk_buff
*skb
,
2335 struct netlbl_lsm_secattr
*secattr
,
2340 struct context
*ctx
;
2341 struct context ctx_new
;
2342 struct netlbl_cache
*cache
;
2346 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2347 cache
= NETLBL_CACHE(secattr
->cache
->data
);
2348 switch (cache
->type
) {
2349 case NETLBL_CACHE_T_SID
:
2350 *sid
= cache
->data
.sid
;
2353 case NETLBL_CACHE_T_MLS
:
2354 ctx
= sidtab_search(&sidtab
, base_sid
);
2356 goto netlbl_secattr_to_sid_return
;
2358 ctx_new
.user
= ctx
->user
;
2359 ctx_new
.role
= ctx
->role
;
2360 ctx_new
.type
= ctx
->type
;
2361 ctx_new
.range
.level
[0].sens
=
2362 cache
->data
.mls_label
.level
[0].sens
;
2363 ctx_new
.range
.level
[0].cat
.highbit
=
2364 cache
->data
.mls_label
.level
[0].cat
.highbit
;
2365 ctx_new
.range
.level
[0].cat
.node
=
2366 cache
->data
.mls_label
.level
[0].cat
.node
;
2367 ctx_new
.range
.level
[1].sens
=
2368 cache
->data
.mls_label
.level
[1].sens
;
2369 ctx_new
.range
.level
[1].cat
.highbit
=
2370 cache
->data
.mls_label
.level
[1].cat
.highbit
;
2371 ctx_new
.range
.level
[1].cat
.node
=
2372 cache
->data
.mls_label
.level
[1].cat
.node
;
2374 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2377 goto netlbl_secattr_to_sid_return
;
2379 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2380 ctx
= sidtab_search(&sidtab
, base_sid
);
2382 goto netlbl_secattr_to_sid_return
;
2384 ctx_new
.user
= ctx
->user
;
2385 ctx_new
.role
= ctx
->role
;
2386 ctx_new
.type
= ctx
->type
;
2387 mls_import_lvl(&ctx_new
, secattr
->mls_lvl
, secattr
->mls_lvl
);
2388 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2389 if (mls_import_cat(&ctx_new
,
2391 secattr
->mls_cat_len
,
2394 goto netlbl_secattr_to_sid_return
;
2395 ctx_new
.range
.level
[1].cat
.highbit
=
2396 ctx_new
.range
.level
[0].cat
.highbit
;
2397 ctx_new
.range
.level
[1].cat
.node
=
2398 ctx_new
.range
.level
[0].cat
.node
;
2400 ebitmap_init(&ctx_new
.range
.level
[0].cat
);
2401 ebitmap_init(&ctx_new
.range
.level
[1].cat
);
2403 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
2404 goto netlbl_secattr_to_sid_return_cleanup
;
2406 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2408 goto netlbl_secattr_to_sid_return_cleanup
;
2411 selinux_netlbl_cache_add(skb
, &ctx_new
);
2412 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2418 netlbl_secattr_to_sid_return
:
2421 netlbl_secattr_to_sid_return_cleanup
:
2422 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2423 goto netlbl_secattr_to_sid_return
;
2427 * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel
2429 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2433 * Call the NetLabel mechanism to get the security attributes of the given
2434 * packet and use those attributes to determine the correct context/SID to
2435 * assign to the packet. Returns zero on success, negative values on failure.
2438 int selinux_netlbl_skbuff_getsid(struct sk_buff
*skb
, u32 base_sid
, u32
*sid
)
2441 struct netlbl_lsm_secattr secattr
;
2443 netlbl_secattr_init(&secattr
);
2444 rc
= netlbl_skbuff_getattr(skb
, &secattr
);
2445 if (rc
== 0 && secattr
.flags
!= NETLBL_SECATTR_NONE
)
2446 rc
= selinux_netlbl_secattr_to_sid(skb
,
2452 netlbl_secattr_destroy(&secattr
);
2458 * selinux_netlbl_socket_setsid - Label a socket using the NetLabel mechanism
2459 * @sock: the socket to label
2460 * @sid: the SID to use
2463 * Attempt to label a socket using the NetLabel mechanism using the given
2464 * SID. Returns zero values on success, negative values on failure. The
2465 * caller is responsibile for calling rcu_read_lock() before calling this
2466 * this function and rcu_read_unlock() after this function returns.
2469 static int selinux_netlbl_socket_setsid(struct socket
*sock
, u32 sid
)
2472 struct sk_security_struct
*sksec
= sock
->sk
->sk_security
;
2473 struct netlbl_lsm_secattr secattr
;
2474 struct context
*ctx
;
2476 if (!ss_initialized
)
2479 netlbl_secattr_init(&secattr
);
2483 ctx
= sidtab_search(&sidtab
, sid
);
2485 goto netlbl_socket_setsid_return
;
2487 secattr
.domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
2489 mls_export_lvl(ctx
, &secattr
.mls_lvl
, NULL
);
2490 rc
= mls_export_cat(ctx
,
2492 &secattr
.mls_cat_len
,
2496 goto netlbl_socket_setsid_return
;
2498 secattr
.flags
|= NETLBL_SECATTR_DOMAIN
| NETLBL_SECATTR_MLS_LVL
;
2499 if (secattr
.mls_cat
)
2500 secattr
.flags
|= NETLBL_SECATTR_MLS_CAT
;
2502 rc
= netlbl_socket_setattr(sock
, &secattr
);
2504 spin_lock(&sksec
->nlbl_lock
);
2505 sksec
->nlbl_state
= NLBL_LABELED
;
2506 spin_unlock(&sksec
->nlbl_lock
);
2509 netlbl_socket_setsid_return
:
2511 netlbl_secattr_destroy(&secattr
);
2516 * selinux_netlbl_sk_security_reset - Reset the NetLabel fields
2517 * @ssec: the sk_security_struct
2518 * @family: the socket family
2521 * Called when the NetLabel state of a sk_security_struct needs to be reset.
2522 * The caller is responsibile for all the NetLabel sk_security_struct locking.
2525 void selinux_netlbl_sk_security_reset(struct sk_security_struct
*ssec
,
2528 if (family
== PF_INET
)
2529 ssec
->nlbl_state
= NLBL_REQUIRE
;
2531 ssec
->nlbl_state
= NLBL_UNSET
;
2535 * selinux_netlbl_sk_security_init - Setup the NetLabel fields
2536 * @ssec: the sk_security_struct
2537 * @family: the socket family
2540 * Called when a new sk_security_struct is allocated to initialize the NetLabel
2544 void selinux_netlbl_sk_security_init(struct sk_security_struct
*ssec
,
2547 /* No locking needed, we are the only one who has access to ssec */
2548 selinux_netlbl_sk_security_reset(ssec
, family
);
2549 spin_lock_init(&ssec
->nlbl_lock
);
2553 * selinux_netlbl_sk_security_clone - Copy the NetLabel fields
2554 * @ssec: the original sk_security_struct
2555 * @newssec: the cloned sk_security_struct
2558 * Clone the NetLabel specific sk_security_struct fields from @ssec to
2562 void selinux_netlbl_sk_security_clone(struct sk_security_struct
*ssec
,
2563 struct sk_security_struct
*newssec
)
2565 /* We don't need to take newssec->nlbl_lock because we are the only
2566 * thread with access to newssec, but we do need to take the RCU read
2567 * lock as other threads could have access to ssec */
2569 selinux_netlbl_sk_security_reset(newssec
, ssec
->sk
->sk_family
);
2570 newssec
->sclass
= ssec
->sclass
;
2575 * selinux_netlbl_socket_post_create - Label a socket using NetLabel
2576 * @sock: the socket to label
2579 * Attempt to label a socket using the NetLabel mechanism using the given
2580 * SID. Returns zero values on success, negative values on failure.
2583 int selinux_netlbl_socket_post_create(struct socket
*sock
)
2586 struct inode_security_struct
*isec
= SOCK_INODE(sock
)->i_security
;
2587 struct sk_security_struct
*sksec
= sock
->sk
->sk_security
;
2589 sksec
->sclass
= isec
->sclass
;
2592 if (sksec
->nlbl_state
== NLBL_REQUIRE
)
2593 rc
= selinux_netlbl_socket_setsid(sock
, sksec
->sid
);
2600 * selinux_netlbl_sock_graft - Netlabel the new socket
2601 * @sk: the new connection
2602 * @sock: the new socket
2605 * The connection represented by @sk is being grafted onto @sock so set the
2606 * socket's NetLabel to match the SID of @sk.
2609 void selinux_netlbl_sock_graft(struct sock
*sk
, struct socket
*sock
)
2611 struct inode_security_struct
*isec
= SOCK_INODE(sock
)->i_security
;
2612 struct sk_security_struct
*sksec
= sk
->sk_security
;
2613 struct netlbl_lsm_secattr secattr
;
2616 sksec
->sclass
= isec
->sclass
;
2620 if (sksec
->nlbl_state
!= NLBL_REQUIRE
) {
2625 netlbl_secattr_init(&secattr
);
2626 if (netlbl_sock_getattr(sk
, &secattr
) == 0 &&
2627 secattr
.flags
!= NETLBL_SECATTR_NONE
&&
2628 selinux_netlbl_secattr_to_sid(NULL
,
2630 SECINITSID_UNLABELED
,
2631 &nlbl_peer_sid
) == 0)
2632 sksec
->peer_sid
= nlbl_peer_sid
;
2633 netlbl_secattr_destroy(&secattr
);
2635 /* Try to set the NetLabel on the socket to save time later, if we fail
2636 * here we will pick up the pieces in later calls to
2637 * selinux_netlbl_inode_permission(). */
2638 selinux_netlbl_socket_setsid(sock
, sksec
->sid
);
2644 * selinux_netlbl_inode_permission - Verify the socket is NetLabel labeled
2645 * @inode: the file descriptor's inode
2646 * @mask: the permission mask
2649 * Looks at a file's inode and if it is marked as a socket protected by
2650 * NetLabel then verify that the socket has been labeled, if not try to label
2651 * the socket now with the inode's SID. Returns zero on success, negative
2652 * values on failure.
2655 int selinux_netlbl_inode_permission(struct inode
*inode
, int mask
)
2658 struct sk_security_struct
*sksec
;
2659 struct socket
*sock
;
2661 if (!S_ISSOCK(inode
->i_mode
) ||
2662 ((mask
& (MAY_WRITE
| MAY_APPEND
)) == 0))
2664 sock
= SOCKET_I(inode
);
2665 sksec
= sock
->sk
->sk_security
;
2668 if (sksec
->nlbl_state
!= NLBL_REQUIRE
) {
2672 lock_sock(sock
->sk
);
2673 rc
= selinux_netlbl_socket_setsid(sock
, sksec
->sid
);
2674 release_sock(sock
->sk
);
2681 * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel
2682 * @sksec: the sock's sk_security_struct
2684 * @ad: the audit data
2687 * Fetch the NetLabel security attributes from @skb and perform an access check
2688 * against the receiving socket. Returns zero on success, negative values on
2692 int selinux_netlbl_sock_rcv_skb(struct sk_security_struct
*sksec
,
2693 struct sk_buff
*skb
,
2694 struct avc_audit_data
*ad
)
2700 rc
= selinux_netlbl_skbuff_getsid(skb
,
2701 SECINITSID_UNLABELED
,
2706 if (netlbl_sid
== SECSID_NULL
)
2709 switch (sksec
->sclass
) {
2710 case SECCLASS_UDP_SOCKET
:
2711 recv_perm
= UDP_SOCKET__RECVFROM
;
2713 case SECCLASS_TCP_SOCKET
:
2714 recv_perm
= TCP_SOCKET__RECVFROM
;
2717 recv_perm
= RAWIP_SOCKET__RECVFROM
;
2720 rc
= avc_has_perm(sksec
->sid
,
2728 netlbl_skbuff_err(skb
, rc
);
2733 * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel
2735 * @level: the socket level or protocol
2736 * @optname: the socket option name
2739 * Check the setsockopt() call and if the user is trying to replace the IP
2740 * options on a socket and a NetLabel is in place for the socket deny the
2741 * access; otherwise allow the access. Returns zero when the access is
2742 * allowed, -EACCES when denied, and other negative values on error.
2745 int selinux_netlbl_socket_setsockopt(struct socket
*sock
,
2750 struct sk_security_struct
*sksec
= sock
->sk
->sk_security
;
2751 struct netlbl_lsm_secattr secattr
;
2754 if (level
== IPPROTO_IP
&& optname
== IP_OPTIONS
&&
2755 sksec
->nlbl_state
== NLBL_LABELED
) {
2756 netlbl_secattr_init(&secattr
);
2757 rc
= netlbl_socket_getattr(sock
, &secattr
);
2758 if (rc
== 0 && secattr
.flags
!= NETLBL_SECATTR_NONE
)
2760 netlbl_secattr_destroy(&secattr
);
2766 #endif /* CONFIG_NETLABEL */