2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <asm/uaccess.h>
17 #include <asm/system.h>
18 #include <linux/bitops.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/jiffies.h>
22 #include <linux/string.h>
24 #include <linux/socket.h>
25 #include <linux/sockios.h>
27 #include <linux/errno.h>
28 #include <linux/interrupt.h>
29 #include <linux/if_ether.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/notifier.h>
35 #include <net/netlink.h>
36 #include <net/route.h>
37 #include <linux/skbuff.h>
39 #include <net/pkt_sched.h>
42 /* Simple Token Bucket Filter.
43 =======================================
53 A data flow obeys TBF with rate R and depth B, if for any
54 time interval t_i...t_f the number of transmitted bits
55 does not exceed B + R*(t_f-t_i).
57 Packetized version of this definition:
58 The sequence of packets of sizes s_i served at moments t_i
59 obeys TBF, if for any i<=k:
61 s_i+....+s_k <= B + R*(t_k - t_i)
66 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
68 N(t+delta) = min{B/R, N(t) + delta}
70 If the first packet in queue has length S, it may be
71 transmitted only at the time t_* when S/R <= N(t_*),
72 and in this case N(t) jumps:
74 N(t_* + 0) = N(t_* - 0) - S/R.
78 Actually, QoS requires two TBF to be applied to a data stream.
79 One of them controls steady state burst size, another
80 one with rate P (peak rate) and depth M (equal to link MTU)
81 limits bursts at a smaller time scale.
83 It is easy to see that P>R, and B>M. If P is infinity, this double
84 TBF is equivalent to a single one.
86 When TBF works in reshaping mode, latency is estimated as:
88 lat = max ((L-B)/R, (L-M)/P)
94 If TBF throttles, it starts a watchdog timer, which will wake it up
95 when it is ready to transmit.
96 Note that the minimal timer resolution is 1/HZ.
97 If no new packets arrive during this period,
98 or if the device is not awaken by EOI for some previous packet,
99 TBF can stop its activity for 1/HZ.
102 This means, that with depth B, the maximal rate is
106 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
108 Note that the peak rate TBF is much more tough: with MTU 1500
109 P_crit = 150Kbytes/sec. So, if you need greater peak
110 rates, use alpha with HZ=1000 :-)
112 With classful TBF, limit is just kept for backwards compatibility.
113 It is passed to the default bfifo qdisc - if the inner qdisc is
114 changed the limit is not effective anymore.
117 struct tbf_sched_data
120 u32 limit
; /* Maximal length of backlog: bytes */
121 u32 buffer
; /* Token bucket depth/rate: MUST BE >= MTU/B */
124 struct qdisc_rate_table
*R_tab
;
125 struct qdisc_rate_table
*P_tab
;
128 long tokens
; /* Current number of B tokens */
129 long ptokens
; /* Current number of P tokens */
130 psched_time_t t_c
; /* Time check-point */
131 struct Qdisc
*qdisc
; /* Inner qdisc, default - bfifo queue */
132 struct qdisc_watchdog watchdog
; /* Watchdog timer */
135 #define L2T(q,L) ((q)->R_tab->data[(L)>>(q)->R_tab->rate.cell_log])
136 #define L2T_P(q,L) ((q)->P_tab->data[(L)>>(q)->P_tab->rate.cell_log])
138 static int tbf_enqueue(struct sk_buff
*skb
, struct Qdisc
* sch
)
140 struct tbf_sched_data
*q
= qdisc_priv(sch
);
143 if (skb
->len
> q
->max_size
) {
145 #ifdef CONFIG_NET_CLS_POLICE
146 if (sch
->reshape_fail
== NULL
|| sch
->reshape_fail(skb
, sch
))
150 return NET_XMIT_DROP
;
153 if ((ret
= q
->qdisc
->enqueue(skb
, q
->qdisc
)) != 0) {
159 sch
->bstats
.bytes
+= skb
->len
;
160 sch
->bstats
.packets
++;
164 static int tbf_requeue(struct sk_buff
*skb
, struct Qdisc
* sch
)
166 struct tbf_sched_data
*q
= qdisc_priv(sch
);
169 if ((ret
= q
->qdisc
->ops
->requeue(skb
, q
->qdisc
)) == 0) {
171 sch
->qstats
.requeues
++;
177 static unsigned int tbf_drop(struct Qdisc
* sch
)
179 struct tbf_sched_data
*q
= qdisc_priv(sch
);
180 unsigned int len
= 0;
182 if (q
->qdisc
->ops
->drop
&& (len
= q
->qdisc
->ops
->drop(q
->qdisc
)) != 0) {
189 static struct sk_buff
*tbf_dequeue(struct Qdisc
* sch
)
191 struct tbf_sched_data
*q
= qdisc_priv(sch
);
194 skb
= q
->qdisc
->dequeue(q
->qdisc
);
200 unsigned int len
= skb
->len
;
202 now
= psched_get_time();
203 toks
= psched_tdiff_bounded(now
, q
->t_c
, q
->buffer
);
206 ptoks
= toks
+ q
->ptokens
;
207 if (ptoks
> (long)q
->mtu
)
209 ptoks
-= L2T_P(q
, len
);
212 if (toks
> (long)q
->buffer
)
216 if ((toks
|ptoks
) >= 0) {
221 sch
->flags
&= ~TCQ_F_THROTTLED
;
225 qdisc_watchdog_schedule(&q
->watchdog
,
226 now
+ max_t(long, -toks
, -ptoks
));
228 /* Maybe we have a shorter packet in the queue,
229 which can be sent now. It sounds cool,
230 but, however, this is wrong in principle.
231 We MUST NOT reorder packets under these circumstances.
233 Really, if we split the flow into independent
234 subflows, it would be a very good solution.
235 This is the main idea of all FQ algorithms
236 (cf. CSZ, HPFQ, HFSC)
239 if (q
->qdisc
->ops
->requeue(skb
, q
->qdisc
) != NET_XMIT_SUCCESS
) {
240 /* When requeue fails skb is dropped */
241 qdisc_tree_decrease_qlen(q
->qdisc
, 1);
245 sch
->qstats
.overlimits
++;
250 static void tbf_reset(struct Qdisc
* sch
)
252 struct tbf_sched_data
*q
= qdisc_priv(sch
);
254 qdisc_reset(q
->qdisc
);
256 q
->t_c
= psched_get_time();
257 q
->tokens
= q
->buffer
;
259 qdisc_watchdog_cancel(&q
->watchdog
);
262 static struct Qdisc
*tbf_create_dflt_qdisc(struct Qdisc
*sch
, u32 limit
)
268 q
= qdisc_create_dflt(sch
->dev
, &bfifo_qdisc_ops
,
269 TC_H_MAKE(sch
->handle
, 1));
271 rta
= kmalloc(RTA_LENGTH(sizeof(struct tc_fifo_qopt
)), GFP_KERNEL
);
273 rta
->rta_type
= RTM_NEWQDISC
;
274 rta
->rta_len
= RTA_LENGTH(sizeof(struct tc_fifo_qopt
));
275 ((struct tc_fifo_qopt
*)RTA_DATA(rta
))->limit
= limit
;
277 ret
= q
->ops
->change(q
, rta
);
289 static int tbf_change(struct Qdisc
* sch
, struct rtattr
*opt
)
292 struct tbf_sched_data
*q
= qdisc_priv(sch
);
293 struct rtattr
*tb
[TCA_TBF_PTAB
];
294 struct tc_tbf_qopt
*qopt
;
295 struct qdisc_rate_table
*rtab
= NULL
;
296 struct qdisc_rate_table
*ptab
= NULL
;
297 struct Qdisc
*child
= NULL
;
300 if (rtattr_parse_nested(tb
, TCA_TBF_PTAB
, opt
) ||
301 tb
[TCA_TBF_PARMS
-1] == NULL
||
302 RTA_PAYLOAD(tb
[TCA_TBF_PARMS
-1]) < sizeof(*qopt
))
305 qopt
= RTA_DATA(tb
[TCA_TBF_PARMS
-1]);
306 rtab
= qdisc_get_rtab(&qopt
->rate
, tb
[TCA_TBF_RTAB
-1]);
310 if (qopt
->peakrate
.rate
) {
311 if (qopt
->peakrate
.rate
> qopt
->rate
.rate
)
312 ptab
= qdisc_get_rtab(&qopt
->peakrate
, tb
[TCA_TBF_PTAB
-1]);
317 for (n
= 0; n
< 256; n
++)
318 if (rtab
->data
[n
] > qopt
->buffer
) break;
319 max_size
= (n
<< qopt
->rate
.cell_log
)-1;
323 for (n
= 0; n
< 256; n
++)
324 if (ptab
->data
[n
] > qopt
->mtu
) break;
325 size
= (n
<< qopt
->peakrate
.cell_log
)-1;
326 if (size
< max_size
) max_size
= size
;
331 if (qopt
->limit
> 0) {
332 if ((child
= tbf_create_dflt_qdisc(sch
, qopt
->limit
)) == NULL
)
338 qdisc_tree_decrease_qlen(q
->qdisc
, q
->qdisc
->q
.qlen
);
339 qdisc_destroy(xchg(&q
->qdisc
, child
));
341 q
->limit
= qopt
->limit
;
343 q
->max_size
= max_size
;
344 q
->buffer
= qopt
->buffer
;
345 q
->tokens
= q
->buffer
;
347 rtab
= xchg(&q
->R_tab
, rtab
);
348 ptab
= xchg(&q
->P_tab
, ptab
);
349 sch_tree_unlock(sch
);
353 qdisc_put_rtab(rtab
);
355 qdisc_put_rtab(ptab
);
359 static int tbf_init(struct Qdisc
* sch
, struct rtattr
*opt
)
361 struct tbf_sched_data
*q
= qdisc_priv(sch
);
366 q
->t_c
= psched_get_time();
367 qdisc_watchdog_init(&q
->watchdog
, sch
);
368 q
->qdisc
= &noop_qdisc
;
370 return tbf_change(sch
, opt
);
373 static void tbf_destroy(struct Qdisc
*sch
)
375 struct tbf_sched_data
*q
= qdisc_priv(sch
);
377 qdisc_watchdog_cancel(&q
->watchdog
);
380 qdisc_put_rtab(q
->P_tab
);
382 qdisc_put_rtab(q
->R_tab
);
384 qdisc_destroy(q
->qdisc
);
387 static int tbf_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
389 struct tbf_sched_data
*q
= qdisc_priv(sch
);
390 unsigned char *b
= skb_tail_pointer(skb
);
392 struct tc_tbf_qopt opt
;
394 rta
= (struct rtattr
*)b
;
395 RTA_PUT(skb
, TCA_OPTIONS
, 0, NULL
);
397 opt
.limit
= q
->limit
;
398 opt
.rate
= q
->R_tab
->rate
;
400 opt
.peakrate
= q
->P_tab
->rate
;
402 memset(&opt
.peakrate
, 0, sizeof(opt
.peakrate
));
404 opt
.buffer
= q
->buffer
;
405 RTA_PUT(skb
, TCA_TBF_PARMS
, sizeof(opt
), &opt
);
406 rta
->rta_len
= skb_tail_pointer(skb
) - b
;
415 static int tbf_dump_class(struct Qdisc
*sch
, unsigned long cl
,
416 struct sk_buff
*skb
, struct tcmsg
*tcm
)
418 struct tbf_sched_data
*q
= qdisc_priv(sch
);
420 if (cl
!= 1) /* only one class */
423 tcm
->tcm_handle
|= TC_H_MIN(1);
424 tcm
->tcm_info
= q
->qdisc
->handle
;
429 static int tbf_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
432 struct tbf_sched_data
*q
= qdisc_priv(sch
);
438 *old
= xchg(&q
->qdisc
, new);
439 qdisc_tree_decrease_qlen(*old
, (*old
)->q
.qlen
);
441 sch_tree_unlock(sch
);
446 static struct Qdisc
*tbf_leaf(struct Qdisc
*sch
, unsigned long arg
)
448 struct tbf_sched_data
*q
= qdisc_priv(sch
);
452 static unsigned long tbf_get(struct Qdisc
*sch
, u32 classid
)
457 static void tbf_put(struct Qdisc
*sch
, unsigned long arg
)
461 static int tbf_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
462 struct rtattr
**tca
, unsigned long *arg
)
467 static int tbf_delete(struct Qdisc
*sch
, unsigned long arg
)
472 static void tbf_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
475 if (walker
->count
>= walker
->skip
)
476 if (walker
->fn(sch
, 1, walker
) < 0) {
484 static struct tcf_proto
**tbf_find_tcf(struct Qdisc
*sch
, unsigned long cl
)
489 static struct Qdisc_class_ops tbf_class_ops
=
495 .change
= tbf_change_class
,
496 .delete = tbf_delete
,
498 .tcf_chain
= tbf_find_tcf
,
499 .dump
= tbf_dump_class
,
502 static struct Qdisc_ops tbf_qdisc_ops
= {
504 .cl_ops
= &tbf_class_ops
,
506 .priv_size
= sizeof(struct tbf_sched_data
),
507 .enqueue
= tbf_enqueue
,
508 .dequeue
= tbf_dequeue
,
509 .requeue
= tbf_requeue
,
513 .destroy
= tbf_destroy
,
514 .change
= tbf_change
,
516 .owner
= THIS_MODULE
,
519 static int __init
tbf_module_init(void)
521 return register_qdisc(&tbf_qdisc_ops
);
524 static void __exit
tbf_module_exit(void)
526 unregister_qdisc(&tbf_qdisc_ops
);
528 module_init(tbf_module_init
)
529 module_exit(tbf_module_exit
)
530 MODULE_LICENSE("GPL");