[PATCH] lower VM_DONTCOPY total_vm
[linux-2.6.22.y-op.git] / kernel / fork.c
blobb65187f0c74e720281ff6f08b98e3bef19e638c4
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
53 * Protected counters by write_lock_irq(&tasklist_lock)
55 unsigned long total_forks; /* Handle normal Linux uptimes. */
56 int nr_threads; /* The idle threads do not count.. */
58 int max_threads; /* tunable limit on nr_threads */
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
62 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
64 EXPORT_SYMBOL(tasklist_lock);
66 int nr_processes(void)
68 int cpu;
69 int total = 0;
71 for_each_online_cpu(cpu)
72 total += per_cpu(process_counts, cpu);
74 return total;
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
101 void free_task(struct task_struct *tsk)
103 free_thread_info(tsk->thread_info);
104 free_task_struct(tsk);
106 EXPORT_SYMBOL(free_task);
108 void __put_task_struct(struct task_struct *tsk)
110 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 WARN_ON(atomic_read(&tsk->usage));
112 WARN_ON(tsk == current);
114 if (unlikely(tsk->audit_context))
115 audit_free(tsk);
116 security_task_free(tsk);
117 free_uid(tsk->user);
118 put_group_info(tsk->group_info);
120 if (!profile_handoff_task(tsk))
121 free_task(tsk);
124 void __init fork_init(unsigned long mempages)
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
129 #endif
130 /* create a slab on which task_structs can be allocated */
131 task_struct_cachep =
132 kmem_cache_create("task_struct", sizeof(struct task_struct),
133 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
137 * The default maximum number of threads is set to a safe
138 * value: the thread structures can take up at most half
139 * of memory.
141 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144 * we need to allow at least 20 threads to boot a system
146 if(max_threads < 20)
147 max_threads = 20;
149 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 init_task.signal->rlim[RLIMIT_NPROC];
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 struct task_struct *tsk;
158 struct thread_info *ti;
160 prepare_to_copy(orig);
162 tsk = alloc_task_struct();
163 if (!tsk)
164 return NULL;
166 ti = alloc_thread_info(tsk);
167 if (!ti) {
168 free_task_struct(tsk);
169 return NULL;
172 *ti = *orig->thread_info;
173 *tsk = *orig;
174 tsk->thread_info = ti;
175 ti->task = tsk;
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk->usage,2);
179 return tsk;
182 #ifdef CONFIG_MMU
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
185 struct vm_area_struct * mpnt, *tmp, **pprev;
186 struct rb_node **rb_link, *rb_parent;
187 int retval;
188 unsigned long charge;
189 struct mempolicy *pol;
191 down_write(&oldmm->mmap_sem);
192 flush_cache_mm(current->mm);
193 mm->locked_vm = 0;
194 mm->mmap = NULL;
195 mm->mmap_cache = NULL;
196 mm->free_area_cache = oldmm->mmap_base;
197 mm->cached_hole_size = ~0UL;
198 mm->map_count = 0;
199 set_mm_counter(mm, rss, 0);
200 set_mm_counter(mm, anon_rss, 0);
201 cpus_clear(mm->cpu_vm_mask);
202 mm->mm_rb = RB_ROOT;
203 rb_link = &mm->mm_rb.rb_node;
204 rb_parent = NULL;
205 pprev = &mm->mmap;
207 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
208 struct file *file;
210 if (mpnt->vm_flags & VM_DONTCOPY) {
211 long pages = vma_pages(mpnt);
212 mm->total_vm -= pages;
213 __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
214 -pages);
215 continue;
217 charge = 0;
218 if (mpnt->vm_flags & VM_ACCOUNT) {
219 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
220 if (security_vm_enough_memory(len))
221 goto fail_nomem;
222 charge = len;
224 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
225 if (!tmp)
226 goto fail_nomem;
227 *tmp = *mpnt;
228 pol = mpol_copy(vma_policy(mpnt));
229 retval = PTR_ERR(pol);
230 if (IS_ERR(pol))
231 goto fail_nomem_policy;
232 vma_set_policy(tmp, pol);
233 tmp->vm_flags &= ~VM_LOCKED;
234 tmp->vm_mm = mm;
235 tmp->vm_next = NULL;
236 anon_vma_link(tmp);
237 file = tmp->vm_file;
238 if (file) {
239 struct inode *inode = file->f_dentry->d_inode;
240 get_file(file);
241 if (tmp->vm_flags & VM_DENYWRITE)
242 atomic_dec(&inode->i_writecount);
244 /* insert tmp into the share list, just after mpnt */
245 spin_lock(&file->f_mapping->i_mmap_lock);
246 tmp->vm_truncate_count = mpnt->vm_truncate_count;
247 flush_dcache_mmap_lock(file->f_mapping);
248 vma_prio_tree_add(tmp, mpnt);
249 flush_dcache_mmap_unlock(file->f_mapping);
250 spin_unlock(&file->f_mapping->i_mmap_lock);
254 * Link in the new vma and copy the page table entries:
255 * link in first so that swapoff can see swap entries.
256 * Note that, exceptionally, here the vma is inserted
257 * without holding mm->mmap_sem.
259 spin_lock(&mm->page_table_lock);
260 *pprev = tmp;
261 pprev = &tmp->vm_next;
263 __vma_link_rb(mm, tmp, rb_link, rb_parent);
264 rb_link = &tmp->vm_rb.rb_right;
265 rb_parent = &tmp->vm_rb;
267 mm->map_count++;
268 retval = copy_page_range(mm, current->mm, tmp);
269 spin_unlock(&mm->page_table_lock);
271 if (tmp->vm_ops && tmp->vm_ops->open)
272 tmp->vm_ops->open(tmp);
274 if (retval)
275 goto out;
277 retval = 0;
279 out:
280 flush_tlb_mm(current->mm);
281 up_write(&oldmm->mmap_sem);
282 return retval;
283 fail_nomem_policy:
284 kmem_cache_free(vm_area_cachep, tmp);
285 fail_nomem:
286 retval = -ENOMEM;
287 vm_unacct_memory(charge);
288 goto out;
291 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 mm->pgd = pgd_alloc(mm);
294 if (unlikely(!mm->pgd))
295 return -ENOMEM;
296 return 0;
299 static inline void mm_free_pgd(struct mm_struct * mm)
301 pgd_free(mm->pgd);
303 #else
304 #define dup_mmap(mm, oldmm) (0)
305 #define mm_alloc_pgd(mm) (0)
306 #define mm_free_pgd(mm)
307 #endif /* CONFIG_MMU */
309 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
312 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
314 #include <linux/init_task.h>
316 static struct mm_struct * mm_init(struct mm_struct * mm)
318 atomic_set(&mm->mm_users, 1);
319 atomic_set(&mm->mm_count, 1);
320 init_rwsem(&mm->mmap_sem);
321 INIT_LIST_HEAD(&mm->mmlist);
322 mm->core_waiters = 0;
323 mm->nr_ptes = 0;
324 spin_lock_init(&mm->page_table_lock);
325 rwlock_init(&mm->ioctx_list_lock);
326 mm->ioctx_list = NULL;
327 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
328 mm->free_area_cache = TASK_UNMAPPED_BASE;
329 mm->cached_hole_size = ~0UL;
331 if (likely(!mm_alloc_pgd(mm))) {
332 mm->def_flags = 0;
333 return mm;
335 free_mm(mm);
336 return NULL;
340 * Allocate and initialize an mm_struct.
342 struct mm_struct * mm_alloc(void)
344 struct mm_struct * mm;
346 mm = allocate_mm();
347 if (mm) {
348 memset(mm, 0, sizeof(*mm));
349 mm = mm_init(mm);
351 return mm;
355 * Called when the last reference to the mm
356 * is dropped: either by a lazy thread or by
357 * mmput. Free the page directory and the mm.
359 void fastcall __mmdrop(struct mm_struct *mm)
361 BUG_ON(mm == &init_mm);
362 mm_free_pgd(mm);
363 destroy_context(mm);
364 free_mm(mm);
368 * Decrement the use count and release all resources for an mm.
370 void mmput(struct mm_struct *mm)
372 if (atomic_dec_and_test(&mm->mm_users)) {
373 exit_aio(mm);
374 exit_mmap(mm);
375 if (!list_empty(&mm->mmlist)) {
376 spin_lock(&mmlist_lock);
377 list_del(&mm->mmlist);
378 spin_unlock(&mmlist_lock);
380 put_swap_token(mm);
381 mmdrop(mm);
384 EXPORT_SYMBOL_GPL(mmput);
387 * get_task_mm - acquire a reference to the task's mm
389 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
390 * this kernel workthread has transiently adopted a user mm with use_mm,
391 * to do its AIO) is not set and if so returns a reference to it, after
392 * bumping up the use count. User must release the mm via mmput()
393 * after use. Typically used by /proc and ptrace.
395 struct mm_struct *get_task_mm(struct task_struct *task)
397 struct mm_struct *mm;
399 task_lock(task);
400 mm = task->mm;
401 if (mm) {
402 if (task->flags & PF_BORROWED_MM)
403 mm = NULL;
404 else
405 atomic_inc(&mm->mm_users);
407 task_unlock(task);
408 return mm;
410 EXPORT_SYMBOL_GPL(get_task_mm);
412 /* Please note the differences between mmput and mm_release.
413 * mmput is called whenever we stop holding onto a mm_struct,
414 * error success whatever.
416 * mm_release is called after a mm_struct has been removed
417 * from the current process.
419 * This difference is important for error handling, when we
420 * only half set up a mm_struct for a new process and need to restore
421 * the old one. Because we mmput the new mm_struct before
422 * restoring the old one. . .
423 * Eric Biederman 10 January 1998
425 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 struct completion *vfork_done = tsk->vfork_done;
429 /* Get rid of any cached register state */
430 deactivate_mm(tsk, mm);
432 /* notify parent sleeping on vfork() */
433 if (vfork_done) {
434 tsk->vfork_done = NULL;
435 complete(vfork_done);
437 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
438 u32 __user * tidptr = tsk->clear_child_tid;
439 tsk->clear_child_tid = NULL;
442 * We don't check the error code - if userspace has
443 * not set up a proper pointer then tough luck.
445 put_user(0, tidptr);
446 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
450 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
452 struct mm_struct * mm, *oldmm;
453 int retval;
455 tsk->min_flt = tsk->maj_flt = 0;
456 tsk->nvcsw = tsk->nivcsw = 0;
458 tsk->mm = NULL;
459 tsk->active_mm = NULL;
462 * Are we cloning a kernel thread?
464 * We need to steal a active VM for that..
466 oldmm = current->mm;
467 if (!oldmm)
468 return 0;
470 if (clone_flags & CLONE_VM) {
471 atomic_inc(&oldmm->mm_users);
472 mm = oldmm;
474 * There are cases where the PTL is held to ensure no
475 * new threads start up in user mode using an mm, which
476 * allows optimizing out ipis; the tlb_gather_mmu code
477 * is an example.
479 spin_unlock_wait(&oldmm->page_table_lock);
480 goto good_mm;
483 retval = -ENOMEM;
484 mm = allocate_mm();
485 if (!mm)
486 goto fail_nomem;
488 /* Copy the current MM stuff.. */
489 memcpy(mm, oldmm, sizeof(*mm));
490 if (!mm_init(mm))
491 goto fail_nomem;
493 if (init_new_context(tsk,mm))
494 goto fail_nocontext;
496 retval = dup_mmap(mm, oldmm);
497 if (retval)
498 goto free_pt;
500 mm->hiwater_rss = get_mm_counter(mm,rss);
501 mm->hiwater_vm = mm->total_vm;
503 good_mm:
504 tsk->mm = mm;
505 tsk->active_mm = mm;
506 return 0;
508 free_pt:
509 mmput(mm);
510 fail_nomem:
511 return retval;
513 fail_nocontext:
515 * If init_new_context() failed, we cannot use mmput() to free the mm
516 * because it calls destroy_context()
518 mm_free_pgd(mm);
519 free_mm(mm);
520 return retval;
523 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
525 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
526 /* We don't need to lock fs - think why ;-) */
527 if (fs) {
528 atomic_set(&fs->count, 1);
529 rwlock_init(&fs->lock);
530 fs->umask = old->umask;
531 read_lock(&old->lock);
532 fs->rootmnt = mntget(old->rootmnt);
533 fs->root = dget(old->root);
534 fs->pwdmnt = mntget(old->pwdmnt);
535 fs->pwd = dget(old->pwd);
536 if (old->altroot) {
537 fs->altrootmnt = mntget(old->altrootmnt);
538 fs->altroot = dget(old->altroot);
539 } else {
540 fs->altrootmnt = NULL;
541 fs->altroot = NULL;
543 read_unlock(&old->lock);
545 return fs;
548 struct fs_struct *copy_fs_struct(struct fs_struct *old)
550 return __copy_fs_struct(old);
553 EXPORT_SYMBOL_GPL(copy_fs_struct);
555 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
557 if (clone_flags & CLONE_FS) {
558 atomic_inc(&current->fs->count);
559 return 0;
561 tsk->fs = __copy_fs_struct(current->fs);
562 if (!tsk->fs)
563 return -ENOMEM;
564 return 0;
567 static int count_open_files(struct files_struct *files, int size)
569 int i;
571 /* Find the last open fd */
572 for (i = size/(8*sizeof(long)); i > 0; ) {
573 if (files->open_fds->fds_bits[--i])
574 break;
576 i = (i+1) * 8 * sizeof(long);
577 return i;
580 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
582 struct files_struct *oldf, *newf;
583 struct file **old_fds, **new_fds;
584 int open_files, size, i, error = 0, expand;
587 * A background process may not have any files ...
589 oldf = current->files;
590 if (!oldf)
591 goto out;
593 if (clone_flags & CLONE_FILES) {
594 atomic_inc(&oldf->count);
595 goto out;
599 * Note: we may be using current for both targets (See exec.c)
600 * This works because we cache current->files (old) as oldf. Don't
601 * break this.
603 tsk->files = NULL;
604 error = -ENOMEM;
605 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
606 if (!newf)
607 goto out;
609 atomic_set(&newf->count, 1);
611 spin_lock_init(&newf->file_lock);
612 newf->next_fd = 0;
613 newf->max_fds = NR_OPEN_DEFAULT;
614 newf->max_fdset = __FD_SETSIZE;
615 newf->close_on_exec = &newf->close_on_exec_init;
616 newf->open_fds = &newf->open_fds_init;
617 newf->fd = &newf->fd_array[0];
619 spin_lock(&oldf->file_lock);
621 open_files = count_open_files(oldf, oldf->max_fdset);
622 expand = 0;
625 * Check whether we need to allocate a larger fd array or fd set.
626 * Note: we're not a clone task, so the open count won't change.
628 if (open_files > newf->max_fdset) {
629 newf->max_fdset = 0;
630 expand = 1;
632 if (open_files > newf->max_fds) {
633 newf->max_fds = 0;
634 expand = 1;
637 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
638 if (expand) {
639 spin_unlock(&oldf->file_lock);
640 spin_lock(&newf->file_lock);
641 error = expand_files(newf, open_files-1);
642 spin_unlock(&newf->file_lock);
643 if (error < 0)
644 goto out_release;
645 spin_lock(&oldf->file_lock);
648 old_fds = oldf->fd;
649 new_fds = newf->fd;
651 memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
652 memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
654 for (i = open_files; i != 0; i--) {
655 struct file *f = *old_fds++;
656 if (f) {
657 get_file(f);
658 } else {
660 * The fd may be claimed in the fd bitmap but not yet
661 * instantiated in the files array if a sibling thread
662 * is partway through open(). So make sure that this
663 * fd is available to the new process.
665 FD_CLR(open_files - i, newf->open_fds);
667 *new_fds++ = f;
669 spin_unlock(&oldf->file_lock);
671 /* compute the remainder to be cleared */
672 size = (newf->max_fds - open_files) * sizeof(struct file *);
674 /* This is long word aligned thus could use a optimized version */
675 memset(new_fds, 0, size);
677 if (newf->max_fdset > open_files) {
678 int left = (newf->max_fdset-open_files)/8;
679 int start = open_files / (8 * sizeof(unsigned long));
681 memset(&newf->open_fds->fds_bits[start], 0, left);
682 memset(&newf->close_on_exec->fds_bits[start], 0, left);
685 tsk->files = newf;
686 error = 0;
687 out:
688 return error;
690 out_release:
691 free_fdset (newf->close_on_exec, newf->max_fdset);
692 free_fdset (newf->open_fds, newf->max_fdset);
693 free_fd_array(newf->fd, newf->max_fds);
694 kmem_cache_free(files_cachep, newf);
695 goto out;
699 * Helper to unshare the files of the current task.
700 * We don't want to expose copy_files internals to
701 * the exec layer of the kernel.
704 int unshare_files(void)
706 struct files_struct *files = current->files;
707 int rc;
709 if(!files)
710 BUG();
712 /* This can race but the race causes us to copy when we don't
713 need to and drop the copy */
714 if(atomic_read(&files->count) == 1)
716 atomic_inc(&files->count);
717 return 0;
719 rc = copy_files(0, current);
720 if(rc)
721 current->files = files;
722 return rc;
725 EXPORT_SYMBOL(unshare_files);
727 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
729 struct sighand_struct *sig;
731 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
732 atomic_inc(&current->sighand->count);
733 return 0;
735 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
736 tsk->sighand = sig;
737 if (!sig)
738 return -ENOMEM;
739 spin_lock_init(&sig->siglock);
740 atomic_set(&sig->count, 1);
741 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
742 return 0;
745 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
747 struct signal_struct *sig;
748 int ret;
750 if (clone_flags & CLONE_THREAD) {
751 atomic_inc(&current->signal->count);
752 atomic_inc(&current->signal->live);
753 return 0;
755 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
756 tsk->signal = sig;
757 if (!sig)
758 return -ENOMEM;
760 ret = copy_thread_group_keys(tsk);
761 if (ret < 0) {
762 kmem_cache_free(signal_cachep, sig);
763 return ret;
766 atomic_set(&sig->count, 1);
767 atomic_set(&sig->live, 1);
768 init_waitqueue_head(&sig->wait_chldexit);
769 sig->flags = 0;
770 sig->group_exit_code = 0;
771 sig->group_exit_task = NULL;
772 sig->group_stop_count = 0;
773 sig->curr_target = NULL;
774 init_sigpending(&sig->shared_pending);
775 INIT_LIST_HEAD(&sig->posix_timers);
777 sig->it_real_value = sig->it_real_incr = 0;
778 sig->real_timer.function = it_real_fn;
779 sig->real_timer.data = (unsigned long) tsk;
780 init_timer(&sig->real_timer);
782 sig->it_virt_expires = cputime_zero;
783 sig->it_virt_incr = cputime_zero;
784 sig->it_prof_expires = cputime_zero;
785 sig->it_prof_incr = cputime_zero;
787 sig->tty = current->signal->tty;
788 sig->pgrp = process_group(current);
789 sig->session = current->signal->session;
790 sig->leader = 0; /* session leadership doesn't inherit */
791 sig->tty_old_pgrp = 0;
793 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
794 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
795 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
796 sig->sched_time = 0;
797 INIT_LIST_HEAD(&sig->cpu_timers[0]);
798 INIT_LIST_HEAD(&sig->cpu_timers[1]);
799 INIT_LIST_HEAD(&sig->cpu_timers[2]);
801 task_lock(current->group_leader);
802 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
803 task_unlock(current->group_leader);
805 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
807 * New sole thread in the process gets an expiry time
808 * of the whole CPU time limit.
810 tsk->it_prof_expires =
811 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
814 return 0;
817 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
819 unsigned long new_flags = p->flags;
821 new_flags &= ~PF_SUPERPRIV;
822 new_flags |= PF_FORKNOEXEC;
823 if (!(clone_flags & CLONE_PTRACE))
824 p->ptrace = 0;
825 p->flags = new_flags;
828 asmlinkage long sys_set_tid_address(int __user *tidptr)
830 current->clear_child_tid = tidptr;
832 return current->pid;
836 * This creates a new process as a copy of the old one,
837 * but does not actually start it yet.
839 * It copies the registers, and all the appropriate
840 * parts of the process environment (as per the clone
841 * flags). The actual kick-off is left to the caller.
843 static task_t *copy_process(unsigned long clone_flags,
844 unsigned long stack_start,
845 struct pt_regs *regs,
846 unsigned long stack_size,
847 int __user *parent_tidptr,
848 int __user *child_tidptr,
849 int pid)
851 int retval;
852 struct task_struct *p = NULL;
854 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
855 return ERR_PTR(-EINVAL);
858 * Thread groups must share signals as well, and detached threads
859 * can only be started up within the thread group.
861 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
862 return ERR_PTR(-EINVAL);
865 * Shared signal handlers imply shared VM. By way of the above,
866 * thread groups also imply shared VM. Blocking this case allows
867 * for various simplifications in other code.
869 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
870 return ERR_PTR(-EINVAL);
872 retval = security_task_create(clone_flags);
873 if (retval)
874 goto fork_out;
876 retval = -ENOMEM;
877 p = dup_task_struct(current);
878 if (!p)
879 goto fork_out;
881 retval = -EAGAIN;
882 if (atomic_read(&p->user->processes) >=
883 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
884 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
885 p->user != &root_user)
886 goto bad_fork_free;
889 atomic_inc(&p->user->__count);
890 atomic_inc(&p->user->processes);
891 get_group_info(p->group_info);
894 * If multiple threads are within copy_process(), then this check
895 * triggers too late. This doesn't hurt, the check is only there
896 * to stop root fork bombs.
898 if (nr_threads >= max_threads)
899 goto bad_fork_cleanup_count;
901 if (!try_module_get(p->thread_info->exec_domain->module))
902 goto bad_fork_cleanup_count;
904 if (p->binfmt && !try_module_get(p->binfmt->module))
905 goto bad_fork_cleanup_put_domain;
907 p->did_exec = 0;
908 copy_flags(clone_flags, p);
909 p->pid = pid;
910 retval = -EFAULT;
911 if (clone_flags & CLONE_PARENT_SETTID)
912 if (put_user(p->pid, parent_tidptr))
913 goto bad_fork_cleanup;
915 p->proc_dentry = NULL;
917 INIT_LIST_HEAD(&p->children);
918 INIT_LIST_HEAD(&p->sibling);
919 p->vfork_done = NULL;
920 spin_lock_init(&p->alloc_lock);
921 spin_lock_init(&p->proc_lock);
923 clear_tsk_thread_flag(p, TIF_SIGPENDING);
924 init_sigpending(&p->pending);
926 p->utime = cputime_zero;
927 p->stime = cputime_zero;
928 p->sched_time = 0;
929 p->rchar = 0; /* I/O counter: bytes read */
930 p->wchar = 0; /* I/O counter: bytes written */
931 p->syscr = 0; /* I/O counter: read syscalls */
932 p->syscw = 0; /* I/O counter: write syscalls */
933 acct_clear_integrals(p);
935 p->it_virt_expires = cputime_zero;
936 p->it_prof_expires = cputime_zero;
937 p->it_sched_expires = 0;
938 INIT_LIST_HEAD(&p->cpu_timers[0]);
939 INIT_LIST_HEAD(&p->cpu_timers[1]);
940 INIT_LIST_HEAD(&p->cpu_timers[2]);
942 p->lock_depth = -1; /* -1 = no lock */
943 do_posix_clock_monotonic_gettime(&p->start_time);
944 p->security = NULL;
945 p->io_context = NULL;
946 p->io_wait = NULL;
947 p->audit_context = NULL;
948 #ifdef CONFIG_NUMA
949 p->mempolicy = mpol_copy(p->mempolicy);
950 if (IS_ERR(p->mempolicy)) {
951 retval = PTR_ERR(p->mempolicy);
952 p->mempolicy = NULL;
953 goto bad_fork_cleanup;
955 #endif
957 p->tgid = p->pid;
958 if (clone_flags & CLONE_THREAD)
959 p->tgid = current->tgid;
961 if ((retval = security_task_alloc(p)))
962 goto bad_fork_cleanup_policy;
963 if ((retval = audit_alloc(p)))
964 goto bad_fork_cleanup_security;
965 /* copy all the process information */
966 if ((retval = copy_semundo(clone_flags, p)))
967 goto bad_fork_cleanup_audit;
968 if ((retval = copy_files(clone_flags, p)))
969 goto bad_fork_cleanup_semundo;
970 if ((retval = copy_fs(clone_flags, p)))
971 goto bad_fork_cleanup_files;
972 if ((retval = copy_sighand(clone_flags, p)))
973 goto bad_fork_cleanup_fs;
974 if ((retval = copy_signal(clone_flags, p)))
975 goto bad_fork_cleanup_sighand;
976 if ((retval = copy_mm(clone_flags, p)))
977 goto bad_fork_cleanup_signal;
978 if ((retval = copy_keys(clone_flags, p)))
979 goto bad_fork_cleanup_mm;
980 if ((retval = copy_namespace(clone_flags, p)))
981 goto bad_fork_cleanup_keys;
982 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
983 if (retval)
984 goto bad_fork_cleanup_namespace;
986 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
988 * Clear TID on mm_release()?
990 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
993 * Syscall tracing should be turned off in the child regardless
994 * of CLONE_PTRACE.
996 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
998 /* Our parent execution domain becomes current domain
999 These must match for thread signalling to apply */
1001 p->parent_exec_id = p->self_exec_id;
1003 /* ok, now we should be set up.. */
1004 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1005 p->pdeath_signal = 0;
1006 p->exit_state = 0;
1009 * Ok, make it visible to the rest of the system.
1010 * We dont wake it up yet.
1012 p->group_leader = p;
1013 INIT_LIST_HEAD(&p->ptrace_children);
1014 INIT_LIST_HEAD(&p->ptrace_list);
1016 /* Perform scheduler related setup. Assign this task to a CPU. */
1017 sched_fork(p, clone_flags);
1019 /* Need tasklist lock for parent etc handling! */
1020 write_lock_irq(&tasklist_lock);
1023 * The task hasn't been attached yet, so its cpus_allowed mask will
1024 * not be changed, nor will its assigned CPU.
1026 * The cpus_allowed mask of the parent may have changed after it was
1027 * copied first time - so re-copy it here, then check the child's CPU
1028 * to ensure it is on a valid CPU (and if not, just force it back to
1029 * parent's CPU). This avoids alot of nasty races.
1031 p->cpus_allowed = current->cpus_allowed;
1032 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed)))
1033 set_task_cpu(p, smp_processor_id());
1036 * Check for pending SIGKILL! The new thread should not be allowed
1037 * to slip out of an OOM kill. (or normal SIGKILL.)
1039 if (sigismember(&current->pending.signal, SIGKILL)) {
1040 write_unlock_irq(&tasklist_lock);
1041 retval = -EINTR;
1042 goto bad_fork_cleanup_namespace;
1045 /* CLONE_PARENT re-uses the old parent */
1046 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1047 p->real_parent = current->real_parent;
1048 else
1049 p->real_parent = current;
1050 p->parent = p->real_parent;
1052 if (clone_flags & CLONE_THREAD) {
1053 spin_lock(&current->sighand->siglock);
1055 * Important: if an exit-all has been started then
1056 * do not create this new thread - the whole thread
1057 * group is supposed to exit anyway.
1059 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1060 spin_unlock(&current->sighand->siglock);
1061 write_unlock_irq(&tasklist_lock);
1062 retval = -EAGAIN;
1063 goto bad_fork_cleanup_namespace;
1065 p->group_leader = current->group_leader;
1067 if (current->signal->group_stop_count > 0) {
1069 * There is an all-stop in progress for the group.
1070 * We ourselves will stop as soon as we check signals.
1071 * Make the new thread part of that group stop too.
1073 current->signal->group_stop_count++;
1074 set_tsk_thread_flag(p, TIF_SIGPENDING);
1077 if (!cputime_eq(current->signal->it_virt_expires,
1078 cputime_zero) ||
1079 !cputime_eq(current->signal->it_prof_expires,
1080 cputime_zero) ||
1081 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1082 !list_empty(&current->signal->cpu_timers[0]) ||
1083 !list_empty(&current->signal->cpu_timers[1]) ||
1084 !list_empty(&current->signal->cpu_timers[2])) {
1086 * Have child wake up on its first tick to check
1087 * for process CPU timers.
1089 p->it_prof_expires = jiffies_to_cputime(1);
1092 spin_unlock(&current->sighand->siglock);
1096 * inherit ioprio
1098 p->ioprio = current->ioprio;
1100 SET_LINKS(p);
1101 if (unlikely(p->ptrace & PT_PTRACED))
1102 __ptrace_link(p, current->parent);
1104 cpuset_fork(p);
1106 attach_pid(p, PIDTYPE_PID, p->pid);
1107 attach_pid(p, PIDTYPE_TGID, p->tgid);
1108 if (thread_group_leader(p)) {
1109 attach_pid(p, PIDTYPE_PGID, process_group(p));
1110 attach_pid(p, PIDTYPE_SID, p->signal->session);
1111 if (p->pid)
1112 __get_cpu_var(process_counts)++;
1115 nr_threads++;
1116 total_forks++;
1117 write_unlock_irq(&tasklist_lock);
1118 retval = 0;
1120 fork_out:
1121 if (retval)
1122 return ERR_PTR(retval);
1123 return p;
1125 bad_fork_cleanup_namespace:
1126 exit_namespace(p);
1127 bad_fork_cleanup_keys:
1128 exit_keys(p);
1129 bad_fork_cleanup_mm:
1130 if (p->mm)
1131 mmput(p->mm);
1132 bad_fork_cleanup_signal:
1133 exit_signal(p);
1134 bad_fork_cleanup_sighand:
1135 exit_sighand(p);
1136 bad_fork_cleanup_fs:
1137 exit_fs(p); /* blocking */
1138 bad_fork_cleanup_files:
1139 exit_files(p); /* blocking */
1140 bad_fork_cleanup_semundo:
1141 exit_sem(p);
1142 bad_fork_cleanup_audit:
1143 audit_free(p);
1144 bad_fork_cleanup_security:
1145 security_task_free(p);
1146 bad_fork_cleanup_policy:
1147 #ifdef CONFIG_NUMA
1148 mpol_free(p->mempolicy);
1149 #endif
1150 bad_fork_cleanup:
1151 if (p->binfmt)
1152 module_put(p->binfmt->module);
1153 bad_fork_cleanup_put_domain:
1154 module_put(p->thread_info->exec_domain->module);
1155 bad_fork_cleanup_count:
1156 put_group_info(p->group_info);
1157 atomic_dec(&p->user->processes);
1158 free_uid(p->user);
1159 bad_fork_free:
1160 free_task(p);
1161 goto fork_out;
1164 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1166 memset(regs, 0, sizeof(struct pt_regs));
1167 return regs;
1170 task_t * __devinit fork_idle(int cpu)
1172 task_t *task;
1173 struct pt_regs regs;
1175 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1176 if (!task)
1177 return ERR_PTR(-ENOMEM);
1178 init_idle(task, cpu);
1179 unhash_process(task);
1180 return task;
1183 static inline int fork_traceflag (unsigned clone_flags)
1185 if (clone_flags & CLONE_UNTRACED)
1186 return 0;
1187 else if (clone_flags & CLONE_VFORK) {
1188 if (current->ptrace & PT_TRACE_VFORK)
1189 return PTRACE_EVENT_VFORK;
1190 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1191 if (current->ptrace & PT_TRACE_CLONE)
1192 return PTRACE_EVENT_CLONE;
1193 } else if (current->ptrace & PT_TRACE_FORK)
1194 return PTRACE_EVENT_FORK;
1196 return 0;
1200 * Ok, this is the main fork-routine.
1202 * It copies the process, and if successful kick-starts
1203 * it and waits for it to finish using the VM if required.
1205 long do_fork(unsigned long clone_flags,
1206 unsigned long stack_start,
1207 struct pt_regs *regs,
1208 unsigned long stack_size,
1209 int __user *parent_tidptr,
1210 int __user *child_tidptr)
1212 struct task_struct *p;
1213 int trace = 0;
1214 long pid = alloc_pidmap();
1216 if (pid < 0)
1217 return -EAGAIN;
1218 if (unlikely(current->ptrace)) {
1219 trace = fork_traceflag (clone_flags);
1220 if (trace)
1221 clone_flags |= CLONE_PTRACE;
1224 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1226 * Do this prior waking up the new thread - the thread pointer
1227 * might get invalid after that point, if the thread exits quickly.
1229 if (!IS_ERR(p)) {
1230 struct completion vfork;
1232 if (clone_flags & CLONE_VFORK) {
1233 p->vfork_done = &vfork;
1234 init_completion(&vfork);
1237 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1239 * We'll start up with an immediate SIGSTOP.
1241 sigaddset(&p->pending.signal, SIGSTOP);
1242 set_tsk_thread_flag(p, TIF_SIGPENDING);
1245 if (!(clone_flags & CLONE_STOPPED))
1246 wake_up_new_task(p, clone_flags);
1247 else
1248 p->state = TASK_STOPPED;
1250 if (unlikely (trace)) {
1251 current->ptrace_message = pid;
1252 ptrace_notify ((trace << 8) | SIGTRAP);
1255 if (clone_flags & CLONE_VFORK) {
1256 wait_for_completion(&vfork);
1257 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1258 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1260 } else {
1261 free_pidmap(pid);
1262 pid = PTR_ERR(p);
1264 return pid;
1267 void __init proc_caches_init(void)
1269 sighand_cachep = kmem_cache_create("sighand_cache",
1270 sizeof(struct sighand_struct), 0,
1271 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1272 signal_cachep = kmem_cache_create("signal_cache",
1273 sizeof(struct signal_struct), 0,
1274 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1275 files_cachep = kmem_cache_create("files_cache",
1276 sizeof(struct files_struct), 0,
1277 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1278 fs_cachep = kmem_cache_create("fs_cache",
1279 sizeof(struct fs_struct), 0,
1280 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1281 vm_area_cachep = kmem_cache_create("vm_area_struct",
1282 sizeof(struct vm_area_struct), 0,
1283 SLAB_PANIC, NULL, NULL);
1284 mm_cachep = kmem_cache_create("mm_struct",
1285 sizeof(struct mm_struct), 0,
1286 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);